Uavbook Ch5 Partial[1] Copy

  • Upload
    hyld3n

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    1/25

    Guidance and Control of

    Autonomous Fixed Wing Air Vehicles

    Randal W. Beard Timothy W. McLain

    Brigham Young University

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    2/25

    ii

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    3/25

    Contents

    Preface vii

    1 Introduction 1

    1.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2 Coordinate Frames 5

    2.1 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.2 MAV Coordinate Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.3 Equation of Coriolis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    2.4 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    3 Kinematics and Dynamics 21

    3.1 MAV State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.2 MAV Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    3.3 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    3.4 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    4 Forces and Moments 29

    4.1 Gravitational Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    4.2 Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    4.3 Propulsion Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    4.5 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    5 Nonlinear Equations of Motion 41

    5.1 Six DOF Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    5.2 Navigation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    iii

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    4/25

    iv CONTENTS

    5.3 Wind Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    5.4 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    6 Trim 51

    6.1 Turn with a Constant Climb Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    6.2 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    7 Open Loop Linear Dynamics 59

    7.1 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    7.2 Linear State Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    7.3 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    8 Autopilot Design Using Successive Loop Closure 79

    8.1 Lateral Autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    8.2 Longitudinal Autopilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    8.3 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

    9 Micro UAV Sensors 99

    9.1 Rate Gyros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    9.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    9.3 Pressure Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    9.4 Magnetometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    9.5 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    9.6 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    10 State Estimation 109

    10.1 Low Pass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    10.2 State Estimation by Inverting the Sensor Model . . . . . . . . . . . . . . . . . . . 110

    10.3 Dynamic Observer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    10.4 Essentials from Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 116

    10.5 Derivation of the Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    10.6 Attitude Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    10.7 GPS Smooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    10.8 Wind Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    10.9 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    5/25

    CONTENTS v

    11 Waypoint and Orbit Following 133

    11.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    11.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15011.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

    11.4 Another approach to straight line tracking . . . . . . . . . . . . . . . . . . . . . . 153

    11.5 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    12 Path Planning 159

    12.1 Point-to-Point Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    12.2 Coverage Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

    12.3 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    13 Path Manager 169

    13.1 Switching Between Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

    13.2 Smooth transitions that satisfy kinematic constraints . . . . . . . . . . . . . . . . . 171

    13.3 Smooth transitions through the waypoint . . . . . . . . . . . . . . . . . . . . . . . 171

    13.4 Smooth transitions that preserve path length . . . . . . . . . . . . . . . . . . . . . 171

    13.5 Path Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

    13.6 Dubins Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

    13.7 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

    14 Cameras on Micro UAVs 199

    14.1 Gimbal and Camera Frames and Projective Geometry . . . . . . . . . . . . . . . . 200

    14.2 Gimbal Pointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

    1 4 . 3 G e o l o c a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4

    14.4 Estimating Target Motion in the Image Plane . . . . . . . . . . . . . . . . . . . . 207

    14.5 Precision Landing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

    14.6 Design Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

    A Aviones 223

    B Introduction to Modeling in Simulink 225

    C Useful Formulas and other Information 227

    C.1 Conversion from knots to mph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

    D Graphs Theory 229

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    6/25

    vi CONTENTS

    Bibliography 238

    http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    7/25

    x CONTENTS

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    8/25

    Chapter 5

    Nonlinear Equations of Motion

    5.1 Six DOF Equations of Motion

    5.1.1 General Force and Torque Model

    If we use the general force and torque models given by

    fx

    fy

    fz

    = mg

    sin

    cos sin

    cos cos

    + qS

    CX(x, )

    CY(x, )

    CZ(x, )

    l

    m

    n

    = qS

    bCl(x,)

    cCm(x,)

    bCn(x, )

    ,

    41

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    9/25

    42 5.1 Six DOF Equations of Motion

    in the six degree-of-freedom model given by Equations (3.9)-(3.12), we get

    pn

    pe

    h

    =

    cc ssc cs csc + ss

    cs sss + cc css sc

    s sc cc

    u

    v

    w

    (5.1)

    u

    v

    w

    =

    rv qw

    pw ru

    qu pv

    +

    g sin

    g cos sin

    g cos cos

    +qS

    m

    CX(x, )

    CY(x, )

    CZ(x,)

    (5.2)

    =

    1 sin()tan() cos()tan()

    0 cos() sin()

