194
Chapter 1 System Overview 1-1 ........................................................................... 1.1 About Integrated Services Access Network 1-1 ........................................... 1.2 About the HONET 1-2 .................................................................................. 1.2.1 Technical Breakthroughs 1-2 ............................................................... 1.2.2 Components 1-2 ................................................................................... 1.2.3 System Architecture 1-3 ....................................................................... 1.3 Major Service Offerings 1-4 .......................................................................... 1.3.1 Traditional Voice Services 1-4 ............................................................. 1.3.2 NGN-Oriented Voice Services 1-5 ....................................................... 1.3.3 Broadband Access Services 1-5 .......................................................... 1.3.4 Broadband/Narrowband Leased Line Services 1-5 ............................. 1.4 External Interfaces 1-6 ................................................................................. 1.4.1 Service Interfaces 1-6 .......................................................................... 1.4.2 Maintenance Interfaces 1-7 .................................................................. 1.4.3 BITS Interface 1-8 ................................................................................ 1.5 System Features 1-9 .................................................................................... 1.5.1 Narrowband and Broadband Integrated Platform 1-9 .......................... 1.5.2 Powerful Processing Capability 1-9 ..................................................... 1.5.3 Abundant Subscriber/Network Interfaces 1-10 ...................................... 1.5.4 Highly Scalable System 1-10 ................................................................. 1.5.5 Self-Healing Built-in VP Ring Networking 1-10 ...................................... 1.5.6 Flexible Networking Mode 1-11 .............................................................. 1.5.7 Broad Range of ONU Portfolio 1-11 ....................................................... 1.5.8 Outstanding Compatibility 1-12 .............................................................. 1.5.9 Carrier-Class Reliability 1-12 ................................................................. 1.5.10 Excellent Maintenance and Monitoring 1-13 ........................................ 1.5.11 Integrated NMS 1-14 ............................................................................ 1.5.12 NGN-Oriented Integrated Services Access Platform 1-14 ................... Chapter 2 System Composition 2-1 ..................................................................... 2.1 HONET Software Structure 2-1 .................................................................... 2.2 Introduction to the MD5500 2-2 .................................................................... 2.2.1 Logical Structure 2-2 ............................................................................ 2.2.2 Frame Structure 2-3 ............................................................................. 2.2.3 Frame Hardware Design 2-4 ................................................................ 2.2.4 Supported Boards 2-5 .......................................................................... 2.2.5 Peripheral Devices 2-6 ......................................................................... 2.3 Introduction to the UA5000 and Other ONUs 2-9 ......................................... 2.3.1 Logical Structure 2-9 ............................................................................ 2.3.2 Frame Structure 2-10 .............................................................................

UA5000 Technical Manual

  • Upload
    mouradt

  • View
    3.587

  • Download
    41

Embed Size (px)

Citation preview

Page 1: UA5000 Technical Manual

Chapter 1 System Overview 1-1...........................................................................

1.1 About Integrated Services Access Network 1-1...........................................1.2 About the HONET 1-2..................................................................................

1.2.1 Technical Breakthroughs 1-2...............................................................1.2.2 Components 1-2...................................................................................1.2.3 System Architecture 1-3.......................................................................

1.3 Major Service Offerings 1-4..........................................................................1.3.1 Traditional Voice Services 1-4.............................................................1.3.2 NGN-Oriented Voice Services 1-5.......................................................1.3.3 Broadband Access Services 1-5..........................................................1.3.4 Broadband/Narrowband Leased Line Services 1-5.............................

1.4 External Interfaces 1-6.................................................................................1.4.1 Service Interfaces 1-6..........................................................................1.4.2 Maintenance Interfaces 1-7..................................................................1.4.3 BITS Interface 1-8................................................................................

1.5 System Features 1-9....................................................................................1.5.1 Narrowband and Broadband Integrated Platform 1-9..........................1.5.2 Powerful Processing Capability 1-9.....................................................1.5.3 Abundant Subscriber/Network Interfaces 1-10......................................1.5.4 Highly Scalable System 1-10.................................................................1.5.5 Self-Healing Built-in VP Ring Networking 1-10......................................1.5.6 Flexible Networking Mode 1-11..............................................................1.5.7 Broad Range of ONU Portfolio 1-11.......................................................1.5.8 Outstanding Compatibility 1-12..............................................................1.5.9 Carrier-Class Reliability 1-12.................................................................1.5.10 Excellent Maintenance and Monitoring 1-13........................................1.5.11 Integrated NMS 1-14............................................................................1.5.12 NGN-Oriented Integrated Services Access Platform 1-14...................

Chapter 2 System Composition 2-1.....................................................................

2.1 HONET Software Structure 2-1....................................................................2.2 Introduction to the MD5500 2-2....................................................................

2.2.1 Logical Structure 2-2............................................................................2.2.2 Frame Structure 2-3.............................................................................2.2.3 Frame Hardware Design 2-4................................................................2.2.4 Supported Boards 2-5..........................................................................2.2.5 Peripheral Devices 2-6.........................................................................

2.3 Introduction to the UA5000 and Other ONUs 2-9.........................................2.3.1 Logical Structure 2-9............................................................................2.3.2 Frame Structure 2-10.............................................................................

Page 2: UA5000 Technical Manual

2.3.3 Frame Hardware Design 2-19................................................................2.3.4 Supported Boards 2-23..........................................................................2.3.5 Peripheral Devices 2-27.........................................................................

2.4 Optical Transmission System 2-30.................................................................2.5 NMS 2-30.......................................................................................................

Chapter 3 Service Implementation 3-1.................................................................

3.1 Overview 3-1................................................................................................3.2 Traditional Voice Services 3-1......................................................................

3.2.1 POTS 3-1.............................................................................................3.2.2 Z Interface Extension Service 3-2........................................................3.2.3 ISDN BRA Service 3-2.........................................................................3.2.4 ISDN PRA Service 3-2.........................................................................

3.3 NGN-Oriented Access Services 3-3.............................................................3.4 Broadband Access Services 3-4..................................................................

3.4.1 ADSL Service 3-4.................................................................................3.4.2 VDSL Service 3-5.................................................................................3.4.3 LAN Service 3-6...................................................................................

3.5 Broadband/Narrowband Leased Line Services 3-6......................................3.5.1 HONET DAS Access Service 3-7........................................................3.5.2 2/4-wire VF Leased Line Service 3-8...................................................3.5.3 2/4-wire E&M Trunk Service 3-9..........................................................3.5.4 2 Mbit/s Digital Leased Line Service 3-12..............................................3.5.5 Nx64 kbit/s Leased Line Service 3-13....................................................3.5.6 SHDSL Leased Line Service 3-14.........................................................3.5.7 MTA Leased Line Service 3-15..............................................................3.5.8 Circuit Emulation Service 3-15...............................................................3.5.9 LAN Interconnection Service 3-17.........................................................

3.6 Multicast Service 3-18....................................................................................3.7 VP Ring 3-20..................................................................................................

3.7.1 Protection Switching Type 3-20.............................................................3.7.2 Protection Switching Detection and Trigger Mechanism 3-21...............3.7.3 Protection Switching Protocol 3-22........................................................

Chapter 4 Networking Applications 4-1...............................................................

4.1 System Networking Options 4-1...................................................................4.1.1 SDH Networking 4-1............................................................................4.1.2 MSTP Networking 4-2..........................................................................4.1.3 VP Ring Networking 4-3.......................................................................4.1.4 Direct Fiber Networking 4-4.................................................................4.1.5 Direct Fiber and SDH Hybrid Networking 4-5......................................

Page 3: UA5000 Technical Manual

4.1.6 Subtending Networking 4-6..................................................................4.1.7 Single-Layer Networking 4-8................................................................4.1.8 TDM Large Capacity Networking 4-9...................................................4.1.9 NGN Migration Networking 4-10............................................................

4.2 Typical Applications 4-12................................................................................4.2.1 Integrated Narrowband and Broadband Access 4-12............................4.2.2 Narrowband Service Access 4-14..........................................................4.2.3 DDN Service Access 4-15......................................................................4.2.4 IP Egress Application 4-16.....................................................................4.2.5 NGN Migration 4-17...............................................................................

Chapter 5 Network Management System 5-1......................................................

5.1 CLI NMS 5-1.................................................................................................5.1.1 Running Environment 5-1....................................................................5.1.2 NMS Functions 5-1..............................................................................

5.2 GUI NMS 5-2................................................................................................5.2.1 Running Environment 5-2....................................................................5.2.2 NMS Functions 5-4..............................................................................

5.3 NMS Networking Modes 5-7.........................................................................5.3.1 Inband Networking 5-7.........................................................................5.3.2 Outband Networking 5-8......................................................................

Chapter 6 Technical Specifications 6-1...............................................................

6.1 Standards Compliance 6-1...........................................................................6.2 Technical Parameters 6-5............................................................................

6.2.1 Physical Specifications 6-5..................................................................6.2.2 Environment Parameters 6-7...............................................................

6.3 System Performance 6-8..............................................................................6.3.1 Integrated System Performance 6-8....................................................6.3.2 System Interface Index 6-11..................................................................6.3.3 Protocols Compliance 6-13....................................................................

6.4 Interface Technical Specifications 6-13..........................................................6.4.1 STM-1 Optical Port 6-13........................................................................6.4.2 155 Mbit/s Electric Port 6-17..................................................................6.4.3 STM-4 Optical Port 6-20........................................................................6.4.4 Gigabit Ethernet Optical Port 6-23.........................................................6.4.5 Fast Ethernet Optical Port 6-27..............................................................6.4.6 Fast Ethernet Electric Port 6-30.............................................................6.4.7 E1 Port 6-32...........................................................................................6.4.8 V.35 Interface 6-37.................................................................................6.4.9 Z Interface 6-39......................................................................................

Page 4: UA5000 Technical Manual

6.4.10 U interface 6-47....................................................................................6.4.11 ADSL Port 6-51....................................................................................6.4.12 VDSL Port 6-52....................................................................................6.4.13 SHDSL Port 6-55.................................................................................

Appendix A Introduction to xDSL Technology A-1.............................................

A.1 Overview A-1................................................................................................A.1.1 Introduction to xDSL Technologies A-1................................................A.1.2 Specifications of xDSL Technologies A-3............................................

A.2 ADSL A-4......................................................................................................A.3 ADSL2+ A-8.................................................................................................A.4 SHDSL A-12...................................................................................................A.5 VDSL A-14......................................................................................................

Appendix B Terminologies B-1.............................................................................

Appendix C Abbreviations and Acronyms C-1....................................................

Page 5: UA5000 Technical Manual

HUAWEI

HONET Integrated Services Access Network Technical Manual

V600R007

Page 6: UA5000 Technical Manual

HONET Integrated Services Access Network

Technical Manual

Manual Version T2-050263-20040920-C-6.71

Product Version V600R007

BOM 31026263

Huawei Technologies Co., Ltd. provides customers with comprehensive technical support and service. Please feel free to contact our local office or company headquarters.

Huawei Technologies Co., Ltd.

Address: Administration Building, Huawei Technologies Co., Ltd.,

Bantian, Longgang District, Shenzhen, P. R. China

Postal Code: 518129

Website: http://www.huawei.com

Email: [email protected]

Page 7: UA5000 Technical Manual

Copyright © 2004 Huawei Technologies Co., Ltd.

All Rights Reserved

No part of this manual may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks

, HUAWEI, C&C08, EAST8000, HONET, , ViewPoint, INtess, ETS, DMC,

TELLIN, InfoLink, Netkey, Quidway, SYNLOCK, Radium, M900/M1800, TELESIGHT, Quidview, Musa, Airbridge, Tellwin, Inmedia, VRP, DOPRA, iTELLIN, HUAWEI OptiX, C&C08 iNET, NETENGINE, OptiX, iSite, U-SYS, iMUSE, OpenEye, Lansway, SmartAX, infoX, TopEng are trademarks of Huawei Technologies Co., Ltd.

All other trademarks mentioned in this manual are the property of their respective holders.

Notice

The information in this manual is subject to change without notice. Every effort has been made in the preparation of this manual to ensure accuracy of the contents, but all statements, information, and recommendations in this manual do not constitute the warranty of any kind, express or implied.

Page 8: UA5000 Technical Manual

About This Manual

Release Notes

This manual applies to the HONET Integrated Services Access Network V600R007 (hereinafter referred to as the HONET).

Related Manuals

The manuals listed in the following table contain more information about the MD5500.

Manual Content

HONET Integrated Services Access Network Technical Manual

It presents a comprehensive introduction to the HONET Integrated Services Access Network.

HONET MD5500 Multi-service Distribution Module Operation Manual

It discusses the maintenance and data configuration for the MD5500.

HONET MD5500 Multi-service Distribution Module Installation Manual

It is a guide to install the MD5500.

HONET MD5500 Multi-service Distribution Module Safety Manual

It lists the safety information needed to install and maintain the equipment.

HONET Integrated Services Access Network Troubleshooting Manual It describes commonly used troubleshooting practices.

HONET MD5500 Multi-service Distribution Module Hardware Description Manual

It provides an overview of the hardware structure of the MD5500, as well as the functions of each component. This manual is contained in the documentation CD only.

HONET MD5500 Multi-service Distribution Module Command Reference

It elaborates on all commands supported by the system. This manual is contained in the documentation CD only.

Documentation CD The CD contains the whole set of manuals.

The manuals listed in the following table contain more information about the UA5000.

Manual Description

HONET Integrated Services Access Network Technical Manual

It presents a comprehensive introduction to the HONET Integrated Services Access Network.

HONET UA5000 Universal Access Unit Operation Manual

It discusses the maintenance and data configuration for the UA5000.

Page 9: UA5000 Technical Manual

Manual Description

HONET UA5000 Universal Access Unit Hardware Description Manual

This manual introduces boards and cables of various ONU equipments. The manual is contained in the documentation CD only.

HONET UA5000 Universal Access Unit Command Reference

It elaborates on all commands supported by the system. The manual is contained in the documentation CD only.

Documentation CD The CD contains the set of manuals.

Organization

The manual consists of six chapters and three appendixes that elaborate on the features, system structure, service principles, networking applications, network management system and technical specifications of the HONET.

Chapter 1 System Overview discusses the network development trend and the broadband and narrowband integrated solution provided by the HONET. It also profiles the system structure, capacity, interfaces and other features of the HONET.

Chapter 2 System Composition gives details about the hardware of HONET system, describing hardware for both OLT and ONU.

Chapter 3 Service Implementation introduces the applications supported by the HONET system, including voice, broadband and private line services.

Chapter 4 Networking Applications presents various networking applications between OLT and ONU of HONET system.

Chapter 5 Network Management System describes the network management ability of HONET system and the network management system iManager N2000.

Chapter 6 Technical Specifications lists the system and interface specifications of the HONET.

Appendix A introduces the xDSL technology. Appendix B lists the terminologies used in this manual. Appendix C lists the abbreviations and acronyms used in this manual.

Intended Audience

The manual is intended for the following readers:

HONET operation and maintenance engineers HONET Network administrators

Page 10: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Table of Contents

i

Table of Contents

Chapter 1 System Overview ......................................................................................................... 1-1 1.1 About Integrated Services Access Network ...................................................................... 1-1 1.2 About the HONET.............................................................................................................. 1-2

1.2.1 Technical Breakthroughs ........................................................................................ 1-2 1.2.2 Components ............................................................................................................ 1-2 1.2.3 System Architecture ................................................................................................ 1-3

1.3 Major Service Offerings ..................................................................................................... 1-4 1.3.1 Traditional Voice Services....................................................................................... 1-4 1.3.2 NGN-Oriented Voice Services ................................................................................ 1-5 1.3.3 Broadband Access Services ................................................................................... 1-5 1.3.4 Broadband/Narrowband Leased Line Services ...................................................... 1-5

1.4 External Interfaces............................................................................................................. 1-6 1.4.1 Service Interfaces ................................................................................................... 1-6 1.4.2 Maintenance Interfaces........................................................................................... 1-7 1.4.3 BITS Interface ......................................................................................................... 1-8

1.5 System Features................................................................................................................ 1-9 1.5.1 Narrowband and Broadband Integrated Platform ................................................... 1-9 1.5.2 Powerful Processing Capability............................................................................... 1-9 1.5.3 Abundant Subscriber/Network Interfaces ............................................................. 1-10 1.5.4 Highly Scalable System ........................................................................................ 1-10 1.5.5 Self-Healing Built-in VP Ring Networking ............................................................. 1-10 1.5.6 Flexible Networking Mode..................................................................................... 1-11 1.5.7 Broad Range of ONU Portfolio.............................................................................. 1-11 1.5.8 Outstanding Compatibility ..................................................................................... 1-12 1.5.9 Carrier-Class Reliability......................................................................................... 1-12 1.5.10 Excellent Maintenance and Monitoring ............................................................... 1-13 1.5.11 Integrated NMS ................................................................................................... 1-14 1.5.12 NGN-Oriented Integrated Services Access Platform.......................................... 1-14

Chapter 2 System Composition ................................................................................................... 2-1 2.1 HONET Software Structure ............................................................................................... 2-1 2.2 Introduction to the MD5500 ............................................................................................... 2-2

2.2.1 Logical Structure ..................................................................................................... 2-2 2.2.2 Frame Structure ...................................................................................................... 2-3 2.2.3 Frame Hardware Design ......................................................................................... 2-4 2.2.4 Supported Boards ................................................................................................... 2-5 2.2.5 Peripheral Devices .................................................................................................. 2-6

2.3 Introduction to the UA5000 and Other ONUs .................................................................... 2-9

Page 11: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Table of Contents

ii

2.3.1 Logical Structure ..................................................................................................... 2-9 2.3.2 Frame Structure .................................................................................................... 2-10 2.3.3 Frame Hardware Design ....................................................................................... 2-20 2.3.4 Supported Boards ................................................................................................. 2-24 2.3.5 Peripheral Devices ................................................................................................ 2-28

2.4 Optical Transmission System .......................................................................................... 2-30 2.5 NMS ................................................................................................................................. 2-31

Chapter 3 Service Implementation .............................................................................................. 3-1 3.1 Overview ............................................................................................................................ 3-1 3.2 Traditional Voice Services ................................................................................................. 3-1

3.2.1 POTS....................................................................................................................... 3-1 3.2.2 Z Interface Extension Service ................................................................................. 3-2 3.2.3 ISDN BRA Service .................................................................................................. 3-2 3.2.4 ISDN PRA Service .................................................................................................. 3-2

3.3 NGN-Oriented Access Services ........................................................................................ 3-3 3.4 Broadband Access Services.............................................................................................. 3-4

3.4.1 ADSL Service.......................................................................................................... 3-4 3.4.2 VDSL Service.......................................................................................................... 3-5 3.4.3 LAN Service ............................................................................................................ 3-6

3.5 Broadband/Narrowband Leased Line Services ................................................................. 3-6 3.5.1 HONET DAS Access Service.................................................................................. 3-7 3.5.2 2/4-wire VF Leased Line Service ............................................................................ 3-8 3.5.3 2/4-wire E&M Trunk Service ................................................................................... 3-9 3.5.4 2 Mbit/s Digital Leased Line Service..................................................................... 3-12 3.5.5 N×64 kbit/s Leased Line Service .......................................................................... 3-13 3.5.6 SHDSL Leased Line Service................................................................................. 3-14 3.5.7 MTA Leased Line Service ..................................................................................... 3-15 3.5.8 Circuit Emulation Service ...................................................................................... 3-15 3.5.9 LAN Interconnection Service................................................................................. 3-17

3.6 Multicast Service.............................................................................................................. 3-18 3.7 VP Ring............................................................................................................................ 3-20

3.7.1 Protection Switching Type..................................................................................... 3-20 3.7.2 Protection Switching Detection and Trigger Mechanism ...................................... 3-21 3.7.3 Protection Switching Protocol ............................................................................... 3-22

Chapter 4 Networking Applications............................................................................................. 4-1 4.1 System Networking Options .............................................................................................. 4-1

4.1.1 SDH Networking...................................................................................................... 4-1 4.1.2 MSTP Networking ................................................................................................... 4-2 4.1.3 VP Ring Networking ................................................................................................ 4-3 4.1.4 Direct Fiber Networking........................................................................................... 4-4 4.1.5 Direct Fiber and SDH Hybrid Networking ............................................................... 4-5 4.1.6 Subtending Networking ........................................................................................... 4-6

Page 12: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Table of Contents

iii

4.1.7 Single-Layer Networking ......................................................................................... 4-8 4.1.8 TDM Large Capacity Networking ............................................................................ 4-9 4.1.9 NGN Migration Networking ................................................................................... 4-10

4.2 Typical Applications ......................................................................................................... 4-12 4.2.1 Integrated Narrowband and Broadband Access ................................................... 4-12 4.2.2 Narrowband Service Access ................................................................................. 4-14 4.2.3 DDN Service Access............................................................................................. 4-15 4.2.4 IP Egress Application ............................................................................................ 4-16 4.2.5 NGN Migration....................................................................................................... 4-17

Chapter 5 Network Management System.................................................................................... 5-1 5.1 CLI NMS ............................................................................................................................ 5-1

5.1.1 Running Environment.............................................................................................. 5-1 5.1.2 NMS Functions........................................................................................................ 5-1

5.2 GUI NMS............................................................................................................................ 5-2 5.2.1 Running Environment.............................................................................................. 5-2 5.2.2 NMS Functions........................................................................................................ 5-4

5.3 NMS Networking Modes .................................................................................................... 5-7 5.3.1 Inband Networking .................................................................................................. 5-7 5.3.2 Outband Networking ............................................................................................... 5-8

Chapter 6 Technical Specifications............................................................................................. 6-1 6.1 Standards Compliance ...................................................................................................... 6-1 6.2 Technical Parameters........................................................................................................ 6-5

6.2.1 Physical Specifications............................................................................................ 6-5 6.2.2 Environment Parameters ........................................................................................ 6-7

6.3 System Performance ......................................................................................................... 6-8 6.3.1 Integrated System Performance ............................................................................. 6-8 6.3.2 System Interface Index ......................................................................................... 6-11 6.3.3 Protocols Compliance ........................................................................................... 6-13

6.4 Interface Technical Specifications ................................................................................... 6-13 6.4.1 STM-1 Optical Port................................................................................................ 6-13 6.4.2 155 Mbit/s Electric Port ......................................................................................... 6-17 6.4.3 STM-4 Optical Port................................................................................................ 6-20 6.4.4 Gigabit Ethernet Optical Port ................................................................................ 6-23 6.4.5 Fast Ethernet Optical Port..................................................................................... 6-27 6.4.6 Fast Ethernet Electric Port .................................................................................... 6-30 6.4.7 E1 Port .................................................................................................................. 6-32 6.4.8 V.35 Interface........................................................................................................ 6-37 6.4.9 Z Interface ............................................................................................................. 6-39 6.4.10 U interface ........................................................................................................... 6-47 6.4.11 ADSL Port ........................................................................................................... 6-51 6.4.12 VDSL Port ........................................................................................................... 6-52 6.4.13 SHDSL Port......................................................................................................... 6-55

Page 13: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Table of Contents

iv

Appendix A Introduction to xDSL Technology ..........................................................................A-1 A.1 Overview............................................................................................................................A-1

A.1.1 Introduction to xDSL Technologies.........................................................................A-1 A.1.2 Specifications of xDSL Technologies .....................................................................A-3

A.2 ADSL .................................................................................................................................A-4 A.3 ADSL2+ .............................................................................................................................A-8 A.4 SHDSL.............................................................................................................................A-12 A.5 VDSL ...............................................................................................................................A-14

Appendix B Terminologies...........................................................................................................B-1

Appendix C Abbreviations and Acronyms .................................................................................C-1

Page 14: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-1

Chapter 1 System Overview

With the increasing demands on telecommunication services, the carriers need an access network that can integrate data, voice and multimedia services while providing large access capacity, high access speed and high quality of service.

The HONET Integrated Services Access Network (the HONET for short) of Huawei is a mainstream solution for integrated services access network thanks to its diverse service interfaces, flexible networking patterns and excellent maintainability.

1.1 About Integrated Services Access Network

An integrated services access network is an access network that provides access for both narrowband and broadband services at the same time.

The narrowband services here include the Public Switched Telephone Network (PSTN) service, Integrated Services Digital Network (ISDN) service, Digital Data Network (DDN) service and so on. While the broadband services here include the x Digital Subscriber Line (xDSL) access services, Local Area Network (LAN) access services and Asynchronous Transfer Mode (ATM) leased line interconnection services.

An integrated services access network is very often built up over a Synchronous Digital Hierarchy (SDH) or Virtual Path (VP) ring transmission system. The most important parts in such a network include the Optical Line Terminal (OLT) and the Optical Network Unit (ONU). The OLT and ONU, together with the SDH/VP ring transmission system and the network management system (NMS), form a complete integrated services access network.

Figure 1–1 shows the overall structure of the integrated service access network.

Page 15: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-2

Analog telephone

ATMOLT

ONU

ONU

NMS

Network side Integrated Services Access Network

Ethernet

64kbit/sV.35/V.24

E1

Subscriber side

2B+D

POTS

RouterDDN

IP

PSTN

10Base-T

ONU

DDN node

xDSLmodem

SDH/VP Ring

Digital telephone

Computer

MD5500

Figure 1–1 Overall structure of the integrated service access network

1.2 About the HONET

Huawei presents the HONET as a total solution on the integrated services access network, in which different systems of Huawei have been merged together to provide outstanding performance.

1.2.1 Technical Breakthroughs

The HONET supports a full spectrum of narrowband and broadband services that are essential in an Integrated Services Access network. Moreover, it is empowered with a number of technical breakthroughs of Huawei to support the ever varying services and to extend the service coverage.

These breakthroughs include the “narrowband-and-broadband integrated platform”, “bus resource sharing technology” and “built-in VP Ring technology”.

1.2.2 Components

OLT

In the HONET solution, the MD5500 Multi-service Distribution Module (the MD5500 for short) of Huawei plays the role of an OLT.

ONU

In the HONET solution, the following devices of Huawei can play the role of an ONU:

– UA5000 Universal Access Unit (the UA5000 for short)

– PV8 frames (PV8-6, PV8-10 or PV8-12)

Page 16: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-3

– RSP frames (RSP-6, RSP-10, RSP-12 or RSP-14)

Optical transmission system

In the HONET solution, the OptiX or Metro optical transmission solution of Huawei is used. Other standard optical transmission systems are also supported.

NMS

In the HONET solution, the iManager N2000 Fixed Network Integrated Management System of Huawei (the iManager N2000 for short) is used as the network management system (NMS) to manage both the network and network elements.

The following chapters describe in detail the composition of the HONET system.

1.2.3 System Architecture

The HONET may consist of both the MD5500 and the UA5000 to build up a two-layer access network. It may also use only the UA5000 to build up a single-layer access network together with the local exchanges, ATM switches or the routers.

I. Two-layer networking

In the two-layer networking mode, the HONET consists of the MD5500, the UA5000, the OptiX or Metro optical transmission system and the iManager N2000 NMS.

See Figure 1–2.

Analog telephone

ATM

Network side HONET

Ethernet

64kbit/s

V.35/V.24

E1

Subscriber side

2B+D

POTS

RouterDDN

IP

PSTN

10Base-T

DDN node

xDSL modem

OptiX/Metro

Digital telephone

ComputerUA5000

MD5500

UA5000

iManager N2000

Figure 1–2 HONET overall structure (two-layer)

The MD5500 is located at the central office side and the UA5000 is located at the user side. The MD5500 transmits the services from the UA5000 to different target networks such as PSTN, DDN, ATM and IP backbone networks.

Page 17: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-4

II. Single-layer networking

In the single-layer networking mode the HONET is composed of the UA5000, optical transmission system (optional) and the iManager N2000 NMS.

See Figure 1–3.

Analog telephone

Network side

Ethernet

64kbit/sV.35/V.24

E1

Subscriber side

2B+D

POTS

Router

IP 10Base-T

DDN Node

xDSLmodem

Digital telephone

Computer

UA5000

iManager N2000

HONET

ATM

DDN

PSTN

Figure 1–3 HONET overall structure (single layer)

In the figure, the UA5000 sends the narrowband services to the Local Exchange (LE) through V5 interfaces, and transmits the broadband services to the metropolitan area network through its ATM or IP ports.

1.3 Major Service Offerings

1.3.1 Traditional Voice Services

The HONET supports the following voice-related functions:

Supports V5.2 and V5.1 interfaces to connect LE. Supports Layer-2 and Layer-3 signaling tracing of V5 interface. Provides POTS ports to connect the analog subscribers or PBXs. Provides ISDN BRI and ISDN PRI ports to connect digital subscribers. Provides FXO ports to connect the PBXs. Supports A/µ law, polarity reversal, 16/12KC, and interface gain setting for its

POTS ports. Supports line test of POTS and ISDN subscribers.

Page 18: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-5

1.3.2 NGN-Oriented Voice Services

Integrating AG and SoftSwitch, HONET provides Voice over IP (VoIP), Fax over IP (FoIP) and Modem over IP (MoIP) services.

These services are described as follows.

Provides VoIP service for POTS subscribers. Supports PSTN services, complementary services and intelligent services

through SoftSwitch. Supports IP Fax service, T.30 protocol based Fax function and G.711 based

transparent transmission for Fax service. Supports G.711 based transparent transmission for Modem service.

1.3.3 Broadband Access Services

The HONET supports broadband access services through its ADSL, ADSL2+, VDSL and Ethernet ports.

The features are as follows.

Supports PPPoEoA, IPoA and IPoEoA network access modes for ADSL, ADSL2+ and VDSL subscribers.

In the two-layer networking, the MD5500 provides different upstream ports to connect different backbone networks. The broadband upstream modes include two modes:

– Supports Layer-2 transparent transmission at the MD5500 side to transmit subscriber services directly to upper layer equipment such as the broadband remote access server (BRAS), Layer-3 switch and router.

– Supports static and dynamic routing (RIP II and OSPF) at the MD5500 side, and implements Layer-3 packet forwarding to establish connection with the backbone network.

In the single-layer networking, the UA5000 sends the broadband services directly to the ATM switches or routers through its main control board APM or IPM.

1.3.4 Broadband/Narrowband Leased Line Services

The HONET provides complete leased line interconnection function to satisfy the enterprise user’s demand for leased line service. It provides the following leased line interconnection functions:

Page 19: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-6

I. DDN leased line

Provides DDN subscriber interfaces including E1, V.35, V.24 and SHDSL at the UA5000 side.

Provides E1 and V.35 ports to connect DDN Node at the MD5500 side.

II. CES leased line

Provides E1 (UDT, SDT) and V.35 ports to connect narrowband DDN equipment. Realizes CES through AAL1-encapsulated ATM connections to send services

upstream to ATM network. Serves as a DDN convergence node using its CES function.

III. LAN interconnection

Provides Ethernet ports. Supports RFC1483B Protocol to implement inter-LAN Layer-2 transparent

transmission through ATM Permanent Virtual Connections (PVCs).

IV. Common 2-wire/4-wire VF leased line

Establishes voice or data service interconnection for leased line subscribers.

1.4 External Interfaces

1.4.1 Service Interfaces

Table 1–1 lists the service interfaces provided by the MD5500.

Table 1–1 Service interfaces provided by the MD5500

Interface Connects…

V5.2/V5.1 LE

ISDN PRI (30B+D) Data terminal

2 Mbit/s leased line (E1) DDN equipment

CES E1 DDN equipment

ATM E1 ATM network equipment

ATM E3 ATM network equipment

IMA E1 ATM network equipment

IMA E1 ATM network equipment

STM-1/STM-4 ATM network equipment

FE/GE IP network equipment

Page 20: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-7

Table 1–2 lists the service interfaces provided by the UA5000.

Table 1–2 Service interfaces provided by the UA5000

Interface Connects…

Network interface

STM-1/STM-4 ATM network equipment

2 Mbit/s leased line (E1) DDN network equipment

ATM E3 ATM network equipment

IMA E1 ATM network equipment

CES E1 DDN network equipment

FE/GE IP network equipment

Subscriber interface

POTS Common telephone

V.35/V.24 Data terminal

ISDN BRI 2B+D Digital telephone or data terminal

ISDN PRI 30B+D Data terminal

2B1Q MTA

E1 Router

E&M trunk E&M trunk interconnection equipment

FXO Private Branch Exchange (PBX)

2-wire/4-wire VF Leased line modem or VF telephone

SHDSL SHDSL modem

ADSL ADSL modem

ADSL2+ ADSL2+ modem

VDSL VDSL modem

10/100Base-T LAN Switch or PC

1.4.2 Maintenance Interfaces

Both the MD5500 and the UA5000 provide multiple maintenance interfaces to maintain the device locally, remotely or in a centralized manner. These interfaces are provided at the front panel of the main control board.

