32
Ultrascaled GaN HEMTs with thin AlN barriers Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 1 Ft – transport physics in GaN

Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing ([email protected])

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Ultrascaled GaN HEMTs with thin AlN barriers

Huili (Grace) Xing

Electrical Engineering Department, University of Notre Dame

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 1

Ft – transport physics in GaN

Page 2: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Outline •  AlN/GaN HEMTs

–  Highest mobility with highest 2DEG (D. Jena) –  Ohmic contacts

•  InAlN/AlN/GaN HEMTs –  Very high mobility with very high 2DEG –  Ohmic contacts –  Passivation –  Emode –  Phonon-limited injection velocity (D. Jena)

•  Summary

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 2

Page 3: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Important for high power and high speed –  High ns, mobility and saturation velocity –  Thin barrier, short gate length, large barrier height

Barrier

Channel

Source Drain

The image cannot be displayed. Your computer may not have enough memory to open the image, or

Gate

Ultra-scaled WBG semiconductor-based devices (e.g. Lg < 50 nm, Cg > 1.6 µF/cm2 – corresponding to ~ 5 nm thick AlN, ~ 1.6 S/mm assuming 1e7 cm/s)

0 100 200 300 400 500 600-5-4-3-2-101234

Ener

gy (e

V)

Thickness (A)

(3 nm) AlN/GaN

Ultra-thin AlN barrier GaN HEMTs

EOT = 1.4 nm

Huili (Grace) Xing ([email protected])

Page 4: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

AlN/GaN by MBE

•  An AlN/GaN superlattice

Streak pattern due to SL

5nm

20nm

TEM By Kejia (Albert) Wang and Tom Kosel (U. of Notre Dame)

AlN (13 monolayers)

GaN

GaN

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 4

4 nm AlN/GaN (MBE)

Page 5: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Highest 2DEG and mobility in III-V nitrides

I. Smorchkova et al, 2000, APL Y. Cao et al, 2007, APL Y. Cao et al, 2008, APL

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 5

High conductivity window: 2-5 nm AlN Best metrics among all III-V heterostructures: ns = 2x1013 cm-2 with u = 1900 cm2/Vs Y. Cao et al, 2011, JCG

1.5 nm 6 nm AlN thickness

Page 6: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

•  RT Hall measurement: –  ns ~ 2.75e13 cm-2

-  µ ~ 1367cm2/Vs -  Rsh ~ 166 ohm/sq

3.5 nm AlN

Sapphire substrate

GaN layers

S D

G S G & 3 nm Al2O3 gate dielectric

I. Ultrathin barrier AlN/GaN HEMT: structure Early studies

Zimmermann et al. IEEE EDL. 2008

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 6

Page 7: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

S S

D

G

•  Gate oxide used to prevent leakage in 3.5 nm AlN/GaN HEMTs. •  Current densities & transconductance are high. •  Breakdown ~ 25 Volts. •  As measured ft/fmax ~ 52/60 GHz

Zimmermann et al. IEEE EDL. 2008 gm,int ~ 1 S/mm

I. Ultrathin barrier AlN/GaN HEMTs: performance Early Studies

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 7

Page 8: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Without de-embedding

I. Ultrathin barrier AlN/GaN HEMTs: performance Early studies

Zimmermann et al. IEEE EDL. 2008

The first reported AlN/GaN HEMT with mobility > 1000 cm2/Vs

Performance limited by poor ohmics, gate and buffer leakage

Also see Higashiwaki’s work in 2007 and HRL’s work in 2010/2011 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 9: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Ohmic contact challenge

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

9

Solved by MBE regrown contacts

on metal-face GaN HEMTs, see HRL DRC 2010, UND ICNS 2011

On N-face GaN HEMTs, see UCSB APL 2009

T. Zimmermann et al,

PSS, 2008

D. Deen, PhD

dissertation, UND 2010

Page 10: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Outline

•  AlN/GaN HEMTs

–  Highest mobility with highest 2DEG –  Ohmic contacts

•  InAlN/AlN/GaN HEMTs –  Very high mobility & ns

–  Ohmic contacts –  Passivation –  Emode

•  Summary

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 10

D. Jena et al, PSS 2011

Page 11: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

InAl(Ga)N/AlN/GaN HEMTs •  Attractive to cap the thin AlN barrier

–  GaN: substantially reduce ns (< 1.2 x 1013 cm-2)

