70
Synthetic Development of Novel Silica Polyamine Composites and Reclamation of Hazardous Mining Wastewater

UMT Presentation

Embed Size (px)

DESCRIPTION

Presentation summary of research conducted in partial fulfillment of PhD in chemistry at the University of Montana.

Citation preview

Page 1: UMT Presentation

Synthetic Development of Novel Silica Polyamine Composites

and Reclamation of Hazardous Mining Wastewater

Page 2: UMT Presentation

Acknowledgments

Page 3: UMT Presentation

Acknowledgments

Dr. Bob Fischer

Carolyn Hart

Dr. Ed Rosenberg

Joel Clancey

Jeff McKenzie

Rosenberg Research Group

Pacific Northwest National Laboratory

Purity Systems, Inc.

Montana Board of Research & Commercialization Technology

Department of Energy

Page 4: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 5: UMT Presentation

Advantages Over Competing Technologies

Crick, D.W.; Alexandratos, S.D. Magn. Reson. Chem. 1994, 32, S40-S44.

Fryxell, G.E.; Lin, Y.; Fiskum, S.; Birnbaum, J.C.; Wu, H. Environ. Sci. Technol. 2005, 39, 1324-1331.

Crosslinked Polystyrene

Self-Assembled Monolayers

on Mesoporous Supports

• Faster capture kinetics

• Lower back-pressures

• No shrink/swell upon load/strip cycles

• Longer material lifetimes

• Higher metal capacities

• More stable to radiolytic decomposition

Page 6: UMT Presentation

Silica Gels

Supplier Diameter Pore Diameter Pore Volume Porosity Surface Area

µm Å mL/g % m2/g

Crosfield 90 - 105 267 2.82 84.7 422

Qingdao Haiyang 150 - 250 194 2.39 85.0 493

Qingdao Meigao 180 - 250 378 2.86 85.3 303

Nanjing 180 - 250 164 2.30 85.8 561

Nanjing Tianyi 80 - 250 150 2.28 85.6 526

Page 7: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

Hydration of Crosfield Silica Gel

0

1

2

3

4

5

6

7

0 40 80 120 160 200

Hydration Time (hr)

% H

2O

(m

/m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H2O

: S

i-O

H

% H2O

H2O : Si-OH

3 Foot Column:

Top Foot: 6.1%

Middle Foot: 6.3%

Bottom Foot: 6.1%

Page 8: UMT Presentation

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

(d) Lateral Polymerization

Synthesis of Silica Polyamine Composite

Page 9: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

Poly(allylamine)

(e) Silica-Polyamine Composite (d) Lateral Polymerization

N

N N

OSi N

O

O

Si

Si

O

O

Si

O

O

O

O

N

N

N

N

N

P

P

Page 10: UMT Presentation

Synthesis of Silica Polyamine Composite

O- Na

+

O- Na

+

OH

O- Na

+

OH

OH

OH

OH

(a) Raw Silica Surface (b) Cleaned Silica Surface (c) Hydrated Silica Surface

1. Acid Wash2. Dry Humidify

OHO

H

H

OH

OH H

OH

H

OH

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Cl

Cl

Cl3Si(CH2)3Cl

Poly(ethyleneimine)

P

P

N

N

N

NH

H

N

N

N

N

OSi

O

O

Si

Si

O

O

Si

O

O

O

O N

H

N

H H

H

Page 11: UMT Presentation

Ligand Modification

NH

POHO

H

NH

POHO

OH

NH

OP

OOMe

OMe

R = H/Me (1.2:1) (2.5:1)

NH

P OMe

OR

O

NH

O

O HO

NH

ON

OHO

N

HO

O

NO

HO

HO

O

Page 12: UMT Presentation

excess

+

NH2

n

NN

O

HO

N O

O

O

O

O

O

DMSO, 75 C, 24 hr.