    0 sin()sec() cos()sec()

    p

    q

    r

    (5.3)

    p

    q

    r

    =

    1pq 2qr

    5pr 4(p2 r2)+

    6pq 1qr

    + qS

    b [Gamma3Cl(x, ) + 4Cn(x, )]cJy

    Cm(x, )

    b [4Cl(x, ) + 7Cn(x, )]

    . (5.4)

    5.1.2 Linear Aerodynamic Model

    A variety of different models for the aerodynamic forces and moments appear in the literature. In

    particular, if we use the linear model described in Chapter 4 we get the following equations of

    http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    10/25

    Nonlinear Equations of Motion 43

    motion:

    pn = (cos cos )u + (sin sin cos cos sin )v + (cos sin cos + sin sin )w

    (5.5)

    pe = (cos sin )u + (sin sin sin + cos cos )v + (cos sin sin sin cos )w

    (5.6)

    h = u sin v sin cos w cos cos (5.7)

    u = rv qw g sin +qS

    m

    CX0 + CX + CXqcq

    Va + CXee

    +

    Sprop2m Cprop

    (kt)

    2 V

    2a

    (5.8)

    v = pw ru + g cos sin +qS

    m

    CY0 + CY+ CYp

    bp

    2Va+ CYr

    br

    2VaCYaa + CYr r

    (5.9)

    w = qu pv + g cos cos +qS

    m

    CZ0 + CZ + CZq

    cq

    Va+ CZee

    (5.10)

    = p + qsin tan + r cos tan (5.11)

    = qcos r sin (5.12)

    = qsin sec + r cos sec (5.13)

    p = 1pq 2qr + qSb

    Cp0 + Cp+ Cpp

    bp

    2Va+ Cpr

    br

    2Va+ Cpaa + Cpr r

    (5.14)

    q = 5pr 4(p2 r2) +

    qSc

    Jy

    Cm0 + Cm + Cmq

    cq

    2Va+ Cmee

    (5.15)

    r = 6pq 1qr + qSb

    Cr0 + Cr+ Crp

    bp

    2Va+ Crr

    br

    2Va+ Craa + Crr r

    , (5.16)

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    11/25

    44 5.2 Navigation Models

    where

    Cp0 = 3Cl0 + 4Cn0

    Cp = 3Cl + 4Cn

    Cpp = 3Clp + 4Cnp

    Cpr = 3Clr + 4Cnr

    Cpa = 3Cla + 4Cna

    Cpr = 3Clr + 4Cnr

    Cr0 = 4Cl0 + 7Cn0

    Cr = 4Cl + 7Cn

    Crp = 4Clp + 7Cnp

    Crr = 4Clr + 7Cnr

    Cra = 4Cla + 7Cna

    Crr = 4Clr + 7Cnr .

    5.2 Navigation Models

    5.2.1 8 State Navigation Equations

    The full 12-state equations of motion given in Equations (5.1)(5.4) are usually not needed to

    derive good navigation models. In this section we will show a useful method for reducing these

    equations.

    The first simplification is to note that the velocity vector in the wind frame, i.e. (Va, 0, 0)T,

    where Va is the airspeed, can be related to the inertial coordinates by two angles: the flight path

    angle and the heading , as shown in Figure 5.1. The heading is obtained by rotating the inertial

    coordinate from by until the x-axis is aligned with the projection of the velocity vector on the

    x-y plane. The appropriate transformations are given by

    pnpeh

    = cos

    sin 0sin cos 0

    0 0 1

    cos 0 sin 0 1 0 sin 0 cos

    Va00

    = cos cos sin cos sin

    Va.

    Therefore

    pn

    pe

    h

    =

    cos cos

    sin cos

    sin

    Va.

    http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    12/25

    Nonlinear Equations of Motion 45

    Flight path

    Figure 5.1: The flight path angles and .

    Coordinated Turn

    The following derivation draws on the discussion [2, p. 224226]. From Equation (5.13) we get

    that

    = sin cos

    q+ cos cos

    r.

