16

UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw
Page 2: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

- ■ aai> m.m —■ "■■""""-" '■""^

UNCUSSIViKn Security aimatflcaUoa

DOCUMENT CONTROL DATA • RAD

I. OUMMATINO ACTWITV 7SI

l «• •••Mil i»g»g j» «JM«jjj»g

Department of Operations Research Stanford University Stanford. California 9A305

!•■ •MU»

I. MPOIIT TITLI

On Optimal Assembly of Systems

4. DCtCRIPTIVt NOTtl Wm 3 SBS JS toOMlM SS3

1. AUTHOWtj AMI MM«, an« MM. BüiQ

Oerman, Cyrus, Lleberman, Gerald J., Ross, Sheldon M.

*■ MPONTOATC

August 25th, 1971 (• CONTNACT ON «HANT MO.

NOO014-67-A-0112-0052 k, )>>«OJ(CT NO.

(NR-OA2-002)

12 I» OMICINATaM-t ncrOKT NUMUMOi

No. 140

«27 ONR N000U-67-A-0112-i)0'j8

10. * VAILABILITV/LIMITATION NOTICC«

Distribution of this document Is unlimited.

II. (UPPLCMCNTARV N0TI1 It (PONSONINO MILITARV ACTIVITY

Statistics & Pvobablllty Program Office of Naval Research Arlington, Virginia 22217

' We are concerned with the following reliability problem: A system has k different types of components. Associated with each component Is a numerical value. Let (aJ) (J - l,...,k) denote the set of numerical values of the k components. Let R(a ,...,afc) denote the probability that the system will perform satisfactorily fl.e. RCa1 alc) is the reliability of the system) and assume R(a^,...,a ) has the properties of a Joint cumulative distribution function.

Now suppose a| £.. .£ a^ are n components ol .ype j (j - 1 k). Then n systems can be assembled from these components. Let N denote the number of systems that perform satisfactorily. N is a random variable whose distribution will depend on tlie way the n systems are assembled. Of all different ways in which the n systems can be assembled, the paper shows that EN is maximized if these n systems havr reliablliiy R(aj,...,a^) (1 - 1,..., The method used here is an extension of a well known resulc of Hardy, Littlewood and Polya on sums of products. Furthermore, under certain conditions, the same assembly that maximizes EN minimizes the variance of N.

Finally, for a similar problem in reliability, it is shown that for a series systems a construction can be found that not only maximizes the expected number of funrcloning modules but also possesses the etronger property of maximizing the probability that the number of functioning modules is at least r, for each 0 < r < n.

0

DD /Ä 1473 UNCLASSIFIED Security ClauiacatfM

■OMajMHAbHMMMBua.^ ^_ _—

Page 3: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

'"■, ■'■-'■- '■■■- ■»»———— — —- ■!■ I !■ ■ I II- .1. !

'JHCLASBinKD

l«. KIV ■OMOI

AaslgnmenL

Hardy, Llttlewood, and Polya

Reliability

Series System

Joint Distribution Function

UMH« »on WT

yiffli LltWC

5StL «T

iMmiucnom u MaoiNAnm Acnvrrv: caiwiiM —, . •f Ik* camracl«. wkeeMrMl«, ftani«*, D«pm—> of 0» (••M «cilvtly « »Ihm ••■•■InUaa (coipotl» mlhof) It—It

a«. niroiiTKCuirrrcLAMtncATiow •II ••eurKr cUulf>c«llan of UM np«M. Indkal« «Imlnf "M«»trtc«*4 DM»" i» Includ»! Uwkli« U U b« Ui MMT* •UM «Uh «Mifuprt*!« ••cvrtty rciulalloa«.