Triethylamine

NH

O N

O

HO

N

HO

O

NO

HO

OH

O

n

Anhydride Synthesis

excess

+

NH2

n

THF, reflux, 24 hr.O

OO

NH

O

O HO

n

Page 13: UMT Presentation

• Mass/density gains

• Elemental analysis (Schwartzkopf Microanalytical Laboratory)

• Solid state NMR (Pacific Northwest National Laboratory)

Composite Characterization

Page 14: UMT Presentation

Variable Amplitude of Contact Time – Used to accommodate for the variable spin temperatures of each carbon type (& orientation).

Cross Polarization – Enhances the sensitivity by using the large proton magnetization to polarize 13C.

Magic Angle Spinning (54.7 1º) – Eliminates the peak broadening caused by chemical shift anisotropy (CSA).

Proton Decoupling – Removes the proton dipolar broadening.

Variable Amplitude - Cross Polarization Magic Angle Spinning

Schafer and Stejskal (1976)

Page 15: UMT Presentation

• Batch Capacity pH Profile

• Breakthrough Performance

Composite Performance Testing

Page 16: UMT Presentation

• Batch Capacity pH Profile

Composite Performance Testing

C = v ( [c] - [e] )

m

C = composite metal capacity (mg/g) v = volume challenge solution (L) c = conc. challenge solution (mg/L)e = conc. extraction solution (mg/L)m = mass of composite (g)

BPAP-CF 041504-DN

0

10

20

30

40

50

60

70

80

-2 -1 0 1 2 3 4 5 6

pH (H2SO4)

Me

tal C

ap

ac

ity

(m

g/g

)

Fe(III)

Eu(III)

Page 17: UMT Presentation

• Batch Capacity pH Profile

Composite Performance Testing

C = v ( [c] - [e] )

m

C = composite metal capacity (mg/g) v = volume challenge solution (L) c = conc. challenge solution (mg/L)e = conc. extraction solution (mg/L)m = mass of composite (g)

BPAP-CF 041504-DN

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

-2 -1 0 1 2 3 4 5 6

pH (H2SO4)

Meta

l C

ap

acit

y (

mm

ol/

g)

Fe(III)

Eu(III)

Page 18: UMT Presentation

• Breakthrough Performance

Composite Performance Testing

Pump5

10

100

BPAP-CF 041504-DN Precision Study

0.50 CV/min., Feed pH 1.0, Eu(III) FT Capacity 50 ± 2 mg/g

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Column Volume (CV = 5.0 mL)

Eu

(III)

mg

/L

Ave.

Page 19: UMT Presentation

Composite Performance Testing

BPAP-CF 041504-DN Precision Study

0.50 CV/min., Feed pH 1.0, Eu(III) FT Capacity 50 ± 2 mg/g

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

Column Volume (CV = 5.0 mL)

Eu

(III)

mg

/LBT#1

BT#2

BT#3

Pump5

10

100

• Breakthrough Performance

Page 20: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 21: UMT Presentation

Mixed Silane Gels

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

Page 22: UMT Presentation

Mixed Silane Gels

OSi Cl

O

OH

Si

O

OCl

Si

OH

OCl

OH

OH

OH

OH

Gel Silane O3SiR O2Si(OH)R OSi(OH)2R

Coverage

(umol/m2) (%) (%) (%)

A 4.6 28 59 13

B 5.3 30 56 14

C 5.8 - - -

D 6.6 48 44 7.3

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

Page 23: UMT Presentation

Mixed Silane Gels

CPTCS (66:33) 58:42 (33:66) 28:72 MTCS

Cl3Si(CH2)3Cl

Cl3SiCH3

+

OH

OH

H

OHO

H

H

OH

H

OH

OH

OH

H

OH

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

A B C D

OSi Cl

O

O

Si

Si

O

O

Si

O

O

O

O

Cl

Si

OO

Cl

Cl

Cl

BPAP-QH (Mixed Anchor Study)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

BPAP-QH 041104-DN A

BPAP-QH 041404-DN B

BPAP-QH 042004-DN C

BPAP-QH (Mixed Anchor Study)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

BPAP-QH 041104-DN A

BPAP-QH 041404-DN B

BPAP-QH 042004-DN C

Page 24: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 25: UMT Presentation

Boduszek, B. Phosphorus, Sulfur, and Silicon 1996, 113, 209-218.

