Underground Pipe Thk Cal

  • Upload
    mkchy12

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 Underground Pipe Thk Cal

    1/12

    JOB No. 99304

    BASIC CRITERIA

    Route of Pipe Line

    Pipe Nominal Diameter 3500 NB

    Pipe OD 3556 mm 140 ''

    Design Pressure 6 kgf/cm2

    Average height of ground above top of pipe 1250 mm 4.1 '

    Pipe Material IS 3589 : FE 410

    Thickness of Cement Mortar (Internal & External) 0 mm

    Allowable stress (50% of yield point) 1200 kgf/cm2 1.7E+04 psi

    Modulus of Elasticity of Steel, E 2.1E+06 kgf/cm3 3.0E+07 psi

    Poisson's Ratio for steel, n 0.3

    900 1700 450

    1250

    250006625.xls.ms_office 1 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    2/12

    JOB No. 99304

    A. CALCULATION FOR INTERNAL PRESSURE

    As per ANSI B31.1

    Estimation of Thickness due to Internal Pressure

    tm(1-m)

    Where :

    tm= Thickness without Mill Tolerance

    t = Thickness after Mill Tolerance

    P= Internal Pressure, 6 kgf/cm2

    D0= Outside Diameter 3556 mm

    S= Allowable stress 1200 kgf/cm2

    A= Corrosion Allowance 0 mm Refer 4.4 AWWA M-11

    E= Joint Efficiency 80% for ERW Pipe

    Y= Factor 0.4 for ERW Pipe

    m= Mill Tolerance 10.0% As per Cl 11.2 of IS3589

    Calculated Thickness without Mill Tolerance, tm= 11.08 mm

    Calculated Thickness with Mill Tolerance, t = 12.32 mm

    Nearest Available Plate Thickness 14 mm

    Pipe thickness Adopted 14 mm

    t =

    tm=2(SE+PY)

    PD0+A

    250006625.xls.ms_office 2 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    3/12

    JOB No. 99304

    B. CHECK FOR EXTERNAL PRESSURE

    Step 1

    As per IS 2825 (Clause 3.3.3.2)Estimation of Thickness under External Pressure

    Maximum Allowable vacuum

    tm= 1.03*D0/100*(PK)0.33 for L/D0> 14.4/(PK)

    0.166

    P= 1/K(t*100/(1.03*Do))3 0.056 kgf/cm2 0.794 psi

    Where :

    t = Thickness after Mill Tolerance 14.0 mm

    P= Minimum Internal Pressure, 1 kgf/cm2

    D0= Outside Diameter 3556 mm

    A= Corrosion Allowance 0 mm

    Step 2

    As per Sl. No. 1 of Table XIII of Roark (4th Edition)

    External Collapsing Pressure

    Where :

    t = wall thickness 14 mm

    R= Radius of pipe 1778.0 mm

    sy= compressive yield point 1200 kgf/cm2

    E= Modulus of elasticity 2.1E+06 kgf/cm2

    mmK=Elastic Modulus of Steel at Design Temp

    Elastic Modulus of Steel at Room Temp1

    psitsy

    R(1+(4sy/E)(R/t)2)

    kgf/cm2p'= 0.250 3.549

    250006625.xls.ms_office 3 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    4/12

    JOB No. 99304

    Step 3

    Where :

    E= Modulus of Elasticity 2.1E+06 kgf/cm2

    n= Poisson's Ratio 0.3

    t = Pipe Wall thickness 14 mm

    D= Neutral Axis Diameter 3528 mm

    Collapsing Pressure

    Pc= 3 psi 0.221 kgf/cm2

    Where :

    t = Pipe Wall thickness 0.5512 inch

    D= Neutral Axis Diameter 138.9 incht/D=

  • 8/10/2019 Underground Pipe Thk Cal

    5/12

    JOB No. 99304

    C. CHECK AGAINST BUCKLING

    As per equation 6-7 of AWWA M-11, 2nd ed 1987

    Allowable Buckling Pressure

    qa= 1/F(32RwB'E'(EI/D3)) 10.7 psi 0.753541 kgf/cm2

    where

    F= Design Factor 3 for h/D =2

    D= Diameter of Pipe 140 inch

    Rw= Water Bouyancy factor 0.736

    1-0.33(hw/h)