Page 21: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-8

I. Local maintenance serial port

Both the MD5500 and the UA5000 provide a local maintenance port. This port uses RJ-45 connector. It provides an RS-232 serial port through a special cable. The other end of the cable is a DB-9 connector connecting a computer for daily maintenance, commissioning or troubleshooting.

II. Remote maintenance serial port

Both the MD5500 and the UA5000 provide a remote maintenance serial port. Physically, this port shares the same serial port with the local maintenance port. It uses RJ-45 connector. It provides an RS-232 serial port through a special cable. The other end of the cable is a DB-9 connector connecting a modem directly.

III. Network management interface

Both the MD5500 and the UA5000 provide a network management interface. The interface uses RJ-45 connector. It provides an auto-negotiating 10/100 Mbit/s Ethernet electrical port through a category-5 twisted cable. It can be connected with a maintenance computer directly, or a computer through LAN for centralized network management.

IV. Environment monitoring interface

Both the MD5500 and the UA5000 provide an environment monitoring interface. The environment monitoring interface uses RJ-45 connector for connection with the environment monitoring equipment (such as an environment monitoring board, power monitoring module and environment monitoring box) to monitor and control the environment status (such as temperature and humidity) and power state (voltage, battery, and so on).

When there is an active/standby switchover of the main control boards, the corresponding active/standby switchover of the environment monitoring interfaces on the boards will also be triggered.

The MD5500 monitors the fan frames as well.

1.4.3 BITS Interface

The MD5500 provides two Building Integrated Timing Supply System (BITS) clock interfaces to connect BITS equipment for acquiring high precision clock. The BITS interface supports 2 Mbit/s and 2 MHz clock inputs. It has clock detection and switchover functions.

Page 22: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-9

1.5 System Features

Making full use of technical advantages of Huawei in the fields of broadband and narrowband, the HONET provides customers with the operable and manageable carrier-class equipment that is integrated with complete services, convenient maintenance and reliable operation features.

1.5.1 Narrowband and Broadband Integrated Platform

The HONET integrated platform makes full use of circuit switching and packet switching technologies to support both narrowband and broadband services. The narrowband and broadband services share the same main control and switching component, subscriber line resources, transmission system, cabinet, frames, network management system and power supply system. The narrowband and broadband service boards are slot-compatible, which can be configured flexibly to meet different requirements of different scenarios.

1.5.2 Powerful Processing Capability

Making full use of TDM, ATM and IP technologies, the HONET features powerful processing capability on voice services, broadband access services as well as broadband/narrowband leased line interconnection services. The major features are as follows.

Provides a 16k x 16k TDM switching fabric. Supports V5.1 and V5.2 protocols. Provides a 5 Gbit/s non-blocking packet switching fabric, and supports Virtual

Channel (VC)/Virtual Path (VP) switching. Supports four ATM service types, including Constant Bit Rate (CBR), real time

Variable Bit Rate (rt-VBR), non-real time Variable Bit Rate (nrt-VBR) and Unspecified Bit Rate (UBR).

Provides efficient Quality of Service (QoS) by supporting such functions as Connection Admission Control (CAC), flow management, congestion control, queue management, priority scheduling and traffic shaping.

Supports Operation and Maintenance (OAM) function to provide OAM loop, continuity check, error indication and performance monitoring for all connections.

Implements Layer-3 forwarding for IPoA and IPoEoA subscribers through the IPU board.

Supports local IP address allocation and RADIUS IP allocation. Supports IP routing and forwarding function by static route or Routing

Information Protocol II (RIP II) and Open Shortest Path First (OSPF) dynamic routing protocols.

Page 23: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-10

Supports POTS and ISDN services with a maximum capacity of 48, 000 traditional voice subscribers.

Supports VoIP services with a maximum capacity of 5, 000 VoIP subscribers. Supports ADSL/ADSL2+ services with a maximum capacity of 8, 000 ports. Supports VDSL services with a maximum capacity of 8, 000 ports. Supports subscriber access, service distribution and network interworking for

LAN, FR and DDN leased line subscribers.

1.5.3 Abundant Subscriber/Network Interfaces

The HONET provides various subscriber/network interfaces to satisfy the needs for different applications. They include the followings:

PSTN network interface: V5.1 and V5.2 interfaces DDN interface: V.35 (Nx64 kbit/s (N=1-31)) and E1 ports ATM user/network interface: E1, IMA E1, ATM E3, STM-1, and STM-4 ports IP network interface: FE and GE ports Voice subscriber interface: POTS, ISDN BRI, ISDN PRI and FXO ports Broadband subscriber interface: ADSL (G.DMT), ADSL (G.LITE), ADSL2+,

Ethernet, SHDSL and VDSL ports Narrowband data leased line interface: V.24 (2.4/4.8/9.6/19.2 kbit/s),

V.35 (N x 64 kbit/s (N=1-31)), E1, SHDSL, VF and 2-wire/4-wire E&M ports CES interface: E1 (SDT, UDT) and V.35 ports LAN interface: 10/100 Mbit/s auto-negotiating Ethernet port

1.5.4 Highly Scalable System

There are multiple ways to expand system capacity of the UA5000. The UA5000 can be subtended through IMA E1, ATM E3 or STM-1 ATM ports to form link, star and tree network topologies. This offers flexible choices to extend backbone network to subscribers and enhances the system expandability. The highly scalable system protects the previous investment effectively.

1.5.5 Self-Healing Built-in VP Ring Networking

The HONET supports built-in VP Ring networking. The core of VP Ring technology is to transport multiple services over a single system. It simplifies the network structure and saves the optical fiber resources to reduce the transmission cost.

The narrowband and broadband services are transmitted over the same pair of fibers. The QoS is guaranteed, and the bandwidth for broadband service can be dynamically allocated.

Page 24: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-11

The transmission system uses imbedded device without additional transmission equipment. This brings low overall cost, easy engineering and convenient maintenance.

The VP Ring networking solves the problem of using excessive fiber resources in the case of direct fiber networking. It also tackles the problem of protection-absence in the case of star networking topology.

Its switchover protection mechanism ensures the service stability.

1.5.6 Flexible Networking Mode

The HONET supports two-layer and one-layer networking modes.

The two-layer networking refers to the two-layer networking. The UA5000 provides various interfaces to support the access of different services. The MD5500 converges and distributes the services sent from the UA5000. This networking mode is capable of supporting large number of subscribers. It is used widely.

The one-layer networking refers to the single-layer networking. The UA5000 sends the narrowband services to the LE through V5 interfaces, and transmits the broadband services to the MAN through ATM or IP ports. This networking mode is applicable to the scenarios that have few access nodes and each node has a relatively small amount of subscribers.

These two networking modes support ATM and IP upstream. They are adaptive to different networks.

1.5.7 Broad Range of ONU Portfolio

The application environment of access network is rather complex. The network equipment is hence required to be environment-adaptive and of various capacities. The HONET provides a wide range of ONU models to satisfy different requirements.

ONUs with the capacities ranging from tens of lines to thousands of lines. Indoor and outdoor ONUs to be used in different environments including friendly

and severe ones such as torrid and cold places. ONUs of different sizes and shapes (rack or desktop) and of different access

modes (front-access or rear-access) to meet different installation and maintenance requirements.

Page 25: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-12

The specifications of the ONUs are listed in Table 1–3.

Table 1–3 Main specifications of ONU cabinets

Model Type Max. subscriber fames

Max. subscribers (POTS)

Max. subscribers (ADSL)

ONU60A Indoor, case-shape 1 64 16

F02A-D-32 Indoor, 19-inch 3 1120 560

F02A-D-32 large-capacity Indoor, 19-inch 5 1952 912

F02A-U-32 Indoor, integrated, 19-inch 2 704 352

F02AF-D-32 Indoor, front access, 19-inch 3 1152 544

F01D-100 Outdoor, front access 1 192 96

F01D-200 Outdoor, front access 1 288 160

F01D-500 Outdoor, front access 2 736 352

F01D-1000 Outdoor, front access 3 1152 544

* The “integrated” here means the type of ONU has built-in main distribution frame and power supply system.

1.5.8 Outstanding Compatibility

Powered by the accumulative technology advantages, the HONET features outstanding compatibility. It has been successfully interconnected with a large amount of LEs, ATM switches, DDN nodes, IP routers and various terminals at user side.

1.5.9 Carrier-Class Reliability

The HONET is designed with high reliability in respect of software and hardware. The main control system, switching fabric, clock system and power system all adopt the redundancy backup design. The ring network topology it supports has self-healing function.

The major features of the system concerning reliability are as follows:

Adopts 1+1 hot backup for the main control board. During the active/standby switchover, services will not be interrupted.

Page 26: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-13

Adopts dual-plane switching fabric structure for the switching fabric unit. The switchover of switching planes adopts the output-port-based data packet error detection and selection technology, which is implemented by the main control module according to the statistical results of the switching channel faults.

Provides the synchronous dual-plane high-precision line clock unit. It selects flexible clock synchronization reference (including reference derived from TDM line, ATM line and BITS clock source), provides enhanced Stratum-3 port synchronization clock, and provides monitoring alarm for every synchronous clock line.

Provides redundant fan configuration, intelligent control and alarm reporting functions.

Adopts redundancy (N+1 hot backup) design for primary power supply. Provides load-sharing, real-time monitoring and alarm functions. The functional module adopts distributed power supply mode to achieve high reliability.

Employs modular and platform design for the software system. Follows strictly Capability Maturity Model (CMM) software development process. Takes into consideration the abnormality processing ability required by

carrier-class products to ensure high system reliability.

1.5.10 Excellent Maintenance and Monitoring

I. Excellent environment and power monitoring function

The HONET provides outstanding environment and power monitoring function. It implements real-time monitoring over the environment and power systems at both central office end and the far end.

The monitoring information includes the followings:

Ambient temperature and humidity inside the cabinet Door access control status Main distribution frame status Primary power status Power module status Power voltage Power current Fan status Battery even/float charging management

Besides, the HONET provides external monitoring interfaces to monitor other desired environment parameters or power parameters.

Page 27: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 1 System Overview

1-14

II. Multiple maintenance approaches

The HONET provides multiple maintenance ways such as local maintenance, remote maintenance and centralized maintenance. It provides excellent alarm, test, diagnosis and tracing functions to facilitate routine system maintenance and management. The major features are as follows.

Supports command line and SNMP network management modes. Supports both the IP network remote maintenance and the remote modem

dial-up maintenance. Supports real-time reporting of fault alarm and running information, and alarm

management. Supports narrowband line test. Provides excellent OAM functions, such as the interface loopback and diagnosis

functions. Provides real-time tracing on Layer-2 and Layer-3 important processes of V5

interface. Supports online loading and online patching.

1.5.11 Integrated NMS

The HONET can be managed by the Huawei iManager N2000. Based on principle and structure of telecommunication management network (TMN), the iManager N2000 provides comprehensive equipment maintenance and network management functions. It maintains the equipment in a user-friendly graphic interface. It can connect the network management center through multiple kinds of interfaces.

The HONET supports inband and outband network management modes. The iManager N2000 can manage the HONET, broadband access equipment and data communication equipment seamlessly in an integrated manner.

1.5.12 NGN-Oriented Integrated Services Access Platform

The NGN carries and switches services on the basis of IP technologies and utilizes open network architecture to integrate all kinds of services. As the development of NGN technologies and IP backbone network construction, NGN is approaching.

However, the existing networks will still operate for a long time. Therefore, how to interwork legacy networks and the NGN and how to avoid redundant investment have become the major concerns of carriers and manufacturers.

Both the MD5500 and the UA5000 can act as the Access Gateway (AG) in the NGN. This enables the HONET to meet various requirements during the NGN migration process of the access network.

Page 28: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-1

Chapter 2 System Composition

2.1 HONET Software Structure

Figure 2–1 shows the software structure of the HONET system. The HONET software consists of board software and host software.

HONET Software Architecture

Serial portterminal

Telnet

HOST software

Boardsoftware 1

Boardsoftware 2

Boardsoftware...

Communication control bus

Inband/outband Inband/outbandSerial port connection

NMS

Boardsoftware N

Figure 2–1 HONET software architecture

I. Board software

Board software runs on a service board. It drives the board and implements service management, data management, alarm management and diagnosis for the board.

II. Host software

Host software runs on the main control board. It consists of four planes as shown in Figure 2–2. The name and functions of each plane are as follows:

System support plane: It drives the system hardware. System service plane: It provides basic services for the software running. Its

fundamental module is the operating system.

Page 29: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-2

System management plane: It provides users with means to manage the device and services.

Service control plane: It interprets user commands and provides various services. This plane consists of three parts: voice control sub-plane, ATM control sub-plane and IP control sub-plane.

System support plane

System service plane

System m

anagement plane

Service control plane

Voice control sub-plane

ATM control sub-plane

IP control sub-plane

Figure 2–2 Host software structure

2.2 Introduction to the MD5500

The MD5500 is located at the central office end. It provides various network interfaces to send the traffic to the upper layer network.

2.2.1 Logical Structure

Figure 2–3 shows the logical structure of the MD5500. The MD5500 consists of the following:

Main control module, TDM/ATM switching module Packet voice processing module TDM, ATM and IP service processing modules

Page 30: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-3

V5 IMA E1

TDM busLow speed cell bus

ATM E3 STM-1/4 VP Ring

TDM serviceprocessing

moduleATM service processing module

TDM switchingmodule

Packet voiceprocessing

module

ATM switchingmodule

High speed cell bus

IP serviceprocessing

module

FE/GEE1

Main control module

To iManager N2000

To PSTN and DDN To ATM To IP

Figure 2–3 MD5500 logical structure

The main control module, the TDM switching module and the ATM switching module are the core of the system. The main control module controls and manages the whole HONET system. The TDM switching module implements narrowband services switching through the TDM switching fabric. The ATM switching module implements broadband services switching through the ATM switching fabric.

The packet voice processing module accomplishes TDM service packetization. There are two packetization modes. One is to convert the TDM data flow into ATM cells; the other is to convert the voice traffic flow into IP packets. In the second mode, the system supports H.248 protocol.

The TDM, ATM and IP service processing modules can provide upstream ports to connect network-side equipment or downstream ports to connect remote ONUs.

2.2.2 Frame Structure

The MD5500 has two models, the MD5500B and the MD5500G.

Page 31: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-4

I. MD5500B

The MD5500B is a 10U frame, including one 1U fan frame. The frame fits the 19-inch cabinet.

The MD5500B has a multi-bus high speed backplane, which provides 16 slots. Slots 7 and 8 are for the main control board (ASXA), which manages the service boards and implements service configuration and switching functions. Other slots are for service boards, which provide various service interfaces.

A low speed service board can be installed in any of the slots (except slots 7 and 8). A high speed service board can only be installed in slots 9 to 15. All boards are hot swappable and the service boards can be flexibly configured. Section “2.2.4 Supported Boards” provides more information about service boards.

Figure 2–4 shows the structure of the MD5500B frame.

FAN

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500

ASX

ASX

Service Board

Service BoardService BoardService BoardService BoardService BoardService Board

Service BoardService Board

Service BoardService Board

Service Board

Service BoardService Board

ASX: Main control board. For the MD5500B, it is ASXA; for the MD5500G, it is ASXB

Figure 2–4 MD5500 frame structure

II. MD5500G

The MD5500G is developed on the basis of the MD5500B. It adopts large TDM capacity backplane and ASXB as its main control board. It provides 16k x 16k TDM switch fabric.

The MD5500G and the MD5500B have the same size and structure.

2.2.3 Frame Hardware Design

Figure 2–5 shows the hardware design of the MD5500.

Page 32: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-5

The backplane of the MD5500 has three buses. The functions of respective bus are as follows:

High speed cell bus is responsible for the communication of high speed service boards such as AIC, IPU and EPU.

Low speed cell bus is responsible for the communication of low speed service boards such as CESH, EA16, AIUA, IMU and VPU.

TDM bus is responsible for the communication of boards such as CESH, DT16, MSUC and VPU, which handle TDM services.

The main control board ASX connects all three buses. It manages various service boards.

Low speed cell bus

CESH

Maintenancenetwork interface / serial port

Environment monitoring interface

TDM bus

Low speed interface

High speed cell bus

ASX

ASX

EA16

DT16

AICA

EPU

IPU

AIUA

IMU

VPU

MSUC

Low speed interfaceHigh speed interface

Figure 2–5 MD5500 hardware structure

2.2.4 Supported Boards

The boards used in the MD5500 include the main control board and the service board.

The main control board can be ASXA or ASXB. It is installed in slot 7 or slot 8. It can be dual configured to work in active/standby mode.

The service board includes high speed service board and low speed service board. A high speed service board can be installed in any of slots 9 to 15. A low speed service board can be installed in any slot except slots 7 and 8.

Table 2–1 lists details about all boards used in the MD5500.

Page 33: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-6

Table 2–1 List of boards used in the MD5500

Category Name Function Description

ASXA Main control and switching combo board

It controls all service boards, and provides 5G non-blocking ATM switch fabric and 4Kx4K TDM switch fabric. It is used in the MD5500B.

Main control board

ASXB Main control and switching combo board

The functions of the ASXB are the same as that of the ASXA. The difference between them lies in the capacity of TDM switch fabric. The ASXB provides 16Kx16K TDM switch fabric. It is used in the MD5500G.

AICA ATM high speed interface board

It can provide various ATM ports including 155 Mbit/s optical ports, 622 Mbit/s optical ports and 155 Mbit/s electrical ports.

IPU IP service processing board It can provide eight FE ports or one GE port.

High speed service board

EPU Ethernet service processing board

It implements layer 2 transparent transmission of broadband services. It can provide eight FE ports or one GE port.

VPU VoIP service processing board

It converts TDM voice into IP packets and transmit them to the IP network through the FE port. It provides one FE port.

CESH E1 circuit emulation board

It supports SDT (N×64k) UDTCES services and ATM UNI services. It provides 16 E1 ports.

EA16 E1 ATM UNI interface board

It supports the access of E1 trunk services. It provides 16 E1 ATM UNI ports.

DT16 Trunk-only E1 interface board

It supports E1 trunk function, and supports HDLC. It provides 16 E1 ports.

MSUC STM-1 interface board

It provides two STM-1 ports to access high density E1 services.

AIUA ATM low speed interface board

It can provide eight E1 ports or two E3 ports for remote subtending.

Low speed service board

IMU IMA protocol processing board

It supports transmitting ATM cells over E1 links at ATM UNI/IMA mode. It implements IMA protocol processing. It provides 16 E1 ports.

2.2.5 Peripheral Devices

I. Power supply system

The MD5500 can use the PS4845/15 (220 V/110 V) or –48 V DC power distribution frame as required to supply power to the whole system.

1) PS4845/15 (220 V/110 V) power system

Page 34: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-7

The PS4845/15 (220 V/110 V) is a front-access frame. It is a 3U frame. It fits the 19-inch cabinet. The system consists of rectifier module, monitoring module and power distribution module. The rectifier module uses embedded fans for heat dissipation. The power system is cabled at its front. The PS4845/15 (220 V/110 V) power system provides reliable system power supply, DC distribution function, powerful monitoring function over environment and power supply and outstanding battery management function.

2) DC power distribution frame

When powered by –48 V power supply, the OLT cabinet needs to be equipped with an imbedded DC power distribution frame. There are two types of DC power distribution frames. One is rear-access and the other is front-access. Both of them are 19-inch frames of 2U height. A DC power distribution frame provides two –48 V DC power inputs and four power outputs with a maximum power of 3500 W.

II. Power supply and environment monitoring unit

Designed with powerful environment monitoring function, the HONET can monitor the environment parameters inside/outside the OLT and ONU cabinets, power supply and fans. The monitoring function enables unattended maintenance for the equipment room. At the OLT side, the environment monitoring units include:

Power supply and environment monitoring unit Power distribution frame monitoring unit Fan frame monitoring unit

1) Power supply and environment monitoring unit

The PS4845/15 power supply and environment monitoring unit monitors the working status of all rectifier modules and power distribution module, and manages the battery. It has powerful environment monitoring function. This unit communicates with the MD5500 through a serial port.

Environment monitoring: The unit monitors temperature, humidity, cable distribution frame and door access control. It also provides 5 backup analog input interfaces and 12 backup digital input interfaces. These interfaces can be connected with external sensors through extended interfaces to monitor the fan running state, battery temperature, smoke, door status and water.

Module switch control: The unit can start or shut down a rectifier module. Battery management: The unit performs power ON/OFF management to the load

or the battery, charging and current limiting management to the battery based on the monitored voltage.

Power supply monitoring: The unit can monitor parameters of the power distribution module and rectifier module of the power system, including – AC input voltage – DC output voltage – Total load current

Page 35: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-8

– Current of battery group – Circuit breaker status – Load power-off status – Battery power-off status – Working status of rectifier module

2) Power distribution frame monitoring unit

The DC power distribution frame has a built-in monitoring unit. The unit communicates with the MD5500 through a serial port to monitor the power states of the power distribution frame, as well as the environment around the power distribution frame through the temperature and humidity sensors and external digital sensors.

Lightning protection detection: The monitoring unit provides an optical coupling isolation detecting interface for monitoring the state of the lightning protection components.

Voltage detection: The monitoring unit detects the voltage of the –48 V power inputs of the standard power distribution frame, and reports the voltage values. When overvoltage or undervoltage occurs to any input, the unit will generate alarms.

Shunt switch detection: The monitoring unit performs detection for four outputs of the power distribution frame. If the shunt switch is disconnected, the unit will generate alarms.

Environment monitoring: The monitoring unit monitors temperature and humidity in the power distribution frame, and provides eight digital interfaces for external sensors to monitor the status of water, door access control and main distribution frame.

Local audio and visual alarm: On the panel of the monitoring unit, there are Light Emitting Diode (LED) indicators that denote the running states and the existence of alarms, and a buzzer that makes audio alarm when there is a new alarm.

3) Fan frame monitoring unit

The HONET can communicate with the fan frame through the backplane of the MD5500 to monitor one or more fan frames at the same time.

The fan frame has a built-in monitoring unit that monitors the running status of a fan. When any fault occurs to the fan, the unit will generate an alarm. The monitoring unit executes commands delivered by the MD5500 to control the fans and perform alarm setting (for example, speed adjustment and fan alarm control). The monitoring unit can keep the voltage of the power supply to fans within the allowable range, thus ensuring that the fans can work reliably for a long term.

Page 36: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-9

2.3 Introduction to the UA5000 and Other ONUs

The ONU is the remote equipment of the HONET system. It is located at the subscriber side. It provides subscribers with various service interfaces, processes optical signals and provides optical trunk function as well.

2.3.1 Logical Structure

There is a variety of ONUs in the HONET system. Here we take the UA5000 as an example to describe their logical structure. The UA5000 consists of following modules:

TDM control and switching module Packet control and switching module Packet voice processing module Network interface module Service interface module

See Figure 2–6.

E1 STM-1VP RingATM E3IMA E1FE/GE

POTSISDN

TDM bus

High speed bus

V.24V.35

Nx64kE1

TDM SHDSL

ADSLADSL2+

VDSLATM SHDSL

Ethernet

Networkinterfacemodule

Service interface module

TDM controland switching

module

Packet voiceprocessing

module

Packet controland switching

module

Figure 2–6 UA5000 logical structure

The TDM control and switching module implements the switching and convergence of narrowband services through the TDM switching fabric.

The packet control and switching module implements the switching and convergence of broadband services through the packet switching fabric.

The packet voice processing module converts TDM data flow into ATM cells; or it converts the TDM data flow into IP packets.

The network interface module provides various network interfaces including ATM STM-1, ATM E3, V5, TDM E1, IMA E1, VP ring, FE and GE ports.

The service interface module provides various service interfaces including POTS, ISDN BRI (2B+D), ISDN (30B+D), V.24 sub-rate, V.24/V.35 64 kbit/s, V.35/FE1

Page 37: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-10

Nx64 kbit/s, E1, ADSL, ADSL2+, VDSL, SHDSL (TDM/ATM), 10Base-T, 2/4-wire VF and E&M trunk interfaces.

2.3.2 Frame Structure

The HONET provides a broad range of ONUs for applications in different scenarios. The differences among these ONUs lie in application site (indoor and outdoor), specifications (cabinet-shape and case-shape), cabling mode (front-access and rear-access) and capacity (large capacity and small capacity).

The UA5000 includes five types of frames to fit different cabinets. They are UAM, UAS, UAFM, UAFS and UAFX.

This section focuses on the ONU frames. For details about the boards used in these frames, refer to section “2.3.4 Supported Boards”.

Table 2–2 lists the ONU frame specifications.

Table 2–2 ONU frame specifications

Name Max. service board slots Applicable in Type

UAM 9 19-inch cabinet Master frame

UAS 13 19-inch cabinet Slave frame

UAFM 10 19-inch cabinet, F01D200 / F01D500 / F01D1000 cabinet

Front-access master frame

UAFS 13 19-inch cabinet, F01D200 / F01D500 / F01D1000 cabinet

Front-access slave frame

UAFX 6 F01D100 cabinet Front-access

PV8-6 5 ONU-160B –

PV8-10 11 19-inch cabinet Master frame

PV8-12 12 19-inch cabinet Master frame

RSP-6 5 ONU-160B –

RSP-10 11 19-inch cabinet Slave frame

RSP-12 12 19-inch cabinet Slave frame

RSP-14 14 19-inch cabinet Slave frame, support only one power supply board

Page 38: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-11

I. UAM

The UAM is a 6U frame. It fits the 19-inch cabinet. It uses a multi-bus backplane to implement equipment control and to provide subscriber interfaces. The UAM frame is the control center. It performs service convergence for slave frames if these frames are configured.

The UAM frame supports hot standby for narrowband main control board and broadband main control board through respective dual-board configuration. It supports load-sharing configuration for secondary power supply board through dual-board configuration.

The UAM frame supports both broadband and narrowband service boards. If the UAM frame is configured with only one secondary power supply board, it provides up to nine slots for service boards. The UAM supports intermixed configuration for narrowband and broadband service boards. The boards used in the UAM frame are of 6U height.

Figure 2–7 shows the structure of the UAM frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

HWC

PVX

PVX

XPM

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

AIU/XSL

XPM

PWX

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Service board PVX: Narrowband main control board (PV8 or PVU) AIU: ATM interface board XPM: Broadband main control board (APM or IPM)

Figure 2–7 UAM frame structure

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

II. UAS

The UAS is a 6U frame. It fits the 19-inch cabinet. It uses a multi-bus backplane. It can be equipped with narrowband and broadband service boards at the same time. It can

Page 39: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-12

work under the control of UAM frame or work independently. If an ONU is only required to provide broadband service, you can configure the ONU with a UAS frame only, and connect it with the MD5500.

The UAS can be equipped with two narrowband main control boards and one broadband main control board. These two narrowband main control boards (RSP) operate in load-sharing and mutual-aid mode.

The UAS provides 13 service board slots. Among them, slot 17 supports narrowband service board only, while other slots are compatible for both narrowband and broadband service boards.

Figure 2–8 shows the structure of the UAS frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

HWC

RSP

RSP

XPM

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Service board RSP: Narrowband Main control board XPM: Broadband main control board (APM or IPM)

Figure 2–8 UAS frame structure

III. UAFM

The UAFM is an 11U frame. It fits the 19-inch cabinet. It supports hot standby for narrowband main control board and broadband main control board through respective dual-board configuration.

The UAFM supports load-sharing configuration for secondary power supply board through dual-board configuration. If only one secondary power supply board is configured, there are 10 slots available for service boards.

The UAFM supports intermixed configuration for narrowband and broadband service boards. The boards used in the UAFM frame are of 6U height.

Figure 2–9 shows the structure of the UAFM frame.

Page 40: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-13

PWX

XPM

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

Cabling AreaPWR

IO

FANFAN

PVX

AIU/XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

PWX

HWC

HWC

TSS

XPM

PVX

PWX: Secondary power supply board TSS: Test board XPM: Broadband main control board (APM or IPM) XSL: Service board PVX: Narrowband main control board (PV8 or PVU) AIU: ATM interface board

Figure 2–9 UAFM frame structure

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

IV. UAFS

The UAFS is an 11U frame. It fits the 19-inch cabinet. It can be equipped with two narrowband main control boards and one broadband main control board for slave frame. These two narrowband main control boards operate in load-sharing and mutual-aid mode.

The UAFS provides 13 service board slots. Among them, slot 17 supports narrowband service board only, while other slots are compatible for both narrowband and broadband service boards

Figure 2–10 shows the structure of the UAFS frame.

Page 41: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-14

PWX

RSP

XPM

XSL

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

Cabling AreaPWR

IO

FANFAN

RSP

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

PWX: Secondary power supply board RSP: Narrowband main control board XPM: Broadband main control board (APM or IPM) XSL: Service board

Figure 2–10 UAFS frame structure

V. UAFX

The UAFX fits the ONU-F01D100 cabinet. The UAFX integrates AC/DC 4810 module and DC/DC 4805 module. It supports dual-board configuration of narrowband main control board in hot standby mode.

The UAFX provides up to six service board slots. These service board slots are compatible for both narrowband and broadband service boards.

Figure 2–11 shows the structure of the UAFX frame.

Page 42: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-15

4810

XPM

01 02 03 04 05 06 07 08 0900

Cabling Area4805

FAN

PVX

XSL

XSL

XSL

XSL

ESC

TSS

PVX

PWRIO

XSL

XSL

ESC: Environment monitoring & power supervision board XPM: Broadband main control board (APM or IPM) PVX: Narrowband main control board (PV8 or PVU) XSL: Service board AIU: ATM interface board 4805/4810: Power supply board

Figure 2–11 UAFX frame structure

VI. PV8-6

The PV8-6 frame fits the outdoor ONU-160B cabinet. It can be equipped with five narrowband service boards and one plug-in SDH device ASU.

Figure 2–12 shows the structure of the PV8-6 frame.

00 01 02 03 04 05 06 07

XSL

PV8

TSS

ASU

XSL

XSL

XSL

XSL

TSS: Test board ASU: SDH transmission board XSL: Narrowband service board PV8: Narrowband main control board

Figure 2–12 PV8-6 frame structure

Page 43: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-16

VII. PV8-10

The PV8-10 is 6U frame. It fits the 19-inch cabinet. It can subtend eight RSP-14 slave frames through differential Highway (HW) cables. The HW interfaces are provided by the HW level conversion board HWC. The PV8-10 provides also testing utilities for the RSP frames.

The PV8-10 frame provides up to 11 narrowband service board slots when it is configured with one PWX board.

Figure 2–13 shows the structure of PV8-10 frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

HWC

PV8

PV8

XSL

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

XSL

XSL

PWX

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Narrowband service board HWC: HW level conversion board PV8: Narrowband main control board

Figure 2–13 PV8-10 frame structure

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

VIII. PV8-12

The PV8-12 is a 6U frame. It fits the 19-inch cabinet. It can subtend eight RSP-12 slave frames. When there are more than four subtending RSP frames, the HWT subboard is attached to the PV8 board to provide differential HW interfaces.

The PV8-12 frame provides up to 12 narrowband service board slots when it is configured with one PWX board.

Figure 2–14 shows the structure of PV8-12 frame.

Page 44: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-17

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

XSL

PV8

PV8

XSL

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

XSL

XSL

PWX

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Narrowband service board PV8: Narrowband main control board

Figure 2–14 PV8-12 frame structure

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

IX. RSP-6

The RSP-6 frame fits the outdoor ONU-160B cabinet. It can be equipped with five narrowband service boards and one plug-in SDH device ASU.

Figure 2–15 shows the structure of the RSP-6 frame.

00 01 02 03 04 05 06 07

XSL

RSP

TSS

ASU

XSL

XSL

XSL

XSL

TSS: Test board ASU: SDH transmission board XSL: Narrowband service board RSP: Narrowband main control board

Figure 2–15 RSP-6 frame structure

Page 45: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-18

X. RSP-10

The RSP-10 is a 6U frame. It fits the 19-inch cabinet. It provides up to 11 narrowband service board slots when it is configured with one PWX board. Slot 8 is reserved.

Figure 2–16 shows the structure of RSP-10 frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

RSP

RSP

XSL

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

XSL

XSL

PWX

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Narrowband service board RSP: Narrowband main control board

Figure 2–16 RSP-10 frame structure

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

XI. RSP-12

The RSP-12 is a 6U frame. It fits the 19-inch cabinet. It provides up to 12 narrowband service board slots when it is configured with one PWX board.

Figure 2–17 shows the structure of RSP-12 frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

XSL

RSP

RSP

XSL

XSL

XSL

XSL

PWX

TSS

XSL

XSL

XSL

XSL

XSL

PWX

XSL

XSL

PWX: Secondary power supply board TSS: Test board XSL: Narrowband service board RSP: Narrowband main control board

Figure 2–17 RSP-12 frame structure

Page 46: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-19

Note:

A PWX board occupies the space of two slots. If you install a PWX board in slot 17, slot 16 will be unavailable; or you can install a service board in slot 16.