PCl

Cl

O

Cl HO+ PO

O

O

Cl +

NH2

n

n

6 M HCl 6 hrs.

O

NH

P

O

O

OH

NH

P

O

OH

n

THF (0.5% DMSO)

reflux, 24 hrs.

4 hrs. neatambient

Chloromethylphosphonic Dichloride Pathway

Elemental analysis: N*/P = 10

Page 26: UMT Presentation

Chloromethylphosphonic Dichloride Pathway

N

N N

OSi N

O

O

Si

Si

O

O

Si

O

O

O

O

N

N

N

N

N

P

P

Elemental analysis: N*/P = 10

Page 27: UMT Presentation

Bhattacharya, A.K.; Thyagarajan, G. Chemical Reviews, 1981, 81, 415-430.

MeOP

OMeOMe

+ POMe

OMe

O

OCl +

NH2

n

dry C2H3N

CH3OH

pH 9 (NaOH)80 C, 24 hrs.

Cl

O

Cl

ice bath1 hr.

Si

Br

MeMe

Me

NH

OP

OOH

OH

n n

NH

OP

OOMe

OMe

Michaelis-Arbuzov Rearrangement

Elemental analysis: N*/P = 5.9

Page 28: UMT Presentation

Dimethyl(3-bromopropyl)phosphonate

Br P

O

OMe

OMe

OMe

P

MeOOMe

Br Br +

4 eq. eq.

150oC

45 min.

15 mmHg

65oC

Maguire, A.R. et al. Bioorg. Med. Chem. 2001, 9, 745-762.

Michaelis-Arbuzov Rearrangement

Page 29: UMT Presentation

Michaelis-Arbuzov Rearrangement

ppm (t1) 30.035.0

31P

ppm (t1) 1.502.002.503.003.50

1H

ppm (t1) 1020304050

13C

1H

Br P

O

OMe

OMe

a

b

c

d

e

f

a

b/c

e/f

e/f b a

c

d

b/c

ppm (t1) 30.035.0

31P

ppm (t1) 1.502.002.503.003.50

1H

ppm (t1) 1020304050

13C

1H

Br P

O

OMe

OMe

a

b

c

d

e

f

a

b/c

e/f

e/f b a

c

d

b/c

Maguire, A.R. et al. Bioorg. Med. Chem. 2001, 9, 745-762.

Page 30: UMT Presentation

Phosphonate Composite (BP-6)

Br P

O

OMe

OMe

60oC

pH 9 (NaOH)24 hrs.

+

NH2

n R = H/Me (1.9:1)

NH P OMe

OR

O

n

Elemental analysis: N*/P = 1.5

Page 31: UMT Presentation

Phosphonate Composite (BP-7)

Elemental analysis: N*/P = 1.7

Br P

O

OMe

OMe+

NH2

n

60oC

TEA, EtOH22 hrs.

R = H/Me (1:1.5)

NH P OMe

OR

O

n

Page 32: UMT Presentation

The Mannich Reaction (Acid Catalyzed)

+

. .

. .

H

C

O

H

P

P

P

N

P

OOH

OH

H

- H+

+ H+

- H2O

N

H

C

H

H

+

PHO

HOH

O

P

OHHO OH

BPAP

N

H

OH

+

HCl Activated BP-1

PN

H

H

H

PN

H

H

. .

Smith, M.B. and March, J., March’s Advanced Organic Chemistry, 5th ed. 2001, 1189-1190.

Blicke, F.F., The Mannich Reaction, Organic Reactions, Chapter 10, 1942, 303-341.

Page 33: UMT Presentation

Smith, M.B. and March, J., March’s Advanced Organic Chemistry, 5th ed. 2001, 1189-1190.

Blicke, F.F., The Mannich Reaction, Organic Reactions, Chapter 10, 1942, 303-341.

Elemental analysis: N*/P = 0.75

Phosphonic Acid Composite (BPAP)

+

. .

. .