1». CROUPi AiKoaMlc downcrxMnc I« «pcclflad 1« OoO IH> nclW« S20a 10 Md Anwd rare*« Inductrl«! ÜMMal. Cat« tlM group nuii*»r. AUe, «hon •fpllcabto, »Horn Ihal opttoMl Mrfcln«* hi«« bMn Mod («f Orovp 3 and Ofoup 4 aa autlw lawl 3. REPORT TITLE: Emtf lh« coaplat« rapoil IM* la all capital UHora. Till»« In all erntet aheuld ba VbclaaatflaA If a KMaintfut ml« oannet ba aalaclad «ttbaut claaalfic» Hoik aho« Uli* clattificallao la «II capUala la paraalbaala laiiadlHaly (oUowtnc Iba Ulla.

4. DiSCIUPnVB N0TK& U appfoprtala, aaMt Ika typ« of rapart, a.«., taiarlia, progiaaa, auamaiy, annual, at (InaU Olva Ika iiwIaaWa dalca whan a apaclf le rapattlag pa«l«i to eo« «tad.

5. AVTHOIKSji Bmat lb* naaw<i) a( auikoKa) aa abowa •■ ot to Ika lapott Ealn laat aaai«, luat oam«, aUddla lalllaL If Bllliarv, aha« rank and bfaaeh el aarvlea. The naata of lh* principal «jthor 1a aa abaolut* ninunuai raqulrrwaat

6. REPORT DATE, tmar lha data of lh« raport aa day. •tenth, year, or Month, »•«. K awca lhan ona dau appaat» •■ lha rtpon. uaa data of publication.

7a. TOTAL HUMOBR OF I'AC.tS Tha total p««a coaM ahould folio* aonaal pagination prccaduraa. La., aatar tha muabar of pagaa coatalnlag Inforaialla»

7b. NUMDBR OP REFERENCES; lalar tha total —a*at af lafaraaeaa cltad la lha rapurt.

•a. CONTRACT OR GRANT NUMDKR: If apptoptlM«, aiMMr lha appllcabla nuabat ol tha caauact at grant undat «Mali tha raport *aa wiltta»

topniil by »actaruy claaalflcaUaa, «alaa atia<»»< Mali auch aai

(I) "Quallllad laaaaat— aay «Mala coploo af Uda tapeit kom DDC"

(9 "rataiga mmmmmm aad m—mlmmm af Uda raport by DOC la aat authortaarL"

(9 "U S. Govawaiaat agaadaa nay abtala caplaa af ttla rapott dbaeUy Imai ODC Othat «Mllflad DK

"U. t, adllury agaaclaa aay abtala caplaa af Ma r«pott dlnctly baa ODC Otkar quallllad «aata •hall raquaal lh

(») "All dlatrtbutloo af tbla raport la eaaltaUaA Qual- Iflad DDC iiaam ahall raquaat thraafb

•e. k Id. PROJECT NUMBER: Cntar tl.a i dapattaaal Idaalirieatloa, auch aa piojact

•uhprajact auafeat. ayataa auaibara. taah nwr.bar. ate

»a. ORIOINATOR't REPORT NUMBER(l): Rntat lha ofA- elal rapott aua<b«r by which lha docunaai «rill ba IdaotUlad ■M coMrallad by lha originating activity. Tbla guta» awM be «alqu« ta Ihla rapatt.

9». OTHER REPORT NUUBER(S): If lha raport haa baae aaalgaad aay elbar rtpart nunbar« (tilhtt by (ba orlglnalar •f by Ifca tpontoi), alaa •«••( Ihla nuat>«r<a).

ML AVA^ABILITY/HICTATION NOTICE* Eaiat aay lh» Itatlaaa a« iialhar dlaaaatuiallea ol tha raport, alhat tbaa thaaa

II lha raport haa baan lurnlahad la tha Offlca af Tactalcal •anUaa. DapaitaMd at Caawatca, tot aala ta Ika ptMlc, ladl> aata Ma faei aad aatat Uta prlva. If kaeank

IL SUPPLEMENT ART NOTE» UM lat addlUoa^ a^laa» Uty aatoh

II »ONSORINO MILITARY ACTIVITYi EM at tha MM af tha dapattaaalal ptojact offlca aa laboratory aponwrlaf fpar Ini far) tha tMaatch aad davalopaaiiL lachida i '

II. ABSTRACT: Ealar aa abalracl glvlag ■ httof Md tectMl a—ary af UM docuatat ladlcatlva af tha raport, avM thaafh It aay alao appaar alMwbaia la tha body af tha tachalcat ta- •ait. If addiUaMl apaca la tagulnd. • cMtlaMttaa abaat ahall Wattachad.