    Figure 5.2 shows a free body diagram of the UAV indicating forces in the x z plane during a

    Figure 5.2: Free body diagram indicating forces on the UAV in the y z plane. The nose of the

    UAV is out of the page. The UAV is assumed to be pitched at the flight path angle .

    http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    13/25

    46 5.2 Navigation Models

    cork-screw maneuver. Writing the force equations we get

    L cos cos = mg cos (5.17)

    L sin cos = mVa. (5.18)

    Dividing (5.18) by (5.17) and solving for gives

    =g

    Vatan , (5.19)

    which is the equation for a coordinated turn. Given that the turning radius is given by Rt = Va/

    we get

    Rt =V2a

    g tan . (5.20)

    From Figure 5.2 we also see that

    q = sin (5.21)

    r = cos . (5.22)

    Plugging Eq. (5.19) into Eq. (5.21) and (5.22) gives

    q =g

    Va

    sin2

    cos (5.23)

    r =g

    Vasin . (5.24)

    Plugging into Eq. (??) gives

    =g

    Va

    sin

    cos

    1

    cos .

    Noting from Eq. (5.17) that1

    cos =

    L

    mg,

    and defining the Load Factoras n= L/mg gives

    =g

    Va

    sin

    cos n. (5.25)

    Our derivation of the dynamic equation for draws on the discussion in [2, p. 227228]. The

    free body diagram of the UAV in the x zplane is shown in Figure 5.3. Since the UAV has a roll

    angle of , the projection of the lift vector onto the x z plane is L cos . The centripetal force

    due to to the pull-up maneuver is mVa. Therefore, summing the forces in the x zplane gives

    L cos = mVa+ mg cos .

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    14/25

    Nonlinear Equations of Motion 47

    Figure 5.3: Free body diagram indicating forces on the UAV in the x z plane. The left wing is

    out of the page. The UAV is assumed to be in a roll angle of.

    Letting n = L/mg and solving for gives

    =g

    Va(n cos cos ) . (5.26)

    We will assume that the mini-UAV is equipped with an autopilot that implements the following

    feedback loops: (1) airspeed hold, (2) roll-attitude hold, and (3) load-factor hold. In addition,

    we will assume that the autopilot is tuned such that the closed-loop behavior of these loops is

    essentially first order. Therefore, the closed loop behavior of the autopilot is given by

    Va =1

    V(Vca Va)

    = 1

    (c ) (5.27)

    n =1

    n(nc n),

    where > 0 are positive autopilot time constants, and Vca ,

    c, and nc are the inputs to the autopilot.

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    15/25

    48 5.2 Navigation Models

    In summary, the equations of motion for the UAV are given by

    pn = Va cos cos + wx (5.28)

    pe = Va sin cos + wy (5.29)

    h = Va sin + wh (5.30)

    =g

    Va

    sin

    cos n (5.31)

    =g

    Va(n cos cos ) (5.32)

    Va =1

    V(Vca Va) (5.33)

    =1

    (c ) (5.34)

    n =1

    n(nc n). (5.35)

    An equivalent, but useful alternative to these equations is to assume that the load factor is

    selected as

    nc = n =cos

    cos . (5.36)

    In this case equations (5.31) and (5.32) become

    =g

    Vatan() (5.37)

    =

    g cos

    Va (

    1). (5.38)Note that when = 1, the airframe is experiencing a level flight coordinated turn.

    5.2.2 6 State Navigation Equations

    If we assume that the airspeed is constant and that the load factor is given by Equation (5.36), then

    the six state navigation equations become

    pn = Va cos cos + wx (5.39)

    pe = Va sin cos + wy (5.40)

    h = Va sin + wh (5.41)

    =g

    Vatan() (5.42)

    =g cos

    Va( 1) (5.43)

    =1

    (c ), (5.44)

    http://-/?-http://-/?-http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    16/25

    Nonlinear Equations of Motion 49

    where the inputs are and c.

    5.2.3 4 State Navigation Equations

    There are times when we are interested in 2D path planning. In that case we select = 1 to obtain

    pn = Va cos + wx (5.45)

    pe = Va sin + wy (5.46)

    =g

    Vatan (5.47)

    =1

    (c ), (5.48)

    where c is the input.

    5.3 Wind Models

    5.3.1 Wind Speed Above Ground

    According to [9], the wind-speed increases with altitude. Up to an altitude of few hundred meters,

    the wind speed profile vw(z) is approximately a logarithmic function of the altitude (z):

    vw(z) vo() ln

    zz0

    , for z > 10z0,

    where is the thickness of the surface boundary layer, z0 = 0.1 m in a low density urban zone,

    hence

    z(vw) = z0evw/v0().

    http://-/?-
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    17/25

    50 5.4 Design Project

    5.4 Design Project

    5.1 Homework problem 1.

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    18/25

    Bibliography

    [1] R. C. Nelson, Flight Stability and Automatic Control. Boston, Massachusetts: McGraw-Hill,

    2nd ed., 1998.

