22
rBri4R^CO7I1PACTUS. AMR PUBLICATIONS COMPACTUS (LENDING SECTION) DEPARTMENT OF NATIONAL RESOURCES NATIONAL DEVELOPMENT •BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS• Record 1979/29 GRAV3 : AN INTERACTIVE COMPUTER PROGRAM TO CALCULATE THE GRAVITY ANOMALY OF A FINITE HORIZONTAL PRISM by R.D. Ogilvy The information contained in this report has been obtained by the Department of National Resources as part of the policy of the Australian Government to assist in the exploration and development of - -I resources. it may not be published in any form or used in a company prospectus or statement the permission in writing of the Director. Bureau of Mineral Resources, Geology and Geophysics. BMR Record 1[9/7- 0,749 fi.‘ _ nun

•UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

  • Upload
    dobao

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Page 1: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

rBri4R^CO7I1PACTUS.

AMR PUBLICATIONS COMPACTUS(LENDING SECTION)

DEPARTMENT OFNATIONAL RESOURCES

NATIONAL DEVELOPMENT

•BUREAU OF MINERAL RESOURCES,GEOLOGY AND GEOPHYSICS•

Record 1979/29

GRAV3 : AN INTERACTIVE COMPUTER PROGRAM TO CALCULATE

THE GRAVITY ANOMALY OF A FINITE HORIZONTAL PRISM

by

R.D. Ogilvy

The information contained in this report has been obtained by the Department of National Resourcesas part of the policy of the Australian Government to assist in the exploration and development of- -I resources. it may not be published in any form or used in a company prospectus or statement

the permission in writing of the Director. Bureau of Mineral Resources, Geology and Geophysics.

BMRRecord1[9/7-0,749

fi.‘

_

nun

Page 2: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

Record 1979/29

GRAV3 •: AN INTERACTIVE COMPUTER PROGRAM TO CALCULATE

THE GRAVITY ANOMALY OF A FINITE HORIZONTAL PRISM

•^ by

0^ R.D. Ogilvy

Page 3: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

CONTENTS

Page

SUMMARY

1. INTRODUCTION^ 1

2. CO—ORDINATE SYSTEM AND FORMULAE^ 2

3. PROGRAM DESCRIPTION^ 4

Flow chart^ 4•

Data input^ 4

Loading the program^ 5

Running the program^ 5

Data output^ 6

4. PROGRAM TESTING^ 6

5. EXAMPLES^ 7

6. REFERENCES^ 7

APPENDIX : Program listing

ILLUSTRATIONS

Figure. 1

Figure 2

Figure.3

Figure 4

Figure 5

Co—ordinate system and notations

Program flow chart

Teletype input/output

Program testing

Examples

Page 4: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

SUMMARY

A description is given of a cavputer_program

• (GRAV3) used for calculating the gravity anomaly due to a

finite prism. The program is written in FORTRAN IV for

interactive use with an HP 21MX mini-computer and GOULD 5000

printer/plotter under RTE II using TEROS.

The program may be compiled, loaded, and executed

using a system teletype.^Little or no data preparation is

required and interpretation is achieved by forward

interactive modelling.

The program provides a computer plot together with

suitable annotation and a cross-section of the case

• modelled.

Page 5: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

1.^INTRODUCTION

In metalliferous-exploration the need commonly

• arises to interpret gravity anomalies which are caused by

tabular bodies of finite strike length. The horizontal

prism of trapezium cross-section provides the interpreter

with a simple yet realistic geometrical form for a first-

order interpretation of an anomaly.

A computer program is described for calculating

the gravity anomaly of a finite homogeneous horizontal

prism. The program is called GRAV3 and is based on formulae

derived by Hjelt (1974).

The program has been written in FORTRAN IV for

interactive use with an HP 21MX mini-computer and a GOULD

5000 printer/plotter under RTE II using TEROS., The basic

program algorithm is simple and rapid, and could be readily

adapted for use with some of the more recent desk top

• calculators.^Little or no data preparation is required,

and interpretation is achieved by forward interactive

modelling.