XII. RSP-14

The RSP-14 is a 6U frame. It fits the 19-inch cabinet. It provides 14 narrowband service board slots.

Figure 2–18 shows the structure of RSP-14 frame.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 1500 16 17

XSL

RSP

RSP

XSL

XSL

XSL

XSL

PWX

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

XSL

PWX: Secondary power supply board XSL: Narrowband service board RSP: Narrowband main control board

Figure 2–18 RSP-14 frame structure

2.3.3 Frame Hardware Design

I. UAM and UAFM

The UAM and the UAFM are master frames of the UA5000. They are controlled by the MD5500 or connect broadband and narrowband networks directly in the single-layer networking mode.

The UAM and the UAFM can connect slave frames to expand the system capacity and to share the network resources. For broadband services, they can be subtended with 4-layer broadband slave frames in serial mode. For narrowband services, they can be subtended with up to eight slave frames at star topology.

The narrowband service boards transmit services of the subscriber side to the narrowband main control board (PV8) through TDM bus. After the protocol processing and time slot crossing, the PV8 sends these services to the service node. Through the

Page 47: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-20

control bus, the active PV8 monitors the service boards, test board (TSS) and standby PV8. The TSS implements test function for the service boards through the test bus, reports the test results to the active PV8. The PV8 will then forward the results to the master control software of the MD5500.

The broadband service boards send broadband services to the broadband main control board (APMA/IPMA). The APMA/IMPA sends the services upstream through IMA E1, ATM E3, STM-1 ATM, STM-4 VP Ring, FE or GE port. The APMA/IPMA maintains the broadband service boards.

When the UA5000 acts as a component of the NGN, another type of narrowband main control board (PVM) converts the TDM signals of all narrowband service data into IP packets. The IPMA then sends these packets upstream through FE or GE ports to the IP networks along with broadband services.

There is another type of broadband service boards (BSL/B08/LSL) available for the UA5000. These boards receive broadband services and transmit them to transmission system through their E1 ports. These boards are configured and maintained by the MD5500 through the inband network management channel.

The broadband and narrowband service data are converged and transmitted through different lines to ensure that instant broadband large data flow will not affect the narrowband services.

Figure 2–19 shows the hardware design of the master frame.

TDM busPacket busTest bus

Subscriber line

Differentialinterface

E1FE

STM-1VP RingATM E3IMA E1GE/FE

ASL

TSS

VDL

CSL

HSL

BSL

DSL

E1

STM-1ATM E3IMA E1

DEHA

ADL

PV8/PVM

PV8/PVM

APMA/IPM

A

APMA/IPM

A

HWC

AIUA

Figure 2–19 Hardware structure of UA5000 master frame

Page 48: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-21

II. UAS and UAFS

The UAS and UAFS are slave frames of the UA5000.

The slave frame handles narrowband services through its narrowband main control board (RSP). The RSP converges the received narrowband services through TDM bus and sends them upstream through Highway (HW) or E1 port.

The slave frame processes broadband services through its broadband main control board (APMA/IPMA). The APMA/IPMA converges received broadband services through packet bus and sends them upstream through IMA E1, ATM E3, STM-1 ATM, STM-4 VP Ring, FE or GE port.

The UA5000 slave frame can also house the broadband service boards (BSL/B08/LSL) to provide small amount of ADSL interfaces. These boards receive broadband services and transmit them to transmission system through their E1 ports.

Figure 2–20 shows the hardware design of the slave frame.

TDM busPacket busTest bus

Subscriber line

Differentialinterface

E1

RSP

BSL

RSP

ASL

ADL

CSL

HSL

DSL

STM-1VP RingATM E3IMA E1FE/GE

VDL

ADM

APMA/IPM

A

Figure 2–20 Hardware structure of UA5000 slave frame

III. PV8

The PV8 frame here refers to PV8-6, PV8-10 or PV8-12 frame. A PV8 frame can subtend RSP frames to expand system capacity and share inter-frame resources. It provides 32 differential HW interfaces through the HWC board to connect up to eight RSP frames to scale up the ONU capacity. Each RSP frame consumes four or eight

Page 49: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-22

HW interfaces. Since the HW resources are sufficient, the PV8 frame can share them with the extended RSP frames.

The narrowband service boards process various subscriber services and transmit them to the PV8 board through the HW data bus. After the protocol processing and time slot crossing, the services are converged to the service node. Through the control bus, the active PV8 board monitors service boards, TSS board and standby PV8 board. The TSS implements test to the service boards through the test bus, reports the test results to the active PV8 board through the control bus, and forwards the results to the control software of the MD5500 in the mean time.

Figure 2–21 shows the hardware design of the PV8 frame.

Differentialinterface

E1

HWC

BSL

PV8

TSS

DSL

HSL

ASL

E1 E1

PV8

TDM busPacket busTest bus

Subscriber line

Figure 2–21 Hardware structure of PV8 frame

IV. RSP

The RSP frame here refers to RSP-6, RSP-12 or RSP-14 frame. A RSP frame can share E1 ports of the PV8 frame through HW cables, or connect the transmission unit directly through E1 ports.

The RSP board converges and transmits various narrowband services from the subscriber boards to the PV8 frame through HW data bus, or to the transmission unit through E1 ports.

The TSS implements the routine test for the service boards through the test bus, and reports the results to the RSP board through the control bus.

Figure 2–22 shows the hardware design of the RSP frame.

Page 50: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-23

Differentialinterface

Subscriber line

E1

BSL

RSP

TSS

DSL

HSL

ASL

E1

RSP

Data busControl busTest bus

Figure 2–22 Hardware structure of RSP frame

2.3.4 Supported Boards

Table 2–3 lists the main control boards, transmission boards, monitor and test boards, power supply boards, interface boards and HW level conversion boards used in the ONU.

Table 2–4 lists the service boards used in the ONU.

Table 2–3 List of boards used in the ONU (I)

Category Name Function Description

H601APMA

ATM service processing board of the master frame

It supports active/standby backup. It controls and switches ATM services. It has two subboard slots. The upper one can be equipped with a subboard to provide two STM-1 ports or two STM-4 ports (VP Ring). The lower one can be equipped with a subboard to provide eight ATM E1 ports, eight IMA E1 ports or two ATM E3 ports.

H601IPMA IP service processing board of the master frame

It supports active/standby backup. It controls and switches IP services. It provides FE and GE ports for service upstream or subtending.

Main control board

H601PVM Packet voice processing board

It converts TDM voice signals into IP packets. It supports the processing of H.248 and MGCP protocols. A PVM board provides 64 full rate voice channels. It can be attached with a subboard to provide extra 64 or 128 full rate voice channels. It provides two FE ports for service upstream and device maintenance.

Page 51: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-24

Category Name Function Description

H303PV8 Narrowband main control board of the master frame

It is the. It controls narrowband service boards in an ONU. It provides E1 upstream ports, switch fabric and working clock for narrowband services. It supports active/standby backup.

The H303PV8 board provides eight E1 ports. It also provides 32 differential highway (HW) interfaces. It can subtend RSP frame through either E1 ports or HW interfaces.

Main control board

H303RSP Narrowband main control board of the slave frame

One or two such boards can be installed into one frame. If there are two H303RSP boards in the frame, they shall work in the load sharing mode, and support mutual aid in case of failure of either board.

Each H303RSP board provides four E1 ports and eight differential HW interfaces. It can converge TTL HW interfaces to E1 links or differential HW interfaces. The convergence ratio can be 1:1, 1:2 or 1:4.

H302ASU Built-in SDH transmission board for PV8 or RSP frame

It integrates all functions of an SDH transmission device. It provides 2 STM-1 optical ports, 16 E1 ports, 1 order wire port, 1 RS-232 port and 1 Ethernet port. It provides three clock locking mode and is capable of full service switching.

H601ATUA

Transmission board

H601ATUB

Built-in SDH transmission board for UA5000 frame

It is the. It integrates all functions of an SDH transmission device. The H601ATUA provides 2 STM-1 optical ports and 16 E1 ports. The H601ATUB provides 2 STM-1 optical ports and 8 E1 ports. Both of them provide 1 order wire telephone port, 1 RS-232 port and 1 Ethernet port.

CC08TSS / CC09TSS

Subscriber test board

It tests the analog subscriber interface (Z interface) and digital subscriber interface (U interface). The board provides two testing channels. It provides a serial port for maintenance and printing. It provides testing bus interface to interconnect with subscriber line test equipment.

Monitor & test board

H303ESC / H304ESC

Environment monitoring and power supervision board

It monitors the status of ambient temperature, humidity, access control, fan and power supply. It communicates with the PV8 board through serial port.

Power board CC03PWX / H601PWX

Secondary power supply board

The CC03PWX provides +5V/10A, –5V/5A and 75V AC/0.4A outputs. Two boards in one frame work in load sharing mode.

The H601PWX is improved based on the CC03PWX board by adding the reset function when a module is locked due to output over-voltage. Besides, it has the functions of auto-detection, even current, and real-time communication with background. It provides +5V/30A, –5V/10A and 75V AC/1A outputs.

Page 52: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-25

Category Name Function Description

ATM interface board H601AIUA ATM interface

board

It provides two STM-1 port through its front panel, two ATM E3 ports or eight IMA E1 ports through its backplane. It is used for subtending of the UA5000.

H301HWC It is the. It provides 32 differential HW interfaces to expand HW resource of PV8 board.

Others H601HWC

Differential HW level conversion board It is the differential HW level conversion board. It

provides 16 differential HW interfaces to expand HW resource of PV8 board.

Table 2–4 List of boards used in the ONU (II)

Category Name Function Description

CB36ASL/ CB37ASL/ CC09ASL/ CC0HASL/ CC0IASL

Analog subscriber board

They provide POTS ports.

Both CC0HASL and CC0IASL boards provide 32 POTS ports. One CC0HASL board can provide 2 polarity reversal ports and one CC0IASL board can provide 32 polarity reversal ports. They can receive pulse and dual tone frequency numbers.

CB36ASL, CB37ASL or CC09ASL provides 16 POTS ports.

CB36ASL can provide polarity reversal and 16/12KC charging signals. It supports adjusting its interface impedance, level and feeding mode through software.

The only difference between CB37ASL and CB36ASL is that CB37ASL does not support 16/12KC charging signals.

CC09ASL supports common subscriber service, coin line service, pre-paid service, extra remote subscriber, polarity reversal and 16KC charging signal, pulse and dual tone frequency number receiving.

Narrowband service board

CB03DSL / CB03DSL

Digital subscriber board

They provides eight 2B+D ports.

CB02DSL and CB03DSL support standard ISDN BRA services and MTA access. They support per port configuration, that is, the working mode of any port of a board can be configured independently.

CB03DSL supports remote feeding while CB02DSL doesn’t.

Page 53: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-26

Category Name Function Description

H302HSL

Synchronous high speed line interface board

It supports N×64kbit/s data access service. It provides two V.35 ports and two FE1 ports in the rate of N×64kbit/s (1≤N≤31).

H303HSL TDM based SHDSL interface board

It supports N×64kbit/s and E1 service access. It features long transmission reach.

H303HSL provides two E1 ports and two SHDSL ports. The SHDSL ports can be connected with SHDSL terminals, which provide V.35 or E1 ports. For terminals providing V.35 ports, the n value ranges from 3 to 32.

H303HSL is downward compatible with H302HSL.

CB02VFB 2/4-wire VF interface board

It supports 2/4-wire VF functions. Each board provides 16 2-wire VF interfaces or 8 4-wire VF interfaces.

CC01CDI Direct dialing-in (DDI) subscriber interface board

It provides 16 DDI ports. It enables transparent transmission of analog subscriber ports.

Narrowband service board

H301ATI / H601ATI

2/4-wire E&M trunk interface board

It provides six 2/4-wire E&M ports. Each port can provide 2/4-wire voice frequency line and 1E1M signaling line.

The board connects to the peer end H301ATI/H601ATIA board through the SPC of the access network.

H601DEHA CES E1 interface board

It provides 16 E1 ports for E1 private line access and ISDN PRI access. It implements E1 UDT CES. It can achieve E1 private line interconnection between UA5000s.

H601SDLA ATM-based SHDSL interface board

It provides 16 ATM SHDSL ports. It supports various service types including CBR, UBR, rt-VBR and nrt-VBR.

The board also provides an RS-232 serial port for maintenance.

H521SDL TDM-based SHDSL interface board

It supports the access of TDM-based SHDSL services. It provides four SHDSL ports and four E1 ports.

H601ADLAADSL interface board with built-in splitter

It provides 16 ADSL ports.

Broadband service board

H602ADMAADSL2+ interface board with built-in splitter

It provides 16 ADSL2+ ports. The ports are ADSL/ADSL2+ auto adaptive.

Page 54: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-27

Category Name Function Description

H601VDLAVDSL interface board with built-in splitter

It provides 16 VDSL ports.

H601CSLAADSL and POTS combo interface board with built-in splitter

It provides 16 ADSL ports and 16 POTS ports.

H521BSLA / H521B08A

ADSL interface board

H521BSLA provides 16 ADSL ports and 4 E1 ports. It needs external splitter.

H521B08A provides 8 ADSL ports and 4 E1 ports. It has built-in splitter.

Standalone service board*

H521SPLN 16-port ADSL splitter It is used along with H521BSLA board. It is plugged on the rear of the backplane.

H521EC08 H E1 signal transfer board

It can transfer E1 signals of H521BSLA or H521B08A board to the backplane.

H521LSL Ethernet interface board

It provides four 10 Mbit/s Ethernet ports and four E1 upstream ports.

H302ASU Built-in SDH transmission board for PV8 or RSP frame

It integrates all functions of an SDH transmission device. It provides 2 STM-1 optical ports, 16 E1 ports, 1 order wire port, 1 RS-232 port and 1 Ethernet port. It provides three clock locking mode and is capable of full service switching.

H601ATUA

Standalone service board*

H601ATUB

Built-in SDH transmission board for UA5000 frame

It is the. It integrates all functions of an SDH transmission device. The H601ATUA provides 2 STM-1 optical ports and 16 E1 ports. The H601ATUB provides 2 STM-1 optical ports and 8 E1 ports. Both of them provide 1 order wire telephone port, 1 RS-232 port and 1 Ethernet port.

*A standalone service board can be plugged in any service board slot.

2.3.5 Peripheral Devices

I. Power supply system

The power supply system used by the UA5000 includes PS4820/05, PS4840/10, PS4845/15, PS4875/15 (220 V/110 V) and –48 V DC power distribution frame.

1) PS4820/05 power supply system

The PS4820/05 power supply system consists of rectifier HD4825-5 and environment monitoring unit H302ESC. It can provide a maximum of 20 A current and 1130 W power. The PS4820/05 power supply system features stable and reliable running, flexible configuration and outstanding monitoring management.

Page 55: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-28

2) PS4840/10 power supply system

The PS4840/10 power supply is a 4U frame. It fits the 19-inch cabinet. It is composed of rectifier modules, monitoring unit and environment monitoring unit. It can provide a maximum of 40 A current and 2260 W power. The PS4840/10 power supply features stable and reliable running, flexible configuration and outstanding monitoring management.

3) PS4875/15power supply system (220 V/110 V)

The PS4875/15 power supply system is a 6U frame. It fits the 19-inch cabinet. It is composed of one to five rectifiers, one monitoring unit and power distribution module. Every rectifier provides 15 A power output. The maximum output power of the PS4845/15 is 4200 W. Besides, the PS4845/15 power supply system offers powerful environment and power supply monitoring function.

4) Other power supply systems

The PS4845/15 (220 V/110 V) power supply system and –48 V DC power distribution frame have been presented in the previous section introducing the MD5500. For details, refer to the section “2.2.5 Peripheral Devices”.

II. Power supply and environment monitoring unit

The HONET has powerful environment monitoring function, by which, the equipment can monitor the environment parameters inside/outside of the ONU cabinet, power supply and fans, thus realizing the unattended maintenance for the equipment room.

According to different network requirements and equipment application cases, the HONET supports different environment and power monitoring equipment to monitor the environment parameters and power supply. In the ONU, the monitoring equipment includes independent environment monitoring board (H304ESC), environment monitoring box and power supply monitoring unit, and built-in monitoring boards for power distribution frame and fan frame.

1) H304ESC environment monitoring board

The H304ESC can communicate with the MD5500 or RSP/PV8 through serial port. The H304ESC has powerful and flexible environment monitoring ability. It can monitor eight channels of analog signals and 22 channels of digital signals at the same time, as well as multiple types of intelligent power supply through the serial port. Detailed functions of the H304ESC are as follows.

The H304ESC has built-in temperature and humidity sensors used to monitor the temperature and humidity in the cabinet. It also provides six analog signal interfaces to connect external analog sensors. For each monitoring signal, the alarm upper/lower limit and the sensor properties can be set.

The H304ESC monitors the power distribution frame and door access control, and provides 20 digital sensor interfaces to connect various external digital sensors,

Page 56: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-29

such as infrared ray sensor, smoke sensor and waterlogging sensor. The external sensor adopts 12 V/24 V power supply, and outputs signals using main contact point output and current output. You can define the sensor signals and set the alarm level.

Fan monitoring: The H304ESC provides the fan frame with power supply interface, controls the fan switch and performs automatic control according to the detected temperature. Meanwhile, it can monitor the running status of each fan through the fan monitoring unit.

Intelligent control output interface: The H304ESC provides two control interfaces isolated by optical coupling. Through these two interfaces, the H303ESC can receive the commands from the NMS to control the connection and disconnection of the external intelligent equipment of subscribers.

Intelligent power supply monitoring: The H304ESC can monitor and manage multiple types of intelligent power supplies through its serial port.

Battery management function. 2) Environment monitoring box

The environment monitoring box is composed of the H304ESC (environment monitoring board), the H601ESBB board (backplane), and the H601ESFB board (front panel board). It monitors various environmental parameters including temperature, humidity, smoke, water, access control, fan, power supply, and main distribution frame. At the same time, it provides multiple kinds of extended monitoring interfaces. This unit can be connected with the monitoring unit of the power distribution frame through the serial port to monitor and control the power system together.

3) Power monitoring unit

The power monitoring unit monitors the real-time running data of the power supply, and performs automatic management to the battery according to the set data. In addition, it can read the set values of the running parameters of the power supply system or perform setting and control to the power supply system according to the external instructions.

In the whole environment monitoring system, the H303ESC is connected to the power monitoring unit through a standard serial port. The power monitoring unit receives the settings and control commands delivered by the NMS through the H304ESC.

4) Built-in monitoring board in standard power distribution frame

The board can monitor the power supply parameters, detect environment parameters and provide eight digital parameter interfaces. The power supply parameters include lightning protection components state, input voltage, output voltage, and shunt protection switch state. The environment parameters include temperature and humidity in the power distribution frame. The digital parameter interfaces are used to detect such environment parameter signals as water, door access control and main distribution frame.

Page 57: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-30

2.4 Optical Transmission System

The HONET uses three kinds of optical transmission systems. They are described as follows:

SDH optical networking using E1, IMA E1 or ATM E3 ports MSTP networking using E1, STM-1, FE or GE ports VP Ring networking using imbedded optical ports

The HONET can be equipped with built-in OptiX 155/622H optical transmission system. The OptiX 155/622H is a case-shape STM-1/STM-4 transmission system. On the basis of flexible networking and service scheduling ability of the SDH equipment, it provides efficient transmission of ATM and IP services by adding ATM and IP service processing modules.

I. Provided interfaces of the OptiX 155/622H

SDH interface PDH interface Broadband service interface VF and asynchronous data interface Environment monitoring unit interface Clock I/O interface Power input interface Other supplementary interfaces

II. System features of the OptiX 155/622H

Powerful multi-system supporting ability Flexible configuration Flexible networking capability Outstanding protection mechanism Excellent network management system Comprehensive power and environment monitoring function All-round synchronous status message (SSM) management function Powerful embedded control channel (ECC) processing capacity All-round data communication channel (DCC) transparent transmission function

2.5 NMS

The HONET supports command line interface (CLI) NMS. The CLI NMS can be achieved using operating system attached programs like Telnet and HyperTerminal. It doesn’t require installing extra NMS software.

The HONET also supports graphic user interface (GUI) NMS. It uses the iManager N2000 Fixed Network Management System (iManager N2000), a GUI NMS developed

Page 58: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 2 System Composition

2-31

by Huawei, to maintain its devices in an integrated manner. The iManager N2000 provides users with configuration, maintenance, alarm handling, monitoring and testing functions for HONET equipment.

The iManager N2000 consists of different components to manage different equipment. Among them, the HONET NMS component is integrated with the unified topology, fault, performance and security functions provided by the iManager N2000 to maintain and manage the HONET equipment and services.

Note:

For details about NMS, refer to the chapter “Network Management System”.

Page 59: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-1

Chapter 3 Service Implementation

3.1 Overview

The HONET integrates the TDM, ATM, and IP technologies to provide various network interfaces and subscriber interfaces. It supports abundant service functions, and implements integrated access of narrowband and broadband services. It also enables smooth migration of the access network to NGN through using VoIP technology.

This chapter details the implementation principles of HONET services in sequence of traditional voice services, broadband access services, broadband and narrowband leased line services, multicast service and self-networking technology VP Ring.

3.2 Traditional Voice Services

The traditional voice services have been the mainstream services of fixed network. They include PSTN and ISDN services. The HONET supports a full range of the traditional voice services such as POTS, Z interface extension, ISDN BRA and ISDN PRA services.

3.2.1 POTS

The HONET provides POTS port at the UA5000 side through the ASL/A32 board, which can support the access of both the analog subscriber and private branch exchange (PBX). See Figure 3–1. It also supports supplementary services as Caller Identification Display (CID) and Centrex services. The subscriber line signaling can be Dual Tone Multi Frequency (DTMF) or line state signals. There is no limit to the subscriber's supplementary services.

V5.1/V5.2 Twisted pair

LE MD5500 UA5000 POTS

Figure 3–1 POTS access

Page 60: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-2

3.2.2 Z Interface Extension Service

The HONET provides interfaces at the UA5000 side through the CDI board to connect with analog subscriber interfaces (Z interface) of an exchange. The CDI interface and Z interface can be connected through a semi-permanent connection (SPC) to realize transparent extension of the Z interface inside the HONET.

See Figure 3–2.

Z interface Twisted pair

LE UA5000 UA5000 POTS

Figure 3–2 Z interface extension

The CDI board realizes the functions of an analog telephone set, which include ringing current detection, closed loop control, polarity detection, feed detection, dialing (pulse or tone phone), time slot dynamic occupation, signal tone detection, and call forwarding by hooking.

3.2.3 ISDN BRA Service

The HONET provides ISDN BRI (2B+D) at the UA5000 side through DSL board. See Figure 3–3. In the 2B+D mode, it supports narrowband ISDN (N-ISDN) services such as video conferencing, videotex, G4 facsimile, E-mail, data information retrieval and LAN interconnection. It also supports the mixed configuration of ISDN subscribers and analog telephone subscribers, as well as 25 kinds of ISDN supplementary services, including direct dial-in (DDI), multi-subscriber number (MSN), and calling line identification presentation (CLIP).

V5.1/V5.2

LE MD5500 UA5000

TA

NT1

ISDN Router

POTS

2B+D Terminal

LAN

2B+D

Figure 3–3 ISDN BRA service access

3.2.4 ISDN PRA Service

The HONET provides ISDN PRI (30B+D) at the MD5500 side through DT16 board, and ISDN PRI (30B+D) interface at the UA5000 side through DEHA board. See Figure 3–4.

Page 61: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-3

The 30B+D service can be applied to video conferencing, videotex, E-mail box, dial-up Internet access, PBX access and so on. It also supports various ISDN supplementary services, such as DDI, MSN and CLIP.

V5.1/V5.2

LE MD5500 UA5000 PBX

30B+D Terminal

POTS

30B+D

Figure 3–4 ISDN PRA service access

3.3 NGN-Oriented Access Services

Integrating AG and SoftSwitch, the HONET offers Voice over IP (VoIP), Fax over IP (FoIP), and Modem over IP (MoIP) services. The service features are as follows.

VoIP service

The HONET supports the VoIP calling of POTS subscribers. It supports full spectrum of PSTN basic services, supplementary services and intelligent services.

FoIP service

The HONET supports IP Fax services. It implements the Fax functions specified in ITU-T T.30 recommendations. It supports service transparent transmission at G.711 mode.

MoIP service

The HONET supports service transparent transmission at G.711 mode.

The processes the HONET handles the services vary with the networking modes.

I. Two-layer networking

The HONET provides service interfaces at the UA5000. It converts TDM signals into IP packets and sends them upstream to the IP network at the MD5500. The SoftSwitch controls all callings. The MD5500 communicates with SoftSwitch through H.248 protocol.

See Figure 3–5.

H.248

MD5500 UA5000

POTS (VoIP)FAX over IPIP

networkModem over IP

Twisted pair

FE/GE

H.248

SoftSwitch

Figure 3–5 NGN oriented voice service access (two-layer networking)

Page 62: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-4

II. Single layer networking

The HONET provides service interfaces and converts the TDM signals into IP packets at the UA5000. The SoftSwitch controls all callings. The UA5000 communicates with SoftSwitch through H.248 protocol.

See Figure 3–6.

H.248

UA5000

POTS (VoIP)FAX over IPIP

networkModem over IP

Twisted pair

FE/GE

H.248

SoftSwitch

Figure 3–6 NGN oriented voice service access (single-layer networking)

3.4 Broadband Access Services

The HONET also supports broadband access services. The access means include ADSL, VDSL and LAN. The UA5000 provides the ADSL, ADSL2+, VDSL and Ethernet ports. The MD5500 provides the ATM port or IP port to connect with backbone network.

The HONET adopts the following procedures to handle subscriber services:

Transmits the subscriber services transparently through AIC board

The MD5500 converges the broadband services from the UA5000 by means of ADSL, VDSL and LAN, and transmits these services through ATM PVC to the ATM network through the 155/622 Mbit/s ATM port provided by the AIC board.

Transmits the subscriber services transparently through EPU board

The MD5500 converges the broadband services from the UA5000 by means of ADSL, VDSL and LAN, and transmits these services to the upper layer IP equipment through the FE/GE port provided by the EPU board.

Implements Layer-3 routing and forwarding through IPU board

The IPU board transmits subscriber services upstream through IP port.

The MD5500 supports static routing and dynamic routing (RIP II and OSPF). The following will detail the principles of ADSL, VDSL and LAN services.

3.4.1 ADSL Service

The UA5000 provides ADSL ports with different capacities through the ADL, CSL, and BSL/B08 boards, and provides ADSL2+ ports through the ADMA board.

As shown in Figure 3–7, the UA5000 separates ADSL signals from POTS signals. These signals are transmitted upstream to the MD5500 by the transmission system

Page 63: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-5

through E1 port or IMA E1 port, or by optical fiber through the STM-1 ATM port or VP Ring optical port. Then, the MD5500 transmits them upstream to the ATM or IP network through corresponding interface, thus providing broadband services.

MD5500 UA5000

ATU-R

ATU-R POTS

LAN

ADSL/ADSL2+POTS

PC

IPnetwork

ATMnetwork STM-1/

STM-4

FE/GE

ADSL/ADSL2+

Figure 3–7 ADSL service access

The ADSL access mode supports IPoA and IPoEoA protocols. For different access protocols, ATU-R adopts different working modes, including bridge mode (RFC1483B), IPoA mode (RFC1483R) and PPP mode. The following is the detail.

For bridge mode, the HONET supports IPoEoA protocol. It implements Layer-3 routing and forwarding, and Layer-2 Ethernet frame transparent transmission.

For IPoA mode and PPP mode, the HONET implements service access and forwarding to upper layer equipment.

3.4.2 VDSL Service

The UA5000 provides VDSL ports through VDLA board. See Figure 3–8.

The UA5000 separates the VDSL signals from the POTS signals. In the upstream direction, it connects to the MD5500 through FE port using optical fiber. The MD5500 connects to ATM or IP network in the upstream to provide broadband services.

The HONET adopts QAM modulation mode and symmetrical data transmission mode to implement VDSL access service. It can transmit service at 12 Mbit/s over a distance of 1500 m for 0.5 mm wire diameter or 1200 m for 0.4 mm wire diameter. As VDSL and ADSL possess different edges in bandwidth and transmission distance, you can select them according to networking and requirements in practice.

Page 64: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-6

MD5500 UA5000

VTU-R

VTU-R POTS

LAN

VDSL

POTS

PC

IPnetwork

ATMnetwork STM-1/

STM-4

FE/GEVDSL

Figure 3–8 VDSL service access

3.4.3 LAN Service

The UA5000 provides Ethernet ports for LAN access through LSL board. See Figure 3–9.

The LAN access can distinguish the priority level based on VLAN. This can assure the QoS of the VLAN leased line interconnection service. The service accessed from the UA5000 is carried over the E1 link and transmitted to the MD5500 through transmission system. The MD5500 transmits the service upstream to ATM network or to IP network to provide broadband services.

MD5500 UA5000LAN

10Base-T PC

IPnetwork

ATMnetwork STM-1/

STM-4

FE/GE10Base-T

Router

STM-1

Figure 3–9 LAN Service access

The LAN access supports IPoE and PPPoE protocols. Similar with the ADSL access, the LAN access enables the HONET to implement not only the layer-3 routing and forwarding functions, but also the function of layer-2 transparent transmission of the Ethernet frames, so as to satisfy different networking application requirements.

3.5 Broadband/Narrowband Leased Line Services

The traditional narrowband data service includes digital data network (DDN), packet switched public data network (PSPDN) and frame relay (FR) network. These networks

Page 65: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-7

are cross-penetrated and complement each other. Meanwhile, they also complement public switched telephone network (PSTN) and public land mobile network (PLMN).

As access equipment for integrated broadband and narrowband services, the HONET enriches the narrowband data service access modes and ways, and provides the broadband leased line services, such as LAN interconnection. This section presents the implementation of these services.

3.5.1 HONET DAS Access Service

Currently, the problem of data subscriber access has to be considered. Previously, data subscribers access the core network through copper wires, and the service range can be expanded by adding the nodes. However, this technical measure has now found its disadvantages. On one hand, the copper wire resources become insufficient. On the other hand, it costs much to add service nodes. All of these obstruct further development to network greatly. Under this condition, it has come to be recognized using access network to implement data service access.

I. Features

The data service access in the HONET is implemented by the Data Access System (DAS). It efficiently solves the covering problem of data network in the traditional networking mode, and breaks through the bottleneck of service/cost. The major features of the DAS are as follows.

Abundant service interfaces Flexible networking capability Powerful network functions All-round maintenance means

The HONET DAS is a convenient, low-cost and efficient solution for the current leased line services. The solution is a better substitute for the end node and even the convergence node of the network access layer. The HONET DAS optimizes network architecture.

The HONET provides all-round support to the broadband and narrowband services. Meanwhile, it also smoothes the evolution from traditional data networks such as DDN and FR to broadband network. All these make it a better choice for current data services.

II. Service model introduction

The HONET DAS provides the access of leased line service. Its service model is shown in Figure 3–10.

Page 66: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-8

DDN Node

User data equipment

Transport functionmodule

SN UNIUNIprocessing module

ONU

Network management function module

OLT/ ONU

SNI processing module

Figure 3–10 Narrowband leased line service access principle

The HONET DAS comprises four parts. They are described as follows.

Service node interface (SNI) processing module

It provides the service interface interconnected to a DDN node to implement the service port function. According to the real position of the DDN node, this module is generally installed in the OLT. However, it also can be installed in the ONU. SNI is generally the E1 port (2048 kbit/s) or FE1 port (N×64 kbit/s).

User network interface (UNI) processing module

It provides the user interface interconnected to the user data terminal to implement the user port function. It is installed in the ONU. Its interface rate includes 2048 kbit/s, N×64 kbit/s (N=1-31), sub-rate (2.4/4.8/9.6/19.2 kbit/s). The module supports E1, V.35, V.24 (synchronous/asynchronous), SHDSL, and 2B1Q interfaces.

Transport function module

It provides the transport function that connects the SNI and UNI processing modules. It can be shared with other services.

Network management function module

It provides management interface to maintain the whole DAS. It is actually a part of the NMS of the HONET.

3.5.2 2/4-wire VF Leased Line Service

As shown in Figure 3–11, the HONET system provides subscribers with 2/4-wire VF leased line interfaces. It implements the 2/4-wire VF leased line function using SPC between VFB interfaces.

Page 67: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-9

V5.1/V5.2UA5000

Audio modem

UA5000

MD5500

2/4-wire VF

Audio modem

2/4-wire VFLE

Figure 3–11 2/4-wire VF leased line service

The VFB does not have feed function. Its interface impedance is 600Ω. Its interface level and 2/4-wire working mode can be set by software.

The subscriber terminal has two categories. One needs feeding and the other needs not. The ASL analog line is recommended when the terminal type is uncertain. The VF leased line is applicable to the situation that the terminal does not need feeding, and the interface impedance is 600Ω.