    [2] J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls, Parts I & II. Lawrence,Kansas: DARcorporation, 1998.

    [3] J. H. Blakelock, Automatic Control of Aircraft and Missiles. John Wiley & Sons, 1965.

    [4] J. H. Blakelock, Automatic Control of Aircraft and Missiles. John Wiley & Sons, second

    edition ed., 1991.

    [5] M. V. Cook, Flight Dynamics Principles. New York: John Wiley & Sons, 1997.

    [6] B. Etkin and L. D. Reid, Dynamics of Flight: Stability and Control. John Wiley & Sons,1996.

    [7] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. Hoboken, New Jersey: John

    Wiley & Sons, Inc., 2nd ed., 2003.

    [8] W. J. Rugh, Linear System Theory. Englewood Cliffs, New Jersey: Prentice Hall, 2nd ed.,

    1996.

    [9] F. Ruffier and N. Franceschini, Optic flow regulation: the key to aircraft automatic guid-

    ance, Robotics and Autonomous Systems, vol. 50, pp. 177194, April 2005.

    [10] D. B. Barber, S. R. Griffiths, T. W. McLain, and R. W. Beard, Autonomous landing of

    miniature aerial vehicles, in AIAA Infotech@Aerospace, (Arlington, Virginia), American

    Institute of Aeronautics and Astronautics, September 2005. AIAA-2005-6949.

    [11] http://www.silicondesigns.com/tech.html.

    231

    http://www.silicondesigns.com/tech.html
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    19/25

    232 BIBLIOGRAPHY

    [12] M. Rauw, FDC 1.2 - A SIMULINK Toolbox for Flight Dynamics and Control Analysis, Feb-

    ruary 1998. Available at http://www.mathworks.com/.

    [13] R. E. Bicking, Fundamentals of pressure sensor technology. http://www.

    sensorsmag.com/articles/1198/fun1198/main.shtml.

    [14] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms. Englewood Cliffs,

    New Jersey: Prentice Hall, 2000.

    [15] D. B. Barber, J. D. Redding, T. W. McLain, R. W. Beard, and C. N. Taylor, Vision-based tar-

    get geo-location using a fixed-wing miniature air vehicle, Journal of Intelligent and Robotic

    Systems, vol. 47, pp. 361382, December 2006.

    [16] S. Park, J. Deyst, and J. How, A new nonlinear guidance logic for trajectory tracking,

    in Proceedings of the AIAA Guidance, Navigation and Control Conference, August 2004.

    AIAA-2004-4900.

    [17] I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, Trajectory tracking for autonomous

    vehicles: An integrated approach to guidance and control, AIAA Journal of Guidance, Con-

    trol and Dynamics, vol. 21, no. 1, pp. 2938, 1998.

    [18] P. Aguiar, D. Dacic, J. Hespanha, and P. Kokotivic, Path-following or reference-tracking?

    An answer relaxing the limits to performance, in Proceedings of IAV2004, 5th IFAC/EURONSymposium on Intelligent Autonomous Vehicles, (Lisbon, Portugal), 2004.

    [19] A. P. Aguiar, J. P. Hespanha, and P. V. Kokotovic, Path-following for nonminimum phase

    systems removes performance limitations, IEEE Transactions on Automatic Control, vol. 50,

    pp. 234238, February 2005.

    [20] J. Hauser and R. Hindman, Maneuver regulation from trajectory tracking: Feedback lin-

    earizable systems, in Proceedings of the IFAC Symposium on Nonlinear Control Systems

    Design, (Tahoe City, CA), pp. 595600, June 1995.

    [21] P. Encarnacao and A. Pascoal, Combined trajectory tracking and path following: An appli-

    cation to the coordinated control of marine craft, in Proceedings of the IEEE Conference on

    Decision and Control, (Orlando, FL), pp. 964969, 2001.

    [22] R. Skjetne, T. Fossen, and P. Kokotovic, Robust output maneuvering for a class of nonlinear

    systems, Automatica, vol. 40, pp. 373383, 2004.

    http://www.sensorsmag.com/articles/1198/fun1198/main.shtmlhttp://www.sensorsmag.com/articles/1198/fun1198/main.shtmlhttp://www.mathworks.com/
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    20/25

    BIBLIOGRAPHY 233

    [23] R. Rysdyk, UAV path following for constant line-of-sight, in Proceedings of the AIAA 2nd

    Unmanned Unlimited Conference, AIAA, September 2003. Paper no. AIAA-2003-6626.