Page 6: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

2.

2. CO-ORDINATE SYSTEM AND FORMULAE

Co-ordinate system

A rectangular co-ordinate system is used (Fig.1)

with the X axis perpendicular to the strike direction, the Y

axis parallel to the strike, and the Z axis positive

downwards. The dipping surfaces of the prism are defined

by the angles c and G. A special case of the model is

that of a prism in which C^e . The top and bottom faces

of the structure are horizontal, and the two faces

perpendicular to the strike direction are vertical.

The corners of the prism are defined by their

X,Y,Z co-ordinates (e.g. Xl, Yi, z1) and the distances

between the prism and the observation point P(X, Y, Z) are

denoted by U, V, and W as shown in Figure 1.

Oblique profiles

Profiles, other than those normal to the prism

strike, can be run by defining a profile co-ordinate system,

at an angle a to the prism co-ordinate system (see Fig.lb). In such cases, program GRAV3 plots the calculated

gravity values with respect to the profile co-ordinate

system.

Page 7: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

0^XI^X2 0

W(2)1Zl .10

( XV I, Z l,)YI w(i)

Z2U( l)

IV(2) 1.) (x,y,z,)1

3̂.4V(I)

U(2)'

U(I)4 3̂.1

U(2)

Y2

Plan Cross - section

a) Horizontal prism

0YN

b) Oblique profile

Plan

Fig. I Co—ordinate system and notations

Record No /979/29 G29- 263A

Page 8: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

•^ 3.

Mathematical formulae

The gravity anomaly of a finite dipping prism (8 = E) is

given by Hjelt (1974):

•^Ag = G.Ap.To

where^Ap is the density contrast, G the gravitational constant, and

•^ U V W

^

1^1^1To =[[( (0^+0+0+0+0))^)^)

1^2^3^4^5

^

U^V^W

^

2^2^2

where(UV)

0^= W arctan1^WR

0^= -p. sin^E cos E arctan^(V.q) 2

• p.R

20^= -p. sin^E^tn (V + R)3

T^= -V.^tn (U + R)4

0^=^V. cos^E^tn (q. sin E + R)5

R =^NA2 +V +W 2

p = U - W cot E•^q = W + U cot E

The gravity anomaly of a prism with a more general•^trapezium cross-section is obtained by substituting 8 for E1

when U = U(2)or u(2) (see Fig. 1)

Page 9: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

4.

3.^PROGRAM DESCRIPTION

Flow chart

The essential elements of the program structure are shown

in the flow chart (Fig. 2)r .^Program variables used in the flow

chart are defined in the program listing (see Appendix). For

operational convenience in BMR, a number of system subroutines are

used, but these do not detract from the generality of the basic

program algorithm. System subroutines are referred to by name

(e.g. RMPAR, NUMB, etc.) and further details may be obtained from

the HP-RTE II system manual and the GOULD printer manual.

Data input

The input model parameters used in the program are

defined as follows:

MN^= Model number.^Always start with MN = 1

XI^= X co-ordinate of top edge nearest origin

X2^= X co-ordinate of top edge farthest from origin

YI^= Y co-ordinate of top edge nearest origin.

Y2^= Y co-ordinate of top edge farthest from origin

Zl^Depth to top of prism

Z2^= DepLh to base of prism

XN^= X co-ordinate of first observation point

YN^= Y

ZN^= Z

DX^= Station increment along X axis

THETA = Dip of prism edge nearest to origin in degrees

ETA^=^u^farthest from origin in degrees

BETA = Angle between X axis and profile, measured clockwise

from the positive X axis in degrees

DEN^r. Density contrast

NXN^= Number of stations

C‘

Page 10: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

YesPHI =ETA

Start

/ Read inputdata

PHI =THETA

Yes

calculateFI,F2,F3,F4,F5

-A^'A

M=M4.1

Reset valueof UM

Yes

Change sign

FI,F2,F3,F4,F5

Calculategravity value

SumFl F2 F3F4 F5

Initialise, countersM= IG=0

Correct U(1)for dip

Yes

/ Plot results

/ Plotcross-section

Print resultson

-teletype and

line printer

/ Terminateplot

C St" )

9

Record No 1979/29^0^ Fig. 2 Program flow chart^

G 29-264 A

Page 11: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

5.