The features of 2/4-wire VF leased line interface board are as follows:

The selection of 2/4-wire interface is software adjustable. A 4-wire interface comprises two adjacent 2-wire interfaces.

The receiving/transmitting gains are adjustable, and the gain adjustment scope is described below.

For 2-wire interface: Receiving gains: -7 dB--2 dB; Transmitting gains: 0 dB-+5 dB

For 4-wire interface: Receiving gains: -11 dB-+4 dB; Transmitting gains: -1 dB-+14 dB

3.5.3 2/4-wire E&M Trunk Service

The E&M signaling uses signaling channels that are separated from the voice channels to convert signaling between exchanges and transmission systems. The signaling channels include E lead M lead. The E lead is used to receive signaling and the M lead is used to send signaling.

There are multiple types of E&M signalings. In terms of the lead amount, there are 2-wire E&M signaling and 4-wire E&M signaling. There are not only DC signals like power supply and grounding, but also DC pulse signals on the E&M line. When Multiple Frequency Control (MFC) or DTMF, instead of DC pulse signals, is used, these signals are transmitted over the voice channel.

The E&M signaling is modified somewhat by each country when it is used. For example, China adopts 2/4 lead VF interface working in 1E1M mode (Bell type V). The 2-wire

Page 68: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-10

E&M interface transmits and receives signals over one pair of balanced line, and the 4-wire E&M interface transmits and receives signals over one pair of balanced line respectively. See Figure 3–12.

-48V

E&M interface equipmentExchange

b1 600Ω600Ω

a2

b2 600Ω600Ω

K1

Current limitation and checking

Protection

E

-48VK2

Protection

EM

M

a1

Current limitation and checking

Figure 3–12 Bell V type E&M interface

The E&M signaling process is rather simple. The line signals include occupation, answer and occupation acknowledgment. See Figure 3–13.

T1

T2 T3 T4

Occupation ACK

Calling partyM lead

Calling partyE lead

Has current

Called partyE lead

Called partyM lead

No currentTalkingHas currentNo current

Figure 3–13 E&M signaling

M lead: When it is idle, the switch is off and the line current is zero. When it is busy, the switch is on and the current flows through the line. The current is related to the E lead current of the peer end exchange. Normally it ranges from 5 mA to 50 mA.

E lead: When it is idle, the interface voltage is near –48 V. Its current is related to the leakage current of M lead in the peer end exchange. When the E line is occupied, the interface voltage is nearly zero. Its current is related to the impedance of M lead in the peer end exchange.

I. E&M signaling process

1) When an exchange subscriber initializes an E&M trunk outgoing call, switch K1 is off and the current flows through the M lead. After the current detection circuit of

Page 69: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-11

the E&M interface equipment detects the current (normally ranges from 6mA to 25mA), it takes the circuit as occupied.

2) The exchange transmits the telephone number (in MFC or DTMF mode) in line a1 and b1.

3) If the telephone number is correctly transmitted, the peer end exchange returns the acknowledgment signal to the E&M interface equipment, which will then close switch K2. The E lead of the exchange will detect the current and think that the call control has been successfully set up. Then it enters conversation status.

4) As indicated in Figure 3–12, the exchange and the interconnected equipment are symmetrical. The handling for incoming call is similar to that for outgoing call: Switch K2 of the interconnected equipment is closed to occupy the exchange. The exchange receives the telephone number from a2b2 line (in MFC or DTMF mode). Switch K1 of the exchange is closed to acknowledge the interconnected equipment. Then, it enters conversation status.

5) After the conversation is over, the side who hangs up turns off the switch. The other side cannot detect the current and will think that it receives the release signal, then, it performs release operation.

II. Main indices of ATI board

The HONET provides 2/4-wire E&M interfaces through its ATI board. The ATI board is slot-compatible with subscriber boards. The board makes use of the transmission system of access network to transfer the remote analog trunk services. It transmits signaling and voice channels transparently. The ATI boards at both ends transmit line signaling through a timeslot of voice channel using private protocol.

Each ATI board has six channels. Each channel supports the 2/4-wire E&M interface working in 1E1M mode (Bell type V). The main technical indexes are as follows.

The impedance of the port: 600Ω Encoding: A law, conforms to ITU-T Recommendation G.711A. Audio indexes: conforms to ITU-T Recommendation G.712. Adjustment of receiving/transmitting gains: receiving, –20 dB - +1.5 dB,

transmitting, –7 dB - +14 dB and 0.5 dBr per step E lead or M lead current: 6mA - 40 mA ATI end-to-end transfer delay: < 10 ms

ATI board is mostly used for analog inter-office trunk. See Figure 3–14.

Page 70: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-12

Exch ange

E&Minterface

ATI

VF interface

E&M lead

ONU

ATI

Transmi ssion

equip ment

ONUVF interface

E&M lead

Exchange

interface

E&M

Figure 3–14 Connection mode of E&M trunk interface

3.5.4 2 Mbit/s Digital Leased Line Service

The HONET provides E1 (2048 kbit/s) ports and FE1 (N×64 kbit/s) ports through the DT16, DEHA and CESH boards to implement 2 Mbit/s digital leased line service.

I. 2 Mbit/s digital leased line interconnected with DDN node

The 2 Mbit/s digital leased line service can be used as the SNI for interconnection with the DDN Node, as shown in Figure 3–15. Inside the HONET system, services accessed from all narrowband data interfaces at the UA5000 side are connected to the same 2 Mbit/s leased line interface through SPC, and then are transmitted to the DDN transparently through the DDN Node.

E1/FE1

DDN Node MD5500 UA5000

E1V.35V.24

SHDSL2B1Q

Figure 3–15 2 Mbit/s digital leased line service (interconnected with DDN Node)

II. 2 Mbit/s digital leased line interconnected with DDN subscriber equipment

The 2 Mbit/s digital leased line service can also be used as the UNI, as shown in Figure 3–16.In this case, this interface is mainly interconnected with the DDN subscriber equipment, including E1 port router, subscriber DDN Node and so on.

E1/FE1

DDN Node MD5500 UA5000

2 Mbit/sleased line

LANRouter

Figure 3–16 2 Mbit/s digital leased line service (interconnected with DDN subscriber equipment)

Page 71: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-13

3.5.5 N×64 kbit/s Leased Line Service

At the UA5000 side, the HONET provides FE1 and V.35 interfaces through the H302HSL board to accomplish N×64 kbit/s (N=1-31) leased line service. Generally, the V.35 interface is used to connect with subscriber equipment such as router, and the FE1 port provides bearing channels to transmit the V.35 interface service to the peer end.

Because the H302HSL board can provide both V.35 interfaces and FE1 ports, there are two ways to implement the N×64 kbit/s leased line service: create an SPC by occupying subscriber frame, or by occupying FE1 port.

E1/FE1

UA5000

UA5000

MD5500

V.35

V.35DDN Node

LAN

LAN

Router

Router

Figure 3–17 N×64 kbit/s leased line service (occupying subscriber frame)

E1/FE1

UA5000

UA5000

MD5500

V.35

V.35DDN Node

LAN

LAN

Router

Router

FE1

Figure 3–18 N×64 kbit/s leased line service (occupying FE1 port)

As shown in Figure 3–17, the subscriber frame is occupied to create an SPC. The services are transmitted through the E1 line of the subscriber frame, crossed at the MD5500 side, and connected to peer end V.35 interface or DDN Node. Because the N×64 kbit/s service needs to occupy TDM resources of the subscriber frame, it may make the voice service resources of this frame insufficient. Therefore, this method is recommended only when the value of N is rather small.

Page 72: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-14

As shown in Figure 3–18, the FE1 port is occupied to create an SPC. The services are transmitted through the FE1 line of the subscriber frame, crossed within the board, and connected to peer end V.35 interface or DDN Node. In this case, the N×64 kbit/s service does not need to occupy the TDM resources of subscriber frame. But the FE1 needs to occupy transmission resources additionally. Therefore, this method is recommended when the value of N is large.

3.5.6 SHDSL Leased Line Service

Single-Pair High Rate Digital Subscriber Loop (SHDSL) is a new kind of symmetrical digital subscriber line technology developed on the basis of the high-speed digital subscriber line (HDSL), SDSL and ISDN. It is defined by the ITU-T G.SHDSL Recommendation G.991.2. The inherent technical advantages of the SHDSL technology, such as high symmetric rate, strong anti-interference ability and longer transmission distance, makes it play an important role among the three kinds of widely used DSL technologies, ADSL, VDSL and SHDSL.

SHDSL can provide a maximum of 2 Mbit/s symmetric rate, with transmission distance of 3-6 km, which is farther than that of the ADSL. It can take the place of E1/T1 line and be widely used for high-speed data service access with symmetric upstream and downstream data. This kind of feature determines that it can be used for the service that needs consistent bi-directional rates, such as video conferencing and voice binding.

The HONET provides E1 and SHDSL ports through SDL and H303HSL boards at the UA5000 side. The E1 port is used to provide bearing channel to transmit the service accessed from the SHDSL port to the peer end. The SHDSL port is used to provide E1 and V.35 interfaces through the customer premises equipment (CPE) for connection with the subscriber equipment such as router, so as to accomplish the 2048 kbit/s and N×64 kbit/s (N=3-31) leased line services.

See Figure 3–19.

E1/FE1

UA5000

SHDSL

MD5500DDN Node

E1/FE1

CPE

CPE

V.35

Router

Router

Figure 3–19 SHDSL leased line service access

The CPE can provide both V.35 and E1/FE1 ports. The E1 port of the SDL board and that provided by the CPE support not only the N×64 kbit/s FE1 access, but also the

Page 73: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-15

2048 kbit/s E1 transparent transmission. When the CPE provides the FE1 port, the SDL board is the same as the H302HSL board. There are two ways to implement SHDSL leased line service, that is, occupying subscriber frame or occupying FE1 port to create SPC. In the case of providing the E1 transparent transmission function, the SDL board can only transmit service data upstream through its own E1 port.

3.5.7 MTA Leased Line Service

The HONET provides 2B1Q interfaces through the DSL board at the UA5000 side, and provides V.35 and V.24 interfaces through remote MTA to realize 128 kbit/s, 64 kbit/s and sub-rate services. As shown in Figure 3–20, the V.35 and V.24 interfaces are provided by extending the 2B1Q interface to connect with the subscriber equipment, such as router and PC.

E1/FE1

UA5000MD5500DDN Node

2B1Q

V.35/V.24128/64 kbit/s

MTA

MTA

V.35, subrate

Router

Data terminal

Figure 3–20 MTA leased line service access

MTA is a data service unit (DSU) located at the user end. It is connected with the office end equipment (such as DSL and MLC) through 2B1Q interface. The access distance is 4-5 km (with wire diameter of 0.4mm). It provides the subscriber with one V.24/V.35 compatible interface and two V.24 interfaces. The data rates include 64 kbit/s and 128 kbit/s (synchronous interface) and 2.4 kbit/s, 4.8 kbit/s, 9.6 kbit/s and 19.2 kbit/s (synchronous or asynchronous interface).

3.5.8 Circuit Emulation Service

Circuit emulation is the technology to emulate the traditional circuit switching and circuit transmission through ATM network.

According to the ITU-T Recommendation I.363.1, the E1 circuit emulation interface can implement unstructured data transfer (UDT) and structured data transfer (SDT).

The UDT can implement transparent transmission of E1 data. When UDT adaptation is performed, the AAL1 adaptation module does not distinguish the frame structure in the E1 line, but performs segmentation and reassembly (SAR) to the 2 Mbit/s code stream to accomplish the adaptation. The UDT circuit emulation technology can utilize the clock recovery technology to recover TDM clock through the

Page 74: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-16

ATM network. It can implement two kinds of clock recovery technologies: adaptive clock method (ACM) and synchronous residual time stamp (SRTS).

The principle of ACM is to adjust the narrowband clock according to the variation of the data-receiving buffer. In the flow direction that cells are reassembled to recover narrowband data, there exits a buffer. If the data are increasing in the buffer, the sending clock frequency will be increased. Otherwise, the sending clock frequency will be lowered, thus realizing the TDM clock recovery.

The ACM clock recovery mode has no special requirements for the AAL1 SAR equipment that implements cell segmentation. However, when the ACM is adopted to adjust clock, the output clock frequency is directly related to the adaptive adjustment step length. Therefore, the recovery clock traces the variation of the source end clock at a lower speed, and the clock float is rather large.

The principle of SRTS is to compare the accessed TDM clock with the ATM network clock at the clock source, figure out the difference between these two clocks, that is, residual time stamp, and then write this residual time stamp value into a certain specified bit of the cell to transmit it over the ATM network. At the destination, the narrowband clock of the source end is figured out based on the ATM network clock and residual time stamp value so as to accomplish the clock recovery.

SRTS can calculate the precise value of the narrowband clock. The clock precision, tracing speed and float specifications are better than those of ACM. However, since the ATM network clock is used as the reference when the clock is recovered by SRTS, the ATM network must be synchronous or plesiochronous all over the network. In addition, the AAL1 SAR equipment at the clock source end and destination end are required to be able to realize SRTS technology to generate time stamp value at the source end and recover the clock according to the time stamp value at the destination end.

The SDT can implement transparent transmission of narrowband N×64 kbit/s data channel over ATM network. When the SDT adaptation is performed, the AAL1 adaptation module needs to distinguish the E1 frame structure and implement adaptation for N time slots according to configuration. By SDT technology, multiple logical channels can be realized in the E1 link. Since SDT adaptation cannot accomplish clock recovery, the ATM network must be synchronized with the TDM network or the whole network when the SDT adaptation is performed.

The V.35 interface circuit emulation board implements the AAL1 adaptation of V.35 data. The access rate of V.35 interface is N×64 kbit/s (N=1-31), which is suitable for the access of the V.35 data equipment at the rate lower than 2 Mbit/s. The V.35 interface can work in the DCE and DTE modes. However, the V.35 circuit emulation cannot realize clock recovery, that is, it cannot transmit TDM clock over ATM network transparently.

Page 75: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-17

I. Transparent transmission of narrowband services

The HONET can perform AAL1 adaptation of the E1 and V.35 interfaces at both the OLT side and ONU side, so as to realize transparent transmission of the traditional TDM services (such as DDN) over ATM network. As shown in Figure 3–21, it can be interconnected with the equipment such as PBX, DDN equipment and video conferencing equipment.

155/622M

UA5000MD5500

LE

E1/V.35

PBX

DDN terminal

E1

ATMnetwork

DDN Node

ATM edgeswitch

Figure 3–21 Transparent transmission of narrowband services realized by circuit emulation

II. DDN service convergence

By circuit emulation technology, the HONET can realize not only interworking of external TDM equipment through ATM network, but also interworking of internal TDM system with ATM network. In this case, the narrowband data services accessed by the HONET are not connected with the DDN through E1 port, but directly transferred to ATM network through the circuit emulation interface at the MD5500 side, and then transmitted to the backbone network through ATM port. See Figure 3–22. The network role of the HONET under this condition is the sum of a medium and large sized DDN convergence node and multiple DDN access nodes covering some areas.

MD5500 UA5000

E1V.35V.24

SHDSL2B1Q

DDNATM

network155/622M

Figure 3–22 DDN service convergence by circuit emulation

3.5.9 LAN Interconnection Service

In cities, the branches and headquarters of commercial subscribers contact increasingly frequently with large amount of information. In such situation, the

Page 76: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-18

traditional leased line interconnection services are unable to meet all the requirements. The LAN interconnection services thus become much more desirable. The HONET realizes the LAN interconnection by adopting the ATM networking, and it features compact equipment, broad bandwidth and perfect QoS as a high speed and low cost solution.

The HONET can provide 10Base-T Ethernet ports at the UA5000 side to connect with LAN. By RFC 1483B mapping, the ATM PVC is used to realize the point-to-point layer-2 transparent connection between two LANs inside the system.

See Figure 3–23.

MD5500 UA5000

LAN10/100Base-T10/100Base-T

LAN

UA5000

Figure 3–23 Point-to-point LAN interconnection service

Since the HONET cannot realize the point-to-multipoint connection by internal PVC crossing function, if multiple LANs are to be interconnected, it is required to create a PVC from each LAN to the system ATM optical port, and then accomplish interconnection by means of Layer-2 switching function of the upper layer ATM switch. See Figure 3–24.

MD5500

LAN10/100Base-T

LAN

ATM switch

LAN10/100Base-T

LAN10/100Base-T

10/100Base-T 155/622M

UA5000

UA5000

UA5000

Figure 3–24 Point-to-multipoint LAN interconnection service

3.6 Multicast Service

The multicast service is used in the field of stream media, tele-education, video conference, video multicast, network game, data duplication, and so on. The multicast technology is designed with high effective point-to-multipoint data transmission

Page 77: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-19

capability, which is able to save the network bandwidth and reduce the network loads excellently.

The HONET is able to support the IGMP Snooping through the EPU board. Therefore, it can form the networks in combination with the multicast router to provide broadband users with multicast services. IGMP Snooping can capture the IGMP packets transmitted between the user and the multicast router, set up and maintain Layer 2 multicast table for multicast duplication.

Figure 3–25 shows the networking application of IGMP Snooping multicast service.

MD5500Multicast router

UA5000

UA5000

ATU-R PC

ATU-R PC

ATU-R PC

ATU-R PC

Internet

Multicast source

Multicast source

Figure 3–25 IGMP Snooping multicast

The multicast control equipment, such as a multicast router or Huawei ISN8850 implements the IGMP protocol. The HONET realizes transparent transmission and detection of user Layer-2 packets as well as the duplication function of the multicast data packets.

The major features of the multicast service supported by the HONET are as follows.

The system supports up to 64 multicast groups, and each user can add 8 multicast groups simultaneously.

Only one PVC needs to be established, which can transmit both unicast data and multicast data.

The system supports the multicast services in four downstream networking modes: IMA E1/ATM E3/ATM 155 Mbit/s/VP Ring.

A minimum of 256 kbit/s downstream multicast service bandwidth can be provided by each multicast group. At the same time, every multicast user is guaranteed to share the bandwidth on average.

Page 78: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-20

3.7 VP Ring

The MD5500 and the UA5000 support Virtual Path (VP) Ring networking technology. VP Ring is a broadband ring network technology that combines the advantages of SDH ring network protection and ATM statistics multiplexing. It can allocate bandwidth based on actual needs and support multiple kinds of service and QoS types. Meanwhile, it has the protection switching function of the SDH/SONET equipment, making the network more reliable.

VP Ring adopts the point-to-point protection switching mechanism that reserves bandwidth and routes to realize the ATM-layer service protection. Reserving bandwidth and routes means that when the working entity is established, the system has to provide bandwidth and routes for the protection entity at the same time, which should meet the requirements of working entity for cell transmission performance. The point-to-point switching is a basic protection mechanism of ATM network, and it takes one point-to-point VP or VPG in the network as the independent protection entity.

The UA5000 accesses POTS, ISDN, N×64 kbit/s, xDSL, and LAN services. It transforms them into four basic kinds of ATM service types (CBR, rt-VBR, nrt-VBR, UBR) after ATM service adaptation, and performs traffic shaping and congestion control to these services. The service data enters the VP Ring at last. Each node of the VP Ring supports VP scheduling, which can implement bandwidth sharing of all kinds of services (including services transparently transmitted from other nodes, and the service of local node), and guarantee the priority of all kinds of services. Finally, all services of the VP Ring are converged in the MD5500, processed by the ATM service processing module of the AIC board, and then distributed to different service ports.

Besides the bandwidth sharing function, VP Ring also supports fast protection switching function. It can detect link faults quickly by the function of physical layer alarm detection and that of detection, insertion and capture of ATM layer OAM cell. Once any fault is detected, VP Ring can set the status of bridging unit/selector to accomplish fast switching function of the VP.

3.7.1 Protection Switching Type

In the HONET, the VP Ring adopts 1+1 protection switching mode, which falls into two types: unidirectional and bi-directional modes. The source node sends the service to the working entity and protection entity simultaneously, and the sink node can select to receive the service from either the working entity or protection entity. See Figure 3–26.

Page 79: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-21

Sink nodeBridging unit SelectorSource node Protection entity

Working entity

Before switching

Switching occurs.

Sink nodeBridging unit SelectorSource node Protection entity

Working entity

After switching

Figure 3–26 Principle of 1+1 protection switching

The 1+1 unidirectional protection means that the selective receiving of services in upstream and downstream directions is independent. The upstream selector should receive services from the working entity, while the downstream selector can receive services from either the working entity or protection entity.

The 1+1 bi-directional protection means that the selective receiving of services in upstream and downstream directions is related. The upstream and downstream selectors should receive services from the same entity.

Compared with the bi-directional protection mode, the unidirectional protection mode is rather easy to accomplish, not requiring support of any protocols. The selector of local node can determine from which entity it should receive the service based on working conditions of the entities, having a rapid switching speed. However, since the service may be transmitted over different routes in the upstream and downstream directions, the service quality in both directions may be different. The bi-directional protection switching mode needs protocol support, and the switching speed is slower; but the service quality in both directions is almost the same.

3.7.2 Protection Switching Detection and Trigger Mechanism

Protection switching can be triggered not only by detection mechanism automatically, but also by the protection switching command delivered by the NMS or Console.

Page 80: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 3 Service Implementation

3-22

To achieve automatic triggering, each node should be able to detect Signal Fail (SF) and Signal Degrade (SD) alarms. The SF alarms include Loss of Signal (LOS) and Loss of Frame (LOF) of the physical layer and alarm indication signal (AIS) of the ATM layer. The SD alarm mainly indicates that the cell loss ratio exceeds the threshold. When the sink node detects an SF or SD alarm, the protection switching is triggered. When the intermediate node detects an SF alarm, it inserts an AIS cell to the downstream service data, and then the protection switching is triggered as soon as the sink node receives this AIS cell.

3.7.3 Protection Switching Protocol

In realization of 1+1 bi-directional switching, the source node needs to negotiate with sink node about negotiate switching process on the basis of protection switching protocol, so as to keep the switching at both ends consistent. The protection switching protocol is transmitted by the Automatic Protection Switching (APS) cell, which is a special kind of OAM cell and is transmitted by special APS channel.

Figure 3–27 shows the principle of protection switching algorithm. Whether the switching occurs depends on the local switching request and remote K1 byte.

Local PriorityLogic

ValidityCheck

GlobalPriorityLogic

MismatchDetection

Top PriorityLocal Request

K1/K2 bytereceivedfrom FarEnd

activate Bridge/Selector Mismatch

Alarm

Set LocalBridge/Selector

send Local RequestInfo to Far Endvia K1 Byte

send Local Bridge/Selector Statusto Far Endvia K2 Byte

Top PriorityGlobal Request

K1 Byte FarEnd Request

K2 Byte FarEnd Status

LocalRequests

Figure 3–27 Principle of protection switching algorithm

Page 81: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-1

Chapter 4 Networking Applications

4.1 System Networking Options

The HONET offers carriers the opportunity to build a broadband and narrowband integrated network over a single platform supporting various networking topologies. The MD5500 and the UA5000 of the HONET system can form ring, star, tree or chain network through transmission system.

4.1.1 SDH Networking

The HONET adopts the OptiX 155/622H, an STM-1/STM-4 SDH optical transmission device developed by Huawei, as its built-in optical transmission equipment. Besides, the UA5000 can also use the embedded optical transmission board ATU to implement SDH transmission.

The chain and ring are two basic topologies of SDH network. There are many other complicated network topologies derived from these two topologies as per different requirements.

Figure 4–1 shows the ring topology of SDH optical transmission system. The MD5500 and UA5000 are connected through SDH transmission system to carry both narrowband and broadband services. The narrowband services are sent to the MD5500 over E1 links. The broadband services are transmitted to the MD5500 through spare SDH resources over IMA E1 or ATM E3 links.

Page 82: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-2

E1/V.35

xDSL

LAN Switch/Router

IMA E1E1

PSTN / DDN

FE/GE

POTS ISDN

ATM / IP

STM - 1/4

ATM E3

SDH

ATM E3

IMA E1E1/V.35

xDSL

LAN Switch/Router

E1

PSTN/DDN

iManager N2000MD5500

ISDN

ATM/IP

UA5000

- 1/4V5/E1

UA5000

E1SDH

UA5000

ADM

Figure 4–1 HONET SDH networking

The features of this networking are as follows:

The OptiX 155/622H features powerful cross-connecting ability, abundant interfaces and reliable software function. It is adaptive to complex network structures.

The SDH ring network can implement the two-fiber unidirectional path protection and two-fiber unidirectional multiplex section protection functions. It enhances the network stability to ensure reliable service transmission.

4.1.2 MSTP Networking

Figure 4–2 shows the MSTP networking. The narrowband services are transmitted through E1 port and the broadband services through STM-1 port or FE/GE port. The services are then multiplexed through MSTP and carried over the Metro transmission system.

Page 83: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-3

E1/V.35xDSL

LAN Switch/Router

E1

PSTN / DDN

ISDN

ATM / IP

STM-1/4

STM-1/GE/FE

STM-1/GE/FE

E1

E1

PSTN/DDN

iManagerN2000

FE/GE

MD5500

POTS

ATM/IP

STM-1/4V5/E1

UA5000

E1Metro

STM-1/GE/FE

E1

STM-1/GE/FE

ADM

UA5000

UA5000

STM-1/GE/FE

Figure 4–2 HONET MSTP networking

The feature of this network is as follows:

This networking enables integrated transmission of various services. It has very high bandwidth usage rate.

4.1.3 VP Ring Networking

The MD5500 and the UA5000 form VP Ring network through their respective imbedded optical ports. The MD5500 converges and distributes both narrowband and broadband services.

Figure 4–3 is the networking diagram.

Page 84: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-4

PSTN / DDN ATM / IP

VP Ring

xDSL

LAN Switch/Router

ISDN

STM-1/4

PSTN/DDN

iManager N2000

ATM/IP

POTS

VP Ring

xDSL

LAN Switch/Router

E1/V.35

FE/GEV5/E1

UA5000

UA5000

UA5000

MD5500

Figure 4–3 HONET VP Ring networking

The features of this networking are as follows:

Low network construction cost thanks to networking through imbedded optical port without additional transmission equipment.

Saving fiber resource efficiently by transmitting both broadband and narrowband services over one fiber pair.

Independent bandwidth for narrowband service to ensure excellent QoS, shared bandwidth for broadband service to transmit over ATM layer.

Enhanced network security to ensure non-interrupted service running through intrinsic switchover protection mechanism.

Integrated management for transmission equipment and service nodes.

4.1.4 Direct Fiber Networking

Figure 4–4 shows the direct fiber networking. The MD5500 is integrated with STM-1 and STM-4 fiber access units, and the UA5000 provides STM-1 port.

The UA5000 receives broadband services through broadband subscriber boards and sends them to the MD5500 through its STM-1 port. The MD5500 converges the broadband services and transmits them to backbone network through ATM or IP port.

The UA5000 receives narrowband services through narrowband subscriber boards and sends them to the MD5500 through CES links over STM-1 transmission system. The MD5500 transmits the narrowband services through its V5 interface to the PSTN.

Page 85: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-5

PSTN / DDN

iManager N2000

MD5500

ATM / IP

UA5000

POTS

LAN Switch/Router

ISDNBRI

UA5000

UA5000

UA5000slave frame

FE/GE

E1/V.35

STIV-1/4V5/E1

xDSLModem

Figure 4–4 HONET direct fiber networking

The features of this networking are as follows:

It is of low cost, easy deployment and flexible networking. It saves lots of transmission resources and enhances the networking flexibility for

the HONET. Its transmission distance using single-mode fiber without repeater reaches 30 km,

which satisfies most transmission distance demands of access network.

4.1.5 Direct Fiber and SDH Hybrid Networking

The MD5500 and UA5000 of the HONET can be networked by SDH transmission system and direct fiber connection. The narrowband services are transmitted over SDH transmission system and the broadband services are carried over direct fiber connection.

Figure 4–5 shows this networking mode.

Page 86: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-6

E1/V.35

xDSLModem

LAN Switch/Router

E1

E1

PSTN / DDN

iManager N2000FE/GE

MD5500

POTSISDNBRI

ATM / IP

SDH

STM-1/4

ADM

ADM

ADM

ADM

UA5000

UA5000UA5000

UA5000

HW

E1

E1

slave frame

V5/E1

Figure 4–5 HONET direct fiber and SDH hybrid networking

The feature of this networking is as follows:

In this networking mode, the broadband and narrowband services are transmitted through different transmission channels. The broadband services are transmitted through the fiber channel of the built-in optical port (STM-1, FE or GE) of the UA5000, guaranteeing large bandwidth and better service quality. The narrowband services are transmitted through the SDH ring network, ensuring the high service data transmission reliability.

4.1.6 Subtending Networking

I. AIUA subtending

Figure 4–6 is the AIUA subtending networking diagram. By the IMA E1/STM-1 ATM/ATM E3 port provided by the AIUA board, the multi-level UA5000 equipment can form the link, star, and tree networks by the subtending mode, which can effectively enlarge the coverage area of the network.

Page 87: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-7

PSTN/DDN

V5/E1

iManager N2000

ATM/IP

POTSE1/V.35

xDSL

LAN Switch/Router

ISDN

FE/GESTM-1/4

SDH/VP Ring/STM-1

STM-1

ATM E3 IMA E1

MD5500

UA5000

UA5000

UA5000

UA5000

UA5000

Figure 4–6 HONET AIUA subtending networking

The features of this networking are as follows:

The STM-1 ATM subtending networking saves fiber resources and ATM ports of the upper layer equipment, makes full use of the bandwidth resources and enlarges significantly the broadband network coverage. The networking is realized by means of the fiber connection, not requiring SDH equipment. The TDM services are transmitted along with the broadband services through circuit emulation.

The IMA E1 and ATM E3 subtending networkings save transmission resources and feature flexible networking and low network construction expense. They are adaptive to scenarios that require few broadband services. They make full use of the existent E1 and E3 transmission resources to carry the broadband data, which realizes the interworking and transparent transmission of the ATM broadband services. By this networking mode, the broadband network can be constructed promptly and flexibly in the broadband subscriber sparse areas.

Page 88: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-8

II. SDL subtending

The SDL subtending networking enables subtending of UA5000s through telephone lines using SHDSL technology. Figure 4–7 is the SDL subtending networking diagram.

Near end UA5000 and far end UA5000 are connected using respective H521SDL board through twisted pairs. The H521SDL board at far end UA5000 converts the E1 signals into TDM SHDSL signals; The H521SDL board at near end UA5000 converts the TDM SHDSL signals into E1 signals. They work together to function as an imbedded E1 transmission device.

E1/V.35

xDSL

LAN Switch/Router

IMA E1E1

PSTN / DDN

iManager N2000FE/GE

MD5500

POTSISDNBRI

E1

ATM / IP

UA5000-3

SDH

STM-1/4V5/E1

ADM

UA5000-1

UA5000-5

UA5000-2

UA5000-4

SHDSL

SHDSL

E1

Figure 4–7 HONET SDL subtending

The features of this networking are as follows:

It is suitable to the scenario that deploys narrowband ONU equipment of Huawei at both local and remote ends and requires few trunk links.

It supports remote narrowband ONU access in the case of insufficient transmission and fiber resources.

4.1.7 Single-Layer Networking

Figure 4–8 is diagram of the single-layer networking. For narrowband services, the UA5000 transmits them to the PSTN exchange through V5 interface over SDH/Metro 1000 transmission system. For broadband services, the UA5000 handles them in following two ways:

Page 89: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-9

Transmits them to ATM network through STM-1/STM-4 port Transmits them to IP metropolitan area network through FE/GE port

E1/V.35xDSL

LAN Switch/Router

iManager N2000

POTSISDN

E1PSTN / DDN

LE

SDH

E1/V5

UA5000

UA5000

UA5000

ATM switch /Router

E1/V5

E1/V5

E1/V5

STM-1/STM-4/FE/GESTM-1/STM-4/FE/GE

ATM / IP

Figure 4–8 HONET single-layer networking

The features of this networking are as follows:

It is suitable for the scenarios that have few access nodes and each node has a relatively small number of subscribers.

It supports a variety of transmission systems. It can use SDH or Metro transmission system.

It enables broadband and narrowband integrated NMS. The broadband and narrowband services can be managed using the iManager N2000 NMS.

4.1.8 TDM Large Capacity Networking

Figure 4–9 is the diagram of TDM large capacity networking. Compared with other networking schemes, the TDM large capacity networking enables the access of even larger number of subscribers. The capacity features of this networking are as follows:

Providing 16k x 16k TDM switching fabric through the ASXB board to enable the access of up to 48000 POTS subscribers.

Using standard STM-1 ports provided by the MSUC board as trunk interface to support the access of up to 496 E1 links.

When the LE provides STM-1 ports, the LE can connect with the MD5500 through the STM-1 port. By this, the E1 cables are saved and the access density of the V5 interface is improved.