–  InAlN: maintain high ns (> 1.5x1013 cm-2)

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 11

0 50 100 150 2000.00E+000

1.00E+013

2.00E+013

3.00E+013

4.00E+013

5.00E+013

6.00E+013

ns=2.5x1013 cm-2

AlGaN 30% AlInN 17% AlN

n s (cm

-2)

Barrier Thickness (A)

ns=1.4x1013 cm-2

d ~ 40 A

d = 180 A

IQE, IWN 2010

AlN/GaN

(Y. Cao

JCG’11)

InAlN

(IQE,

EPFL)

Page 12: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

SiN  passiva)on SiN  passiva)on

In0.17Al0.83N  (4.7  nm)

Alloyed ohmic contacts with Si and recess etch

In0.13Al0.83Ga0.04N    10  nm

GaN

SiC

AlN  1.0  nm

DS

2DEG GaN

SiC

AlN  1.0  nm DS

2DEG

ü  Mesa  isola)on;  ü  Alloyed  Ohmics:  

(ohmic  recess)  +  (Si)/  Ti/Al/Ni/Au,  RTP  

•  Reliable  Rc  extrac)on  necessitates  passiva)on  •  Smooth  morphology  

(Si)/Ti/Al/Ni/Au

0 5 10 15 20 25 300

20

40

60

80

R c  =  0.23  Ω-­‐mm,

R s h  =  190  Ω/s q

 As -­‐proc es s ed  S iN  pas s ivated

 

 

R  (Ω)

d  (um)

R c  =  0.17  Ω-­‐mm,

R s h  =  220  Ω/s q

TL M:  InA lG aN,  860  C ,  18  s

800 820 840 860 8800.0

0.3

0.6

0.9

1.2

1.5   InA lN  (#B -­‐1),  w/o  reces s

  InA lN  (#B -­‐2),  3  nm  reces s

  InA lN  (#B -­‐3),  7  nm  reces s

  InA lN  (#B -­‐4),  15  nm  reces s

  InA lG aN  (#C _311),  w/o  reces s

  InA lG aN  (#D _310),  ~  6  nm  reces

~11  nm  barrier,  18  s

 

 

Rc  (Ω

-­‐mm)

A nnealing  Temperature  (C )

5.7  nm  barrier,  15  s ;

w/  2  nm  S iR.  Wang  et  al.,  APEX  2011.

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 12

Page 13: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Alloyed Ohmics with Si and ohmic recess

InAlGaN

ü  No   obvious   Rc   improvement   for   thin   barriers;   contact   via   sidewall   is   not  efficient  aIer  etching  away  the  en)re  barrier;  

ü  Rc   improvement   for   thick   barriers   (Rc   as   low   as   0.23   Ω•mm);   no   metal  penetra)on  into  GaN;  

ü  Ul)mate  limit  for  tunneling:  1-­‐nm  AlN  spacer.

InAlGaN,  860  C,  18  s  

R.  Wang  et  al.,  APEX  2011.

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 13

Page 14: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

HEMTs with SiN passivation (I)

With  increasing  SiN  thickness:    

Ø   Mobility  is  nearly  constant  Ø   Carrier  concentra)on  increases  and  saturates  (>  30  nm)  Ø   Sheet  resistance  decreases  and  saturates  (>  30  nm)  Ø   gm  increases.    Why  does  gm  increase  with  >  30  nm  SiN?  Ø   I  increases,  saturates  (70  –  100  nm)  and  then  decreases.  

