34
Ultrafast processes in molecules Mario Barbatti [email protected] I – Transition probabilities

Ultrafast processes in molecules

  • Upload
    holland

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

Ultrafast processes in molecules. VI – Transition probabilities. Mario Barbatti [email protected]. Fermi’s golden rule. Transition rate:. Quantum levels of the non-perturbed system. Perturbation is applied. Transition is induced. Fermi’s Golden Rule. which solves:. and. - PowerPoint PPT Presentation

Citation preview

Page 1: Ultrafast processes in molecules

Ultrafast processes in molecules

Mario [email protected]

VI – Transition probabilities

Page 2: Ultrafast processes in molecules

2

Fermi’s golden rule

Page 3: Ultrafast processes in molecules

3

Fermi’s Golden Rule

kpk kHiW 22

Transition rate:

i

kk ,

Quantum levels of the non-perturbed

system

Perturbation is applied

Transition is induced

Page 4: Ultrafast processes in molecules

4

Derivation of Fermi’s Golden Rule

Time-dependent formulation

pHHH 0H0 – Non-perturbated Hamiltonian

Hp – Perturbation Hamiltonian

0

Ht

i

n which solves: 00 nEH n

ijji and ijji EE

Page 5: Ultrafast processes in molecules

5

Derivation of Fermi’s Golden Rule

n

tiEn neta n

pHHH 0

0

Ht

i

Prove it!

Multiply by at left and integrate

n

tinp

k knetanHkttai

k

Note that the non-perturbated Hamiltonian is supposed non-dependent on time.

Page 6: Ultrafast processes in molecules

6

An approximate way to solve the differential equation

n

tinp

k knetanHkttai

Guess the “0-order” solution: tan)0(

Use this guess to solve the equation and to get the 1st-order approximation: tak)1(

n

tinp

k knetanHkdt

tdai )0()1(

Use the 1st-order to get the 2nd-order approximation and so on.

n

tipnp

pk knetanHkdt

tdai )1()(

Page 7: Ultrafast processes in molecules

7

First order approximation

Guess the “0-order” solution: nin ta )0(

n

tinp

k knetanHkdt

tdai )0()1(

Suppose the simplified perturbation:

0

'kn

pH

nHk Constant between 0 and tOtherwise

t0 t

'knH

0

nHk p

Page 8: Ultrafast processes in molecules

8

First order approximation

0

')1(

n

tininmk

kneH

dttdai

Between 0 and tOtherwise

ki

kiiik

tiikk

knki eHdteHai

tt tt 2/sin2 2/'

0

')1(

It was used:

a ikxikx

kkxedxe

0

2/ 2/sin2

Page 9: Ultrafast processes in molecules

9

Transition probability

22

22'2 2/sin4ki

kiikkik HaP

tt

0

0.0

0.2

0.4

0.6

0.8

1.0

sin(

)2 /

2

In this derivation for constant perturbation, only transitions with ~ 0 take place. If the perturbation oscillates harmonically (like a photon), ≠ 0 can occur.

The final result for the Fermi’s Golden Rule is still the same.

Page 10: Ultrafast processes in molecules

10

Physically meaningful quantity

kneark

ikk PW'

'1t

i

kk ,

Near k: density of states dEdn

k

kikikkkikkneark

ikk dPdEPPW t

tt

11'

'

Page 11: Ultrafast processes in molecules

11

Physically meaningful quantity

kikikkkikkneark

ikk dPdEPPW t

tt

11'

'

Using

22

22' 2/sin4ki

kiikik HP

t

kikk HW 2'2

kiki

kikk dHWki

tt

2

22' 2/sin141

2/

Page 12: Ultrafast processes in molecules

12

Fermi’s Golden Rule: photons and molecules

kti

k dtekiW ik t

2

0

2 Ed

Transition rate:

i

kk ,

Ed 0HH H0 – Non-perturbated molecular Hamiltonian – Light-matter perturbation HamiltonianEd

Page 13: Ultrafast processes in molecules

13

Transition dipole moment

kti

k dtekiW ik t

2

0

2 Ed

i

kk ,

kikZeiki eikN

N

n

N

mmnn

at el

ddrRd

1 1

0

Electronic transition dipole moment

Page 14: Ultrafast processes in molecules

14

Einstein coefficients

i

k

ik

iN

Rate of absorption i → k iika

ik NBW

Einstein coefficient B for absorption

22

061 ki

ggB e

i

kik d

ik

ng - degeneracy of state n

Page 15: Ultrafast processes in molecules

15

Einstein coefficients

i

k

ki

kN

Rate of stimulated emission k → i kkist

ki NBW

Einstein coefficient B for stimulated emission

kik

iik B

ggB

ki

Page 16: Ultrafast processes in molecules

16

Einstein coefficients

i

k

ki

kN

Rate spontaneous decay k → i 2NAW kisp

ki

Einstein coefficient A for spontaneous emission

kiki

ki Bc

A 32

3

ki

Page 17: Ultrafast processes in molecules

17

Einstein coefficient and oscillator strength

kiki

ki Aemcf 22

302

In atomic units:

kiki

ki AE

cf 2

3

2

Page 18: Ultrafast processes in molecules

18

Einstein coefficient and lifetime

kikiki fE

cA 2

3

21

t

1

2

R

E

If E21 = 4.65 eV and f21 = -0.015, what is the lifetime of the excited state?

au

eVE

.1708840211396.27/65.4

65.421

au10

2

3

21

1029.0

)015.0()170884.0(2)137(

t

nss

70104189.21029.0 1710

21

t

Converting to nanoseconds:

Page 19: Ultrafast processes in molecules

19

non-adiabatic transition probabilities

Page 20: Ultrafast processes in molecules

20

Non-adiabatic transitions

11,

22 ,

21,

12 ,

0

x

E

0 H11

H22 E2

E1

Problem: if the molecule prepared in state 2 at x = ∞ moves through a region of crossing, what is the probability of ending in state 1 at x = ∞?