It la highly daalrabto that lha abattact of claaalflad rapatta ha uaclaaaifud. Each paragraph of tha abalracl ahall aad «Ilk M Indication of tha alUtaty aacutity claaalftcattoa of tha la- famaüoa In lha paragraph, raptaaaalad as (TV. «*. f«. at fW>.

Thara la BO UaliaUoa M «a Uagth of tha abaMcL Ito»- •Mr, lha auggaalad laagth to froai ISO to MI %eida.

14. KBVVCRDSi or abort ladag MMM fat cataloging lha rapott. Kay ward« auat ha aalaciad ao thai ao atcurlly claaalflcaUo« ia raqultad. " Ilara. auch aa aqulpaant modal daalgaaUon, tmda Maa, pto)«ct aoda Maa, gaagtaphlc location, auy ba Mad a* toy •otda tat will ha followod by M Indication af tachalcat CM~ tail. Tha aaalgnaaal af Uaka. ralaa, aad walghta U apUaaal.

;Y WORDS: Kay wotda at« Uchalcally aMMlagful Mai t phraaaa toal eharacUrtoa a tapott aad aay ba Mad ••

DD .Da0.".. 1473 (BACK) Unclassified Saeurity Claaaiflcallaa

■ -- — ---

Page 4: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

• ——^——^ • ■*-, I-—--I ^,,,.,l..1„,„.,| ,., , !, ..„.,.,W

I ON OPTIMAL ASSEMBLY OF SYSTEMS

by

Cyrus Derman, Gerald J. Lieberman & Sheldon M. Ross

..

Technical Report No. 140

August 25, 1971

Supported by the Army, Navy and Air Force Under Contract N00014-67-A-0112-0052 (NR-042-002)

with the Office of Naval Research

Gerald J. Lieberman, Project Director

Reproduction In whole or in Part is Permitted for any purpose of the United States Government

Department of Operations Research &

Department of Statistics Stanford University Stanford, California

r. KstiiibJncN oi'Air

Distribuiicu i'ü'Jmited

- ■ ■ Hi- *»■■. a ■■! _—. —J ■ i.f >■ 11. i - .

Page 5: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

IpilllllllllJIU

I

^—— ll■l!",l*"' "■■",l1 '

MHBMMM ' M

10 0 i

;

[i

0

ID

ON OPTIMAL ASSEMBLY OF SYSTEMS

by

Cyrus Detman, Gerald J. Lieberman & Sheldon M, Ross

(0] Summary ——f-^ ^ {

We are concerned with the following reliability problem: A system

has k different types of components. Associated with each component

' ? 1 le a numerical value. Let (a } (j ■ l,,..,k) denote the set of Vl k ' numerical values of the k components, Let R(a ,,.,,& ) denote the

1 k probability that the system will perform satisfactorily (i.e R(a a )

1 k is the reliability of the system) and assume R(a ,. ,a ) has the

properties of a Joint cumulative distribution function.

1 1 Now suppose aJ. ^... •£ aJ are n components of type j (j • l,...,k).

Then n systems can be assembled from these components. Let N denote

the number of systems that perform satisfactorily. N is a random variable

whose distribution will depend on the way ehe n systems are assembled.

Of all different ways in which the n systems can be assembled, the paper

shows that EN is maximized If these n systems have reliability

1 k R(a.,...,a.) (i • 1, .,,n). The method used here is an extension of a

well known result of Hardy, Littlewood, and Polya on sums of products.

Furthermore, under certain conditions, the same assembly that maximizes

EN minimizes the variance of N.