    h= height of ground surface above top of pipe 49.213 inch

    hw= height of water surface above top of pipe 39.37 inch 0hwh

    h/D= 0.3515

    B'= Empirical coefficient of elastic support 0.1644

    0.150+0.041(h/D) for 0h/D5

    0.150+0.014(h/D) for 5h/D80

    E= Modulus of Elasticity 3E+07 for Steel

    E'= Modulus of Soil 1750 psiI= Moment of inertia of X-section of Pipe wall 0.014 in4/lin in

    =t3/12

    t= thickness of pipe 0.5512 inch

    Pipe embedded in soil may collapse or buckle from elastic instability resulting from external forces due toearth load and/or internal vacuum.

    250006625.xls.ms_office 5 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    6/12

    JOB No. 99304

    Pt= gwhw + RwWc/D + Pi

    gw= Specific weight of water 0.0361 lb/in

    h= ht. of ground surface above top of pipe 49.213 inch

    hw= ht. of water surface above top of pipe 39.37 inch 0hwh

    Rw= Water Bouyancy factor 0.736

    1-0.33(hw/h)

    D= Diameter of Pipe 140 inch

    Wc= Weight of Conduit 68.751 lb/lin in

    Pi= 100% Vacuum 14.2 psi Case I

    Vehicle Load 3 psi Case II

    Total Load, Pt(Considering Internal Vacuum) = 15.983 psi 1.124 kgf/cm2Total Load, Pt(Considering Wheel Load) = 4.783 psi 0.336 kgf/cm2

    for Case I (Internal Vacuum): Pipe Chosen is liable to fail under Buckling

    for Case II (Wheel Load): Pipe Chosen is Safe

    Compared to above, the total external pressure on the pipe is

    250006625.xls.ms_office 6 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    7/12

    JOB No. 99304

    D. CHECK AGAINST HORIZONTAL DEFLECTION

    As per equation 6-1 of AWWA M-11, 2nd ed 1987

    Pipe deformation: Sprangler's formula

    Marston ditch conduit formula

    W= Cdw Bd2 (1)

    For a flexible pipe, equation (1) is revised to

    Wc= Cdw Bd2(Bc/Bd) when the trench width is less than 2D (2a)

    Wc= Hcw Bc when the trench width is more than 2D (2b)

    where

    Wc= dead load on the conduit 5980.7 lb/ft using (2b)

    w= unit weight of fill material 125 lb/ft3

    Cd= Load Coefficient based on Hc/Bd 0.5 (Fig 8.3 of AWWA M-11 1st ed)

    Bc= Pipe OD 11.667 ft

    Bd= width of ditch at top of pipe 14.62 ft

    Hc= Height of fill 4.10 ft

    W = (WC+WL)/12 918.39 lb/lin in

    WL= Live load 5040 lb/lin ft Considering Truck Load

    Sprangler's formula for horizontal deflection

    Horizontal Deflection of Pipe

    Dx= Dl(KWr3)/(EI+0.061E'r3) 1.276 in 0.91%

    32.4 mm

    where

    Dl= Deflection Lag Factor 1.5

    K = Bedding Constant 0.1

    r = radius of pipe 70 in

    t= pipe wall thickness 0.5512 in

    E = Modulus of Elasticity 3E+07 psi

    I = Moment of Inertia 0.014 in4/lin in

    E' = Modulus of Soil 1750 psi

    Pipe Chosen is safe under Horizontal Deflection

    equations 2(a) or 2(b) are the probable minimum loading. The actual load in a given case will be

    intermediate of the two

    250006625.xls.ms_office 7 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    8/12