H

C

O

H

P

P

P

N

P

OOH

OH

H

- H+

+ H+

- H2O

N

H

C

H

H

+

PHO

HOH

O

P

OHHO OH

BPAP

N

H

OH

+

HCl Activated BP-1

PN

H

H

H

PN

H

H

. .P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 34: UMT Presentation

BPAP 1H - 31P HETCOR NMR

CH

2

NH

N((CH2P(O)(OH)2)2

NH(CH2P(O)(OH)2)

CH

2

NH

N((CH2P(O)(OH)2)2

NH(CH2P(O)(OH)2)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

P

OH

P

O

OH

O

HO

HO

Crick, D.W.; Alexandratos, S.D. Magn. Reson. Chem. 1994, 32, S40-S44.

1H

(ppm)

31P

31P

Page 35: UMT Presentation

Phosphinic Acid Composite (BP-5)

excess excess

+ CH2O + H3PO2

NH2

n

2.0 N HCl, reflux, 20 hr.

NH

POHO

H

n

Elemental analysis: N*/P = 0.58

Varga, T.R. Synthetic Communications 1997, 27, 2899-2903.

Page 36: UMT Presentation
Page 37: UMT Presentation

BPAP-QH 121403-DN Strip Profile of BT#'s 1, 2, 10, 20 & 309 N H2SO4 (25%), 0.42 slowing to 0.27 CV/min. at 70 psi (4.7 bar)

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6

Column Volume (CV = 490 mL)

Fe(I

II)

mg

/L

SP#1

SP#2

SP#10

SP#20

SP#30

BPAP-QH 121403-DN BT#'s 1, 2, 10, 20 & 303.1 g/L Fe(III), pH 1.5, 0.32 CV/min. at 33 psi (2.2 bar)

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16

Column Volume (CV = 490 mL)

Fe(I

II)

mg

/L

BT#1

BT#2

BT#10

BT#20

BT#30

BPAP-QH 121403-DN Pilot Scale Cycle Testing Results

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Cycle Number

Cap

cit

y (

g/k

g)

Flowthrough Capacity

Strip Capacity

Page 38: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA (pH 10.6), 5.0 M H3PO3, 5.0 M H3PO4

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Fe(I

II)

mg

/L

1.5 M EDTA (99% stripped)

5.0 M H3PO3 (94% stripped)

5.0 M H3PO4 (78% stripped)

Page 39: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA pH 10.6, 99% Stripped

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10 S-11-12 S-13-14

Fe(I

II)

mg

/LFe(III) #1 (30 mg/g)

Fe(III) #2 (30 mg/g)

BPAP-CF 041504-DN0.50 CV/min., Feed Solution = 4 N H2SO4, 30 mg/g Fe(III) Capacity

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

0

2000

4000

6000

8000

10000

12000

Cu

(II)

mg

/L

Fe(III) #1 Feed = 407 mg/L

Fe(III) #2 Feed = 407 mg/L

Cu(II) #1 Feed = 10.3 g/L

Cu(II) #2 Feed = 10.3 g/L

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 40: UMT Presentation

Fe3+ Removal – Copper Electrowinning Solutions

BPAP-CF 041504-DN0.050 CV/min., 1.5 M EDTA pH 10.6, 99% Stripped

0

1000

2000

3000

4000

5000

6000

7000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10 S-11-12 S-13-14

Fe(I

II)

mg

/LFe(III) #1 (30 mg/g)

Fe(III) #2 (30 mg/g)

BPAP-CF 041504-DN0.50 CV/min., Feed Solution = 4 N H2SO4, 30 mg/g Fe(III) Capacity

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Column Volume (CV = 5.0 mL)

Fe(I

II)

mg

/L

0

2000

4000

6000

8000

10000

12000

Cu

(II)

mg

/L

Fe(III) #1 Feed = 407 mg/L

Fe(III) #2 Feed = 407 mg/L

Cu(II) #1 Feed = 10.3 g/L

Cu(II) #2 Feed = 10.3 g/L

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

93% Fe3+ Recovery

87% EDTA Recovery

10 mL + 50 mL 3 M H2SO4

Page 41: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve0.50 CV/min., pH 1.0