Finally, for a similar problem in reliability, it is shown that

for a series systems a construction can be found that not only

mm - -' -

Page 6: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

,—»**•

I

*" ' '

Ü maximizes ehe expected number of functioning modules but also possesses

the stronger property of maximizing the probability that the number of

functioning modules is at least r, for each 0 < r < n.

[1] An Optimal Assignment Theorem

A well-known result appearing in Hardy, Littlewood, and Polya [1]

asserts if a. < a. <...< a and if b. < b. <...< b . then 1— 2— — n 1— 2— — n'

n

1-1 lalb 1-1 *(1)

where i^ is any permutation of the Integers 1, 2,...,n.

Also in [1] is the generalization that for any k ^ 2 and if

0 < a, <-...< a, j - l,...,k then — 1 — — n' J ' '

n a j n V L - •-i 1-1 j-1

j n k

i-i j-i v

where ^,(1) - i (1 - l,...fn) and i|u,..,,tk are any k permutations

of 1, 2,...,a. Proof of both results follows from establishing the

inequalities for the special case of n - 2 and then resorting to a

standard argument regarding palrwise interchanges. First let n - 2

and k = 2. Then

1.

I

albl + a2b2 " alb2 " a2bl " al^bl~b2^ ~ a2^brb2^ " (a1-a2^bi"b2^ - 0

since a. <^ a« and b. f. b». Now assume the result is true for n - 2

MMMHMMimMHMMII UMitfMkMM ■«riiin».»! li In ^

Page 7: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

linpppipiMPVfP«w)^VPqnpiMnpm«M*P«P*ffimr#i<Hn. iim ■"■ iiiniiii^wwi"«'^w^-

I I

and k «■ 2, 3 K-l. Then consider

ti

I n aJ (!)' 1-1 j-1 V

If for each J ■ 2,...,K, i|/ (1) - 2, * (2) - 1. Then

and

K J

j-2 *j(1) 2 (say)

.

11 ar. .«v - b, J.2 V2) 1

1 b2 •

(say)

.

and, hence.

K K n a^ + n a^

J-1 j-1 - a1b1 + a2b2

>^ a^- + a2b.

K K 2

11 a-^ -.v + 11 a. ,_v

::

If, for at least one J (say, j-2), «Ml) - l,i|», (2) - 2, then by

the Induction assumption

i s i

< a

2 K 1 a: n a^ •1-^(1)]

■ 1 2 J j a2 a2 ^3 ^(2)

K K n a^ ,.N + IT a; /().

.j-2*j(1) j-2 V2>

K k ■ n a^ + n a^

Lj-2 1 j-2 ^

,11, + (a^aj^)

/ 1 lv

4.Vv».

y:2av«

li|Mtt|HM«ftlMriiMMMJHHMM*Mi*M»itei^ft^MMM ^M^M^Mi.^.-..^,..,....- .,

Page 8: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

^-«-r--» ""»» r*"*"^ """" ' ..„^.„;.-. jiniiiiiu mi >IIIIIIIPIIII mil n i ■MMMMMm

7r h

11 I i

..

..

;

i

..

i-i K

K K • n aj + n a^

J-2 J-2 + (a^ - ah n a^

1 j-2

naj J-l

K + n a

j-l

j

Hence the inequality holds for n - 2, and all Integer values of k.

Returning to arbitrary n, If ^.....ij/ are not all equal to

tj;. then there exist two values of 1 (say 1 ■• 1, and 1-2) such

that Ml) <^ iM2) does not hold for all j-2 k. However, by

considering the permutations i|)! (j - 2t...(k) which are the same as

f., (j - 2,...,k) except that t|;' (1) ±$'(2) for every j - 2,...,k

It follows from the above result for n - 2 that (keeping iK (1) - 1)

n k . n k .

I " «}.(!) 1 I n aJ (1) 1-1 j-l V1; i-1 j-l V

Hence, the original permutations could not be optimal.