H12

Page 21: Ultrafast processes in molecules

21

Models for non-adiabatic transitions

xFHH 122211 constant, 1212 FH

1. Landau-Zener

12

2122expF

Hv

P

2. Demkov / Rosen-Zener

constant21 EE /sech1212 xhh x

xvhEEP

12

212

4sech

3. Nikitin

xAH

xAHH

expsin2

expcos

012

02211

02

02

02

cottan21exp

12/cosexp

v

P

4. Bradauk; 5. Delos-Thorson; 6. …

Page 22: Ultrafast processes in molecules

22

Derivation of Landau-Zener formula

nn

t

nnn dttHita

exp

Multiply by at left and integrate

kn

nknk netaHdt

tdai

k

nkkn HH

t

nnn dtHi

0

Ht

i

In the deduction it was used:

nn

t

nn HdtHdtd

Page 23: Ultrafast processes in molecules

23

kn

nknk netaHdt

tdai

Since there are only two states:

21212

1 etaHidt

tda

12121

2 etaHidt

tda

jiij

(i)

(ii)

Solving (i) for a2 and taking the derivative:

dt

tdadt

tadHei

dtda

HeHH 2

21

2

12

1

12

22111212

(iii)

Substituting (iii) in (ii):

011

2122

122112

12

aHdtdaHHi

dtad

Page 24: Ultrafast processes in molecules

24

Zener approximation: tHH 2211

21,

x

0

E

0 11,

22 ,

12 ,

222 F

dxdH

111 F

dxdH

vtFxFH 1111

vtFxFH 2222

vtFFHH 212211

vF12

011

2122

122112

12

aHdtdaHHi

dtad

Page 25: Ultrafast processes in molecules

25

01

01

22

1222

1222

2

12

1221

1221

2

aHdt

davtFidt

ad

aHdtdavtFi

dtad

Problem: Find a2(+∞) subject to the initial condition a2(∞) = 1.

The solution is:

0x

E

0

12 a

01 a ?2 a

?1 a

12

212

2 expF

Hv

a

Page 26: Ultrafast processes in molecules

26

The probability of finding the system in state 1 is:

12

2122

22exp

FH

vaPnad

The probability of finding the system in state 2 is:

12

2122exp11F

Hv

PP nadad

0

0

1

Pro

babi

lity

|H12

|2

Pnad

Pad

0

0

1

|F12

| or v

Pad

Pnad

Page 27: Ultrafast processes in molecules

27

212

** 2expH

P

Example: In trajectory in the graph, what are the probability of the molecule to remain in the * state or to change to the closed shell state?

0 2 4 6 8 10 12 14

-224.85

-224.80

-224.75

-224.70

-224.65

*

cs

H11

= t

Ene

rgy

(au)

Time (fs)

H22

= t

H12

= au

cs

*

au0.001au/f0435.0

01126.003224.0

s

fs104.2au1 2

time

tHH 2211

vF12 1

Page 28: Ultrafast processes in molecules

28

Example: In trajectory in the graph, what are the probability of the molecule to remain in the * state or to change to the closed shell state?

43.0001.0

011577.02exp2

**

P

57.01 *** PP cs

0 2 4 6 8 10 12 14

-224.85

-224.80

-224.75

-224.70

-224.65

*

cs

Ene

rgy

(au)

Time (fs)

cs

*

0.43

0.57

Page 29: Ultrafast processes in molecules

29

0

x

E

0

0

x

E

0

vv

For the same H12, Landau-Zener predicts:

Non-adiabatic (diabatic) Adiabatic

12

2122expF

Hv

Pnad

H12

Page 30: Ultrafast processes in molecules

30

0

x

E

0

0

x

E

0

For the same , Rosen-Zener predicts:

Non-adiabatic (but not diabatic!) Adiabatic

vv

xnad vhEEP

12

212

4sech

xh12

Page 31: Ultrafast processes in molecules

31

0

x

E

0

0

x

E

0

For the same 0 (H12), Nikitin predicts:

Non-adiabatic (diabatic) Adiabatic

v v

02

02

02

cottan21exp

12/cosexp

v

Pnad

Page 32: Ultrafast processes in molecules

32

Marcus Theory

AB → A+B 2022 1 exp

44ABBB

l Gk H

k Tk T

Ener

gy

Reaction coordinateA-B A+-B

2HAB

G0

Page 33: Ultrafast processes in molecules

33

The problem with the previous formulations is that they only predict the total probability at the end of the process.

If we want to perform dynamics, it is necessary to have the instantaneous probability.

Page 34: Ultrafast processes in molecules

34

Next lecture

Organic photovoltaics

[email protected]