               InAlN  4.7  nm

GaN

SiC

                 AlN  1.0  nm  

DSG

2DEG

#  A

Ni/Au

0 20 40 60 80 100500

550

600

650

700

f T  (GHz)

 

 

Pea

k  gm  (mS/m

m)

S iN  Thic knes s  (nm)

30

40

50

60

70

80

90

100

 

(a)

0 20 40 60 800.0

0.5

1.0

1.5

2.0

2.5

3.0

µ  (x  103

 cm

2 /V.s)/ns  (x10

-­‐13  cm

-­‐2)

 

 

Rsh  (ohm/sq)

S iN  Th ic knes s  (nm)

As -­‐g rwon

-­‐400

-­‐200

0

200

400

600 (c )

Lg = 160 nm

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

R.  Wang  et  al.,  ISCS  2011.  (presenta:on  only)  

14

Page 15: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

HEMTs with SiN Passivation (II)

0 2 4 6 8 10 120.0

0.5

1.0

1.5

2.0

2.5

+3  V+2  V

0  V

 A s -­‐proc es s ed  30  nm  S iN  70  nm  S iN

 

 

I d  (A/m

m)

V ds  (V)

S tep  =  -­‐1  V

-­‐2  V

(a)

-­‐4 -­‐3 -­‐2 -­‐1 0 1 2 30.0

0.5

1.0

1.5

2.0  As -­‐proc es s ed  30  nm  S iN  70  nm  S iN

I d  (A/m

m)

 

 

gm  (mS/m

m)

V g s  (V)

Vds  =  6  V

(b)

0

200

400

600

800

1000

-­‐4 -­‐3 -­‐2 -­‐1 0 1 2 310-­‐8

10-­‐6

10-­‐4

10-­‐2

100

10-­‐8

10-­‐6

10-­‐4

10-­‐2

100

 A s -­‐proc es s ed  30  nm  S iN  70  nm  S iN

Vds  =  6  V I g  (A/m

m)

 V g s  (V)

 

 

 

I d  (A/m

m)

(c )

SiN 30 nm è 70 nm, both intrinsic delay and drain delay decreased – consistent with higher gm. Possible reason for higher gm: 1. Higher carrier velocity? 2. Shorter effective gate length Lg, eff thus higher carrier velocity?

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

R.  Wang  et  al.,  ISCS  2011.  (presenta:on  only)

15

Page 16: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Pulsed I-Vs

With 100 nm SiN passivation ~ 4% gate delay and ~ 7% drain delay

As-fabricated (without any passivation) ~ 30% gate delay and ~ 10% drain delay

Lg ~ 60 nm

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

R.  Wang  et  al.,  ISCS  2011.  (presenta:on  only)

16

Page 17: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

HEMTs with Dielectric-Free Passivation (DFP)

InAl(Ga)N  ~11  nm

GaN

SiC

AlN  1.0  nm

DS

G

2DEG

Plasma  (DFP) O2

#  B

Before DFP   After DFP  

Rsh (Ω/sq)  

ns  (x 1013 cm-2)  

µ (cm2/V.s)  

Rsh (Ω/sq)  

ns (x 1013 cm-2)  

µ (cm2/V.s)  

InAlN_313   290   1.62   1330   257   1.86   1300  

InAlGaN_310   227   1.45   1900   190   1.83   1790  

With  DFP  in  the  access  region  only:    

Ø   Mobility  decreases  slightly  Ø   Carrier  concentra)on  increases  Ø   Sheet  resistance  decreases  Ø   gm  increases  slightly  Ø   ft  increases  from  125  GHz  to  210-­‐220  GHz   -­‐8 -­‐6 -­‐4 -­‐2 0 2

0.0

0.5

1.0

1.5

2.0

2.5  w/o  DF P  w/  DF P

I d  (A/m

m)

 

 

gm  (mS/m

m)

V g s  (V)

Vds  =  6  V

0

100

200

300

400

500

600 (a)

Lg ~ 60 nm

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

R.  Wang  et  al.,  EDL  2011. 17

Page 18: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Dielectric-Free Passivation (DFP): I. InAlN