The program is structured for maximum interactive use by

the interpreter, and may be compiled, loaded, and executed by means

of a system teletype. Model parameters for each case are fed to

the computer using a free-field format.

The source program is stored as a resident disc file

GRAV3S but is also available on paper tape.

Loading the program

To load the program, the following command sequence is

observed:

1. *GF, GRAV3S^This command calls the source program

into the user scratch region.

2. *FT, FL^This command causes the program to be

compiled as a binary relocatable file.

3. *GF, STAT..

^

^This command schedul.es the binary file

for loading.

4. *LD, 0^ This command causes the program to be

loaded.

The above steps are once-only commands and need not be

repeated while the system is up.

Running the program

To run the program, the following command sequence is

observed:

1. *LG, GRAV3^This command causes scheduling of the

program for execution.

2. "MN, X1, X2, Y1,^At this request, type in the appropriate

Y2, Z1, Z2 = "^model parameters.

3. "XN, YN, ZN, DX,^Type in appropriate parameters separated

NXN, DEN, ETA,^by a comma.

THETA, BETA =

4. "MISTAKE IN INPUT^Answer YES or NO. If YES, the program

DATA?"^ will return to step 2.

0

Page 12: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

6.

•5.^"ANY MORE CASES?"^Answer YES or NO. If YES, the program

will return to step 2 so that additional

cases can be modelled.

The user may log into the program any number of times

using the command *LG, GRAV3.^User commands are preceded by a * as

shown;^terminal replies are given in inverted commas.

An example illustrating the use of the input commands

given in Figure 3.

If more than one case is to be modelled, only the

parameters to be varied need be changed.^For all parameters

preceding those to be changed, type in commas. Following

parameters may be ignored.

Data output

Two modes of data output are utilised. The calculated

gravity values are sent to the user teletype for immediate perusal

(Fig. 3) and also to the line printer for plotting. The graphical

plot includes suitable annotation and a cross-section of the case

modelled (see Figs. 4 and 5). A cross-section of the model is not

produced for oblique profiles.

4. PROGRAM TESTING

The program was tested against Nagy's (1966) formula for

the gravity effect of a right rectangular prism and with one of

Hjelt's (1974) cases.^The results shown in Figure 4 indicate an

excellent fit between the GRAV3 results and the test data.

Page 13: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

40..1F9GPHV=SGFAV:s COPIED TO :CFATCH TRACKS. LENGTH; 201 FECOPD:9 280o MORDC4:*FT9FLTEPO: TERMINAL AI:EMBLY/COMPILATION SYSTEM. BINARY OUTFILE = :TAT2B::*GF.:TAT2B:TAT2B COPIED TO :CPATCH TRACKS, LENGTH: 90 REFORDc9 2800 WORDS:41,LD90

LOADR:LOADLOADF:GRAV3 READYLOADF:SEND

•^::.L139GRAV3GRAV3 ON

MN9:19X29Y19Y2•2192:2=1990.9100.90.9100.95.960.

XN9YN9ZN. LIX, NX.N9DEN. ETA. THETA. BETA=0.950.90.910.92192.59 45.. 110. 9 O.