    [24] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, in Proceed-

    ings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 500505,

    1985.

    [25] K. Sigurd and J. P. How, UAV trajectory design using total field collision avoidance, in

    Proceedings of the AIAA Guidance, Navigation and Control Conference, August 2003.

    [26] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall, 3rd ed., 2002.

    [27] E. P. Anderson, R. W. Beard, and T. W. McLain, Real time dynamic trajectory smoothing

    for uninhabited aerial vehicles, IEEE Transactions on Control Systems Technology, vol. 13,

    pp. 471477, May 2005.

    [28] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, Randomized kinodynamic motion plan-

    ning with moving obstacles, in Algorithmic and Computational Robotics: New Directions,

    pp. 247264f, A. K. Peters, 2001.

    [29] F. Lamiraux, S. Sekhavat, and J.-P. Laumond, Motion planning and control for Hilare pulling

    a trailer, IEEE Transactions on Robotics and Automation, vol. 15, pp. 640652, August

    1999.

    [30] R. M. Murray and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids,

    IEEE Transactions on Automatic Control, vol. 38, pp. 700716, May 1993.

    [31] T. Balch and R. C. Arkin, Behavior-based formation control for multirobot teams, IEEE

    Transactions on Robotics and Automation, vol. 14, pp. 926939, December 1998.

    [32] R. C. Arkin, Behavior-based Robotics. MIT Press, 1998.

    [33] L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with

    prescribed initial and terminal positions and tangents, American Journal of Mathematics,

    vol. 79, pp. 497516, 1957.

    [34] E. P. Anderson and R. W. Beard, An algorithmic implementation of constrained extremal

    control for UAVs, in Proceedings of the AIAA Guidance, Navigation and Control Confer-

    ence, (Monterey, CA), August 2002. AIAA Paper No. 2002-4470.

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    21/25

    234 BIBLIOGRAPHY

    [35] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, Vector field path following for

    miniature air vehicles, IEEE Transactions on Robotics, vol. 37, pp. 519529, June 2007.

    [36] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, Vector field path following for

    small unmanned air vehicles, in American Control Conference, (Minneapolis, Minnesota),

    pp. 57885794, June 2006.

    [37] R. Sedgewick, Algorithms. Addison-Wesley, 2nd ed., 1988.

    [38] F. Aurenhammer, Voronoi diagrams - a survey of fundamental geometric data struct, ACM

    Computing Surveys, vol. 23, pp. 345405, September 1991.

    [39] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. McGraw-Hill,

    1993.

    [40] M. Pachter and P. R. Chandler, Challenges of autonomous control, IEEE Control Systems

    Magazine, vol. 18, pp. 9297, August 1998.

    [41] P. Chandler, S. Rasumussen, and M. Pachter, UAV cooperative path planning, in Proceed-

    ings of the AIAA Guidance, Navigation, and Control Conference, (Denver, CO), August 2000.

    AIAA Paper No. AIAA-2000-4370.

    [42] T. McLain and R. Beard, Cooperative rendezvous of multiple unmanned air vehicles, in

    Proceedings of the AIAA Guidance, Navigation and Control Conference, (Denver, CO), Au-

    gust 2000. Paper no. AIAA-2000-4369.

    [43] R. W. Beard, T. W. McLain, and M. Goodrich, Coordinated target assignment and intercept

    for unmanned air vehicles, in Proceedings of the IEEE International Conference on Robotics

    and Automation, (Washington DC), pp. 25812586, May 2002.

    [44] P. R. Chandler, M. Pachter, D. Swaroop, J. M. Fowler, J. K. Howlett, S. Rasmussen, C. Schu-

    macher, and K. Nygard, Complexity in UAV cooperative control, in Proceedings of the

    American Control Conference, (Anchorage, AK), pp. 18311836, May 2002.

    [45] G. Yang and V. Kapila, Optimal path planning for unmanned air vehicles with kinematic and

    tactical constraints, in Proceedings of the IEEE Conference on Decision and Control, (Las

    Vegas, NV), pp. 13011306, 2002.

    [46] E. Frazzoli, M. A. Dahleh, and E. Feron, Real-time motion planning for agile autonomous

    vehicles, Journal of Guidance, Control, and Dynamics, vol. 25, pp. 116129, January-

    February 2002.