Page 90: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-10

When the LE does not provde STM-1 ports and it is located far away from the MD5500, the LE and the MD5500 can be connected using transmission system, which multiplexes E1 links into STM-1 channels. See Figure 4–9.

SDH

HW

E1

UA5000UA5000slave frame

UA5000 UA5000

E1 E1

STM-1

STM-1

MD5500

LEE1SDH

Figure 4–9 TDM large capacity networking

The features of this networking are as follows:

Capable of handling large capacity TDM services Capable of using existing transmission resource to cut network construction

investment Easy maintenance thanks to simple connection with LE

4.1.9 NGN Migration Networking

The NGN migration process of the access network has three stages. They are “traditional access network”, “access network with small quantity of NGN subscribers” and “target NGN”.

The HONET can satisfy the demands of all these three stages. It enables stepless NGN migration of the access network.

See Figure 4–10 for the networking diagram.

Page 91: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-11

Traditional accessnetwork

VoIP/H.248

Target NGN

LE

V5V5

UA5000

MD5500

UA5000UA5000

UA5000

IP

SoftSwitch

VoIP/H.248

MD5500

UA5000UA5000

UA5000

V5

LE

V5

UA5000

IP

SoftSwitch

VoIP/H.248

MD5500

UA5000 UA5000

UA5000

UA50

PSTNTMG

Access network withsmall quantity of NGNsubscribers

UA5000

Figure 4–10 NGN migration networking diagram

The feature of this networking is as follows:

Page 92: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-12

The HONET is an NGN-ready system. It enables the access network to migrate into NGN in a stepless manner. The HONET NGN migration networking protects the investment efficiently.

4.2 Typical Applications

The HONET has abundant service interfaces and flexible networking ability. It has been massively deployed worldwide. The following are some typical networking application examples.

4.2.1 Integrated Narrowband and Broadband Access

Thanks to the characteristics of wide coverage area, smooth upgrade from narrowband to broadband, and the convenient and rapid deployment, the HONET has now found wide applications in many regions and countries.

I. Application in City A

The HONET application in city A provides POTS, ISDN BRA, ISDN PRA services and broadband access services including Ethernet, ADSL and VDSL. These services share the same subscriber frames and are transmitted over the same transmission platform. The HONET supports the access of full range narrowband and broadband integrated services.

Figure 4–11 shows the networking of HONET integrated configuration of narrowband and broadband services at City A.

ADSL

Community ACommunity B Community C

CommunityD

Ethernet VDSLPOTS ISDN,etc.

IP CorePSTN

MD5500

UA5000 UA5000

iManager N2000VOD Server

BRAS

Figure 4–11 Narrowband and broadband integrated application in City A

Page 93: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-13

In this application mode, broadband access network of City A uses the OptiX 155/622H as its transmission platform. Narrowband services and broadband services are provided by the UA5000, and then are transmitted by the OptiX 155/622H.

The VDSL service occupies one FE port for transmission. Subscribers can access the Internet directly through the 10Base-T Ethernet port. Subscribers can also connect the broadband network through the telephone line in use taking the advantage of ADSL technology. In this case, subscribers can make phone calls, activate VOD service, access the Internet, and realize telecommuting simultaneously through one telephone line.

In broadband upstream direction, the MD5500 implements layer-2 convergence and transparent transmission of IP services, which are transmitted to IP network through the BRAS.

The networking in city A is a typical application of the HONET, aiming at providing various voice, data and video services. In this networking mode, the broadband services, such as ADSL, have large coverage area, and is easy to deploy rapidly. And they are suitable for the places where there are large numbers of subscribers.

II. Application in City B

City B constructs a new network for integrated services access. Figure 4–12 shows the networking model.

ADSL

Community ACommunity B Community C

CommunityD

Ethernet VDSLPOTS ISDN,etc.

IP CorePSTN

MD5500

UA5000 UA5000

iManager N2000VOD Server

Figure 4–12 Narrowband and broadband integrated application in City B

Page 94: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-14

III. Application in City C

Since there are lots of small and medium enterprises in City C, the telecommunications network is required to offer Intranet leased line interconnection in addition to broadband access service.

ADSL

Residentialcommunity

Enterprise A

Ethernet EthernetEthernet

IP Core PSTN

MD5500

UA5000 UA5000

iManager N2000

Enterprise BEnterprise C

ATM core

Figure 4–13 Narrowband and broadband integrated application in City C

In this networking mode, POTS and ADSL services are provided over twisted pairs for the residential community. The leased line interconnection of Intranets is achieved on the basis of Ethernet, HONET and upper-layer ATM core equipment.

4.2.2 Narrowband Service Access

The transmission system of PSTN of City D is composed of one SDH transmission ring-link network. The SDH transmission ring network is built in the urban area, so that some important sites can be protected. The MD5500 connects with the UA5000 that are located in small towns through link network. The UA5000s in town A and town B are installed in outdoor cabinets, and the other UA5000s are installed in indoor cabinets. See Figure 4–14.

The access network of City D mainly provides analog voice service to satisfy the needs of daily phone service and dialup Internet access service at home or in company.

The UA5000 at the steel mill is connected with an analog switch through Z interface for the internal use. The lines remained available at the site are used to provide service for adjacent users. The UA5000 at the No. 1 middle school is connected with a small-sized private branch exchange (PBX) for internal telephone exchange through ISDN PRI

Page 95: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-15

interface. The UA5000s at other organizations such as hospital and the bank provide subscriber interfaces directly, and they are configured with CENTREX and Console to manage internal traffic.

PSTN

MD5500

UA5000

UA5000

UA5000

UA5000Bank

Supermarket

Steel mill

Z interface

Analogexchange

PBX

Hospital

Municipaloffice

iManager N2000

UA5000

UA5000 Town B

Town A

School

UA5000

POTS

Figure 4–14 Narrowband access application in City D

4.2.3 DDN Service Access

The digital data access network in City E comprises the MD5500, the UA5000 and the iManager N2000.

The whole subscriber access network consists of one MD5500 and several UA5000s. They form two fiber subscriber ring networks, and one fiber subscriber link. This DDN provides E1 leased line service, Nx64 kbit/s V.35 service, V.35 distance extension service, FE1 service and V.35 sub-rate services (9.6 kbit/s and 19.2 kbit/s).

Figure 4–15 shows the networking mode of DDN of City E.

Page 96: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-16

MD5500

UA5000

UA5000

UA5000 UA5000

Police office

Bank B

iManager N2000

UA5000

Bank A

UA5000

Bank D

Municipal office

E1SHDSL

Modem

Bank C

DDNNode

MTA

RouterV.24

DTE

V.35

DDN Node

E1

V.35

V.35

UA5000

Router

RouterUser terminal

DTE

DDN Node

MTA

E1Police office

Figure 4–15 DDN application in City E

4.2.4 IP Egress Application

City F is to construct an access network with few access nodes. Each node has a relatively small number of subscribers. The sing-layer networking is suitable here.

The broadband services are transmitted to the broadband IP metropolitan area network through FE or GE port of the IPMA board. The narrowband services are sent to PSTN LE through V5 interface of the PV8 board over the SDH/Metro transmission system.

This networking enables broadband and narrowband integrated NMS. The broadband and narrowband services can be managed using the iManager N2000 NMS.

Figure 4–16 shows the networking in which the broadband services are transmitted upstream through IP port.

Page 97: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-17

ADM

UA5000

UA5000 UA5000

E1

ADMADM

ADM

Office B

PSTN / DDNPSTN/DDN PSTN / DDNIP

FE/GE

E1/V5

E1/V5

Office A

FE/GE

A Residential communityOr an enterprise

FE/GE

Office C

iManagerN2000Router

E1/V5

E1/V5

HDLC

Figure 4–16 IP egress networking

4.2.5 NGN Migration

City G is to construct an NGN-ready network. The HONET can cooperate with the SoftSwitch to carry voice services over IP networks, which achieves migration from the circuit switching network to the NGN. The TDM subscribers and VoIP subscribers can coexist in this network. The HONET serves as a voice gateway and a broadband data gateway.

Figure 4–17 shows a NGN-ready network using the HONET.

Page 98: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 4 Networking Applications

4-18

ATM IP

MD5500

UA5000

PSTNDDN

UA5000

UA5000

UA5000

UA5000UA5000

MSTP

FE/GEE1 V5H.248

H.248

SoftSwitchSTM-1/4

POTS(VolP)FAX over IP

Modem over IP

LANSwicth

ISDN V.24V.35E1

xDSL POTS(VolP)FAX over IP

Modem over IP

LANSwicth

ISDN V.24V.35E1

xDSL

UA5000

Figure 4–17 HONET NGN-ready application

Page 99: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-1

Chapter 5 Network Management System

The HONET supports CLI NMS and GUI NMS to provide powerful and flexible network management functions. This chapter describes these two NMS modes in detail.

5.1 CLI NMS

The HONET supports CLI NMS, through which you can manage the whole HONET system.

5.1.1 Running Environment

The CLI NMS can be achieved using operating system attached programs like Telnet and HyperTerminal. It doesn’t require extra NMS software.

For example, to maintain the system through serial port connection, you can use the HyperTerminal of Windows OS; or to maintain the system through Telnet session, you can use the Telnet client software.

5.1.2 NMS Functions

The HONET CLI can configure all services for the HONET system. Its major functions are listed as follows:

I. Provides comprehensive commands

The HONET CLI supports all commands that are used to configure and maintain the HONET system.

II. Supports local and remote maintenance

The HONET CLI supports local and remote maintenance through serial port or Ethernet port. The HONET has embedded Telnet server, which supports multiple concurrent online sessions.

III. Supports hierarchical protection

The HONET CLI supports hierarchical protection. This function prevents unauthorized access and operations. For commands that may interrupt services, the system will give prompts.

Page 100: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-2

IV. Provides easy online help

The HONET CLI provides rich and easy online help. This eases the operation.

V. Supports intelligent match

The HONET CLI interpreter supports incomplete searching method for key words. To obtain a certain interpretation, you need to enter the non-conflicting key words.

VI. Supports retrieval of history commands

The CLI provides a function similar to the Doskey. With this function, the executed commands can be saved automatically, and you can retrieve them from the CLI at any time to execute them again.

5.2 GUI NMS

The HONET provides NMS interface to communicate with the iManager N2000 through SNMP.

The iManager N2000 is a GUI NMS developed by Huawei. It adopts client/server architecture. It is of modular design and supports multiple operating systems and databases.

The iManager N2000 provides user friendly GUI to achieve centralized network management.

5.2.1 Running Environment

I. Server configuration

1) Hardware configuration

The iManager N2000 server can run on a PC server or a UNIX workstation.

The server configuration varies with management requirements. See Table 5–1 for details.

Table 5–1 iManager N2000 server and its manageability

Management capacity Recommended server configuration

800 equivalent nodes PC server (such as PE2600-XEON): CPU: 1.8 GHz or above; RAM: 1024 MB (4*256 MB); hard disk: 36GB.

1200 equivalent nodes PC server (such as PE2600-2*XEON): CPU: 1.8 GHz or above; RAM: 2 GB (4*512 MB); Hard disk: 3*36GB.

Page 101: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-3

Management capacity Recommended server configuration

3000 equivalent nodes PC server (such as PE6600-4*XEON): CPU: 1.4GHz or above; RAM: 4 GB (4*1GB); Hard disk: 5*36GB.

1000 equivalent nodes Workstation (such as Blade 2000): CPU: 900 MHz (8 MB Cache); RAM: 1GB; Hard disk: 2*73GB.

1600 equivalent nodes Workstation (such as Blade 2000): CPU: 2*900MHz (8 MB Cache); RAM: 2GB; hard disk: 2*73GB.

4000 equivalent nodes Workstation (such as Fire V480): CPU: 2*1.05GHz (8 MB Cache); RAM: 4GB; hard disk: 2*73GB.

6000 equivalent nodes Workstation (such as Fire V480): CPU 4*1.05GHz (8M Cache); RAM: 8GB; hard disk: 2*73GB.

The network manageability is measured using equivalent nodes. The translation of the equivalent nodes is shown in Table 5–2.

Table 5–2 Equivalent node translation

Device type Quantity Equivalent node

MD5500 Per MD5500 5

Per 100 PSTN/ISDN ports 1 UA5000

Per 40 xDSL ports 1

xDSL device Per 40 ports 1

NMS client Per client 10

2) Software configuration Windows platform: Windows 2000 Server + SQL Server2000 UNIX platform: Solaris8.0 or later + Sybase 12 iManager N2000 software: iManager N2000 server software

II. Client configuration

1) Hardware configuration

The iManager N2000 client can run on a PC or a UNIX workstation. Since a UNIX workstation is expensive, a PC is recommended.

2) Software configuration Windows platform: Windows 2000 Professional UNIX platform: Solaris 8.0 or later iManager N2000 software: iManager N2000 client software

Page 102: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-4

5.2.2 NMS Functions

The iManager N2000 has powerful management functions. They are detailed as follows:

I. Supports comprehensive service management

The iManager N2000 provides the following management functions:

Equipment management Voice service management, including V5 interface management, SPC

management, VF dedicated line, E&M trunk and direct-dial-in management V5 voice port management, including PSTN port management, ISDN port

management and subtending port management ATM connection management, including PVC management and traffic profile

management VP Ring service management IMA service management ADSL service management CES port management HONET service integration management Subscriber line test management

The iManager N2000 provides the following functions to facilitate the maintenance operations:

It provides NE configuration entries through its configuration window, where you can configure hardware and perform service maintenance in a manner of What You See Is What You Get (WYSIWYG).

It provides uniform management of multiple components of the HONET, such as the MD5500, UA5000, BSL, RSP, and PV8.

It provides all-round management of ADSL service, V5 voice service, Ethernet service and VP Ring service.

It provides the configuration profile to support fast service deployment. It collects hardware resources statistics on the selected equipment, allowing you

to manage the resource efficiently.

At the same time, integrated with the narrowband HONET GUI console, the iManager N2000 enables you to manage the narrowband and broadband access equipment in a unified manner.

II. Supports easy topology management

The iManager N2000 provides a visual topological view to facilitate device management.

Page 103: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-5

It can upload the topology data of the new network equipment by means of automatic topology discovery.

It supports customized topological view. It provides the topological view navigation tree allowing you to navigate views

rapidly. It polls and monitors the network equipment regularly, and refreshes its state, so

that the network view is consistent with the actual network topological view. The real-time running state of the whole network is displayed in the network view.

It supports the topological view filtration. With this function, when there are large numbers of network nodes, you can pay more attention to the running state of the network equipment that you are concerned about.

It can indicate the NE and link states in real time. The node color and indicator indicate the device state and alarm information. The subnet color indicates the most severe fault state of the topology objects in the subnet. The link color indicates the link type, state and alarm information.

It supports the connection management among network nodes. It can display the relationship between the logical connections and the ports in table. It can also display the information such as the state of the connection, alarm, and performance.

III. Supports powerful fault management

The iManager N2000 provides the following fault management functions:

It supports real time alarm. If a fault occurs at a node, the color of corresponding topology node will change. The iManager N2000 also provides audible and visual alarm functions. It can be connected with an external alarm box. and supports multiple alarm report modes.

It handles the fault information by multiple means. It can redefine alarm levels and save alarm information to ensure the system efficiency and stability.

It supports alarm filtering. You can customize the filtering rule to output the most concerned alarms, and query the current and history alarms. The query results can be output as a report.

It supports alarm filtration profile. The profile can be customized on user level. The alarms a user can query may vary from user to user, which facilitates dividing user authority.

It supports the alarm topology positioning. When an alarm occurs, you can jump to the alarm interface from current interface, which lays the foundation for quick troubleshooting.

It supports alarm relationship analysis. You can define rules to mask some unimportant alarms to reduce the number of alarms, which helps you locate a fault rapidly.

Page 104: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-6

IV. Supports flexible performance management

The iManager N2000 monitors the equipment performance data in real time. This enables you to keep track of the current running state and performance state of the network. It can also predict the network running state, which helps you make reasonable plans for the management and operation of the network.

You can view the equipment performance at any time you want, such as port traffic, number of currently online users, and user type. The iManager N2000 can collect and display the performance data in real time.

When viewing the performance data, you can determine whether to stop or resume refreshing real-time performance data and to adjust the refreshing frequency.

You can collect performance data on a timed basis. By creating tasks, you can collect multiple performance parameters of multiple objects of the device regularly or at the specified time. In addition, you can customize a formula to work out the performance index you are concerned about.

You can set the performance alarm threshold. The iManager N2000 provides performance alarm prediction function.

You can save the real time performance data view as file in various formats for future use.

V. Supports strong security management

The iManager N2000 can perform network management based on different user authorities and different domains. It can divide user’s authorities based on different operations and applications, and can manage equipment based on different geographical positions or actual services.

The system security management provides reasonable authority management functions, including user management and user group management. To facilitate the fault recovery and management, it can define the management category for network elements and executable operations, and create operation logs for future check.

An administrator can terminate the dangerous operations of other users in time.

The user password is encrypted before being saved and transmitted.

The iManager N2000 provides the address access control function. Only the user whose IP address is included in the Access Control List (ACL) can get access to the NMS Server.

To enhance the user’s access reliability, the iManager N2000 provides excellent authentication measures, including user login authentication and user operation authentication.

Page 105: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-7

5.3 NMS Networking Modes

The HONET supports two NMS networking modes: inband networking and outband networking.

5.3.1 Inband Networking

In inband networking mode, the NMS manages equipment through the service channel provided by the managed equipment.

Here, the maintenance information is transmitted to the NMS through the service channel. The inband networking mode is flexible and requires no peripheral devices. However, because the maintenance information will occupy the service channel when being transmitted, the maintained equipment cannot be maintained if it is faulty.

There are multiple inband networking applications, in which the OLT of the HONET is in different positions of the whole network. The following introduces two commonly used applications.

I. Outband + ATM inband NMS

The NMC connects with the ATM switch through a LAN, which connects with the MD5500 or the UA5000 through PVC connections. Here, the NMS networking is achieved by ATM inband channel, so that the NMC can manage the MD5500, the UA5000 and the ATM switch in a unified manner.

See Figure 5–1.

Integrated NMC

ATM Network

InternetATM switch

Outband IPMaintenanceterminal

MD5500

MD5500UA5000 UA5000

PSTN ATU-R

Subscriber

Web browser

UA5000UA5000

UA5000

Figure 5–1 NMS networking diagram (outband + ATM inband)

Page 106: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-8

II. ATM inband NMS

When the NMS networking adopts ATM inband mode, the MD5500 and the UA5000, the MD5500 and ATM switch, ATM switches, NMS Server and ATM switch are networked through PVC connections. Where, the NMS Server is connected with the ATM switch through 155 Mbit/s optical port. Inband communication mode is used between the NMC and all managed equipment.

See Figure 5–2.

Integrated NMC

ATM Network

InternetATM switch

155 Mbit/sMaintenance

terminal

MD5500

MD5500UA5000

UA5000

PSTN ATU-R

Subscriber

Web browser

UA5000

UA5000 UA5000

Figure 5–2 NMS networking diagram (ATM inband)

5.3.2 Outband Networking

Outband networking means that the NMS is connected with the managed equipment through non-service channel to manage the equipment. Compared with the inband networking, the outband networking can

Provide more reliable equipment management channels. Locate the network equipment information in time. Monitor the managed equipment in real time whenever a fault occurs.

Outband networking mode requires additional networking equipment to provide the maintenance channel independent of the service channel.

The outband NMS interfaces of the HONET includes serial port and Ethernet port. The HONET supports multiple outband networking modes. Such network resources as DDN, ISDN dedicated line, E1 line, Router and Ethernet can be used for outband networking. See Figure 5–3.

Page 107: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 5 Network Management System

5-9

Integrated NMC

ATM Network

ATM switch

Maintenanceterminal

MD5500

MD5500 UA5000

WAN

Router

Router

Router

Router

UA5000UA5000

UA5000UA5000

ATM switchATM switch

Figure 5–3 Outband NMS networking diagram

Page 108: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-1

Chapter 6 Technical Specifications

6.1 Standards Compliance

IEEE 802.1p Traffic class expediting and dynamic multicast filtering

IEEE 802.1Q IEEE standard for local and metropolitan area networks: Virtual Bridged Local Area Networks

IEEE 802.2 IEEE standard for local and metropolitan area networks Specific requirements Part 2: Logical Link Control

IEEE 802.3 IEEE standard for local and metropolitan area networks: -Specific requirements Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications (includes 802.3ab, 802.3ac and 802.3ad)

IEEE 802.3u Definition of Fast Ethernet (100BTX, 100BT4, 100BFX)

IEEE 802.3x Definition of Full Duplex operation in a switched LAN

IEEE 802.3z Definition of Gigabit Ethernet (over Fibre)

ITU-T G.168 Digital network echo cancellers

ITU-T G.702 Digital hierarchy bit rates

ITU-T G.703 Physical / electrical characteristics of hierarchical digital interfaces

ITU-T G.704 Synchronous frame structures used at primary and secondary hierarchical levels

ITU-T G.706 Frame alignment and cyclic redundancy check (CRC) Procedures relating to basic frame structures defined in recommendation G.704

ITU-T G.707 Network Node Interface for the Synchronous Digital Hierarchy (SDH)

ITU-T G.711 Pulse code modulation (PCM) of voice frequencies

ITU-T G.712 Transmission performance characteristics of pulse code modulation channels

ITU-T G.723.1 Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s

ITU-T G.729 C source code and test vectors for implementation verification of the G.729 8 kbit/s CS-ACELP speech coder

ITU-T G.781 Synchronization layer functions

ITU-T G.783 Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks

ITU-T G.785 Characteristics of a flexible multiplexer in a synchronous digital hierarchy environment

ITU-T G.797 Characteristics of a flexible multiplexer in a plesiochronous digital hierarchy environment

Page 109: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-2

ITU-T G.803 Architecture of transport networks based on the synchronous digital hierarchy (SDH)

ITU-T G.804 ATM cell mapping into plesiochronous digital hierarchy (PDH)

ITU-T G.811 Timing requirements at the outputs of primary reference clocks suitable for plesiochronous operation of international digital links

ITU-T G.812 Timing requirements of slave clocks suitable for use as node clocks in synchronization networks

ITU-T G.813 Timing characteristics of SDH equipment slave clocks (SEC)

ITU-T G.821 Error performance of an international digital connection operating at a bit rate below the primary rate and forming part of an integrated services digital network

ITU-T G.823 The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy

ITU-T G.824 The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy

ITU-T G.826 Error performance parameters and objectives for international constant bit rate digital paths at or above the primary rate

ITU-T G.902 Framework recommendation on functional access networks (AN): architecture and functions, access type, management and service node aspects

ITU-T G.957 Optical interfaces for equipments and systems relating to the synchronous digital hierarchy

ITU-T G.958 Digital line systems based on the synchronous digital hierarchy for use on optical fibre cables

ITU-T G.960 Access digital section for ISDN basic rate access

ITU-T G.961 Digital transmission system on metallic local lines for ISDN basic rate access

ITU-T G.962 Access digital section for ISDN primary rate at 2048 kbit/s

ITU-T G.964 V-interfaces at the digital local exchange (LE) V5.1-interface (based on 2048 kbit/s) for the support of access network (AN)

ITU-T G.965 V-interfaces at the digital local exchange (LE) V5.2-interface (based on 2048 kbit/s) for the support of access network (AN)

ITU-T G.982 Optical access networks to support services up to the ISDN primary rate or equivalent bit rates

ITU-T G.991.2 Single-pair high-speed digital subscriber line (SHDSL) transceivers

ITU-T G.992.1 Asymmetric Digital Subscriber Line (ADSL) transceivers

ITU-T G.992.2 ITU standard for low-speed Asymmetrical Digital Subscriber Line without voice splitter

ITU-T G.992.3 Asymmetrical digital subscriber line (ADSL) transceivers - 2 (ADSL2)

ITU-T G.992.5 Asymmetrical digital subscriber line (ADSL) transceivers – extended bandwidth ADSL2 (ADSL2plus)

ITU-T G.993.1 Very high speed Digital Subscriber Line Foundation – For consent

Page 110: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-3

ITU-T G.996.1 Digital Subscriber Line (DSL) Transceiver Testing Procedure

ITU-T G.997.1 Physical layer management for Digital Subscriber Line (DSL) transceivers

ITU-T H.248 Gateway control protocol

ITU-T I.361 B-ISDN ATM layer specification

ITU-T I.363 B-ISDN ATM Adaptation Layer specification

ITU-T I.363.1 B-ISDN ATM Adaptation Layer Specification: Type 1 AAL

ITU-T I.363.5 B-ISDN ATM Adaptation Layer specification, Type 5 AAL

ITU-T I.371 Traffic control and congestion control in B-ISDN

ITU-T I.430 ISDN basic user-network interface layer 1 specification

ITU-T I.431 ISDN primary rate user-network interface layer 1 specification

ITU-T I.432.2 B-ISDN user-network interface-Physical layer specification: 155,520 kbit/s and 622,080 kbit/s operation

ITU-T I.432.3 B-ISDN user-network interface - Physical layer specification: 1544 kbit/s and 2048 kbit/s operation

ITU-T I.610 B-ISDN operation and maintenance principles and functions

ITU-T I.630 ATM protection switching

ITU-T M.3100 Generic network information model

ITU-T Q.811 Lower layer protocol profiles for the Q3 and X interfaces

ITU-T Q.812 Upper layer protocol profiles for the Q3 and X interfaces

ITU-T Q.831 Fault and performance management of V5 interface environments and associated customer profiles

ITU-T Q.921 ISDN user-network interface – Data link layer specification

ITU-T Q.931 ISDN user-network interface layer 3 specification for basic call control

ITU-T T.30 Procedures for document facsimile transmission in the general switched telephone network

ITU-T T.38 Procedures for real-time Group 3 facsimile communication over IP networks

ITU-T V.24 List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE)

ITU-T V.36 Modem using the 60-108 kHz frequency band for synchronous data transmission

ITU-T V.90 A digital modem and analogue modem pair for use on the Public Switched Telephone Network (PSTN) at data signalling rates of up to 56 000 bit/s downstream and up to 33 600 bit/s upstream

ITU-T Y.1310 Transport of IP over ATM in public networks

RFC 0768 User Datagram protocol

RFC 0783 The TFTP Protocol (Revision 2)

Page 111: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-4

RFC 0791 Internet protocol

RFC 0792 Internet Control Message Protocol

RFC 0793 Transmission Control Protocol

RFC 0826 An Ethernet Address Resolution Protocol (ARP)

RFC 0854 TELNET protocol

RFC 0894 A standard for the transmission of IP datagrams over Ethernet networks

RFC 1112 Host extensions for IP multicasting

RFC 1155 Structure and Identification of Management Information for TCP/IP-based Internets, Network Working Group, May 1990

RFC 1157 Simple Network Management Protocol(SNMP)

RFC 1213 Management Information Base for Network Management of TCP/IP-based internets: MIB-II 2.Draft Standards

RFC 1293 Inverse Address Resolution Protocol

RFC 1332 The PPP Internet Protocol Control Protocol (IPCP)

RFC 1483 Multiprotocol Encapsulation over ATM Adaptation Layer 5

RFC 1549 PPP in HDLC Framing

RFC 1577 Classical IP and ARP over ATM

RFC 1631 The IP Network Address Translator (NAT)

RFC 1723 RIP Version 2(RIP2)

RFC 1771 A Border Gateway Protocol 4(BGP4)

RFC 1994 PPP Challenge Handshake Authentication Protocol(CHAP)

RFC 2183 Remote Authentication Dial In User Service(RADIUS)

RFC 2225 Classical IP and ARP Over ATM(IPOA)

RFC 2236 Internet Group Management Protocol Version 2 (IGMP V2)

RFC 2328 OSPF Version 2,Network Working Group, April 1998

RFC 2364 PPP Over AAL5(PPPoA)

RFC 2453 RIP Version 2

RFC 2515 Definitions of Managed Objects for ATM Management

RFC 2960 Stream Control Transmission Protocol

ANSI T1.413 issue 1 & issue 2

Asymmetrical Digital Subscriber Line (ADSL) Metallic Interface Specification (issue 1 & issue 2 )

AF-PHY-0086.000 Inverse Multiplexing for ATM(IMA)Specification Version1.0

AF-PHY-0086.001 Inverse Multiplexing for ATM(IMA)Specification Version1.1

ATM Forum UNI3.0/3.1 User-Network Interface Version 3.0/3.1

Page 112: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-5

ATM Forum TM4.0 Traffic Management Specification Version 4.0

Bellcore GR-2837-CORE ATM Virtual Path Ring Functionality in SONET Generic Criteria

6.2 Technical Parameters

6.2.1 Physical Specifications

Table 6–1 OLT cabinet specifications

Cabinet type

Dimensions (Width x Depth x Height; mm)

Maximum weight in full configuration

(kg)

Maximum power

consumption (W)

Power requirement

H66-22 600×600×2200 230 (with two MD5500 frames) 900

DC input voltage: -40 - 57 VDC; AC input voltage: 220VAC±30%, 110VAC±30%; 50/60Hz

Page 113: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-6

Table 6–2 ONU cabinet specifications

Cabinet type

Dimensions (Width x Depth x

Height; mm)

Maximum weight in full configuration

(kg) Maximum power consumption (W)

Power requirement

ONU60A 436.0×420.0×86.1 9.5 110

F02A 600×600×2200 460 (with four batteries and three subscriber frame)

1020 (three frames)

F02AF 600×600×2200 390 (with three front-access subscriber frames)

1243 (three frames)

F01D-100 875×400×950

150 (not including batteries); Four batteries weight 50 kg (12.5 kg each)

1163 (including maximum power consumption of temperature control device: 400)

F01D-200 1250×550×1200

250 (not including batteries); Eight batteries weight 100 kg (12.5 kg each)

3000 (including maximum power consumption of temperature control device: 1000)

F01D-500 1550×550×1550

350 (not including batteries); Eight batteries weight 208 kg (26 kg each).

5500 (including maximum power consumption of temperature control device: 2500)

F01D-1000 1900x550x1650 650 (not including batteries); Eight batteries weight 208 kg (26 kg each)

5800 (including maximum power consumption of temperature control device: 2500)

DC input voltage: -40-57VDC

AC input voltage:

4840 power module: 150 - 300VAC, 47- 63 Hz;

4845 power module: 150-280VAC, 85-143VAC, 47- 63 Hz

Table 6–3 OLT/ONU frame specifications

Frame name Dimensions (Width x Depth x Height; mm) Applicable cabinet

MD5500B 482.60×420.00×444.50 H66-22 front-access cabinet OLT

MD5500G 482.60×420.00×444.50 H66-22 front-access cabinet

PV8-10, PV8-12, RSP-10, RSP-12 or RSP-14

482.60×420.00×266.70 Standard 19-inch cabinet

PV8-19 or RSP-19 794.00×308.00×280.00 ONU-512A or ONU-1000A cabinetONU

UAM or UAS 482.60×420.00×266.70 Standard 19-inch cabinet

Page 114: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-7

Frame name Dimensions (Width x Depth x Height; mm) Applicable cabinet

UAFM or UAFS 482.60×350.00×488.95 Standard 19-inch cabinet, F01D-200, F01D-500 or F01D-1000 cabinet ONU

UAFX 310.00×311.20×486.10 F01D-100 cabinet

6.2.2 Environment Parameters

I. Operating environment

The MD5500 is indoor fixed equipment working in air conditioning environment. Table 6–4 shows the operating temperature and humidity conditions of the MD5500:

Table 6–4 Operating temperature and humidity requirement

Equipment name Temperature (°C) Relative humidify (%)

MD5500 -5°C – 45°C 5% – 90%

Table 6–5 shows the working temperature and humidity conditions of the ONU:

Table 6–5 ONU working temperature and humidity requirement

Temperature (°C) Relative humidify (%)

Working temperature Equipment name With sun exposure

Without sun exposure

Storage temperature

Long-term working

conditions

Short-term working

conditions

With air conditioner

-25°C – 55°C -25°C– 60°C 10% – 85% 5% – 95%

Outdoor ONU With heat

exchanger -45°C – 50°C -45°C– 55°C

-45°C–70°C10% – 85% 5% – 95%

Indoor ONU 0°C – 45°C -10°C– 55°C 10% – 85% 5% – 95%

* Short-term refers to the period within consecutive 48 hours each occurrence and 15 days a year.

II. Air pressure

70 - 106 kPa

Page 115: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-8

III. Neatness

Density of dust with diameter over 5µm is less than or equal to 3x104 granules/m3. The dust granule is non-conductive, non-magneto-conductive and non-corrosive.

IV. Chemical environment

The chemical requirements for storage and transportation environment are listed in Table 6–6.