MISTAKE IN INPUT DATA?ND

I^MODEL NO.^10^ITRTION^GRAVITY VALUE0 .00 .160 10.00 . 200 20 „ 00 .270 ;0. 000 40 . ciii .490 50.00 .670 4;0.00 . 9400 R0.00 1.89

• 0 90.00 2.20 100.00 2.180 110.00 1.R00 120.00 1.430 17:0.00 1.120 14 0 . 00 86

• 0 150^00 .6A1 ,=.0.00 .50

0 1 7 0 . 0 0 .380 1R0.00 .290 190.00 .220 .o 200. 00 . 17•ANY MORE CASES?

YESETC.ETC.8

Fig.3 Teletype input/output

Record No. /979/29 G29-2654_

Page 14: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

(x3

CCLEI1 gr.

_ LU

CZ

CC

LO

0x

0

;s

0^ 05r.

0;4.

PMEL^141.

OEWCITr,E1INIFIRDT^2_CHHE

16111DE1^DEPTH^!LH

DIP^1:11461E(EIR)^ITE1.89

SlIP FINCTLE(1TIETR)^HD_ BB

PMIFILE^(IN)^50.513

- PROFILE AMBLE^—LBO —

GRAV 3 values

o Nagy's^values

0

0x 0 1. 0^0

4 0Va

015TANCE(METRE5)".s_as 28_10 58.8121^60.08^MAR^11313.08^1213.811 14E1.1301^168.138^180.18 208_80666

•—•

Lu°'ccr-LU C FISDA - hr TM IT--

F-CLLLIC]:

LIS

43DEL

L.r.1 OFTKIT11TER.DT^TAM

1410EL^DEPTH^18.813CC

HIP^RNELE(ETA)^613_011

STIP ATICELE(THETR)^6H.E10LU 0 4 0 PPr3FILE^ON)^. RB

PRIFILE^/INGLE^BAHCC

0TT. *GRAV 3 values

0

co

-64 0 Hjelt's^values

CECE

0

1.20 A^A 0

0^44.

DISTRNCE(METFlE.S)°:s_as 21.121 411.521^60.88^ 1118.139^1.20.1311 1411.1311^16B.B8^MAO 2E1E813

LU"'CC [F-LU

76-'

CLLU.C-D66.

6.6

EIV15';-SETTrin

Record No. 1979/29Fig. 4 Program testing

G29-266A

Page 15: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

* 143021^RI. 1

VCEKCITr,r1IITHRZT 2_5888

WIDEL^DEPTH S.88X

DIP^HFIGLE(ET11) 45.88

9IP RP41.8_8(TAE111) 118.88

X P41FI1E^(18) . 58.80

PAIFILE^TINGLE 8.88

C.3-3

Cr

v

cr L"

CtCD

AT 4

DI5TANCE(METRES)28_80^48.80^1.8111^88.88^118.88^128.9H

X

1413.88^1.411.811^188.08^218.118

cassA-ssrtnN

WIDEL. Kl.

t.^X

CER4ITY- TIHTPRZ1 2_4888

1410E1 DEPTH^C_BEI

DIP Atigar,ETA)^4.5.08

PNGLEC1I4E111) 115.88

P41PILE (TM>^SH.88

PilIFILF ANGLE^0_ 88

^*. ^ 4

^

v.^ X

^

X^ *

^* k^ k 0 ..

^

*^ • A

DISTANCE(METRES)

^

28.00^48.10^88.80^811.88^18E1.88^128.138^148.88^!ELBA^1118.88^2911.138

Record No. 1979/29 Fig.5 Examples G29-267A

Page 16: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

7.

5.^EXAMPLES

I^ Some further examples of the use of the program GRAV3 are

shown in Figure 5.

6.^REFERENCES

HJELT, S.-E., 1974 - The gravity anomaly of a dipping prism.

Geoexploration, v.12(1), pp.29-39.

• NAGY, D., 19.66 - The gravitational attraction of a right

rectangular prism.^Geophysics, v.31, PP.362-371.