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    22/25

    BIBLIOGRAPHY 235

    [47] N. Faiz, S. K. Agrawal, and R. M. Murray, Trajectory planning of differentially flat systems

    with dynamics and inequalities, AIAA Journal of Guidance, Control and Dynamics, vol. 24,

    pp. 219227, MarchApril 2001.

    [48] R. K. Prasanth, J. D. Boskovic, S.-M. Li, and R. K. Mehra, Initial study of autonomous

    trajectory generation for unmanned aerial vehicles, in Proceedings of the IEEE Conference

    on Decision and Control, (Orlando, FL), pp. 640645, December 2001.

    [49] O. A. Yakimenko, Direct method for rapid prototyping of near-optimal aircraft trajectories,

    AIAA Journal of Guidance, Control and Dynamics, vol. 23, pp. 865875, September-October

    2000.

    [50] S. Sun, M. B. Egerstedt, and C. F. Martin, Control theoretic smoothing splines, IEEE Trans-actions on Automatic Control, vol. 45, pp. 22712279, December 2000.

    [51] A. W. Proud, M. Pachter, and J. J. DAzzo, Close formation flight control, in Proceedings

    of the AIAA Guidance, Navigation, and Control Conference and Exhibit, (Portland, OR),

    pp. 12311246, American Institute of Aeronautics and Astronautics, August 1999. Paper no.

    AIAA-99-4207.

    [52] R. L. Burden and J. D. Faires, Numerical Analysis. Boston: PWS-KENT Publishing Com-

    pany, fourth ed., 1988.

    [53] T. L. Vincent and W. J. Grantham, Nonlinear and Optimal Control Systems. John Wiley &

    Sons, Inc., 1997.

    [54] E. P. Anderson, Constrained extremal trajectories and unmanned air vehicle trajec-

    tory generation, Masters thesis, Brigham Young University, Provo, Utah 84602, April

    2002. Available at http://www.ee.byu.edu/magicc/publications/thesis/

    ErikAnderson.ps.

    [55] E. P. Anderson, R. W. Beard, and T. W. McLain, Dynamic trajectory smoothing for UAVs,

    Tech. Rep. MAGICC-2003-01, Brigham Young University, February 2003. Available at

    http://www.ee.byu.edu/magicc/tr/2003-01.pdf.

    [56] J. H. Evers, Biological inspiration for agile autonomous air vehicles, in Symposium on

    Platform Innovations and System Integration for Unmanned Air, Land, and Sea Vehicles ,

    (Florence, Italy), NATO Research and Technology Organization AVT-146, May 2007. Paper

    no. 15.

    http://www.ee.byu.edu/magicc/tr/2003-01.pdfhttp://www.ee.byu.edu/magicc/publications/thesis/ErikAnderson.pshttp://www.ee.byu.edu/magicc/publications/thesis/ErikAnderson.ps
  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    23/25

    236 BIBLIOGRAPHY

    [57] S. Ettinger, M. Nechyba, P. Ifju, and M. Waszak, Vision-guided flight stability and control

    for micro air vehicles, Advanced Robotics, vol. 17, no. 3, pp. 617640, 2003.

    [58] E. Frew and S. Rock, Trajectory generation for monocular-vision based tracking of a

    constant-velocity target, in Proceedings of the 2003 IEEE International Conference on Ro-

    botics and Automation, 2003.

    [59] R. Kumar, S. Samarasekera, S. Hsu, and K. Hanna, Registration of highly-oblique and

    zoomed in aerial video to reference imagery, in Proceedings of the IEEE Computer Soci-

    ety Computer Vision and Pattern Recognition Conference, Barcelona, Spain , 2000.

    [60] D. Lee, K. Lillywhite, S. Fowers, B. Nelson, and J. Archibald, An embedded vision system

    for an unmanned four-rotor helicopter, in SPIE Optics East, Intelligent Robots and ComputerVision XXIV: Algorithms, Techniques, and Active Vision, vol. vol. 6382-24, 63840G, (Boston,

    MA, USA), October 2006.

    [61] J. Lopez, M. Markel, N. Siddiqi, G. Gebert, and J. Evers, Performance of passive ranging

    from image flow, in Proceedings of the IEEE International Conference on Image Processing,

    vol. 1, pp. I929I932, September 2003.