Table 6–6 Density requirement of chemical active materials

Active material Unit Density

SO2 mg/m³ ≤0.30

H2S mg/m³ ≤0.10

NO2 mg/m³ ≤0.50

NH3 mg/m³ ≤1.00

Cl2 mg/m³ ≤0.10

HCl mg/m³ ≤0.10

HF mg/m³ ≤0.01

O3 mg/m³ ≤0.05

6.3 System Performance

6.3.1 Integrated System Performance

Table 6–7 MD5500 system performance

Index MD5500B MD5500G

TDM switching capacity 4k x 4k 16k x 16k

Broadband switching capacity 5 Gbit/s

Maximum number of V5 interfaces 64 128

Maximum number of VP Rings 3

Maximum number of POTS subscribers (TDM) 16000 48000

Maximum number of POTS subscribers (VoIP) 5000

Maximum number of ISDN 2B+D subscribers 4000

Maximum number of ISDN 30B+D subscribers 32

Page 116: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-9

Index MD5500B MD5500G

TDM call processing capacity (BHCA) Larger than 145 k Larger than 316 k

VoIP call processing capacity (BHCA) 75.6 k

Call processing capacity of VPU board Each board provides up to 400 G.711 voice channels.

Maximum number of PVCs 32k

Maximum number of PVPs 2k

Maximum number of multicast PVCs 256 (For leaf node, it is 64)

Maximum number of SPCs 1024 2048

Clock stratum Stratum 3

Table 6–8 UA5000 system performance

Narrowband

TDM switching capacity 2k x 2k

Broadband (ATM egress)

Broadband switching capacity 1.2 Gbit/s

Maximum number of VP Rings 1

Maximum number of PVCs for single frame 8k

Call processing capacity of PVM board Each board provides up to 60 G.711 voice channels.

Broadband (IP egress)

L2 switching capacity 8.8 Gbit/s wire speed

Maximum number of VLANs 256. It can be extended to 4k through load sharing.

Maximum number of PVCs for single frame 1k

802.1p priority Layer-2 switching identifies 802.1p tag and supports 4 priority queuings (PQs).

Trunk 5 trunk groups. It supports to bind up to 8 FE ports.

Maximum learnable MAC address 8k

Ethernet port 10 FE ports or 8 FE ports with 1 GE port

ONU-independent networking

Maximum number of V5 interfaces 16

Maximum number of trunks 16 E1s

Page 117: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-10

Maximum number of subscribers (including POTS and ISDN) 3600

Maximum number of SPCs 512

HDLC 32

Maximum number of subtended frames 9

Maximum call processing capacity 40k

Maximum number of subscribers of each frame

UAM 288 POTS subscribers

144 ADSL subscribers

UAS 416 POTS subscribers

192 ADSL subscribers

UAFM 320 POTS subscribers

160 ADSL subscribers

UAFS 416 POTS subscribers

192 ADSL subscribers

UAFX 192 POTS subscribers 96 ADSL subscribers

Clock

Clock stratum Stratum 3

Table 6–9 VoIP performance index

Index Performance

Traffic 200 Mbit/s

Input buffer (Jitter Buffer) 80 ms

Voice objective evaluation When the network is in good condition: the average of PSQM < 1.5

When the network is in bad condition (the packet loss ratio =1%, network jitter =20ms, delay =100ms): the average of PSQM < 1.8

When the network is in worst condition (the packet loss ratio =5%, network jitter =60ms, delay =400ms): the average of PSQM < 2.0

Voice subjective evaluation When the network is in good condition: the average of MOS>4.0

When the network is in bad condition (the packet loss ratio =1%, network jitter =20ms, delay =100ms): the average of MOS>3.5

When the network is in worst condition (the packet loss ratio =5%, network jitter =60ms, delay =400ms): the average of MOS>3.0

Voice encoding ratio G.729a < 18 kbit/s

G.723.1 G.723.1 (5.3) < 12 kbit/s, G.723.1 (6.3)< 15 kbit/s

Page 118: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-11

Index Performance

Delay index (loopback delay)

-TG.729 < 150 ms, -TG.723.1 < 200 ms

Voice encoding/decoding switchover time

<60 ms

Voice encoding ratio G.729<18 kbit/s

G.723(5.3k)<12 kbit/s, G.723(6.3k)<15kbit/s

Voice delay G.729<150 ms, G.723<200 ms

6.3.2 System Interface Index

Table 6–10 MD5500 interface specification

Interface quantity Interface type

Per board Per system (Max.) Interface provided by…

TDM E1 16 118 CESH/DT16

ATM E1 16/8 224 CESH/EA16

IMA E1 32/16 224 IMUB

ATM E3 2 28 AIU

OC-3/STM-1 ATM 4 28 AIC

STM-4 ATM 1 7 AIC

FE (optical or electrical) 8/8/2 56 IPU/EPU/VPU

GE 1 7 IPU/EPU

STM-1 (optical) 2 28 MSUC

STM-1 (electrical) 2 28 MSUC

Table 6–11 UA5000 interface specification

Interface type Interface quantity (per board) Interface provided by…

Network interface

STM-1 ATM 2 H601APMA/H601AIUA

STM-4 ATM (VP Ring) 2 H601APMA

SDH 155 Mbit/s (STM-1) 2 H601ATUA/H601ATUB

TDM E1 (CES) 16/8 H601DEHA/H601APMA

IMA E1 8 H601APMA/H601AIUA

Page 119: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-12

Interface type Interface quantity (per board) Interface provided by…

ATM E3 2 H601APMA/H601AIUA

FE (electrical) 1/10 (2 for upstream interface, 8 for subscriber interface) H601PVM/H601IPMA

FE (optical) 2 H601IPMA

GE (optical) 1 H601IPMA

User interface

POTS 16/32 CB36/CB37/CC09/CC0H/CC0IASL

ISDN BRI 8 CB02/CB03DSL

ISDN PRI 16 H601DEHA

2B1Q 8 CB02/CB03DSL

E1 2/4 H302HSL/H521SDL

CES E1 16 H601DEHA

V.35 2/4 H302HSL

V.24 3 Provided by MTA

Nx64 2 H302HSL

ADSL 16/16/8 H601ADLA/H521BSLA/H521B08A

ADSL2+ 16 H602ADMA

VDSL 16 H601VDLA

TDM SHDSL 2/4 H303HSL/H521SDL

ATM SHDSL 16 H601SDLA

Ethernet 4 H521LSL

2/4-wire VF 16 CB02VFB

FXO 16 CC01CDI

E&M trunk 6 H301/H601ATI

Page 120: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-13

6.3.3 Protocols Compliance

Table 6–12 Protocols compliance

Voice signaling PSTN signaling and ISDN signaling of V5.1 and V5.2 interface

Voice coding/decoding algorithms G.711, G.723.1, G.729A

Gateway control protocol H.248, MGCP

Transmission (control) RTP/RTCP, UDP, TCP/IP

Echo cancellation G.168

Multicast RFC2515

ATM adaptation ALL1, ALL5

ATM service type CBR, rt-VBR, nrt-VBR, UBR

Routing protocol Static route, RIP II, OSPF

NMS Telnet, SNMP V1/V2/V3

6.4 Interface Technical Specifications

6.4.1 STM-1 Optical Port

I. General characteristics

Rate: 155 Mbit/s

Format: STM-1, ATM Over SDH

Category: Intermediate SONET (Synchronous Optical Network) OC3 SDH STM-1 (S1.1) compatible

Mode: Single-mode/multi-mode

Connector: SC

Optical port standard: SAMI interface

II. Optical port parameters

Table 6–13 shows the specifications for the single-mode STM-1 optical port.

Page 121: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-14

Table 6–13 Specifications for single-mode STM-1 optical port

Item Unit Value

Nominal bit rate kbit/s 155520

Operating wavelength range nm 1261-1360

Transmitter at reference point S

Optical source type None MLM

Maximum RMS spectral width (σ) nm 7.7

Maximum -20dB spectral width nm None

Minimum side mode suppression ratio dB None

Mean launched power None None

Maximum mean launched power dBm -8

Minimum mean launched power dBm -15

Transmitter at reference point S

Minimum extinction ratio dB 8.2

Attenuation range dB 0-12

Maximum dispersion ps/nm 96

Minimum optical return loss of cable plant at S, including any removable connectors

dB None Optical path between S and R

Maximum discrete reflectance between S and R dB None

Minimum sensitivity dBm -28

Minimum overload dBm -8

Maximum optical path penalty dB 1 Receiver at reference point R

Maximum reflectance of receiver, measured at R dB None

Page 122: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-15

Table 6–14 shows the specifications for the multi-mode STM-1 optical port.

Table 6–14 Specifications for multi-mode STM-1 optical port

Item Unit Value

Nominal bit rate kbit/s 155520

Operating wavelength range nm 1270-1380

Optical source type None LED

Maximum RMS spectral width (σ) nm 58

Maximum -20dB spectral width nm None

Minimum side mode suppression ratio dB None

Mean launched power None None

Maximum mean launched power dBm -14

Minimum mean launched power dBm -23.5

Transmitter at reference point S

Minimum extinction ratio dB 35

Attenuation range dB 0–6

Maximum dispersion ps/nm None

Minimum optical return loss of cable plant at S, including any removable connectors

dB None Optical path between S and R

Maximum discrete reflectance between S and R dB None

Minimum sensitivity dBm -30

Minimum overload dBm -14

Maximum optical path penalty dB None Receiver at reference point R

Maximum reflectance of receiver, measured at R dB None

III. Mean launched power

The mean launched optical power means the mean power of a pseudo-random data sequence coupled into the fiber by the transmitter measured at reference point S. Table 6–15 shows the specifications of mean launched power of the optical port.

Page 123: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-16

Table 6–15 Specifications of mean launched power of optical port

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

Single-mode -15 – -8 -11.0 STM-1

Multi-mode None -19

IV. Extinction ratio (EX)

Extinction ratio is the ratio of average optical power of the reflected optical signal to that of unreflected optical signal under the conditions of worst reflection and full modulation. Table 6–16 shows the specifications of extinction ratio of the optical port.

Table 6–16 Specifications of extinction ratio

STM level of optical port Optical port type Standard

requirement (dB ) Equipment typical value

(dB)

Single-mode > 8.2 10.5 STM-1

Multi-mode None 35

V. Receiver sensitivity (BER=1×10-10)

Receiver sensitivity is defined as the minimum mean received optical power at reference point R to achieve the BER of 1×10-10. Table 6–17 shows the specifications of receiver sensitivity of the optical port.

Table 6–17 Specifications of receiver sensitivity

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

Single-mode < -28 -37 STM-1

Multi-mode None -30

VI. Receiver overload optical power (BER=1×10-10)

Receiver overload power is the maximum acceptable value of the average optical power received at reference point R to achieve the BER of 1×10-10. Table 6–18 shows the specifications of receiver overload power of the optical port.

Page 124: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-17

Table 6–18 Specifications of receiver overload power

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

Single-mode > -8 -5 STM-1

Multi-mode None -14

VII. Permitted frequency deviation of optical input interface

Permitted frequency deviation of the optical input interface means that the long-time frequency stability of the internal oscillator of the regenerator running in the free-run mode must not be less than ±20×10-6, so that the downstream SDH equipment can still work normally when receiving such signals. Table 6–19 shows the specifications of permitted frequency deviation of the optical input interface.

Table 6–19 Specifications of permitted frequency deviation of optical input interface

Equipment typical value (ppm) STM level of optical

port Standard

requirement (ppm) Positive frequency deviation

Negative frequency deviation

STM-1 ±20 +50 -50

VIII. AIS rate of optical output interface

Alarm Indication Signal (AIS) rate of the optical output interface refers to the AIS rate outputted from the output interface to the downstream in case of such failures as loss of signals of SDH equipment input interface. Table 6–20 shows the specifications of AIS rate of the optical output interface.

Table 6–20 Specifications of AIS rate of optical output interface

STM level of optical port Standard requirement (ppm) Equipment typical value (ppm)

STM-1 ±20 1

6.4.2 155 Mbit/s Electric Port

I. Signal rate tolerance of output interface

The signal rate tolerance of the output interface means the deviation between the output signal rate and the nominal bit rate measured when the AIS is outputted. Table

Page 125: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-18

6–21 shows the requirements of the signal rate tolerance of the output interface of the 155 Mbit/s electric port.

Table 6–21 Signal rate tolerance of output interface

Electric port type Standard requirement (ppm)

155520 kbit/s ±20

II. Permitted attenuation of input interface

The cable used to connect equipment (complying with the rule of f ) has a certain

signal loss. It is required that signals after the loss should be received by the input interface of the equipment correctly. Table 6–22 shows the permitted attenuation requirements of the input interface of the 155 Mbit/s electric port.

Table 6–22 Permitted attenuation of input interface

Electric port type Standard requirement (dB)

155520 kbit/s 0 – 12.7

III. Permitted frequency deviation of input interface

The input permitted frequency deviation means the maximum of the permitted deviation of the input signal bit rate of the digital input interface. Table 6–23 shows the requirements of permitted frequency deviation of the input interface of the 155 Mbit/s electric port.

Table 6–23 Permitted frequency deviation of the input interface

Electric port type Standard requirement (ppm)

155520 kbit/s ±20

IV. Protection switching time of interface

STM-1 electric port has the protection function. The switching time means the service interruption time when switching occurs. Table 6–24 shows the requirements of the protection switching time of the interface.

Page 126: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-19

Table 6–24 Switching time

Electric port type Standard requirement (ppm)

155520 kbit/s 50

V. Reflection attenuation of input and output interfaces

The reflection attenuation of the input and output interfaces defines the nominal impedance of the interface and the reflection attenuation. Table 6–25 shows the requirements of the reflection attenuation of input and output interfaces.

Table 6–25 Reflection attenuation of input and output interfaces

Electric port type Test frequency range

Reflection attenuation (dB) Impedance (Ω)

155520 kbit/s 8000 – 240000 ≥15 75

VI. Output jitter of interface

The output jitter of interface means the inherent jitter of the output interface if the synchronous interface has no input jitter with the test time over 60 seconds. Table 6–26 shows the requirements of the output jitter of the 155 Mbit/s electric port.

Table 6–26 Jitter of output interface

Output jitter of electric port (UI-pp) STM interface level

B1 (f1 - f4) B2 (f3 - f4)

STM-1 1.5 0.075

VII. Input jitter of interface

The input jitter of interface means the input jitter that the SDH line terminal and regenerator can tolerate at least and that will not cause the decrease of the performance. Table 6–27 and Table 6–28 show the requirements of the input jitter tolerance of the 155 Mbit/s electric port.

Page 127: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-20

Table 6–27 Input jitter tolerance

Jitter tolerance STM interface

level Jitter frequency f1

Jitter frequency f2

Jitter frequency f3 Jitter frequency f4

STM-1 ≥1.5 ≥1.5 ≥0.15 ≥0.15

Table 6–28 Frequency of jitter measurement filter

STM interface level f1 (Hz) F2 (kHz) f3 (kHz) f4 (MHz)

STM-1 500 6.5 65 1.3

6.4.3 STM-4 Optical Port

I. General characteristics

Rate: 622 Mbit/s

Format: STM-4, ATM Over SDH

Category: Intermediate SONET OC12C SDH STM-4C compatible.

Mode: Single-mode.

Connector: SC.

Optical port standard: SAMI interface.

II. Optical port parameters

Table 6–29 lists the parameters for the STM-4 optical port.

Page 128: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-21

Table 6–29 Parameters for STM-4 optical port

Item Unit Value

Nominal bit rate kbit/s 622080

Operating wavelength range nm 1274–1356

Optical source type None MLM

Maximum RMS spectral width (σ) nm 2.5

Max. -20dB spectral width nm None

Minimum side mode suppression ratio dB None

Mean launched power None None

Maximum mean launched power dBm -8

Minimum mean launched power dBm -15

Transmitter at reference Point S

Minimum extinction ratio dB 8.2

Attenuation range dB 0–12

Maximum dispersion ps/nm 74

Minimum optical return loss of cable plant at S (including any removable connectors)

dB None Optical path between S and R

Maximum discrete reflectance between S and R dB None

Minimum sensitivity dBm -28

Minimum overload dBm -8

Maximum optical path penalty dB 1 Receiver at reference point R

Maximum reflectance of receiver, measured at R dB None

III. Mean launched power

The mean launched optical power means the mean power of a pseudo-random data sequence coupled into the fiber by the transmitter measured at reference point S. Table 6–30 shows the specifications of mean launched power of the optical port.

Table 6–30 Specifications of mean launched power

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

STM-4 S-4.1 -15 – -8 -13.5

Page 129: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-22

IV. Extinction ratio (EX)

Extinction ratio is the ratio of average optical power of the reflected optical signal to that of unreflected optical signal under the conditions of worst reflection and full modulation. Table 6–31 shows the specifications of extinction ratio of the optical port.

Table 6–31 Specifications of extinction ratio

STM level of optical port Optical port type Standard

requirement (dB ) Equipment typical value

(dB)

STM-4 S-4.1 > 8.2 8.5

V. Receiver sensitivity (BER=1×10-10)

Receiver sensitivity is defined as the minimum mean received optical power at reference point R to achieve the BER of 1×10-10. Table 6–32 shows the specifications of receiver sensitivity of optical port.

Table 6–32 Specifications of receiver sensitivity

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

STM-4 S-4.1 < -28 -30

VI. Receiver overload optical power (BER=1×10-10)

Receiver overload power is the maximum acceptable value of the average optical power received at the reference point R to achieve the BER of 1×10-10. Table 6–33 shows the specifications of receiver overload power of the optical port.

Table 6–33 Specifications of receiver overload power

STM level of optical port Optical port type Standard

requirement (dBm)Equipment typical value

(dBm)

STM-4 S-4.1 > -8 > -4

VII. Permitted frequency deviation of optical input interface

Permitted frequency deviation of optical input interface means that the long-time frequency stability of the internal oscillator of the regenerator running in the free-run mode must not be less than ±20×10-6, so that the downstream SDH equipment can still work normally when receiving such signals. Table 6–34 shows the specifications of permitted frequency deviation of the optical input interface.

Page 130: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-23

Table 6–34 Specifications of permitted frequency deviation of optical input interface

Equipment typical value (ppm) STM level of optical

port Standard

requirement (ppm) Positive frequency deviation

Negative frequency deviation

STM-4 ±20 +50 -50

VIII. AIS rate of optical output interface

AIS rate of the optical output interface refers to the AIS rate outputted from the output interface to the downstream in case of such failures as loss of signal at SDH equipment input interface. Table 6–35 shows the specifications of AIS rate of the optical output interface.

Table 6–35 Specifications of AIS rate of optical output interface

STM level of optical port Standard requirement (ppm) Equipment typical value (ppm)

STM-4 ±20 ±1

6.4.4 Gigabit Ethernet Optical Port

I. General characteristics

Rate: 1000 Mbit/s

Format: 1000BASE-FX (IEEE802.3z)

Mode: Single-mode/multi-mode

Connector: SC

Optical port standard: GPCS interface

II. Multi-mode technical specifications

Transmitter optical feature:

Refer to Table 6–36 (environment temperature is 0°C - 70°C).

Page 131: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-24

Table 6–36 Parameters for 1000 Mbit/s multi-mode optical transmitter

Parameter Icon Min. value

Typical value

Max. value Unit Note

Output optical power 50/125µm, NA=0.20 optical fiber

POUT -9.5 None -4 dBm

(Average) Note 1

Output optical power 62.5/125µm, NA=0.20 optical fiber

POUT -9.5 None -4 dBm

(Average) Note 1

Extinction ratio None 9 None None dB Note 2

Central wavelength None 830 850 860 nm None

Spectral width rms None None None 0.85 ns rms None

Optical pulse rise/fall duration tr/tf None None 0.26 ns Notes 3

and 4

RIN12 None None None -117 dB/Hz None

Coupling power ratio CPR 9 None None dB Note 5

Total jitter of transmitter at point TP2 None None None 227 ps Note 6

Receiver optical feature:

Refer to Table 6–37 (environment temperature is 0°C - 70 °C).

Table 6–37 Parameters for 1000 Mbit/s multi-mode optical receiver

Parameter Icon Min. value

Typical value

Max. value Unit Note

Input optical power PIN -17 None 0 dBm

(Average) Note 7

Strain gauge type receiver sensitivity

62.5µm

50µm None None

-12.5

-13.5

dBm

(Average) None

TP4 point strain gauge type receiver eye pattern openness

None 201 None None ps Note 6

Central operating wavelength None 770 None 860 nm None

End frequency on receiver 3dB bandwidth None None None 1500 MHz Note 8

Return loss None 12 None None dB Note 9

Page 132: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-25

Note 1: The maximum output optical power is in compliance with the IEEE 802.3z specifications and meets the first type laser human eye safety considerations.

Note 2: Extinction ratio is the ratio of average output optical power of output code “0” to that of output code “1” of transmitter.

Note 3: 20%-80% value without filtering.

Note 4: Laser pulse effect feature can be provided by the eye pattern. The output wave shape meets the requirements of the part 38.6.5 of the IEEE 802.3 z about eye pattern mask.

Note 5: CPR is measured according to the standards in the part 38.6.10 of the IEEE 802.3 z and the EIA/TIA-526-14A.

Note 6: P is the turning point defined in the part 38.2.1 of the IEEE 802.3 z.

Note 7: Receiver sensitivity is sampled in the center of the eye pattern and measured on the condition of worst extinction ratio deterioration.

Note 8: Receiver 3dB bandwidth is measured using the indices listed in the part 38.6.11 of the IEEE 802.3 z.

Note 9: Return loss is defined as the minimum loss of the received optical power in reflecting in the optical fiber.

III. Single-mode technical specifications

Transmitter optical feature:

Refer to Table 6–38: (the environment temperature is 0°C - 70°C).

Table 6–38 Parameters for 1000 Mbit/s single-mode optical transmitter

Parameter Icon Min. value

Typical value

Max. value Unit Note

Output optical power

9mm SMF POUT -9.5 None -3

dBm

(Average) Note 1

Output optical power 62.5/125mm MMF

50mm MMF

POUT -11.5

-11.5 None

-3

-3

dBm

(Average) Note 1

Extinction ratio None 9 None None dB Note 2

Central wavelength None 1285 1310 1343 nm None

Spectral width rms None None None 2.8 ns rms None

Page 133: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-26

Parameter Icon Min. value

Typical value

Max. value Unit Note

Optical pulse rise/fall duration tr/tf None None 0.26 ns Notes 3 and

4

RIN12 None None None -120 dB/Hz None

Total jitter of transmitter at TP2 None None None 227 ps Note 5

Receiver optical feature:

Refer to Table 6–39 (environment temperature is 0°C - 70°C).

Table 6–39 Parameters for 1000 Mbit/s single-mode optical receiver

Parameter Icon Min. value Typical value

Max. value Unit Note

Input optical power PIN -20 None -3

dBm

(Average) Note 6

Strain gauge type receiver sensitivity

None None None -14.4 dBm

(Average) None

TP4 point strain gauge type receiver eye pattern openness

None 201 None None ps Note 5

Central operating wavelength None 1270 None 1355 nm None

End frequency on receiver 3dB bandwidth

None None None 1500 MHz Note 7

Return loss None 12 None None dB Note 8

Note 1: The maximum output optical power is in compliance with the IEEE 802.3z specifications and meets the first type laser human eye safety considerations.

Note 2: Extinction ratio is the ratio of average output optical power of output code “0” to that of output code “1” of transmitter.

Note 3: 20%-80% value without filtering.

Note 4: Laser pulse effect feature can be provided by the eye pattern. The output wave shape meets the requirements of the part 38.6.5 of the IEEE 802.3 z about eye pattern mask.

Note 5: TP is the turning point defined in the part 38.2.1 of the IEEE 802.3 z.

Page 134: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-27

Note 6: Receiver sensitivity is sampled in the center of the eye pattern and measured on the condition of worst extinction ratio deterioration.

Note 7: Receiver 3dB bandwidth is measured according to the indices listed in the part 38.6.11 of the IEEE 802.3 z.

Note 8: Return loss is defined as the minimum loss of the received optical power in reflecting in the optical fiber.

6.4.5 Fast Ethernet Optical Port

I. General characteristics

Rate: 100 Mbit/s

Format: 100BASE-FX (IEEE802.3u)

Mode: Single-mode/multi-mode.

Connector: MTRJ.

Optical port standard: SAMI interface.

II. Optical port parameters

The 100 Mbit/s Ethernet multi-mode optical port parameters are shown in Table 6–40 and Table 6–41:

Table 6–40 Parameters for 100 Mbit/s Ethernet multi-mode optical port (transmitting)

Parameter Icon Min. value

Typical value

Max. value Unit

Output optical power BOL

62.5/125µm, NA=0.275 EOLPO

-19

-20 -15.7 -14 dBm

Output optical power BOL

62.5/125µm, NA=0.20 EOL PO

-22.5

-22.5 None -14 dBm

Extinction ratio None None 0.05

-50

0.2

-35

%

dB

"0" code output optical power PO(“0”) None None -45 dBm (Average)

Central wavelength λc 1270 1308 1380 nm

Spectral width - FWHM

-RMS ∆λ None

147

63 None ns

Optical pulse rise duration tr 0.6 1.2 3 ns

Page 135: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-28

Parameter Icon Min. value

Typical value

Max. value Unit

Optical pulse fall duration tf 0.6 2 3 ns

Transmitter system jitter SJ None 0.04 1.2 ns p-p

Transmitter random jitter RJ None 0 0.52 ns p-p

Table 6–41 Parameters for 100 Mbit/s Ethernet multi-mode optical port (receiving)

Parameter Icon Min. value Typical value

Max. value Unit

Input optical power minimum (edge of eye pattern)

PIN Min (W) None None -30 dBm (Average)

Input optical power minimum (in the center of the eye pattern)

PIN Min (C) None None -31 dBm (Average)

Maximum input optical power PIN Max -14 None None dBm (Average)

Operating wavelength λ 1270 None 1380 Nm

Receiver system jitter SJ None 0.2 1.2 nm

Receiver random jitter RJ None 1 1.91 ns p-p

Signal monitoring alarm – start PA PD+1.5dB None -31 dBm (Average)

Signal monitoring alarm - close PD -45 None None dBm (Average)

Signal monitoring alarm – delayed PA-PD 1.5 None None dB

Signal monitoring alarm start time (from 0 to 1)

None 0 2 100 µs

Signal monitoring alarm close time (from 1 to 0)

None 0 5 350 µs

The 100 Mbit/s Ethernet single-mode optical port parameters are listed in Table 6–42 and Table 6–43:

Page 136: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-29

Table 6–42 Parameters for 100 Mbit/s Ethernet single-node optical port (transmitting)

Parameter Icon Min. value Typical value Max. value Unit

Supply current Icc None 50 120 mA

Power consumption PDISS None 0.17 0.42 W

Output optical power PO -15 None -8 dBm (Average)

Central wavelength λ 1261 None 1360 Nm

Spectral width ∆λ None None 7.7 nm

Extinction ratio Er 8.2 None None dB

Output optical eye pattern In compliance with the requirement for eye pattern mask in Bellcore TR-NWT-000253 and ITU G.957 Recommendation

Optical pulse rise duration tR None None 2 ns

Optical pulse fall duration tF None None 2 ns

Data input current (low) IiL -200 None None mA

Data input current (high) IiH None None 200 mA

Data input voltage (low level) ViL-Vcc -1.81 None -1.48 V

Data input voltage (high level) ViH-Vcc -1.17 None -0.88 V

Table 6–43 Parameters for 100 Mbit/s Ethernet single-mode optical port (receiving)

Parameter Icon Min. value

Typical value Max. value Unit

Supply current Icc None 75 100 mA

Power consumption PDISS None 0.26 0.35 W

Sensitivity of receiver in the center of eye pattern PIN Min(C) None None -31.8 dBm

(Average)

Sensitivity of receiver at the edge of eye view PIN Min(W) None None -31 dBm

(Average)

Maximum input optical power PIN Max -8 None None dBm

(Average)

Operating wavelength λ 1261 None 1360 Nm

Data output voltage (low) Vol-Vcc -1.84 None -1.62 V

Data output voltage (high) VoH-Vcc -1.04 None -0.88 V

Page 137: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-30

Parameter Icon Min. value

Typical value Max. value Unit

Signal monitoring output voltage (low) Vol-Vcc -1.84 None -1.62 V

Signal monitoring output voltage (high) VoH-Vcc -1.04 None -0.88 V

Signal monitoring alarm – start PA PD+1.5dB None -34 dBm

(Average)

Signal monitoring alarm - close PD -45 None None dBm

(Average)

Signal monitoring alarm – delayed PA-PD 0.5 None 4 dB

Signal monitoring alarm start time (from 0 to 1) AS_Max 0 None 100 µs

Signal monitoring alarm close time (from 1 to 0) ANS_Max 0 None 350 µs

Power noise suppression PSNR None None 50 mV

6.4.6 Fast Ethernet Electric Port

I. General characteristics

Rate: 10/100 Mbit/s compatible

Format: 10BASE-T/100BASE-TX

Mode: UTP/STP.

Connector: RJ-45.

II. Parameters for Fast Ethernet electric port

1) Transmitter interface parameters Transmitter differential output voltage

Differential output voltage is the difference between the voltage of both ends of the balance circuit. The transmitter differential output voltage is the voltage difference between the differential line TD+ and TD-. The specifications of the transmitter differential output voltage of Fast Ethernet port are:

STP: 1165 mV ≤Vout ≤ 1285 mV

UTP: 950 mV ≤ Vout ≤ 1050 mV

Signal amplitude symmetry

Page 138: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-31

Signal amplitude symmetry is the ratio of absolute value of + Vout to that of –Vout. The specification of the transmitter differential output voltage of Fast Ethernet port is:

02.198.0 ≤−+

≤out

out

VV

Impedance return loss

Impedance return loss indicates the impedance matching. The calculation formula is: Xr=20lg|(Z+R)/(Z-R)|. Z is the actual impedance, and R is the nominal impedance. The nominal impedance of UTP is 100Ω, and that of STP is 150Ω. The impedance return loss of the Fast Ethernet port in the range of 2.0 MHz - 80 MHz meets the following requirements:

2 MHz - 30 MHz: >16 dB

30 MHz - 60 MHz: >16 - 20log (f/30) dB f: frequency (unit: MHz)

60 MHz - 80 MHz: >10 dB

Signal edge rise/fall duration

The rise duration refers to the time needed for signal voltage to rise from the base voltage (normally 0) to steady-state value + Vout or –Vout when a signal is transient. The fall time refers to the time needed for signal voltage to fall from + Vout /- Vout to base voltage when signal is transient. In general, the value is 10% - 90% of Vout. The rise and fall duration should meet the following requirements:

3.0 ns ≤ trise/tfall ≤ 5.0 ns. The maximum difference between trise and tfall should be less than 0.5 ns.

Wave shape overshoot

Wave shape overshoot reflects the relationship between the steady-state value Vout

and signal overshoot peak value Vover (maximum change in relative to the steady-state value in jumping). The ratio of Vover to Vout meets the following technical requirement:

Vover is less than 5% of Vout and attenuates to less than 1% within 8 ns.

Duty ratio distortion

Duty ratio distortion refers to the change of pulse width in the transmission process due to the distortion and time delay. It changes the ratio of the pulse continuity duration to the non-pulse continuity duration. The duty ratio distortion of the Fast Ethernet port should be less than ±0.5 ns.

Jitter

The jitter of the Fast Ethernet port output should be less than 0.5 ns.

2) Receiver interface parameters

Page 139: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-32

Receiver differential input

The receiver differential input should meet the technical requirements about twisted pair specified in the ANSI X3.263. For the UTP, there are 5 models available. Their attenuations are 5%, 25%, 50%, 75% and 100% of the worst attenuation. For the STP, only one attenuation value is available, which is 100% of the worst attenuation.

Differential input impedance

This specification is represented by return impedance. The UTP nominal impedance is 100Ω, and the STP nominal impedance is 150Ω. The impedance return loss in the range of 2.0 MHz - 80 MHz should meet the following requirements:

2 MHz - 30 MHz: >16 dB

30 MHz - 60 MHz: >16 - 20log (f/30) dB f: frequency (unit. MHz)

60 MHz - 80 MHz: >10 dB

Common-mode suppression ability

The input end should resist the sinusoidal common-mode interference with the frequency range of 0 - 125 MHz and amplitude of 1.0 Vpp.

6.4.7 E1 Port

I. General characteristics of 2048 kbit/s electric port

Bit rate: 2048 kbit/s Bit rate error tolerance: ±50 ppm Code pattern: HDB3

II. Overvoltage protection at input interface and output interface

The input and output interfaces can keep undamaged under the following test: 10 standard electric pulses (1.2/50 ms) with the maximum amplitude as UI (five negative pulses and five positive pulses).

Differential mode: U=20 V DC Common mode: U=100 V DC

III. E1 port specifications

The specifications of the output interface are shown in Table 6–44.