Now let R(x.,...,x ) be any real-valued joint cumulative

probability distribution function. For our purposes we want to prove

the following extension.

Theorem 1: If a^ £.. .^ a^ (j - 1 k) , then

n 1 k n 1 2 k Ji^i ai) - J/^CD'^d) Xd)^

where ^(1) - 1 (1 - l,...,n) and ij» (J-2 k) are any

permutations of 1, 2 n.

1. This extension turns out to be a rediscovery of a special case of a result obtained by Lorentz [2].

I UMMawo. —toMMmf- -

Page 9: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

„„,„..,,,„.., .....< »••< „i..,,!,.^ „ „^.,.^.„,.^.|....JI ,1) i . ""''—''"•'"-""

I i.

..

h

1.

Ü ! i

Proof: As in the above proof we need only prove the theorem for

n ■ 2. Also, without loss of generality we can then take a^ - 0,

a^ ■ 1, j = 1 k, and we can take R to be a discrete

distribution function with mass only at the points X. XJc where

X (m ■ l,...^ ) are all the points consisting of the k coordinates

which are 0 or 1. Let C denote the probability mass at the

point X . For any iK»"'»^!, we can w1'"'-16

ok

R(ai|'1(i) \(i) m=l m J-l mi *j(i)'

where g (a) = 1, if a > x mj — mj

= 0, if a < x mj

,th where x , is the j coordinate of X . mj ■" m

This is so since

k i i *! gmj(ai:j(i)

) = 0* " ^(i) ' Xmj f0r at leaSt one j

= 1, if a , /.v > x . for all j = l,...,k. i|/.(i) - mj j » .

i.

But since g (a) are non-decreasing functions it follows from the

Hardy, Littlewood, and Polya result for products that

k k k k n gmAah + n gm.(a

j„)i n gm.(aj ,..) + n g.(^ n.) j«! mJ 1 j=i mJ 2 j=i mJ ^y' j=i J *j( ^

for any permutations i|;-,... ,i(). . Then, since c ^ 0 (m»l,...,2)

5

wmmmrn ■^Mito»—^aMMfcfMIIUiMjmil^tirii ■ ■■'■'■ - ■■■ - ■ ■ ■ i«nf»-- ' - ■ ■■' ■ ■ • ■

Page 10: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

"■""" ■'" """"I"

_„ ,>,,<rf»<WW'»W|VlW —«IM

—TT— MMPHiiii J

I I

i

i 1 1

it follows that

1 k

Ü

R(a. , • • • »a, ) + RCa» a») ^ '*'^aj. Q\ »• • • »^ /-j.)'

+ R<aii»1a)M",\<2))

for every ij^» \ as was to be shown.

2. Application to Reliability Theory

We are concerned with a type of system that has k components.

Associated with each component Is a numerical value. Let {a }

(J m 1 k) denote the set of numerical values of the k components.

1 k We assume that R(a , ...,a ) is the probability that the system will

1 k perform satisfactorily (i.e. R(a ,...,a ) is the reliability of the

system) where R(a ,... ,a ) as a function of a a has the

properties of a joint cumulative distribution function. For example, if

the system's performance depends on values of k random variables,

Y.,...,Y. , to the extent that the system performs satisfactorily, if

and only if, Y < a-', J - l,2,...,k, then if Y.,...^. have joint

Ik Ik distribution FCy.,...,y.), then R(a ,...,a ) » F(a ,...,a ) will

have the assumed interpretation and properties.

Now suppose a^ <^. .£ a-' are n components of type j

(j = 1 k). Then n systems can be assembled from these components.

Let N denote the number of systems that perform satisfactorily. N

is a random variable whose distribution will depend on the way the n

systems are assembled. A direct application of theorem 1 asserts:

k-1 Theorem 2: Of all the (nl) ' different ways in which the n systems

can be assembled, EN is maximized if these n systems have reliabilities

R(a.,...,a.) (i ■ l,...,n).

lllllllM'M ! ! I - ■

.^^^^jaimimaaj^i^».^,^^.. ... ... -.,..,..,.. , ;.t.,m..,..a..«..-,,u-.,. , - ■ J.....v..<...... ,.vi, ,,- ■,...