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Ga(III) Feed = 2,140 mg/L

Al(III) Feed = 1,840 mg/L

BPAP-CF 041504-DN Breakthrough Curve0.50 CV/min., 1 M EDTA pH 10.5, 92% Ga(III) Purity

0

1000

2000

3000

4000

5000

6000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Meta

l C

on

c. (m

g/L

)

Ga(III) 25 mg/g

Al(III) 2 mg/g

Phosphorous Based Ligand Composites (Ga3+)Ga(III) Batch Testing

0

10

20

30

40

50

60

BPAP BP-5 BP-6 BP-7

Ga(I

II)

mg

/g

pH 1.0 (HNO3)

pH 2.1 (HNO3)

Page 42: UMT Presentation

Th4+ Batch Capacity TestingTh(IV) Batch Capacities

0

20

40

60

80

100

120

140

160

0 1 2 3

pH (HNO3)

Th

(IV

) C

ap

acit

y (

mg

/g)

BPAP

BP-5

BPSU

BP-1

WP-2

WP-4

BP-7

BP-6

Page 43: UMT Presentation

Th4+ Breakthrough Testing

Breakthrough Curves 0.50 CV/min., Feed pH 2.9

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40 45

Column Volume (CV = 5.0 mL)

Th

(IV

) C

on

c.

(mg

/L)

BPAP 131 mg/g

BP-5 123 mg/g

BPSU 117 mg/g

BP-7 68 mg/g

Strip Profiles at 0.20 CV/min. using 2 M H3PO3 Strip Solution

0

5000

10000

15000

20000

25000

30000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Th

(IV

) m

g/L

BPSU (99% Stripped)

BP-7 (34% Stripped)

BPAP (7% Stripped)

BP-5 (3% Stripped)

Page 44: UMT Presentation

• Very low affinity towards divalent metals such as Cu2+

• High affinity towards metals in the 3+ and 4+ oxidation states:

Fe3+, Ga3+, Al3+, Ln3+, Th4+, Zr4+ (In3+, Co3+, UO22+)

• Strip 3+ metals using either H3PO3 or EDTA (pH 10.5)

• Does not strip well using H2SO4, HCl, HNO3; Fe3+ sulfite redox strip

solutions do not work

Phosphonic/Phosphinic Acid Composites

Phosphonic Acid Phosphinic Acid

NH

POHO

OH

n

NH

POHO

H

n

(BPAP) (BP-5)

Page 45: UMT Presentation

• Moderate (Ga3+) to very low (Eu3+) affinity towards 3+ metals

• Moderate affinity towards metals in the 4+ oxidation state (Th4+)

• Possibly strip metal using 1 M EDTA (pH 10.5)

• Does not strip well using 2 M H3PO3

• Difficulties obtaining the diester due to hydrolysis

Phosphonate Composites

R = H/Me (2.5:1)

NH P OMe

OR

O

n

BP-6 BP-7

R = H/Me (1.2:1)

NH P OMe

OR

O

n

Page 46: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 47: UMT Presentation

Rare Earth Element (REE) Sulfuric Acid Leach SolutionWestern Australia

Rare Earth Element Purification87% to 99% Ln(III) Purity [ <1% Al(III), <<1% Ca(II), Fe(III), Ti(IV)]

0

1000

2000

3000

4000

5000

6000

Ce(III) La(III) Nd(III) Sm(III) Pr(III) Fe(III) Mn(II) Ca(II) Mg(II) Al(III) Zn(II) Ti(IV)

Meta

l C

on

c.

(mg

/L)

REE Feed (50%)

WP-4 Flowthrough

BPAP Recovery Sol.