-­‐50 -­‐40 -­‐30 -­‐20 -­‐10 010-­‐13

10-­‐11

10-­‐9

10-­‐7

10-­‐5

10-­‐3

10-­‐1

Vbr  =  50  V

 w/o  DF P  w/  DF P

Vds  =  0  V

 Vg s  (V)

 

 

 I g  (A/m

m)

V br  =  12  V

108 109 1010 10110

10

20

30

40

50

60

/ |h21|2

/ U

w/o  DF PVg s  /  Vds  =  -­‐4.1  /  4.0  V

 fT  /  fmax  =  125  /  46  G Hz

w/  DF PVg s  /  Vds  =  -­‐4.0  /  4.8  V

fT  /  fmax  =  210  /  55  G Hz

 

 

Gain  (dB)

F requenc y  (Hz )

L g  ~  60  nm

-­‐20  dB /dec

All  delay  components  droped.    Lg,eff  >  120  nm  prior  to  DFP  

R.  Wang  et  al.    IEEE  EDL,  2011

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

18

Page 19: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Dielectric-Free Passivation (DFP): II. InAlGaN

109 1010 10110

10

20

30

40

 |h21|2

 U

fT  =  220  G Hz

fmax=  60  G Hz  

 

Gain  (dB)

F requenc y  (Hz )

Vds  =  4.7  V ,  

Vg s  =  -­‐3.7  V

L g  ~  66  nm

0 10 20 30 40 50 60 700

2

4

6

8

10

12

14

16

18

20

 C alc ulations  AlG aN,  2  nm  S iN,  T -­‐g ate  AlG aN,  no  pas s ivation,  T -­‐g ate  AlN,  50  nm  S iN,  T -­‐g ate  InAlN,  50  nm  S iN,  T -­‐g ate  InAlN,  10  nm  Al2O 3,  I-­‐g ate

 InAlN,  DF P ,  I-­‐g ate  InAlG aN,  DF P ,  I-­‐g ate

 

 

f T. L

g  (GHz.µm

)

L g /tbar  (un itles s )

Th is  work 0 2 4 6 8 100.0

0.5

1.0

1.5

2.0

2.5

                               B ias  po int:  DC  (Vg s ,  Vds )  =  (0  V ,  0  V )

 (Vg s ,  Vds )  =  (-­‐8  V ,  0  V )

 (Vg s ,  Vds )  =  (-­‐8  V ,  10  V )

 

 

I d  (A/m

m)

V ds  (V)

Vg s  =  0  V

300  ns  pu ls e  width

R.  Wang  et  al.  EDL,  2011

Little dispersion observed in HEMTs with DFP Other attributes of DFP: 1. Air stable 2. Little parasitic capacitance

3. Large signal performance yet to be tested. ?

✔ ✔

W DFP Lg = 66 nm

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

19

Page 20: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

R. Wang et al., IEEE EDL 2010

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 21: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Characterization of TQT HEMTs at UND (2): Device Fabrication

 Post  Annealing  Parameters:                  400  C,  10  min,  in  forming                  gas  (5%  H2,  balanced  with  Ar)  *  Annealing  in  N2  resulted  in  similar  behaviors  too.  

           RT  Hall  transport  data:                          ns  ~  2.0  x  1013  cm-­‐2  

                       µ ~  1160  cm2/Vs                          Rsh  ~  270  Ω/sq            

Gate  geometry                Lg  ~  150  nm,                  Wg  ~  100  -­‐  600  µm                Lsd  ~  2  µm,  3  µm    Gate  metal:  Pt/Au  

     Ti  based  ohmic  contact                    Rc  ~  0.6  Ω-­‐mm  

SiN InAlN 4.8 nm

GaN

SiC

AlN 1 nm S D

G

21 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 22: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Characterization of TQT HEMTs at UND (3): E-mode

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0Vg s  =  4  V ,  S tep  =  -­‐0.5  V

 

 

I d  (A

/mm)