Page 11: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

^ PHIHMI «imwm, UN i. rnn^i—■n«fiiiwiiM..JiwiNWW .1 imm»mmw ■■■u.ii i. 1 .ii^p^ ■pl|liiiilim)lliwi|,>JW.'iwi'"»»Pt»wiW!Mi|H

I [

.

1; I fl Proof. For any assembly defined by i<i.(i) ■ 1, iK (i) (j - 2,...,n)

^ EN- I *bl nV *l (4S K «0-

1:

i-i »i») ^d) >k<t)'

The previous result holds.

We can assert, also, the following result.

1 k Theorem 3: If Rte^ /iv*"'8!!) (±0 1. ^2 for every 1 and

^2''"'^Ic t^en t^e same assembly that maximizes EN minimizes the

variance of N.

n . . . . Proof. Since variance N - ^ RCa^ ^y" ^ (i))(1"R(% (i) % (i)'»

XXX K X K

the truth of the theorem need only be established for n ■ 2. That It

Is true for n > 2 follows from the following lemma:

Lemma: If 1/2 1 P1 1 q1 1 ?£ 1 1. Pi 1 I2 — p2* fnd Pl+P2 - ql+q2

then pj^d-pj^) + p2(l-p2) <^ q^^d^) + q2(l-q2).

Proof: On subtracting the right hand member from the left we get

P1(I-P1) + P2(I-P2) - qj/i-qi) - q2(1-q2)

2 2 2 2 pl + p2 ' pl " p2 " ql ' q2 + ql + q2

ql ' Pl + q2 ' P2 + (pl ' ql) + (p2 " q2)

l|l^^j||ai^„. :.. . .■...■„....„,.„>..,:..^„^.—...^-^■.■.AJ.^-. JJJ.^-,~...,..-^.-..t.J........^Jai^tokiiMtwivMiii*****^^»«^*^^

Page 12: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

„***.*&& «ff*^**-.':'.

l

i.

mmmmmmmmiimmmmmmmmmiMmmmP**mmmiM\*i iuww.^-w -.■,i.',-r ■',•-., j'.','i';-v. 4 ■;'.■: ■V/f ■:

(q-L " Pi^^i + Vi> + ^2 " p2^q2 + p2^ ~ (ql " V " (q2 " P2)

(^ - P1)[q1 + ?!"!] + (q2 - P2)(q2 + P2 ~ ^-^

< (p, - qoHqi + PT - 1) + (q9 ~ P,)(q, + p, - 1) '2 V12,VV11 " ^l 2 l'2/VM2 ' t'2

1 1

(P2 " ^^l + Pi " i) " (P2 " q2^q2 + P2 " -^

(P2 - q2)(ql + pl ' q2 " P2)

■(P2 - q2^q2 " qi + P2" Pp - 0•

Some remarks are In order:

1. Theorems 2 and 3 will be applicable to special coherent

structures, namely, those where the reliability function Is not only

monotone but also a distribution function.

2. It should be stressed that the exact form of the distribution

function need not be known, only that the reliability function can be

assumed to be In the form of some distribution function.

-■'-'■■—-^ ' ' :.;».■■.-..,.—.,.......■ ""---^■'^■"■"'itMmiiililriiT 1 •' 1 1' '1 r-'"i ' inii r'iiniiiWirrriniii 1 r

Page 13: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

.~**m W*I|>',M"",~'—~'™*~-1—-■—-■—■—-—--—-———————*—---———-—-—^——-TT" n . i _____

i.... „ lH..||.l|..|.l

I I I [3] Another Application of the Hardy. Llttlewood and Polya Result

To Reliability

Consider the following model: A stockpile consists of n units

of each of k different types of Items. Associated with each Item

Is a probability that the Item will perform effectively. We denote

by ?i, j - l,...,k, 1 - l,...,n, the probability that the 1

unit of the type j will perform effectively. (This item will be

referred to as the P^ item.) These probabilities are assumed to be

independent and it is supposed that

?! 1 p2 i ••• 1 pi» j - l.-.-.k.