Page 140: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-33

Table 6–44 Specifications for output interface

Index Value

Pulse shape (nominal shape: rectangle)

No matter what the symbol is, all of the “marks” of the valid signals must be in compliance with the sample in Figure 6–1 (in the figure, the V value corresponds to the nominal peak value).

Pair in each transmission direction A coaxial pair A symmetric pair

Test load impedance 75Ω 120Ω

Nominal peak value voltage of signal pulse 2.37 V 3 V

Peak value voltage of vacant number (no pulse) 0 ± 0.237 V 0 ± 0.3 V

Nominal pulse width 244 ns

Middle point of pulse, amplitude ratio of positive pulse to negative pulse

0.95 – 1.05

Nominal half amplitude, width ratio of positive pulse to negative pulse 0.95 – 1.05

The specifications of the input interface are detailed as follows:

Signal specifications

The digital signals at the input interface must be in compliance with the pulse sample in Figure 6–1, but can be changed according to the characteristics of the connected pairs.

Page 141: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-34

Figure 6–1 Pulse sample of 2048 kbit/s interface

Attenuation permission

It should be assumed that the attenuation of this kind of pair complies with the rule of

f , and the attenuation on the frequency of 1024Hz should be in the range of 0dB

and 6dB. This attenuation value should include all losses imported by the digital distribution frame between equipment.

Reflection loss

The reflection loss of the input interface should be the minimum shown in Table 6–45.

Table 6–45 Minimum of reflection loss of input interface

Frequency range (kHz) Reflection loss (dB)

51 – 102 12

102 – 2048 18

2048 – 3072 14

Anti-interference ability

No error code should be generated when the following interference signal is inputted.

Page 142: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-35

The features of the interference signal are as follows. The interfenrence signal has the same nominal frequency, error tolerance, wave shape and code pattern with those of the main signal, but these two signals are not from the same source. The ratio of the main signal to the interference signal is 18dB.

IV. Jitter and drift performance

Jitter and drift tolerance of digital input interface

The input jitter and drift tolerance of the 2048 kbit/s interface are shown in Figure 6–2.

0f 10f 9f 8f 1f 2f 3f 4f

0A

3A

1A

2A

Peak-peak jitter and drift amplitude value(Logarithm)

Characteristics of typical frame regulator

Slope is 20dB/10-time frequency interval

Jitter frequency(Logarithm)

Figure 6–2 Input jitter and drift tolerance

Tributary mapping jitter

The PDH tributary interface at different rates prescribed by the ITU-T G.703 Recommendation and mapping jitter specifications, and their corresponding test filter characteristics are shown in Table 6–46. The response of the filter should be rolled decreasingly by 20dB/10-time frequency interval.

Table 6–46 Mapping jitter generation specifications

Test filtering parameter Maximum peak-peak jitter (mapping)

ITU-T G.703 tributary interface rate

Bit rate error

tolerance

f1 high pass f3 high pass f4 low

pass f1-f4 f3-f4

2048 kbit/s ±50ppm 20Hz -

20dB/dec

18Hz (700Hz)

- 20dB/dec

100Hz - 20dB/dec

Unspecified 0.075UI

Page 143: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-36

Tributary mapping and pointer adjustment

The PDH tributary interface and its corresponding combined jitter and test filter prescribed by the ITU-T G.703 Recommendation are shown in Table 6–47.

Table 6–47 Combined jitter generation specifications

Test filtering parameter Maximum peak-peak jitter

ITU-T G.703 tributary interface rate

0 bit rate error tolerance

f1 high pass f3 high pass f4 low pass f1-f4 f3-f4

2048 kbit/s ±50ppm 20Hz - 20dB/dec

18Hz (700Hz)

- 20dB/dec

100Hz - 20dB/dec 0.4UI 0.075UI

The typical pointer adjustment test sequence is shown in Figure 6–3.

T1T2 T3

(a) Single pointers with contrary polarities (b) Regular single pointers plus a double-pointer

T2 T3 T1 T3

(c) Regular single pointers with a pointer missed (d) Double-pointers with contrary polarities

Figure 6–3 Pointer sequence

The requirements for the above parameters are shown in Table 6–48:

Table 6–48 Parameter requirements

T1≥10s T1≥10s

T2>0.75s T2=34ms For TU pointer

T3=2ms

For AU pointer

T3=0.5ms

Page 144: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-37

6.4.8 V.35 Interface

I. Mechanical characteristics

The mechanical characteristics of the V.35 interface are defined by the ISO2593, and the 34-core connector is used for the V.35 interface.

II. Electric characteristics

The ITU-T Recommendation V.35 Appendix 2 defines the electrical characteristics of the V.35 interface clock and data signal as a balanced double current interface circuit. The V.35 interface control signal adopts the unbalanced double current interface circuit defined by the ITU-T Recommendation V.28.

As for the balanced double current interface, the interface line adopts balanced twisted multi-pair cable, with the feature impedance as 80 - 120Ω, signal source impedance in the range of 50 - 150Ω and the load impedance as 100±10Ω. The normal working voltage between two terminals of each balanced line is 0.55V±20%. When the voltage of terminal A to B is positive (A>B), it is defined as binary data “0”. When it is negative (A<B), it is defined as “1”. The ascending time of any status change between 10% & 90% should be less than 1% or 40ns of the signal code period and should take the smaller one as the limit. It should not be damaged when the generator or the load gets inadvertently connected with the ground electric potential or has short circuit or crosses with other interface circuits.

For the unbalanced double current interface, the open circuit voltage of the signal source should be ≤25V and the load impedance should be in the range of 3000 - 7000Ω. The load capacitance should be ≤2500pF. For the data circuit, when the voltage of the interface point is less than -3V, it is defined as binary “1” and as “0” when it is more than +3V. For control and timing interface circuit, it is defined as “ON” when the voltage of the interface point is more than +3V and “OFF” when it is lower than -3V. The point between +3V and -3V is defined as leap change point. The time for the signal to pass the leap change point should not exceed 1ms or 3% of the bit code period, and it will take the smaller one as the limiting factor.

III. Functional characteristics

The functional characteristics of the V.35 interface belong to one subset of the ITU-T Recommendation V.24, including such functions as ground, control, clock and data. Table 6–49 shows the definitions of these functions.

Page 145: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-38

Table 6–49 Functional characteristics of V.35 interface

Functional characteristics

M3 pinouts

Abbr. of pinouts function

V.24 circuit

numberSignal flow direction Signal function

V RCA 115 DTE←DCE Receiving clock provided by DCE –A line

X RCB 115 DTE ←DCE Receiving clock provided by DCE –B line

Y TCA 114 DTE←DCE Transmitting clock provided by DCE –A line

AA TCB 114 DTE←DCE Transmitting clock provided by DCE –B line

U ETCA 113 DTE→DCE Transmitting clock provided by DTE –A line

W ETCB 113 DTE→DCE Transmitting clock provided by DTE –B line

Clock circuit

R RDA 104 DTE←DCE Receive data –A line

T RDB 104 DTE←DCE Receive data –B line

P TDA 103 DTE→DCE Transmit data –A line Data circuit

S TDB 103 DTE→DCE Transmit data –B line

A PG 101 DTE↔DCE Protection ground Ground wire circuit B SG 102 DTE↔DCE

Signal ground, providing DC reference electrical potential

C RTS 105 DTE→ DCE Request to send

D CTS 106 DTE←DCE Clear sending

E DSR 107 DTE←DCE DCE ready

F DCD 109 DTE ←DCE Data carrier detect

H DTR 108.2 DTE→DCE DTE ready

J LL 141 DTE→DCE Local loopback

K TM 142 DTE ← DCE Test mode

Control circuit

J RL 140 DTE→DCERemote loopback/maintenance test

Description of functions:

Page 146: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-39

The “transmit” and “receive” in the circuit name defined by the DCE-DTE interface are based on the DTE. For example, the 103 circuit is the circuit through which the DTE sends data to the DCE. At the DCE side, this circuit is still called data sending circuit, from which the DCE receives data signals. Meanwhile, the 104 circuit is the circuit through which the DCE sends data to the DTE.

The control circuit is set to meet the requirements of the communication procedure and test procedure. DCD is used to monitor the working state of the communication line and the DCE. DSR is used for the DCE to notify the DTE whether it is in the working state (Start). DTR is used to notify the DCE through DTE whether it is in the working state (Start). RTS and CTS are used for the process control of starting or terminating the data transmission between the DTE and the DCE. If RTS is “ON”, it means the DTE requires sending data. When RTS is “ON” and the DCE agrees with the DTE’s request, CTS can be set as “ON” (positive answer), making DCE ready for receiving the data from the DTE.

In the V.35 synchronous communication interface, the DCE and/or the DTE are/is required to provide the clock signal. This signal should be synchronous with the data circuit to ensure accurate identification and receiving of the data. Figure 6–4 shows the time sequence of the clock and data in the interface line.

Figure 6–4 Clock and data time sequence over V.35 line

The latter three test signal lines shall not be required when the V.35 interface has the background-supported testing function.

IV. Procedure characteristics

The procedure characteristics of the V.35 interface are defined in ITU-T Recommendation V.24.

6.4.9 Z Interface

The technical specifications of the Z interface include impedance characteristic requirements and technical requirements for transmission specifications.

I. Impedance characteristics

The 2-wire analog Z interface of the analog subscriber board is the interface for connecting analog subscriber line. The impedance characteristics of the Z interface is expressed by return loss (RL). The following shows the technical requirements for the impedance characteristics of the Z interface:

Impedance return loss

Page 147: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-40

For the impedance test network shown in Figure 6–5, the RL of the Z interface should meet the requirements shown in Figure 6–6.

680 ohm or 560 ohm200 ohm

0.1u

Figure 6–5 Impedance test network for Z interface

300 500 2000 3400Hz

14

18

dB

Frequency

Retur

n los

s

Figure 6–6 Minimum of return loss for impedance test network

Relative level at interface point

The input relative level at the interface point is Li = 0 dBr.

The output relative level at the interface point (Lo): Local call Lo = -3.5dBr

Long distance call: Lo=-7dBr

Permitted deviation of relative level: -0.3 - +0.7dB (relative level at input end)

+0.3 - -0.7dB (relative level at output end)

Unbalanced impedance to ground

The unbalanced impedance to ground reflects the unbalance of the impedance to the ground of the two-wire ports respectively. The longitudinal conversion loss generated at the analog 2-wire interface point due to the unbalance to the ground should meet the requirements shown in Figure 6–7.

Page 148: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-41

300 600 3400

40

46

10

20

30

dB

0 HzFrequency

Long

itudin

al co

nver

sion l

oss

Figure 6–7 Technical requirements for unbalanced impedance to ground

Terminal balance return loss

The terminal balance return loss is the back wave generated due to the unbalanced terminal network. The terminal balance return loss of the Z interface impedance should meet the requirements shown in Figure 6–8. Meanwhile, under the terminal conditions (including short circuit, open circuit, and sensibility terminal load) that possibly occur when 2-wire interface works normally, the terminal balance return loss of the Z interface in the range of 200 Hz to 3600 Hz should be larger than 2dB.

300 500 2500 3400Hz

16

20

dB

Frequency

Term

inal b

alanc

e retu

rn lo

ss

Figure 6–8 Technical requirements for terminal balance return loss

II. Transmission specifications

The transmission specifications of the Z interface in the case of semi-connection are given below:

Interface relative level

Definition: Level loss from input port to output port.

Specification: The relative level of the input connection (A-D) is generally 0 dB.

Page 149: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-42

The local relative level of output connection (D-A) is -3.5 dB, and the long distance one is -7 dB.

Permitted deviation of relative level: -0.3 dB – +0.7dB (relative level at input end)

+0.3 dB – -0.7 dB (relative level at output end)

Loss frequency distortion

Definition: The attenuation deviation of sinusoid signals at different frequencies in the channel in relation to the reference frequency 1020 Hz and the input power level -10 dBm0 is defined as frequency loss distortion.

Specification: The loss frequency distortion of the Z interface should meet the specifications shown in Figure 6–9.

Page 150: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-43

1.7dB

1.5

1.0

0.750.7

0.450.35

-0.3

0

0.2 0.3 0.4 0.6 2.0 2.4 3.0 3.4 kHzFrequency

Loss

a. Input connection

1.0

1.7dB

1.5

1.0

0.750.7

0.450.35

-0.3

0

0.2 0.3 0.4 0.6 2.0 2.4 3.0 3.4 kHzFrequency

Loss

b. Output connection

1.0

Figure 6–9 Loss frequency distortion specifications of 2-wire analog connection

Variation of gain with input level

Definition: The gain deviation of different level sinusoid signals at 1020 Hz frequency in the channel related to -10 dBm0 gain is defined as the variation of gain with input level.

The technical specifications should meet the requirements shown in Figure 6–10:

Page 151: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-44

0

0.3

0.6

1.6

-55 -50 -40 +3-10-0.3

-0.6

-1.6

dBm0

dB

Gain

varia

tion

Input level

Figure 6–10 Specifications of variation of gain with level

Group delay and group-delay distortion

Definition: In the frequency range from 500 Hz to 2800 Hz, the minimum group delay is the absolute group delay. The average of the absolute group delay of the input (or output) semi-connection of the Z interface 2-wire analog should not exceed 1500µs, and 95% of them do not exceed 1950µs. Group delay distortion is the variation of group delay with the frequency. With the lowest group delay as reference, the group delay distortion of the input or output connection in the range from 500 Hz to 2800 Hz should meet the requirements shown in Figure 6–11.

750

150

450

0 500 600 1000 2600 2800 Hz

900

us

Grou

p dela

y dist

ortio

n

Frequency

Figure 6–11 Group delay distortion limit value with frequency

Discrimination of outband signal at input end

Definition: Any sinusoid signal at the frequency higher than 4.6 kHz and with proper level (-25 dBm0) is added to the input end of the channel as the minimum requirement.

Page 152: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-45

The level of any mirror frequency generated at the output end of the channel should be 25 dB lower than the test signal level. This item tests the suppression state of outband input signal.

Technical specifications:

When any sinusoid signal at the frequency higher than 4.6 kHz and with level -25 dBm0 is added to the input end, the signal level of any mirror frequencies generated at the output end of the channel should be at least 25 dB lower than the input signal level.

Weighted noise

Definition: Weighted noise is the weighted noise level of the channel measured at the output end when the input end connects with nominal impedance upon no input signal. This specification reflects the noise when the audio channel is not occupied, that is, no service is running.

Technical specifications:

Coding side: required to be less than -67 dBm0p

Decoding side: required to be less than -70 dBm0p

Total distortion

Definition: Total distortion is measured with signal noise ratio. Generally, it means measuring the noise when useful signals are sent. Main components of the total distortion are quantization distortion, which is the signal distortion generated during signal quantization process. Therefore, the total distortion reflects the quality of the encoder/decoder of the Pulse-Code Modulation (PCM) equipment.

The technical specifications are shown in Table 6–50:

Table 6–50 Technical specification requirements for total distortion of Z interface

Sending level Input connection Output connection

dBm0 Li-0 Lo- -3.5 Lo- -7.0

0 35 35 35

-10 35 35 35

-20 35 34.4 33.8

-30 32.9 30.6 28.8

-40 24.9 21.7 19.5

-45 19.9 16.7 14.5

Crosstalk

Page 153: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-46

Definition: Crosstalk refers to the harmful transmission from one channel to another channel. The channel originating signals is called main crossing channel, the interfered channel is called crossed channel. The crosstalk specification reflects the mutual interference between different channels.

Technical specifications:

Input connection: The local end crosstalk does not exceed -73 dBm0, and the remote end crosstalk does not exceed -70 dBm0.

Output connection: The local end crosstalk does not exceed -70 dBm0, and the remote end crosstalk does not exceed -73 dBm0.

Note:

The technical requirements above are the specifications in case of the Z interface semi-connection. For the equipment that can not receive and transmit signals through the digital port, the A-A technical specifications can be combined according to the A-D and D-A technical requirements.

III. Other technical requirements for Z interface

Loop resistance and feed current: It supports 2000Ω loop resistance and constant current feed 20 mA. It also supports feed current of 47 mA, 35 mA, 16 mA, and so on.

Ringing current: 25 Hz ±3 Hz sinusoid wave, harmonic distortion 10%, output voltage value 75 ±15 V. It supports a 5-second discontinuous ringing signal of 1-second transmitting and 4-second disconnecting. It also supports multiple other special ringing modes.

Signal tone: Dialing tone 450 Hz and continuous signal tone; Busy tone, 450 Hz, 0.7-second discontinuous signal tone with 0.35-second transmitting and 0.35-second disconnecting; Ring-back tone, 450 Hz, 5-second discontinuous signal tone with 1-second transmitting and 4-second disconnecting.

Supporting reversed charging pulse and 16KC/12KC charging pulse. The AC impedance is adjustable. It supports 7 types of interface impedance,

such as 200Ω+680Ω//100nF, 200Ω+560Ω//100nF, 600Ω, 150Ω+510Ω//47nF, 220Ω+820Ω//115nF, 220Ω+820Ω//120nF and 900Ω.

Each receiving gain can be set to -3.5 dB or -7 dB. Moreover, the board (CB36ASL) sending gain can be set to 3 dB, 0 dB or -3 dB and the board receiving gain can be set to 0 dB, -3.5 dB, -7 dB, -8.5 dB, or -12 dB.

Page 154: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-47

6.4.10 U interface

I. Definition

U interface is the interface of Network Termination 1 (NT1) and Line Termination (LT) in ISDN reference model. In terms of code pattern, since subscriber line features are different in different countries, their line code patterns also vary. For instance, North America and China use 2B1Q code, Japan and Italy adopt AMI, while UK adopts 3B2T code. ITU-T has no recommended uniform transmission mode and line code pattern for 2B+D U interface. The following description is only applicable to 2B1Q code pattern.

II. Basic features of U interface

Line code

Line code is 2B1Q (2-bit binary code is expressed with 1-bit quaternary code). This is a 4-level non-redundancy code.

Line baud rate: 80k baud Clock tolerance

The tolerance of free-run NT1 clock is ±100 ppm.

The tolerance of LT clock is ±5 ppm.

Frame structure

A primary frame should be the 120 quaternary signals transmitted with nominal 1.5ms interval. A primary frame includes frame bit, 2B+D data bit and Connection Line (CL) channel bit. 8 primary frames (12ms in total) form a multi-frame.

III. Specifications and program of U interface

The following is the bit allocation and function of multi-frame based on G.961 specification.

Monitoring function of CRC bit error

Bits M5 and M6 of the 3rd frame and 8th frame of each multi-frame comprise the CRC, which are inserted into bit flow through transmitter. In receiver, the CRC bit calculated from the same bits should be compared with the received CRC. If they are different, it indicates that there is at least one bit error in the multi-frame.

EOC frame function

In each multi-frame, the Embedded Operational Channel in DS1 Rate Interface (EOC) consists of 24 bits. It implements the communication between the network and NT1. The following basic functions are required for the EOC:

Page 155: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-48

Operation of 2B+D loopback: This function commands NT1 to loop back the user data bit stream toward the network.

Operation of B1 (or B2) channel loopback: This function requires NT1 to setup single B channel loopback toward the network. Single B channel loopback can provide maintenance on this channel and the subscriber services are not totally blocked.

Recovery to normal: This message is used to release all the uncompleted EOC controlled operation, and reset the EOC message processor to its initial state.

Unfollowable acknowledgement: This message acknowledges that NT1 has received an EOC message, but it is not in the menu of NT1.

Request degraded CRC notification: This message requests to send degraded CRC toward the network.

Degraded CRC notification: This message informs NT1 that the intentionally degraded CRC will be sent from the network till there is a “Recovery to normal” message.

Hold state

IV. Activation and deactivation of U interface

1) Activation

ITU-T Recommendation G.961 defines the signals generated by transceiver during startup. These signals are used in two start types: cold start and hot start. When NT1 and LT are in resetting state, the activation is allowed either from subscriber equipment or from the network. The initiator sends single tone in compliance with ITU-T Recommendation G.961 and starts activation process. In cold start mode, LT and NT1 should complete the synchronization within 15 seconds, with 5 seconds for NT1 and 10 seconds for LT; while in hot start mode, they should complete the synchronization within 300ms.

2) Deactivation

When one of the following happens, the transceiver is allowed to enter the reset state.

The system cannot be started within 15 seconds (hot or cold start) The received signal is lost for more than 480ms. Synchronization is lost for more than 480ms. Electrical features of U interface Output pulse

The nominal peak value of output pulse is 2.5 V. The pulse shape should be as shown in Figure 6–12 and four-quaternary-characters pulse sample should be obtained from the nominal sample as shown in Figure 6–12 multiplied by 2.5 V, 0.83 V, -0.83 V or -2.5 V. The nominal average power is 13.5dBm when the signals are composed of synchronous framing bits which are of same probability at other position.

Template of U interface pulse template is shown in Figure 6–12:

Page 156: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-49

T1814380-92/d33

0.4T

B = 1.05C = 1.00D = 0.95

A = 0.01

0 T

0.5T

E = 0.03A = 0.01

50T14T

–0.4T

–0.75TF = –0.01

–0.5TG = –0.12

F = –0.01H = –0.05

T = 12.5 µs

0.0833 V0.8750 V

5/6 V0.79127 V0.025 V

–0.00833 V–0.1V

–0.04167 V

ABCDEFGH

0.011.051.000.950.03

–0.01–0.12–0.05

+3 +10.025 V2.625 V2.5 V

2.375 V0.075 V–0.025 V–0.3 V

–0.125 V

–1 –3–0.025 V–2.625 V–2.5 V

–2.375 V–0.075 V0.025 V0.3 V

0.125 V

–0.0833 V–0.8750 V

–5/6 V–0.79127 V–0.025 V0.00833 V

0.1V0.04167 V

Figure 6–12 Pulse template of U interface

Power spectrum density

The power spectrum of the transmitted signal is measured in the bandwidth of 1 kHz noise power, whose density upper limit should be as shown in Figure 6–13. The bandwidth of 1 kHz noise power should be selected to determine whether the measurement is qualified.

1 2 5 10 20 50 100 200 500 1000– 90

– 80

– 70

– 60

– 50

– 40

– 30

– 20

T1814390-92/d34

–50 dB/decade

Powe

r spe

ctra

l den

sity

(dBm

/Hz)

Frequency (kHz)

Figure 6–13 Upper limit of the power spectrum density of the transmitted signal

Total transmission power

Page 157: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-50

Feature: It is the average power of signals composed of framing character sequence that has frame code character and is of equal probability in all other positions.

Index: The average power of signals formed by framing character sequence that has frame code characters and is of equal probability characters in all other positions should be between 13.0 dB and 14.0 dB in the range of 0 Hz to 30 kHz.

Applicable range: for all ISDN-BRA interfaces

Impedance and Return loss

Impedance: The impedance at the nominal driving point of the interface toward NT1should be 135Ω.

Return loss: RL relative to 135Ω in the band of 1 kHz to 200 kHz is shown in Figure 6–14:

5 10 50 100 500 10001

–10

0

10

20

30

T1814410-92/d36

250 kHz

0 dB

25 kHz

20 dB

Ret

urn

loss

(dB)

Frequency (kHz)

Figure 6–14 Return loss relative to 1kHz - 200 kHz frequency band

Longitudinal conversion loss

LCL=20Log (el/em) db

el=applied longitudinal voltage (relative to the safety ground)

em=metallic voltage generated by the 135 terminal (NT1 should be powered, but not be activated during the test)

Index:

Page 158: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-51

F<5 Hz LCL>20 dB

5 Hz<F<281.2 Hz LCL: +20 dB/ deca-octave

281.5 Hz<F<40000 Hz LCL>55 dB

40000 Hz<F LCL: -20 dB /10 times sound interval

Applicable range: for all ISDN-BRA interfaces

6.4.11 ADSL Port

I. Power spectrum density of ADSL port

The power spectrum density of the ADSL port is shown in Figure 6–15.

Frequency f(KHz) Power spectrum density (dBm/Hz) 0<f<4 -97.5 in maximum. The maximum power in this frequency band is +15dBm. 4<f<80 -92.5+4.63×log2(f/4) 80<f<138 -72.5+36×log2(f/80) 25.875<f<1104 -36.5 in maximum 1104<f<3093 -36.5-36×log2(f/1104) 3093<f<4545 -90 in maximum. The maximum power in any 1MHz frequency band is

(-36.5-36×log2(f/1104)+60)dBm. 4545<f<11040 -90.5 in maximum. The maximum power in this frequency band is +50dBm.

Figure 6–15 Power spectrum density of ADSL port

II. Longitudinal balance loss of ADSL port

The longitudinal balance loss of the ADSL port is shown in Table 6–51.

Table 6–51 Longitudinal balance loss of ADSL port

Service interface Service bandwidth (kHz) Specification

U-x interface 28–1104 >40 dB

Page 159: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-52

III. Overvoltage protection of ADSL port

Lightning overvoltage

The ADSL port should be able to bear the induction overvoltage less than the set value upon the subscriber line without any component’s performance lowered. The peak voltage is 1000 V.

Power line overvoltage

The ADSL line interface should be able to bear the overvoltage within the longitudinal electromotive force of 650V/0.5s upon the communication cable without any component’s performance lowered.

Overvoltage due to contact with power line

The ADSL port should be able to bear 15-minute 220 V (50 Hz) contact with one or two conducting cable without any burning danger.

6.4.12 VDSL Port

I. Power spectrum density template

Power spectrum density (PSD) template defines the transmitting power restriction in the range of inband frequency.

Table 6–52 and Table 6–53 show the upstream and downstream transmitting signal PSD templates respectively.

Table 6–52 lists the upstream channel PSD templates for schemes 1 and 2 respectively. The maximum transmitting power of these two schemes is 14.5 dBm.

Table 6–52 VDSL upstream PSD template

Frequency (kHz) PSD (dBm/Hz)

0–4 -101

25 -101

138 -101

307 -101

482 -101

3575 -101

3750 -80

3751 -53

8499 -53

8500 -80

Page 160: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-53

Frequency (kHz) PSD (dBm/Hz)

8501 -107

12000 -110

30000 -110

Table 6–53 lists the downstream channel PSD templates for schemes 1 and 2 respectively. For these two schemes, the maximum transmitting power is 14.5 dBm.

Table 6–53 VDSL downstream PSD template

Frequency (kHz) PSD (dBm/Hz)

Scheme 1

0–4 -101

25 -101

138 -80

317 -60

1104 -60

3749 -60

3750 -80

3925 -105

8325 -105

8500 -80

8501 -53

12000 -53

12001 -107

30000 -110

Scheme 2

0–4 -101

25 -101

138 -101

317 -80

1104 -60

3749 -60

3750 -80

Page 161: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-54

Frequency (kHz) PSD (dBm/Hz)

3925 -105

8325 -105

8500 -80

8501 -53

12000 -53

12001 -107

30000 -110

II. Outband PSD

Figure 6–16 shows the outband PSD restriction. It is defined that the area between ftr1 and ftr1+∆fT, and the area between ftr2-∆fT and ftr2 are two transition bands, and that the area between ftr1+∆fT and ftr2-∆fT is rejection band. ∆fT, independent of transmitting frequency, is 175 kHz. The transmitting signal PSD inside the transition band is decreased from -80 dBm/Hz to PSDmax or increased from PSDmax to -80 dBm/Hz in a linear manner. The transmitting signal PSD inside the rejection band cannot be larger than PSDmax. The total power Pmax of the transmitting signal of each MHz frequency band inside the rejection band should be restricted. Table 6–54 lists the outband PSD restriction parameters.

ftr1f

Pmax, dBm

(in a 1MHz window)

PSD, dBm/Hz

Transmit band

PSDmax, dBm/Hz

fr

Transmit band

Receive band

fr

ftr2

Transitionband

Transitionband

-80dBm/Hz

Figure 6–16 Outband PSD restriction

Page 162: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-55

Table 6–54 Outband PSD restriction parameters

Frequency (MHz) Maximum PSD PSDmax (dBm/Hz)

Maximum Power in a 1 MHz sliding window Pmax (dBm)

< 0.12 -120 -

0.12 - 0.225 -110 -

0.225-4.0 -100 -

4.0 -5.0 -100 -50

5.0 - 30.0 -100 -52

>=30.0 -120 -

Transition frequency -80 -

III. Nominal inband PSD limit value

To comply with the nominal PSD template, when the frequency is between 25 kHz and 12 MHz, the transmitting power PSD value of the upstream signal cannot be larger than -53 dBm/Hz; when the frequency is between 138 kHz and 3.75 MHz, the transmitting power PSD value of the downstream signal cannot be larger than -60 dBm/Hz; when the frequency is between 8.5 MHz and 12 MHz, the transmitting power PSD value of the downstream signal cannot be larger than -53 dBm/Hz.

6.4.13 SHDSL Port

I. Reflection attenuation

Standard: The reflection attenuation of the SHDSL interface is expressed by

=

R

T

VVLogdBturnLoss 20)(Re . The measured values of the interface reflection

attenuation should be beyond the template shown in Figure 6–17. In this figure, the

parameter meanings are as follows: MINRL = 14dB, f0 = 3.99 kHz, f1 = 20 kHz, f2 =

fsym/2, f3 = 2. 51fsym, element transmission rate fsym = (R+8)/3, payload rate R = n x 64 + I x 8.

Page 163: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-56

0 1f 3f2ff

MINRL

Return loss (dB)

Slope is 20dB/10-time frequency interval

Frequency (Hz)

Figure 6–17 Line interface reflection attenuation template

Table 6–55 shows the reflection attenuation values of the SHDSL interface when the payload rate is 2048 kbit/s.

Table 6–55 Reflection attenuation values of SHDSL interface

Test frequency point (Hz) 10k 49.8k 109.5k 209k 308.5k 408k 507.5k 607k 706.5k 806k 905.

5k

Reflection attenuation (dB) 21.7 32.1 33.2 30.5 28 25.9 24.3 22.8 21.6 20.5 19.5

II. Longitudinal balance loss

Standard: The longitudinal balance loss of the SHDSL interface is expressed by

=

R

T

VVLogdBalBalanceLongitudin 20)( . The measured values of the

longitudinal balance loss should be beyond the template shown in Figure 6–18. In this

figure, the parameter meanings are as follows: MINLB = 40dB, f1 = 20 kHz, f2 = fsym/2,

fsym = (R+8)/3, R = n x 64 + I x 8.

Page 164: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-57

Frequency (Hz)

2f

MINLB

Longitudinal balance (dB)

1f

Slope is 20dB/10-time frequency interval

Figure 6–18 Longitudinal balance loss template

Table 6–56 shows the longitudinal balance values of the SHDSL interface when the payload rate is 2048 kbit/s.

Table 6–56 Longitudinal balance values of SHDSL interface

Test frequency point (KHz) 10 49.8 109.5 209 308.5 408 507.5 607 706.5 806 905.5 10

05

Longitudinal balance (dB) 73 71.2 66.4 61.3 58.2 55.8 54.1 52.6 51.1 49.8 48.8 47

.9

III. Longitudinal output voltage

Standard: Within the frequency band above 4 kHz, the average of the longitudinal output voltage of the SHDSL interface should be less than -50dBV within one second. The test frequency field is in the range from 100 Hz to 400 kHz. (Note: If the voltage unit in testing instrument is dBuV, and the frequency band is 3100Hz, the unit should be converted. After equivalent conversion, the average of the longitudinal output voltage of the SHDSL interface should be less than [(120-50)+10LOG(3.1/4)]=68.9dBuV.)

Table 6–57 shows the longitudinal output voltage of the SHDSL interface when the payload rate is 2048 kbit/s.

Table 6–57 Longitudinal output voltage values of SHDSL interface

Test frequency point (Hz) 10k 49k 109k 149k 209k 248k 328k 408k

Longitudinal output voltage (dBuV) 40.3 41.1 41.5 41.1 40 39.3 38.5 36.3

Page 165: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-58

IV. Transmitting power

ANNEX B standard: If the power compensation is 0dB, the transmitting power measured under the condition of 135 ohm should be in the range of Pshdsl±0.5dB. If the power compensation is not 0dB, the transmitting power measured under the condition of 135 ohm should be in the range of Pshdsl±0.5dB minus the power compensation value with the unit as dB. The PSHDSL is defined as shown in Table 6–58:

Table 6–58 Definition of PSHDSL

Payload rate (kbit/s) PSHDSL(dBm)

R < 2048 P1(R) ≤PSHDSL≤ 13.5

R ≥ 2048 14.5

The parameter meanings shown in Table 6–58 are: payload rate R=Nx64+Ix8, P1(R) =0.3486 Log2 (Rx1000+8000) + 6.06 dBm.