V ds  (V )

L g  =  150  nm,  Wg  =  3x50  um,  L s d  =  2  um

R.  Wang,  P.  Saunier,  et  al.,  DRC,  2010;  IEEE  EDL,  vol.  31  (12)  2010.  

AlN InAlN

Pt Lg = 150 nm

SiN

GaN

0 1 2 3 40.0

0.5

1.0

1.5

2.0

g m  (m

S/mm)

 

I d  (A

/mm)

V g s  (V)

 

 

Vds  =  5  V

L g  =  150  nm,  Wg  =  2x50  um

L s d  =  2  um

0

200

400

600

800

 

ft/fmax  ~  70/105  GHz,  without  deembedding

Cross-­‐sec)onal  STEM

22 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 23: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Characterization of TQT HEMTs at UND (4): Effect of Annealing

0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

Wg  =  8x50  um  w/o  annea ling  w/  annea ling

 

 

I d  (A/m

m)

V ds  (V)

Vg s  =  2  V ,  S tep  =  -­‐0.5  V

-­‐1 0 1 2 30.0

0.2

0.4

0.6

0.8

1.0

1.2

Vth  =  0.6  V Vth  =  1.2  V

Wg  =  8x50  um

L s d  =  3  um

 w/o  annealing  w/  annealing

I d  (A/m

m)

 

 gm  (mS/m

m)

V g s  (V)

Vds  =  6  V

0

100

200

300

400

500

600

InAlAs

K.  Chen,  et  al.,  IEEE  EDL,  1996. Pt/InAlAs  HEMT  

A.  Fricke  et  al.,  APL,  1994.

Gate  sink

aIer  annealing In0.52Al0.48As

Pt

In0.52Al0.48As

Pt PtIn/PtAs2 AlAs

23 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 24: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Characterization of TQT HEMTs at UND (5): pre-annealing Dit

•  High Dit (> 1x1013cm-2) observed in the as-fabricated E-mode devices

SS = (1+Cq + Cit

Cb

)kBTq

ln10

R. Wang et al., IEEE EDL 2010

24 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 25: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Gate  diode  breakdown

Ø     Forward  effec)ve  barrier  height  increases  from  0.67  to  0.93  eV,              akributed  to  an  insula)ng  layer  formed  aIer  post  annealing.  

Characterization of TQT HEMTs at UND (6): Leakage Reduction

-­‐1 0 1 2 310-­‐15

10-­‐13

10-­‐11

10-­‐9

10-­‐7

10-­‐5

10-­‐3

10-­‐1

101

10-­‐15

10-­‐13

10-­‐11

10-­‐9

10-­‐7

10-­‐5

10-­‐3

10-­‐1

101

S S  ~  62  mV/dec

Ion/Ioff  =  1012

S S  ~  84  mV/dec

Ion/Ioff  =  107

Vds  =  6  V

 w/o  annealing  w/  annealing

I g  (A/m

m)

 V g s  (V)  

 

I d  (A/m

m)

(a)

Log-­‐scale  transfer  curve

Ø     Dit  decreases  from  1.5  x  1013  to  1.1  x  1012  cm-­‐2eV-­‐1,  extracted  from              subthreshold  slopes,  meaning  post-­‐annealing  repairs  the  interface;  

5

110

×

R. Wang et al., IEEE EDL 2011

25 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 26: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Characterization of TQT HEMTs at UND (7): Leakage Mechanism

Trap  density  decrease  and  barrier  height  increase  are  responsible  for  the  gate  leakage  reduc)on.  More  work  are  being  taken,  such  as  STEM,  EDX,  modeling  on  leakage…

AlN GaN Pt

DT

Ef,  s Ef,  g

Interlayer  (PtxIny,  Al-­‐O,  …) Post-­‐annealing

AlN GaN Pt

Direct  tunneling  (DT)/FN  tunneling  (FN)

Trap-­‐assisted  tunneling  (TAT)

Ef,  s Ef,  g

φb

dieEv

20

exp( )exp( )dieTTAT die

qEqJ AEkT kT rε

πε= −

3/22 exp( )b

FN diedie

CJ BEEφ

= −

A  depends  on  trap  density.