From these nk items we must construct n modules, where a module

consists of one of each of the k types of items. We say that a

module functions if all of its k elements perform effectively. The

problem is to construct the modules in such a way so as to maximize

the probability of attaining at least 0 £ r £ n functioning modules.

Let us define the 1 module to be that module containing the

item P.. If our objective was to maximize the expected number of

functioning modules, then the Hardy, Llttlewood and Polya result

yields the solution. Namely, that the i module consists of the

12 k items P., P, P.. We now show that this construction not only

maximizes the expected number of functioning modules but it also

possesses the stronger property of maximizing the probability that

the number of functioning modules is at least r, for each

0 < r < n.

mmm mmmm Lmta mm .■■.,..^..^.L«.ia..i.aM ' '■■■--' -"■■

Page 14: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

mmm • • '■ ■'■ — ■'"-■'■" p n ' ^ —-- ' im i—— ■ ■ ■■ ■ •

I I ::

ü

i.

Theorem A; The probability of obtaining at least r functioning

modules is maximized, for each r - l,...tn, by letting the 1

module consist of the items

P., P.,.#.,P., 1 ■ lf«a>ln»

Proof: Consider any arbitrary construction of modules - call it

C. - whose 1st module consists of the items

pi p2 p3 k

•L 12 13 1k

where i2 / 1, and suppose that the sth module of C. consists of

the items

pi p2 p3 k

Now consider a different construction - call it C. - whose 1st module

consists of the items

pi P2 P3 pk

1» 1» 0 »• ••»"0 i i ä3 Äk

and whose sth module consists of the items

pi p2 p3 pk

where

1.

£r » min(ir,jr), mr - max(ir,jr), r - 3,...,k.

Suppose further that the remaining modules at CL are identical to

those at C.. The probability that either the 1st or the sth module

10

äauult 1 -

Page 15: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

mmmmmmm wmmm mmmii IM iwtmw^r^^i^m» — -^■^^WIIHWI I

I

I I I :

i.

of C. functions Is

l 1« 1^ If. 1 10 1, 1. 8 1 j« j. "2 3 '2 *3

while the corresponding probability under C„ Is

1 1 A3 Äk 1 1 £3 Äk s 12 1113 i^

As the number of the other n - 2 modules which function is

stochastically equal under C, or C, It follows by the Hardy,

Llttlewood and Polya result that the number of functioning modules

is stochastically larger under C„ than It Is under C.. Hence we

need only consider constructions whose first module contains both F^

2 and P.. Similarly we can show that we need only consider constructions

12 k whose first module Is P., P. P-. Repeating this argument on the

other modules completes the proof.

0 0

0 ß

We make the following remarks:

1. The main reason we have considered this problem is that

often the "total system" works if, and only if, at least r of the

modules function.

2. If we suppose that k ■ 2 and that a module functions

if at least one of the items in the module performs effectively then

a proof similar to the above shows that the construction stochastically

maximizing the number of functioning components Is the one whose 1

1 2 module consists of the items P., P .. .. 1' n+1-1

11

MM^ j „tiäiittlflumiimaimitUMmi, ■mMMftlMgAti

Page 16: UNCUSSIViKn - DTIC · eo««tad. 5. AVTHOIKSji Bmat lb* naaw

I11" ' » ,

I I I I

i.

:.

:

!

ii: Ö

G

;:

HI

REFERENCES

[1] Hardy, G.H., Littlewood, J.E., and Polya, G., Inequalities

Combridge University Press, 1934.

[2] Lorentz, G.G., An Inequality for Rearrangements. American

Mathematics Monthly, 60, March 1953, pp. 176-179.

12

■"•^

mtM iltti .. -.. L-....^-.... .. ■■ .,, *_ ^_ .