Page 17: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

Appendix:^PROGRAM LISTING^ 0

Page 18: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

********************U******************************************0******************• **^ ******^ ******

**^ **

• GRAV3^ **x4,^ TERMINALOUTPUT LOGICAL UNIT =

****

-1-1(************34***********************************************************U*********

Page 19: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

FTN4,B,LPROGRAM GRAV3

• C^AUTHOR- R.D.OGILVY• C:^THI S PROGRAM CALCULATES THE GRAVITY ANOMALY OF A• C^3-DIMENSIONAL DIPPING PRISM, OR TRAPEZOIDAL STRUCTURE.

ALL DIMENSIONS ARE IN METRES• 0^MN=MODEL NUMBERE C^X1=CO-OD OF FIRST TOP EDGE ON X AXIS

X2=CO-OD OF SECOND TOP EDGE ON X AXIS10 C^Y1=00-0D OF FIRST EDGE ON Y AXIS

Y2=C0-OD OF SECOND EDGE ON Y AXIS

^

1471^Z1=DEPTH TO TOP OF PRISM

^

C^Z2 DEPTH TO BASE OF PRISM

^

'L4 C.^XN=X CO-OD OF FIRST FIELD POINT

^

15 C^YN=Y CO-OD OF FIRST FIELD POINT

^

j.■7, C^ZN=Z CO-OD OF FIRST FIELD POINT^1 7,^C.:^12 0^ALL DISTANCES MEASURED IN METRES.

ALL ANGLES MEASURED IN DEGREES_

^

20^DX=STATION INIRFMFNT ALUNG X AXIS▪ C^THETA =DIP OF PRISM(OR TRAPEZOID ) EDGE NEAREST TO ORIGIN_▪ C^ETA=DIP OF PRISM EDGE FURTHEST FROM ORIGIN .

^

23 0^BETA-ANGLE BETWEEN X AXIS AND PROFILE, MEASURED CLOCMISE▪ C^FROM +VE X AXIS

^

OF C^DEN=DENSITY CONSTRAST(

^

2fS C^c1C=AFAJ I TAT I 'NiL CONSTANT (C .G S)

^

27 r^HXN=NUMBER OF STATIONS

^

RS C.^AG=ARRAY FOR GRAVITY VALUES

^

C^STAT=ARRAY FOR OBSERVATION POINTS30 r.31^DIMENSION AG(400),STAT(400),F1(2),F2(2),F3(8),E4(2)1U(S)

DIMENSION F5(8),U(2).V(2),W(2)

^

33^INTEGER MN,NXN

^

34^REAL X1,X2,Y1,Y2,21,Z2,XN,YN,ZN,DX,DEN,ETA,THETA,BETO

^

35^INTEGER STR1(10).STR2(7),STR3(3),STR4(S),STR5(11),

^

36^*STR6(8STR7(8STR8(2),STR10(7STR11(7),STR9()DATA STR1/2HGR,2HAV,2HIT.2HY .2HVA,2HLU,2HE(,2HMG,2HAL,2HS)/'

^

32^DATA STR2/2HDE.2HPT,2HH(.2HME,2HTR,2HES.2H) /

^

39^DATA STR3/2HDI,21-1ST,2HAN,2HCE,2H(M,2HET.2HRE.2HS)/

^

40^DATA STR4/2HM0,2HDE.2HL .2HNO.2H. ,RH ,OH ,2H

^

41^DATA STR5/2HDE,2MNS,2HIT,2HY ,2HCO,2HNT.RHRA,ZHST,2H ,2H .2H

^

42^DATA STR8/2HMO,2HDE,2HL .2HDE,2HPT,2HH^.2H

^

43^DATA STR7/2HDI.2HP ,2HAN,2HGL,2HE(.2HET,2HA) . ,RH

^

44^DATA STR8/2HDI,2HP ,2HAN,2HGL,2HE(,2HTH,2HET,RHA)/

^

45^DATA STR9/2HPR,2HOE.2HIL.2HE .2H(Y,2HN)/

^

46^DATA STR10/2HPR.2HOF,2HIL.2HE ,2HAN,2HGL:2HE

^

47^DATA STR11/2HCR,2HOS,2HS-,2HSE.2HCT.2H10.2MN /48

^

49^READ INPUT DATASO r

^51^CALL RMPAR(LU)