Page 48: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

200

400

600

800

1000

1200

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

BT #1

BT #2

WP-4-CF 101205-DN Strip Profile0.50 CV/min., 9 N H2SO4, 26 mg/g Strip Capacity, 100% Stripped

0

2000

4000

6000

8000

10000

12000

14000

16000

S-1 S-2 S-3 S-4 S-5 S-6

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

SP #1

SP #2

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 49: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Fe(III)

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Me

tal

Co

nc

. (m

g/L

)

0

200

400

600

800

1000

Fe

(III

) C

on

c.

(mg

/L)

Mn(II)

Ca(II)

Mg(II)

Al(III)

Zn(II)

Ti(IV)

Fe(III)

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 50: UMT Presentation

WP-4-CF 101205-DN Breakthough Curve0.50 CV/min., Feed pH 1.30

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Column Volume (CV = 12.0 mL)

Fe(I

II)

Co

nc.

(mg

/L)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Fe(III)

WP-4-CF 101205-DN Strip Profile0.50 CV/min., 9 N H2SO4, 25 mg/g Fe(III) Capacity

0

2000

4000

6000

8000

10000

12000

14000

S-1 S-2 S-3 S-4

Me

tal

Co

nc

. (m

g/L

)Fe(III)

Ti(IV)

Ce(III)

Nd(III)

La(III)

P

P

NH

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H

H

N

OH

NHO

Page 51: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve #10.50 CV/min., Feed pH = 1.31

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8

Column Volume (CV = 9.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Ca(II)

Mn(II)

Al(III)

BPAP-CF 041504-DN Strip Profile #10.50 CV/min., 2 M H3PO3, 59 mg/g Ln(III) Capacity,

99% Ln(III) Purity [< 1% Al(III), << 1% Ca(II), Fe(III), Ti(IV)]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Column Volume (CV = 9.0 mL)

Meta

l C

on

c. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Al(III)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 52: UMT Presentation

BPAP-CF 041504-DN Breakthrough Curve #20.50 CV/min., Feed pH = 1.31

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7 8

Column Volume (CV = 9.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Ca(II)

Mn(II)

Al(III)

BPAP-CF 041504-DN Strip Profile #20.50 CV/min., 2 M H3PO3, 59 mg/g Ln(III) Capacity

99% Ln(III) Purity [< 1% Al(III), << 1% Ca(II), Fe(III), Ti(IV)]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Column Volume (CV = 9.0 mL)

Meta

l C

on

c. (m

g/L

)

Ce(III)

La(III)

Nd(III)

Sm(III)

Pr(III)

Al(III)

P

P

N

H

P

O

OH

OH

N

H

P

OHHO

N

OSi N

O

O

Si

H

O

OH

O

N

POH

OH

P

O

OH

OH

O

Page 53: UMT Presentation

BPAP-CF 041504-DN Eu(III) Strip Profile ComparisonVarious Strip Solutions (percent strip)

0

2000

4000

6000

8000

10000

12000

14000

16000

S-1-2 S-3-4 S-5-6 S-7-8 S-9-10

Eu

(III)

mg

/L

EDTA (100%)

H3PO3 (100%)

H3PO4 (99%)

HNO3 (92%)

H2SO4 (80%)

HCl (39%)

Page 54: UMT Presentation

Outline

• Synthesis, Characterization, and Testing of Composites

• Mixed Silane Gel

• Phosphorous Based Ligand Composites

• Rare Earth Element Recovery

• Berkeley Pit Lake Metal Recovery

Page 55: UMT Presentation

Empire Mill - 1888

Page 56: UMT Presentation

Abandoned Hardrock Mines in the Western U.S.

Montana State’s High Priority Cleanup Sites

The Berkeley Pit 1981 (top), & Lake 1999 (bottom)

Page 57: UMT Presentation

Depth Dissolved Species and Elements

(feet) SO4 Fe Zn Mg Ca Al Mn Cu Cd As

0 6345 270 378 430 512 195 179 86.8 1.84 <0.22

50 8994 892 578 538 494 281 212 145 2.39 0.34

500 9105 986 580 536 494 281 209 177 2.43 0.78

Page 58: UMT Presentation

Depth Dissolved Species and Elements

(feet) SO4 Fe Zn Mg Ca Al Mn Cu Cd As

0 6345 270 378 430 512 195 179 86.8 1.84 <0.22

50 8994 892 578 538 494 281 212 145 2.39 0.34

500 9105 986 580 536 494 281 209 177 2.43 0.78

Page 59: UMT Presentation

Pump

Berkeley Pit

Feed Reservoir

Treated Solution

pH

Meter

Settling

Tank

Mixer

Sludge to Dump

pH Adjustment & Floculation Chamber

- Raise pH to 5.2 (using base)