    [62] M. Pachter, N. Ceccarelli, and P. R. Chandler, Vision-based target geo-location using camera

    equipped mavs, in Proceedings of the IEEE Conference on Decision and Control, (New

    Orleans, LA), December 2007. (to appear).

    [63] R. J. Prazenica, A. J. Kurdila, R. C. Sharpley, P. Binev, M. H. Hielsberg, J. Lane, and J. Evers,

    Vision-based receding horizon control for micro air vehicles in urban environments, AIAA

    Journal of Guidance, Dynamics, and Control, (in review).

    [64] I. Wang, V. Dobrokhodov, I. Kaminer, and K. Jones, On vision-based target tracking and

    range estimation for small UAVs, in 2005 AIAA Guidance, Navigation, and Control Confer-

    ence and Exhibit, pp. 111, 2005.

    [65] Y. Watanabe, A. J. Calise, E. N. Johnson, and J. H. Evers, Minimum-effort guidance for

    vision-based collision avoidance, in Proceedings of the AIAA Atmospheric Flight Mechan-

    ics Conference and Exhibit, (Keystone, Colorado), American Institute of Aeronautics and

    Astronautics, August 2006. Paper no. AIAA-2006-6608.

    [66] Y. Watanabe, E. N. Johnson, and A. J. Calise, Optimal 3-D guidance from a 2-D vision

    sensor, in Proceedings of the AIAA Guidance, Navigation, and Control Conference, (Prov-

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    24/25

    BIBLIOGRAPHY 237

    idence, Rhode Island), American Institute of Aeronautics and Astronautics, August 2004.

    Paper no. AIAA-2004-4779.

    [67] I. H. Whang, V. N. Dobrokhodov, I. I. Kaminer, and K. D. Jones, On vision-based tracking

    and range estimation for small uavs, in Proceedings of the AIAA Guidance, Navigation, and

    Control Conference and Exhibit, (San Francisco, CA), August 2005.

    [68] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University, 1985.

    [69] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3-D Vision: From Images to

    Geometric Models. Springer-Verlag, 2003.

    [70] R. W. Beard, J. W. Curtis, M. Eilders, J. Evers, and J. R. Cloutier, Vision aided proportional

    navigation for micro air vehicles, in Proceedings of the AIAA Guidance, Navigation andControl Conference, (Hilton Head, North Carolina), American Institute of Aeronautics and

    Astronautics, August 2007. Paper number AIAA-2007-****.

    [71] P. Zarchan, Tactical and Strategic Missile Guidance, vol. 124 ofProgress in Astronautics and

    Aeronautics. Washington DC: American Institute of Aeronautics and Astronautics, 1990.

    [72] A. E. Bryson and Y. C. Ho, Applied Optimal Control. Waltham, MA: Blaisdell Publishing

    Company, 1969.

    [73] M. Guelman, Proportional navigation with a maneuvering target, IEEE Transactions on

    Aerospace and Electronic Systems, vol. 8, pp. 364371, May 1972.

    [74] C. F. Lin, Modern Navigation, Guidance, and Control Processing. Englewood Cliffs, New

    Jersey: Prentice Hall, 1991.

    [75] M. Guelman, M. Idan, and O. M. Golan, Three-dimensional minimum energy guidance,

    IEEE Transactions on Aerospace and Electronic Systems, vol. 31, pp. 835841, April 1995.

    [76] R. Beard, D. Kingston, M. Quigley, D. Snyder, R. Christiansen, W. Johnson, T. McLain, and

    M. Goodrich, Autonomous vehicle technologies for small fixed wing UAVs, AIAA Journal

    of Aerospace, Computing, Information, and Communication, vol. 2, pp. 92108, January

    2005.

    [77] P. G. Ifju, D. A. Jenkins, S. Ettinger, Y. Lian, W. Shyy, and M. R. Waszak, Flexible wing

    based micro air vehicles, in AIAA Aerospace Sciences Meeting and Exhibit, (Reno, NV),

    American Institute of Aeronautics and Astronautics, January 2002. Paper no. AIAA-2002-

    0705.

  • 7/30/2019 Uavbook Ch5 Partial[1] Copy

    25/25

    238 BIBLIOGRAPHY

    [78] J. G. Lee, H. S. Han, and Y. J. Kim, Guidance performance analysis of bank-to-turn (BTT)

    missiles, in Proceedings of the IEEE International Conference on Control Applications,

    (Kohala, Hawaii), pp. 991996, August 1999.