B,  C  are  constants. Pre-­‐annealing

R. Wang et al., IEEE EDL 2011

26 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 27: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

GaN

300 nm

300 nm

Thickness measured by a-step

metal

AFM

MBE

MBE regrown contact process flow

RMS=0.6 nm

MBE Regrown n+ GaN surface

Control regrowth (45 nm n+GaN): Sheet charge ~2e15/cm2

Mobility ~ 52 cm2/Vs Rsh~58 Ohm/sq

MB

E

crys

talli

ne

MBE amorphous

Barrier

GaN

Barrier

GaN

Barrier

Mask

MB

E

crys

talli

ne

MB

E

crys

talli

ne

GaN

Barrier

MB

E

crys

talli

ne

MB

E

crys

talli

ne

GaN

Barrier

MB

E

crys

talli

ne

•  Planar regrowth of high quality •  Lateral regrowth interface needs to be further characterized SEM

Regrown n+GaN on mask

27 Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

G. Jia et al., ICNS 2011 (manuscript under preparation)

Page 28: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Regrown contacts with n+GaN/2DEG Rc ~ 0.05 ohm-mm

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 28

1.  Regrowth interface resistance ~ 0.05 ohm-mm

2.  Total Rc ~ 0.27 ohm-mm, dominated by metal/n+GaN resistance (~ 0.15 ohm-mm).

3.  We have also demonstrated metal/n+InGaN Rc < 0.02 ohm-mm.

G. Jia et al., ICNS 2011

Page 29: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Injection point phonon model and Peak injection velocity

29

•  Saturation currents from the phonon model fit experimental state-of-the-art •  The peak injection velocity is vp~1.3x107cm/s at room temperature •  The peak injection velocity occurs when ns~4x1012/cm2 @ source injection pt.

Op:cal  phonon  emission  

Op:cal  phonon  Emission  blocked  

Peak  injec:on  velocity  

Investigate here

T. Fang et al., DRC 2011

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 30: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Peak fT with barrier and gate length scaling

30

•  Intrinsic peak fT is ‘fundamental’, limited by the onset of phonon emission •  Gate length scaling improves peak fT faster than vertical scaling •  Peak fT improvement is severely stalled by source/drain resistances

Lg=50  nm  

fT  peaks  at  phonon  emission  

T. Fang et al., DRC 2011

?

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011

Page 31: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Summary

•  Ohmic contacts have been solved for GaN HEMTs –  Rc comparable to that of InAs and Si FETs, < 50 ohm-um

•  Low injection velocity in GaN limits the device speed –  Low mobility (phonon scattering, interface scattering) –  High effective mass (wide bandgap) –  Locked by optical phonons

•  Plasma treatments need to be better understood for reliable device operation

•  Novel ideas are necessary for GaN THz transistors

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 31

Page 32: Ultrascaled GaN HEMTs with thin AlN barriershxing/research/pdfs/201108... · Huili (Grace) Xing Electrical Engineering Department, University of Notre Dame Huili (Grace) Xing (hxing@nd.edu)

Acknowledgement

Students and postdocs Yu Cao David Deen Tian Fang Zongyang Hu Fazia Faria Jia Guo Guowang Li Chuanxin Lian Berardi Sensale-Rodriguez John Simon Ronghua Wang Tom Zimmermann Yuanzheng Yue Vladimir Protasenko

Huili (Grace) Xing ([email protected]) TWHM-Gifu-2011 32

Collaborators (University of Notre Dame) Debdeep Jena Tom Kosel Gregory Snider Patrick Fay (Triquint Semiconductor) Paul Saunier (IQE RF LLC) Shiping Guo (Kopin) Wayne Johnson

GaN research Sponsored DARPA ONR AFOSR

Special thanks to

Umesh Mishra & Debdeep Jena