    JOB No. 99304

    E. CHECK AGAINST COMBINED LATERAL STRESS

    Bending moment in pipe shell (Considering lateral support is available)

    r= Radius of Pipe 177.8 cm

    W= Weight of Conduit 12.28 kg/cm

    Kb= Bedding Coefficient 0.235

    Kq= Coefficient 0.103 for q=30o

    E = Modulus of Elasticity 2.1E+06 kgf/cm2

    I = Moment of Inertia 0.2287 cm4/lin cm

    E' = Modulus of Soil 28.123 kgf/cm2

    Pe= External Uniform Pressure 1 kgf/cm2

    Compressive Stress

    sc= M/z 0.0005 kgf/cm2

    z = Section Modulus 0.3267 cm3/lin cm

    Longitudinal Stress

    sp= PeD/2t 127 kgf/cm2

    Total Stress

    s = sc+ sp 127.33 kgf/cm2

    As total stress is less than the Allowable, hence safe

    M= kg cm1.70E-04Kb W r E I

    E I+0.061 E'r

    3

    - 2KqPer

    3

    250006625.xls.ms_office 8 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    9/12

    JOB No. 99304

    F. CHECK AGAINST COMBINED INT PR & EXTERNAL LOAD

    2(E I+0.061 E'r3+ 2KqPer3)

    r= radius of Pipe 177.8 cm

    W= Weight of Conduit 12.277 kg/cm

    Kb= Bedding Coefficient 0.235

    Kq= Coefficient 0.103 for q=30o

    E = Modulus of Elasticity 2.1E+06 kgf/cm2

    I = Moment of Inertia 0.2287 cm4/lin cm

    E' = Modulus of Soil 28.123 kgf/cm2

    P = Internal Pressure 6 kgf/cm3

    Longitudinal Stress

    sp= P D/2t 762 kgf/cm2

    Total Stress

    s = st+ sp 762.00 kgf/cm2

    As total stress is less than the Allowable, hence safe

    kgf/cm2Kb W r E t

    0.003st=

    250006625.xls.ms_office 9 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    10/12

  • 8/10/2019 Underground Pipe Thk Cal

    11/12

    JOB No. 99304

    Method 1

    yh2= [0.7(s1/sa)(Dt)3/2] - [t2S] 388.09 cm3

    where:

    s1= s

    a- P

    iD/2t 438

    kgf/cm

    2

    sa= allowable stress in compression 1200 kgf/cm2

    Pi= internal Pressure 6 kgf/cm2

    D= Diameter 355.6 cm

    t= wall thickness 1.4 cm

    S= Spacing of reinforcement ring 1250 cm

    y= width of stiffener 2.0 cm Assumed

    h= height of stiffener 13.9 cm

    Method 2

    where:

    s1= sa- PiD/2t 438 kgf/cm2

    sa= Allowable Stress in Compression 1200 kgf/cm2

    E= Modulus of Elasticity 2.1E+06 kgf/cm2

    E'= Modulus of Elasticity for Soil 28.123 kgf/cm2

    Pi= Internal Pressure 6 kgf/cm2

    D= Diameter 355.6 cm

    t= Wall Thickness 1.4 cm

    S= Spacing of Reinforcement Ring 1250 cm

    y= Width of Stiffener 12 cm Assumed

    h= Height of Stiffener 76.282 cm

    cm3- t2S

    0.65750.7 (D/t)2

    yh2=[s1 (1 + 0.091 (D/t)

    3 (E'/E) + 0.325 (p/E)]

    [0.7 p D2S]

    p=

    69826

    s1[1 + 0.091(E'/E)(D/t)3+ Pi/E (D/t)

    3]kgf/cm2

    250006625.xls.ms_office 11 of 12 11/3/2014/9:19 PM

  • 8/10/2019 Underground Pipe Thk Cal

    12/12

    14.223418 from to thickness

    168.3 406.6 4 5

    406.6 559.0 5 6

    559.0 914.0 6 7

    914.0 1219.0 7 8

    1219.0 1620.0 8 10

    1620.0 2032.0 10 12

    12 14

    14 16

    16 18

    18 20

    20 22

    22 25

    25 2828 32

    32 36

    Table 3 (IS 3589:1991)