- Add ~0.1% (by volume) floculant

Recycle Filtrate Filter Press

Pump

Sludge to Dump

C

u

Z

nM

n

Pump

Pump

Holding

Tank

Cu(II) Zn(II) Mn(II)

Berkeley Pit (% purity) 5.0 18 6.0

Recovery (% purity) 97 99.98 83

Berkeley Pit (g/L) 0.17 0.58 0.21

Recovery (g/L) 10 6.5 9.0

Page 60: UMT Presentation

CuWRAM-CF Breakthrough Curve0.50 CV/min., pH 2.2, 32 mg/g FT capacity

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Cu(II) Feed = 193 mg/L

Fe(III) Feed = 300 mg/L

Al(III) Feed = 253 mg/L

Zn(II) Feed = 602 mg/L

Mn(II) Feed = 172 mg/L

CuWRAM-CF Strip Fractions0.50 CV/min., 9 N H 2 SO 4 , 97% Cu(II) Purity, 3% Fe(III)

0

2000

4000

6000

8000

10000

12000

1-2 3-4 5-6 7-8

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Cu(II) 32 mg/g

Fe(III) 1 mg/g

Al(III) 0 mg/g

Zn(II) 0 mg/g

Mn(II) 0 mg/g

Cu2+

P

P

N

H

N

H

N

OSi N

O

O

Si

H

O

O

H N

N

H

N

H

Page 61: UMT Presentation

NaOH pH Adjustment of Berkeley Pit Water

0

100

200

300

400

500

600

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

pH

Meta

l C

on

c. (m

g/L

)

Zn

Fe

Al

Mn

Page 62: UMT Presentation

WP-2-CF Strip Fractions0.50 CV/min., 9 N H2SO4, 99.98% Zn(II) Purity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)Zn(II) 22 mg/g

Mn(II) 0 mg/g

WP-2-CF Breakthrough Curve (4 CV 0.010 M NaOH to pH 1.9)

0.50 CV/min., pH 5.3, 26 mg/g Zn(II) FT Capacity

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

Column Volume (CV = 5.0 mL)

Me

tal

Co

nc

. (m

g/L

)

Zn(II) Feed = 620 mg/L

Mn(II) Feed = 248 mg/L

P

P

O

OHNN

OSi N

O

O

Si

O

O

H

NNN

O

HO

H

H

O

HO

P

Page 63: UMT Presentation

BP-2-CF Breakthrough Curve0.50 CV/min., pH 4.9, 23 mg/g FT capacity

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Mn(II) Feed = 255 mg/L

Ca(II) Feed = 407 mg/L

Mg(II) Feed = 501 mg/L

BP-2-CF Strip Fractions0.50 CV/min., 9 N H2SO4, 83% Mn(II) Purity

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

Column Volume (CV = 5.0 mL)

Meta

l C

on

c. (m

g/L

)