^

52^A WRITE(LU.300)

^

53^300 FORMAT(/2X,"MN.X1.X2,Y1,Y2,Z1,,Z2=")

^

54^READ(LUAOMN.X1,X2,Y1,Y2,7.1,Z2

Page 20: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

55565758596e

WRITE(LU,301)301 FORMAT(/2X,"XN,YN,ZN,DX,NXN.DEN,ETA,THETA,BETA=")

READ(LU,*)XN.YN.ZN.DX.NXN,DEN,ETA,THETA,BETA14 1JRITE(LU,303)

303 FORMAT(/2X,"MISTAKE IN INPUT DATA?")READ(LU,6)NGOOD• 61 6 FORMAT(A2)

62 IF(NGOOD.E0.2HYE)G0 TO 163 r64 C CONVERT INPUT DATA65 C66 GC=6 67/10000000067 pi=3.14159

40 68 ETA=ETA*PI/130THETH=THETA*PI/180

70 BETA=BETA*Pis12071 •,<G=:-:s472 C72 nn 9 1 L=1 NXN74 'LtDX*COS(RETA)+XN

40 75 Y=(i_^i•tDX:CSIN(BETA)+YN76 STPrL^-11*flX

H=Z2-.2179 U(1)=X-X279 0(2)=X-X180 Vii)=Y-Y221 V(2)=Y-Y122 t.j(1;=7H-7233 W(2)=ZN-2184 CRC C CALaji ATE GRAVITY EUNCTION G2.6 r27 M=1

40 82 G=089 no^10^1=1,2

90 DO 10 J=1.291 DO 10 K=1.292 1F.(AEL..i^-1.001^LT.0)1A(K)=0^001Cr? IF(i^EO^1)PHI=ETO94 117(1^E0.2)PHI=THETA

40 IFW FO^1) 13(1)=U(I :-H/TON(PHI)96 R==;OPT(U(I)*U(I)+V(WiN(j)+W(K)*W(K))

P=1..“II-W(K)/TAN(PHI)98 IFABS(P)-0 001) LT 0)P=0.00199 0=w(K)+U(1)/TAN(PHI)100 71(M)=WW)*ATAN((V(J)*U(U)/(WOO*P))• 101 F2(M)=-P*SIN(PHI)*COS(PHI)*ATANO(V':J)*0)/(P*P))1 02 F200=-P,W=zIN(PHI)*c1H(PHI)*A1 nG(V(J)+R)103 F4(M)=-V(J)*A! OG(U(I)+R)104 FE(H)=VJ)*COSCPHI)*ALOG(0*SIN(PHI)+R)10510% C. 4.0R^IjK E0 := , )G0 TO^19107 S F1(M)=-F1(M)

40 108 F8(0)=-F2(M)109 F2(1)=-F2(M)