Mn(II) 30 mg/g

Ca(II) 4 mg/g

Mg(II) 2 mg/g

P

P

N

HO

N

H

O

N

H

N

OSi N

O

O

Si

H

O

O

O

O-

O-

O-

H

Page 64: UMT Presentation

Proposed large-scale columns = 10,000 L

Flow rate per unit (3 columns) = 5,000 L/min

Flow rate of water to be treated = 11,000 L/min

Units required = 2.2

Cu cap. CuWRAM = 0.55 mmol/g

Cu cap. CuWRAM = 35 mg/g

density CuWRAM = 0.69 g/mL

mass CuWRAM/column = 6.9E+06 g

Cu cap./column = 2.4E+08 mg

[Cu] in BP H2O = 175 mg/L

Cap. BP H2O/column = 1.4E+06 L

Zn cap. WP-2 = 0.38 mmol/g

Zn cap. WP-2 = 25 mg/g

density WP-2 = 0.64 g/mL

mass WP-2/column = 6.4E+06 g

Zn cap./column = 1.6E+08 mg

[Zn] in BP H2O = 575 mg/L

Cap. BP H2O/column = 2.8E+05 L

Rotate CuWRAM column every = 2.8E+02 min

Rotate WP-2 column every = 5.6E+01 min

Cu mass gain as CuSO4 · 5H2O = 393 %

Zn mass gain as ZnSO4 · 7H2O = 440 %

Cu from each strip = 9.5E+02 kg

Zn from each strip = 7.1E+02 kg

Cu recovered per day = 1.1E+01 mt

Zn recovered per day = 4.0E+01 mt

CuSO4 · 5H2O market price = 590 US$/mt

ZnSO4 · 7H2O market price = 180 US$/mt

Gross profit from copper/day = 6.4E+03 US$

Gross profit from zinc/day = 7.2E+03 US$

Total gross profit/day = 1.4E+04 US$

Total gross profit/year = 5.0E+06 US$

Page 65: UMT Presentation

Conclusions

• BPAP and BP-5 show very high capacities towards 3+/4+ metals,

even from highly acidic media

• BPAP exhibits greater metal capacity than BP-5

• BPAP and BP-5 have an extremely low affinity towards divalent

metals such as Cu2+

• Phosphonate ligands show moderate affinity towards metals in

the 4+ oxidation state

• Phosphorous acid and EDTA can strip 3+ metals from BPAP

• Cu2+, Zn2+ and Mn2+ can be separated from acid mine drainage

• REEs can be separated from an authentic acid leach solution

• Actinides can be sequestered using BPAP with extremely high

formation constants

Page 66: UMT Presentation

Future Directions

• BPAP and BP-5

– BP-5 studies with Eu3+ using H3PO3 and EDTA

– Copper electrowinning applications

– Arsenic and selenium extraction (BPAP-Zr4+)

– Investigate stripping Th4+ using EDTA

– BPAP has been used for biochemistry applications to selectively

remove Fe(III) from bacterial (Sulfolobus solfataricus) growth

media

Wiedenheft, B.; Willits, D.; Mosolf, J.; Yeager, M.; Dryden, K.; Young, M.; Douglas, T.

Proceedings of the National Academy of Sciences 2005, 102(30), 10551-10556

Page 67: UMT Presentation

Future Directions

Phosphonates

– Does not appear to offer increased stripping kinetics

– Diesters may not be stable under strong acid or base

regeneration

– May try carboxylate activation using carbonyl diimidazole (CDI)

coupled with a primary amine

Fryxell, G.E.; Wu, H.; Lin, Y.; Shaw, W.J.; Birnbaum, J.C., Linehan, J.C.; Nie, Z.;

Kemer, K.; Kelly, S. J. Mater. Chem. 2004, 14, 3356-3363

Page 68: UMT Presentation

Future Directions

Mixed Anchor Studies

– Increase the ratio of MTCS:CPTCS

– Investigate capacity and kinetic improvements on composites

such as CuWRAM and WP-4

– Possibly try propyltrichlorosilane

(longevity testing using EDTA strip)

Page 69: UMT Presentation

Future Directions

Mixed Anchor Studies

– Increase the ratio of MTCS:CPTCS

– Investigate capacity and kinetic improvements on composites

such as CuWRAM and WP-4

– Possibly try propyltrichlorosilane

(longevity testing using EDTA strip)

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

N

N

H

H

NH

H

N

H

H

N

H

H

P

P

OSi

O

O

Si

Si

O

O

Si

O

O

O

O

Si

OO

N

N

H

H

NH

H

N

H

H

N

H

H

P

P

Page 70: UMT Presentation

Synthetic Development of Novel Silica Polyamine Composites

and Reclamation of Hazardous Mining Wastewater