9-

Page 21: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

110 F4(M)=-F4(M)^.111 F5(M)=-F5(M)112 19^IF(K.E0.1)U(1)=U(1)+H/TAN(PHI)113 M=M+1114 10 CONTINUE115 DO 11 N=1,8116 G=G+F1(N)+F2(N)+F3(N)+F4(N)+F5(N)117 11 CONTINUE118 C119 C CALCULATION OF GRAVITY VALUE120 C121 AG(L)=-100000.0*GC*DEN*G122 99 CONTINUE123 XN=XG124 C125 C PRINT RESULTS126 C127 WRITE(LU,3)MN128 r WRITE(6.,3)MN129 3 FORMAT(1H1;7X,9HMODEL NO .110)130 1RITE(LU,202)131 C WRITE(6,202)132 202 FORMAT(1H0.7X.7HSTATION,10X,13HGRAVITY VALUE)133 DO 56 J=1,NXN134 WRITE(LU,60)STAT(U),AG(J)135 C WRITE(6.60)STAT(J),AG(U)136 60 FORMAT(1H0,5X,F10 2,GX,F10.2)137 Si; CONTINUE133 C139 C PLOT AXIS140 C141 DIST=DX*FLOAT(NXN)/10.142 SI2=-Z2/3.143 CALL PLOTS(17-10 .0)144 CALL FACTR(0.5)145 IF(MN.E0.1)CALL PLOT(1.,0.5,-3)146 CALL AXIS(0..4—STR1.20,5-90-0-0.5)147 CALL AXIS(0^,0.,STR2,14,3.,90.,Z2,S12)148 CALL AXIS(0..3^.STR3,16,10-0..XG,DIST)149 C150 C PLOT POINTS151 C152 CALL PLOT(0.,4.,-3)153 XP=0.154 DO 600 I=1,NXN155 YP=AG(I)/SCM156 CALL SYMB(XP,YP,0.1,7,0.,-1.0.1)157 XP=XP+DX/nIc7158 600 CONTINUE159 BETA=BETA*130./PI.160 IF(IFIX(DETA).GT.0)G0 TO 900161, XP1=X1/DIST-XG/DIST162 YP1=Z1/5I2163 XP2=X2/DIST-XG/DIST164 • XP3=(X2+H/TAN(ETA))/DIST-XG/DIST

-09

Page 22: •UEAU O MIEA ESOUCES, GEOOGY A GEOYSICS• · 4. 3 ^OGAM ESCIIO l hrt h ntl lnt f th prr trtr r hn n th fl hrt ( r.^rr vrbl d n th fl hrt r dfnd n th prr ltn ( Appndx r prtnl nvnn

166^XP4=(X1+H:TAN(THETA))/DIST-XG/DIST166^CALL PLOT(0.,-1.,-2.)167^CALL PLOT(X.P1.YP1,3)168^CALL PLOT(XP2,YP1.2)169^CALL PLOT(XP3,-3-2)170 .^CALL PLOT .(XP4,-'3 .-

171^CALL PLOT(XP1,YP1,2)172^CALL SYMB(7.,-1.5,0.1,STR11,0-13)173^900 THETA=THETA*180./PI174^ETA=ETA*180../P1175^CALL SYMB(7-5.5.0.1,STR4,0-16)176^CALL SYM8(7-5-0.1,STR5,0-22)177^CALL SYMB(7-4.7.0.1,STR6,0-16)178^CALL SYMB(7-4.4,0.1,STR7,0-16)179^.CALL SYM8(7-4.1,0.1,STR8,0.1,16)180^CALL 5YMB(7-.3.8.0.1.STR9,0-12)181^CALL SYMB(7-3.5,0.1.STR10,0-14)182^CALL NUMB(8.3.5.1,FLOAT(MN),0-0)

. 183^CALLNUMB(8.8,5.0,0.1,DFN:0-4)184^CALL NUM9(8.8,4.7,0.1 .:21,0-2)1E5^CALL NUME(8.8.4.4.0.1.ETA,0-2)186^CALL NUM8(8.8,4.1,0.1,THETA,0-2)187^CALL NUMB(8.8,3.3,0.1,YN.0-2)188^CALL NUMB(8.8.3.5,0.1.BETA,0-2)189 C190 C^TERMINATE PLOT191 r192^27 CALL PLOT(0. - .0 .999)

193^CALL GOPLT194^75 JRITE(LU..2O)195^20 FORMAT(/2"ANY MORE CASES?")196^RFADO 13, -*))Mr1RF197^30 FORMAT(A2)198^IF(MORE.E0.2WE)1 2719';^STOP200^END201^ENDS