The output power values of the SHDSL interface at different payload rates are shown in Table 6–59:

Table 6–59 Longitudinal output power values of SHDSL interface

Payload rate (kbit/s) 192 256 512 768 1536 1984 2048

Power (dBm) 13.6 13.7 13.2 13.3 13.5 13.2 14.1

V. Transmitting power spectrum density

ANNEX B standard: The transmitting power spectrum density measured under the condition of 135 ohm should be in the range of PSDMASKSHDSL(f). It is defined as follows:

Page 166: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-59

≤<+−

≤≤××

+

×

×××

=

−−

×

11.04MHz1.5MHz 50dBm,ofwindowMHz]1[ ain power maximumpeak with 90dBm/Hz

1.5MH, 105683.0

,10

1

1sin

1135

10

)(

int5.14

int10

)(

2

3

2

2

10

ff,f

zfff

ff

ff

Nff

Nff

fK

fPSDMASK

fetdBMaskedOffs

Order

dBsym

sym

sym

SHDSLPBO

SHDSLπ

π

where the MaskOffsetdB(f) is as follows:

<−×+=

dB

dBdB

dB

ff

fff

fffdBMaskOffset

3

33

3

,1

,4.01)(

Figure 6–19 shows the PSD template with the power compensation as 0dB, and payload rate as 256 kbit/s, 512 kbit/s, 768 kbit/s, 1536 kbit/s, 2048 kbit/s and 2304 kbit/s.

Figure 6–19 0dB power compensation PSD template

Table 6–60 and Table 6–61 show the PSD values of the SHDSL interface respectively when the payload rates are 256 kbit/s and 2048 kbit/s:

Page 167: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Chapter 6 Technical Specifications

6-60

Table 6–60 PSD values of SHDSL interface

Test frequency point (Hz) 10k 29k 44k 65k 80k 90k 200k 400k 600k 800k

Payload speed is 256 kbit/s -30.7 -32.1 -36.2 -61.9 -86.3 -93.9 -105 -109 -109 -110

Table 6–61 PSD values of SHDSL interface

Test frequency point (Hz)

10k 89k 128k 208k 307k 356k 406k 445k 495k 550k 600k 800 1M

Payload speed is 2048

kbit/s -39.1 -39.4 -39.2 -41 -43.3 -48.8 -55.9 -61.8 -69.5 -87.2 -97 -101 -106

Page 168: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-1

Appendix A Introduction to xDSL Technology

A.1 Overview

DSL in the term xDSL refers to the digital subscriber line. All xDSL technologies use existing twisted pair telephone lines to deliver high-bandwidth data service. xDSL technologies vary in terms of transmission rate, distance and delay due to the different modulation and coding.

xDSL implements channel multiplexing by dividing spectrums of the copper wire. Voice and data services are split by filters. Network topology is composed of the Digital Subscriber Line Access Multiplexer (DSLAM) at the office end and the Customer Premise Equipment (CPE) at the user end.

A.1.1 Introduction to xDSL Technologies

I. HDSL

High-bit-rate DSL (HDSL) is a well developed xDSL technology. It gains wide application. It transmits data services over 1–2 twisted pairs at the rate of T1 full duplex (1.544 Mbit/s) or E1 (2.048 Mbit/s).

Rate range: Nx64 kbit/s (N=1-32). It reaches 2.048 Mbit/s at the maximum. Transmission distance: 5km. It reaches 12km by using repeaters. Application: HDSL is a replacement of the T1/E1 technology. It is ideal for

applications of distant learning, video conferencing, dedicated network etc. Compared with conventional T1/E1 technology, HDSL is more cost effective. T1/E1 transmission requires a repeater every 0.9–1.8 km, while HDSL ensures reliable transmission within 3.6 km without a repeater.

II. HDLS2

HDSL2 is newly developed DSL technology, transmitting T1/E1 rate over a single twisted pair. It uses the same modulation and signaling processing technology as HDSL.

III. SDSL

Single-line DSL (SDSL) provides high-speed variable bit rate in upstream and downstream.

Page 169: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-2

Rate range: 160 kbit/s–2.36 Mbit/s. SDSL delivers T1/E1 rate over a single twisted pair, thus saving one copper wire compared with HDSL technology. It accommodates an optimized rate based on the traffic volume.

Transmission distance: The maximum distance is above 3km over 0.4mm twisted pairs.

IV. ISDN Loop (IDSL)

IDSL transmits 128 kbit/s over twisted pairs by using ISDN terminal adapter at the subscriber end and ISDN-compatible interface card in the other end.

V. SHDSL

Single-pair High-bit-rate DSL (SHDSL) is developed from the SDSL, HDSL, HDSL2 technologies.

Rate range: 192 kbit/s–2300 kbit/s by using two line pairs. The rate is adjustable according to the actual line condition at 8k steps. The transmit rate is in the range of 384 kibt/s–4624 kbit/s by using 4 line pairs, adjustable at 16k steps.

Transmission distance: 3–6 km Application:

SHDSL, based on TDM, allows the maximum transmission distance of E1, T1 and V.35, thus enabling long-haul access of FR and CES.

SHDSL, based on ATM, delivers high-bandwidth symmetric rate, and is supplementary to ADSL.

VI. ADSL

ADSL speed ranges from 32kbit/s to 8.192Mbit/s in downstream, and 32kbit/s to 1.088Mbit/s in upstream. It provides voice service and data service over the same twisted-pair telephone line.

Data service and voice service are delivered over the same twisted pairs. Upstream and downstream rate is asymmetric. Data service and voice service are delivered simultaneously.

VII. RADSL

Rate Adaptive DSL (RADSL) allows transmit rate to be accommodated based on the actual requirements.

Data service and voice service are delivered over the same twisted pairs. Synchronous and asynchronous transmission modes are supported. Rate adaptive: the downstream speed ranges from 640 kbit/s to 12 Mbit/s, and

upstream speed ranges from 128 kbit/s to 1 Mbit/s. Data service and voice service are delivered simultaneously.

Page 170: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-3

VIII. VDSL

Very-high-data-rate Digital Subscriber Line (VDSL) technology supports both symmetric and asymmetric speed ranges. It provides all-round multimedia services including voice services, video services and digital services. Rate range: The multimedia services are delivered over the same twisted pairs, with transmission rate adaptive. Both symmetric and asymmetric rate ranges are supported. Maximum transmission distance: 1.5 km

Application: Internet access and VOD etc.

A.1.2 Specifications of xDSL Technologies

Table A–1 Technical specification of symmetric DSL technology

Index IDSL HDSL SDSL HDSL2

Standards ANSI T1.601 ETSI ETR 152

ITU-T G991.1 Proprietary

ANSI T1E1.4

ITU-T 991.2

Interoperability Yes No No Yes

Line Code 2B1Q 2B1Q 2B1Q TC PAM

Speeds supported (bit/s)

64k, 128k,144k 1.5M (T1), 2.3M (E1) 192k,2.36M 1.5M (T1)

Wire pairs 1 1, 2 or 3 1 1

Max distance

(26 AWG) 18,000 ft (24AWG)

12,000 ft (2 pair T1, 3 pair E1) 8,000 ft (2 pair E1)

7,000 ft (1 pair E1) 12,000ft 12,000ft

Rate adaptive No No Yes No

Repeater support Yes Yes No No

Framer protocol ISDN T1, E1 Proprietary T1

Table A–2 Comparison between ADSL, VDSL and SHDSL

Index ADSL VDSL SHDSL

Standards

ITU-T G.992.1

ITU-T G.992.2

ANSI T1.413,Issue2

No standard currently ITU-T G.991.2

Interoperability Yes No No

Line Code DMT QAM TCPAM

Page 171: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-4

Index ADSL VDSL SHDSL

Speeds Supported (bit/s)

Asymmetric, 6–8Mbit/s in downstream, and 640kbit/s–1Mbit/s in upstream

Symmetric, 12M Symmetric, 192k-2312k

Wire pairs 1 1 1 or 2

Max distance (26 AWG) 3km-5km 1.5km 3km-5km

Rate adaptive Yes Yes Yes

Repeater support Yes Yes Yes

In the following section, the ADSL, SHDSL and VDSL technologies will be detailed.

A.2 ADSL

I. Overview

ADSL makes use of the available bandwidth of a telephone line to deliver high-speed data service. The downstream band is between 26 kHz and 138 kHz, while upstream band between 138 kHz and 1.104 MHz. Correspondingly, the upstream rate reaches 640 kbit/s, and downstream rate reaches 8 Mbit/s. ADSL is capable of rate adaptability, in that an optimum rate can be achieved depending on the transmission distance and noise. The ADSL transfer rate is inversely proportional to the transmission distance.

Figure A–1 illustrates ADSL reference model. TSM in the Figure is the interface between ATU-R and SM, V is the logical interface between ATU-C and a digital network element (NE). U-C is the loopback interface at the office end, and U-R is the interface at the remote terminal end.

Digital network ATU-C

Splitter

PSTN

ATU-R

POTS

Bus or star topology

SM

SM

CIDistribution network

V

U-C U-R

TSM

Splitter

Figure A–1 ADSL functional reference model

Page 172: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-5

II. Standards compliance

ITU-T G.992.1 (G.DMT)

As defined in the ITU-T G.992.1, the downstream rate is up to 8 Mbit/s, and the upstream rate to 768 kbit/s. Filters are required at the subscriber end.

ITU-T G.992.2 (G.Lite)

As defined in the ITU-T G.992.2, the downstream rate is up to 1.5 Mbit/s, and the upstream rate to 512 kbit/s. No filter is required at the subscriber end.

ANSI T1.413 Issue2

As defined in the ANSI T1.413 Issue2, the downstream rate is up to 8 Mbit/s, and the upstream rate to 768 kbit/s. Filters are required at the subscriber end.

ITU-T G.994.1

In consistent with ITU-T G.994.1, the ADSL technology can recognize automatically a line standard and make adjustment accordingly.

III. Line coding

Three line codes are available for ADSL technology.

1) Carrier-less Amplitude and Phase (CAP)

Using the technology of Quadrature Amplitude Modulation (QAM), the data are modulated to a single carrier.

2) Discrete Multi-Tone (DMT)

The data are modulated to multiple carriers, with data on each carrier modulated using QAM.

3) Discrete Wavelet Multi-Tone (DWMT)

DMT is a multicarrier system using wavelet transforms to create and demodulate individual carriers.

DMT modulation

DMT is the most widely used modulation technology. It is a multicarrier system using discrete Fourier transforms to create and demodulate individual carriers.

DMT divides 1MHz frequency band into 256 subcarrier. Voiceband (VB) frequencies are from 300Hz– 4kHz in the telephone line. Taken the discrete into consideration, the frequencies from 0– 25kHz are reserved for the voice service. That is to say, the first six subcarriers among the 256 subcarriers are used for voice services, and the other 250 for data services.

QAM is implemented in all of the 250 subcarriers for data services. The output waveforms of each subcarrier are overlaid in the transmit end, and are restored to the original waveform in the receiving end.

Page 173: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-6

Among the 250 subcarriers for ADSL service, 0–31 subcarriers are assigned for upstream data. Two schemes are available for assigning subcarriers for downstream data. One of the schemes assigns all of the 255 subcarriers for downstream data. In this case, the upstream band overlaps the downstream band. They are separated by means of echo cancellation. The second scheme assigns subcarriers 32–255 for downstream data. Echo cancellation is not needed in such case. 1–15 bits are carried over each subcarrier. Depending on the line attenuation, delay and noise conditions, the subcarriers not suitable for data transmission are terminated.

The upstream and downstream frequencies 4) Frequency Division Multiplexing

The upstream pilot tone is at 69 kHz (subcarrier#16), the downstream pilot tone is at 276kHz (subcarrier #64). The upstream transmit subcarrier is in the range of #7–#31 (#16 excluded), and the downstream transmit subcarrier is in range of #32–#255 (#64 excluded).

Figure A–2 illustrates the FDM scheme.

16 31 64 2551.1MHz4.3125kHz

Carrier#VoiceBand

26kHz

POTSSplitter

69KHz UpstreamPilot Tone

276KHz DownstreamPilot Tone

7

Figure A–2 FDM scheme

5) Echo cancellation

The upstream pilot tone is at 69kHz (subcarrier#16), the downstream pilot tone is at 276kHz (subcarrier#64). The upstream transmit subcarrier is in the range of #7–#31, and the downstream transmit subcarrier is in range of #7–#255 (#64 excluded).

Figure A–3 illustrates the EC scheme.

Page 174: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-7

276KHz DownstreamPilot Tone

16 31 64 2551.1MHz4.3125kHz

Carrier#VoiceBand

26kHz

POTSSplitter

69KHz UpstreamPilot Tone

7

Figure A–3 EC scheme

IV. ADSL initialization and rate adaptivity

Establishing communication channel between DSLAM and ATU-R

Transceiver training: ADSL transceiver performs training in each subcarrier.

Analysis of subcarrier: the transceiver makes analysis of each channel baaed on the received signals, including the attenuation, signal-to-noise ratio (SNR), bit counts, and then defines the transmission and processing parameters of each channel. After the analysis, receiver at the local end exchanges the parameters set with the remote transmitter to make sure the settings at both ends match.

Power and rate adaptation

Power adaptation: Increase the power for subcarriers with relatively high attenuation and low SNR margin, or decrease the power for subcarriers with high SNR with ±3dB steps.

Bit swap: bit swap enables an ADSL system to change the number of bits assigned to a subcarrier, or change the transmit energy of a subcarrier without interrupting data flow.

V. ADSL protocol stack

Figure A–4 shows the ADSL protocol stack.

Page 175: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-8

PPPoE/PPPoEoA IPoEoA/1483(B)PPPoA

ADSL frame

PPP

ATM cell

Applicationlayer

TCP/UDP

IP

Ethernetframe

ADSL frame

PPP

ATM cell

Applicationlayer

TCP/UDP

IP

ADSL frame

ATM cell

Applicationlayer

TCP/UDP

IP

Ethernetframe

IPoA

ADSL frame

ATM cell

Applicationlayer

TCP/UDP

IP

Figure A–4 ADSL protocol stack

A.3 ADSL2+

I. Overview

The full expression of ADSL2+ is the second generation full rate asymmetric digital subscriber line. In 2003, the ITU-T issued the new Recommendation G.992.5, which is also known as ADSL2+ recommendation. This recommendation, which is derived from the first generation one, provides more functions, higher access rate, and steadier performance for users.

II. New operation modes

There are three kinds of operating modes for ADSL.

ADSL over POTS: ADSL annex A. In this mode, POTS and ADSL services are transmitted over the same pair of twisted pairs.

ADSL over ISDN: ADSL annex B. In this mode, ISDN and ADSL services are transmitted over the same pair of twisted pairs.

ADSL annex C: It is used under the TCM–ISDN crosstalk condition. This mode is mainly applied in Japan.

The following new operating modes are added to the ADSL2+.

Annex I: This digital operating mode is compatible with Annex A in respect of spectrum. There is no POTS service transmitted on the line, and therefore, the ADSL2+ upstream spectrum is in the range of 3 kHz to 138 kHz. The number of sub-bands reaches 31, and the upstream bandwidth is over 1 Mbit/s.

Annex J: This digital operating mode is compatible with Annex B in respect of spectrum. There is no ISDN service transmitted on the line. In this mode, the upstream frequency band ranges from 3 kHz to 276 kHz. A maximum of 64 upstream sub-bands are supported and the maximum upstream rate reaches 2.3 Mbit/s.

Page 176: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-9

Annex M: It extends upstream bandwidth of Annex A. The upstream sub-band starts from 6, and ends with 32, 36, 40, 44, …, 63 based on different requirements of bandwidth. At the same time, the total Tx power remains unchanged. In this way, Annex M can provide the upstream rate close to Annex J. There are two kinds of downstream frequency bands, overlap and nonoverlap, which are the same as Annex B.

Annex L: It extends the transmission distance.

ADSL supports two kinds of interfaces, STM interface (PCM interface) and ATM interface (UTOPIA). Besides this, ADSL2+ also provides PTM (packet) interface, which bears HDLC over ADSL in non-ATM transmission mode.

III. Higher transmission rate

Because ADSL2+ uses wider frequency (tone 32–511) and more sub-bands (512), it supports the maximum downstream rate of 24 Mbit/s. Figure A–5 shows its frequency spectrum. In ADSL2+ Annex J or Annex M, the upstream rate is increased to 2.3 Mbit/s.

Figure A–5 Extended upstream bandwidth of ADSL2+

IV. Longer transmission distance

The transmission distance of ADSL is less than 5 km, while that of ADSL2+ is 6.5 km at least.

V. Lower power consumption

ADSL2+ provides the power management function to reduce the running power.

ADSL2+ offers the low power consumption mode, L2 mode. In this mode, if no user data is transmitted, the system reduces the Tx power to 30% of that in normal running state, which is only used to transmit the necessary management

Page 177: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-10

messages and signal synchronization signals. When there is data to be transmitted, the normal power consumption is restored rapidly.

The CO and the CPE of ADSL2+ have the function of “power cutback”, ranging from 0 to 40 dB. This function can reduce the Tx power of the system effectively during the normal operation. For ADSL, only the CO has such function, ranging from 0 to 12 dB.

VI. Steadier running and good frequency spectrum compatibility

ADSL2+ has steadier running capability and good frequency spectrum compatibility.

The receiver determines the carrier sequencing according to the channel analysis result, which can reflect the channel state more reliably and select most appropriate tone as pilot. This helps improve the steadiness of the ADSL connection.

In the training, the Rx end can test the distribution of RFI signals, and can control the Tx power of each tone through CO-MIB during the tone is closed. This avoids RFI and reduces the crosstalk to other pairs.

ADSL2+ is of good dynamic adaptability. The enhanced bit swap and the function of changing line rate seamlessly and dynamically in the “show time” state improve the adaptability to the line parameter variation.

For ADSL2+, the receiver and Tx end have the function of “power cutback”, ranging from 0 to 40 dB. This function reduces the local end echo and crosstalk. For ADSL, only the CO has such function in downstream direction, ranging from 0 to 12 dB.

The Rx end determines pilot, which avoids that the line cannot be activated because of the interference of line bridge extractor and Am.

The Tx and Rx ends control the initialization state length, which optimizes the function of transmitting and receiving signals.

ADSL2+ provides shortened training process, during which the faulty connection can be restored to the normal state quickly.

VII. Line diagnosis function

ADSL2+ supports the dual ended loop test between the CO and the CPE to obtain the following parameters based on the special line test process.

Line transfer function

The test result is given in two modes: linear expression and logarithm expression. The former indicates the information about the amplitude and the phase, and the latter gives the result convenient for calculation.

Static line background noise power spectral density

When modem does not send any data to the line, it only detects the background noise on the line. Each tone has a test value.

Page 178: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-11

Signal-to-noise ratio

It indicates the ratio of the signal power to the noise power that is received by the receiver.

Loop attenuation (average value)

It indicates the average value of the amplitudes of transfer function of all nodes.

Signal attenuation

It indicates the ratio of the signal power received by the Rx end to the signal power transmitted from the Tx end. Actually, it is the line attenuation parameter of ADSL.

SNR margin

This value is given during the training and can be refreshed on a timed basis during the normal operation. It indicates the capability of the line connection to resist noise.

Maximum reachable rate

You can use the following formula to work out the maximum reachable rate of the line based on the parameters listed above.

skbitdB

TARSNRMsnrgapiSNRATTNDRNSC

i/4

3)(1

−−= ∑−

=

Actual total Tx power

It indicates the actual total Tx power of the local and the remote.

VIII. Seamless rate adaptive

A telephone cable is made up of multiple pairs of twisted pairs. The electric signals in one pair of twisted pairs are coupled to the other twisted pairs of the same telephone cable. Such phenomenon is called crosstalk, which has an influence on ADSL performance.

ADSL2+ adopts the seamless rate adaptive (SRA) technology to solve the problem of crosstalk. When ADSL2+ detects its channel environment changed, it adapts the line rate to the new application without changing BER, thus solving the problem of crosstalk.

IX. Rate binding function

When multiple telephone lines are bound logically, users can obtain higher rate to meet different service needs. ADSL2+ supports the rate binding function, by which two or more twisted pairs can be bound to serve one ADSL connection. Figure A–6 illustrates how the rate varies from the distance when two twisted pairs are bound.

Page 179: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-12

Figure A–6 Rate variation from the distance when two twisted pairs are bound

X. Channelized voice over DSL

In ADSL2+, bandwidth can be divided into channels that have different connection characteristics to fulfill different applications.

By channelized voice over DSL technology, ADSL2+ is able to provide CvoDSL service. By this service, the system can transmit TDM voice service over DSL bandwidth under the condition of guaranteeing the normal operation of the traditional POTS and Internet access services.

XI. Improved interworking capability

In ADSL2+, ADSL transceiver unit is functionally divided into different sub-layers, including TPS-TC, PMS-TC, PMD and MPS-TC. All sub-layers are encapsulated, and messages among them are defined to achieve the interworking of equipment produced by different manufacturers.

A.4 SHDSL

I. Overview

SHDSL is developed from the technologies of HDSL, SDSL and ISDN. DSL2 applications are limited by its constant rate delivered. SDSL makes some

Page 180: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-13

improvements to it, but fails to gain wide recognition. Therefore, ITU-T constitutes SHDSL Recommendation as a replacement.

SHDSL supports a wide range of transmit rate, and features low transmit power, spectral compatibility. The transmit rate over a single twisted pair is in range of 192 kbit/s–2312 kbit/s with 8 kbit/s steps. Optionally, the transmit rate over two twisted pairs is in range of 384 kbit/s–4624 kbit/s with 16 kbit/s steps.

SHDSL delivers data service at the rate reaching 2.3 Mbit/s over length of 3 km. It is used widely as a replacement of E1/T1 technology, or in applications requiring symmetric high-speed data service or VoDSL. It is applicable to videoconferencing, voice bundling etc.

SHDSL advantages are as follows:

Expand the E1/V.35 transmission distance (in TDM mode) to 3–6 km, four times that of the ordinary E1/V.35.

Make full use of existing copper wires to enable broadband service access. Provides functions of flow control, service configuration, status check, remote

maintenance over embedded operation channel (EOC).

II. Standards compliance

ITU-T G.991.2

III. Interface

1) Reference model

If enhanced transmission range is required, one or more SHDSL Regenerator Unit (SRU) may be inserted into the loop.

Figure A–7 is the reference model of SHDSL for TDM transport. An SHDSL span consists of STU-C, STU-R and maintenance console. SHDSL in TDM mode is a digital transmission device over twisted pair in a sense.

STU-C

U-C U-R

SRU STU-R

SNI UNI

Line interface

U-C U-R U-C U-R

Console

Line interface

Figure A–7 SHDSL reference model for TDM mode

Figure A–8 is the reference model of SHDSL for ATM transport. An SHDSL span consists of DSLAM, ATU-R and management unit.

Page 181: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-14

UNIU-C U-R

SRUSNI U-C U-R U-C U-R

Management

DSLAM STU-R

Line interface

Line interface

unit

Figure A–8 SHDSL reference model for ATM transport

Note:

Except the interface, SHDSL DSLAM provides the same functionality as ADSL DSLAM. SHDSL equipment, along with ADSL, VDSL equipment, can constitute a hybrid DSLAM.

2) Interface

TDM-based STU-C provides one of the following service network interfaces (SNI).

E1(2048 kbit/s) / T1(1544 kbit/s) V.35

TDM-based STU-R provides one of the following user network interfaces (UNI).

E1 (2048 kbit/s) / T1(1544 kbit/s) V.35

ATM-based STU-C provides one of the following SNIs.

ATM 622 Mbit/s optical interface ATM 155 Mbit/s optical interface ATM 155 Mbit/s electrical interface ATM 34368 kbit/s interface 10/100Base-T interface 100Base-Fx interface

ATM-based STU-R provides one of the following UNIs.

10/100Base-T interface 100Base-Fx interface

A.5 VDSL

I. Overview

VDSL can transmit high-speed symmetrical data service at the rate of 13 Mbit/s over the length of 1500 meters.

Page 182: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-15

II. Standards compliance

ITU-T G.993.1

III. Line coding

Two line codes are widely used in VDSL: QAM and DMT. QAM gains wide application in VDSL commercial applications. QAM advantages are as follows:

Simple to implement, low cost, low power consumption. Adaptive filter decreases the frequency interference. It distributes VDSL in frequencies within 900 kHz to overlap ADSL. When ADSL

service is unavailable over the twisted pair, frequencies larger than 138kHz can be used to deliver higher rate.

Compared with DMT, QAM requires more precise digital-to-analogue converter (DAC) and analogue-to-digital converter (ADC).

IV. VDSL transmit frequency band

ITU-T 993.1 Annex A: Bandplan A

Figure A–9 VDSL frequency band division

Table A–3 VDSL frequency band division

Frequency band fg0−fg1 fg1−fg2 fg2−fg3 fg3−fg4 fg4−fg5

MHz 0.025-0.138 0.138-3.75 3.75-5.2 5.2-8.5 8.5-12

Direction Optional Downstream Upstream Downstream Upstream

ITU-T 993.1 Annex B: Bandplan B

Figure A–10 VDSL frequency band division

Page 183: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix A Introduction to xDSL Technology

A-16

Table A–4 VDSL frequency band division

Frequency band fg0−fg1 fg1−fg2 fg2−fg3 fg4−fg4 fg4−fg5

MHz 0.025-0.138 0.138-3.0 3.0-5.1 5.1-7.05 7.05-12

Direction Optional Downstream Upstream Downstream Upstream

V. VDSL protocol stack

Figure A–11 shows the VDSL protocols stack.

VDSLEthernet frame

IPTCP/UDP

Application layer

Figure A–11 VDSL protocol stack

Page 184: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix B Terminologies

B-1

Appendix B Terminologies

ABR (Available Bit Rate)

It is a kind of ATM service. With this service, the network can bear maximum amount of cells most efficiently, but it cannot guarantee the arrival of the cells. The network can support the data transmission at different bit rates, minimum ensured data transmission rate and specified performance parameters. In the general traffic switching, the network can ensure the minimum loss of the received flow.

ADSL (Asymmetric Digital Subscriber Line)

It is a kind of digital subscriber line technology, in which the advanced digital modulation method is adopted to transmit high-speed digital signals over the traditional analog telephone subscriber lines. The downstream rate is greater than the upstream one.

ATM (Asynchronous Transfer Mode)

It is a kind of connection-oriented network technology, which uses small cells with fixed size at the bottom layer. It has the potential of using one bottom layer technology to support voice, video and data transmission at the same time.

ATU (ADSL Transceiver Unit)

It is a complete ADSL transceiver unit consisting of Discrete Multi-tone Module and AFE Module.

ATU-C (ADSL Transceiver Unit, Central Office End)

It is an ADSL office end device which receives upstream data stream and sends downstream data stream with high density and low power consumption.

ATU-R (ADSL Transceiver Unit, Remote End)

It is an ADSL remote end equipment, which sends upstream data stream and receives downstream data stream with low cost and low power consumption.

CAC (Connection Admission Control)

It is the connection resource allocation regulation adopted when the network connection is created. It is used to determine whether a connection request is accepted or refused.

CBR (Constant Bit Rate)

Page 185: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix B Terminologies

B-2

It is a kind of ATM service. It supports consecutive information bit stream transmission, for example, voice and image services that require the bandwidth in fixed size during data transmission.

CCS (Common Control Signaling)

It is a signaling mode in which a group of voice channels of signaling is transmitted in a high-speed data link in the TDM mode. Generally, it is used in the telecommunications network composed of SPC switches. Since it is usually used for inter-office, it is also called common channel inter-office signaling mode.

CES (Circuit Emulation Service)

It is a kind of ATM service, which provides virtual circuits similar to the TDM between local access circuits. This service is realized through the AAL1 protocol.

CRC (Cyclic Redundancy Check)

It is a kind of data transmission error detecting function, which performs data multinomial calculation, and attaches the sum to the frame. The receiving equipment also performs this algorithm, and checks whether the data are distorted during transmission by checking the sum.

CTS (Clear to Send)

It is a control signal sent from the DCT to DET, which indicates that the DCT will start transmitting data.

DCE (Data Communication Equipment)

It is a device used to connect communication network and subscribers, and provide synchronous clock for the DTE as well.

DLCI (Data link Connection Identifier)

It is a unique numeral allocated to the FR connection end-point in the FR network. It is carried at the header of the FR frame, and used to distinguish different connections.

DMT (Discrete Multi-Tone)

It is the ADSL modulation technology recommended by the ANSI T1.413. The main principle is to divide the frequency band (0-1.104MHz) into 256 quadrature sub-channels indicated by frequency (each sub-channel occupies 4kHz bandwidth). The input signal, after the bit allocation and buffering, is divided into bit blocks. After the time compressed multiplex (TCM) coding and 512-point Inverse Discrete Fourier Transform (IDFT), the signal is transformed to time domain. At this time, the bit blocks will be transformed to 256 QAM sub-characters. Afterward, a cyclic prefix (used to eliminate inter-symbol interference) is added to each bit block. Then, the signal is sent

Page 186: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix B Terminologies

B-3

to the channel by the sending filter after digital-analog (DA) conversion. At the receiving end, the reverse order is taken to receive and decode the signal.

DSLAM (Digital Subscriber Line Access Multiplexer)

It is an office-end equipment used to converge and distribute the ADSL access service.

DTE (Data Terminal Equipment)

It is a device at the subscriber end. It is generally connected to the network through the DCE, and adopts the synchronous clock provided by the DCE.

DTR (Data Terminal Ready)

It is a kind of interface control signal sent from the DTE to DCE, which is used to inform the DCE that the DTE has been ready.

EOC (Embedded Operations Channel)

It is one of the overhead channels, which is used for the communication of the ATU-C with ATU-R, the online and offline maintenance, as well as the collection of ATU-R status information and performance monitoring parameters.

FECN (Forward Explicit Congestion Notification)

It is one bit in the FR data frame, which is set by the network where congestion occurs. It is used to notify the user to start the congestion-avoiding program and it indicates the information flow in the same direction of the frame carrying the BECN indication.

FR (Frame Relay)

The frame relay service provides bi-directional transmission of subscriber information stream between subscribers and network interfaces, and keeps information sequence unchanged. The subscriber information is transmitted with the unit of frame, and the subscriber information stream is counted and multiplexed. Frame relay is a major technology generated in the ISDN standardization process. As a kind of transmission technology, it is developed based on the X.25 packet switching technology under the conditions that the digital fiber transmission lines have taken the place of the existing analog lines gradually and the subscriber terminals become much more intelligent.

HDB3 (High Density Bipolar of Order 3 Code)

It is a kind of E1 line coding mode.

MIB (Management Information Base)

It is the objective collection that can be accessed through the network management protocol (such as SNMP).

NNI (Network-Network Interface)

Page 187: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix B Terminologies

B-4

It is the inter-node interface in the same network recommended by ITU-T. The ATM Association prescribes two standards: one is called PNNI used in the private network, and the other is called common NNI used in the common network.

RTS (Request to Send)

It is a control signal sent from the DTE to DCE, notifying the DCE that the DTE has data to transmit.

SAR (Segmentation and Reassembly)

It is used to segment the information frames into the ATM cells in the output source, and reassemble these ATM cells into the information frames in the destination equipment. These activities take place in the lower parts of the AAL, and each type of AAL has its own SAR format.

SNR (Signal-to-Noise Ratio)

It is an electric parameter that indicates the relative size of the constant signal to the noise.

SRTS (Synchronous Residual Time Stamp)

It is a method used for AAL1 to restore the clock of the sending end at the receiving end. The AAL1 detects the frequency margin (residual timestamp) between the sending clock and network clock at the sending end. The margin value, as part of the sequence flag field of the AAL1 frame format, is transmitted through the network, and the receiving end can regenerate the sending clock signal according to this timestamp.

UBR (Unspecified Bit Rate)

It is a non-real-time application service, of which the delay needs not to be restricted strictly. This application includes the traditional computer communication application program, for example, file transmission or E-mail.

VBR (Variable Bit Rate)

In the ATM, the service with variable bit rate can generate the variable throughput rate. Based on whether the throughput rate is generated in real time, it can be divided into two kinds of services, nrt-VBR service and rt-VBR.

Page 188: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-1

Appendix C Abbreviations and Acronyms

A

AAL ATM Adaptation Layer

AAL1 ATM Adaptation Layer Type 1

AAL5 ATM Adaptation Layer 5

ACL Access Control List

ACM Adaptive Clock Method

ADC Analog Digit Converter

ADM Add/Drop Multiplexer

ADSL Asymmetric Digital Subscriber Line

AG Access Gateway

AIS Alarm Indication Signal

AMI Alternate Mark Inversion code

AN Access Network

ANSI American National Standard Institute

APS Automatic Protection Switching

ARP Address Resolution Protocol

ASL Analog Subscriber Line Board

ATM Asynchronous Transfer Mode

ATU-C ADSL transceiver unit, central office end

ATU-R ADSL transceiver unit, remote end

AU Administrative Unit

B

BAS Broadband Access Server

BER Bit Error Ratio

BHCA Busy Hour Call Attempt

B-ISDN Broadband Integrated Services Digital Networks

BITS Building Integrated Timing Supply system

BORSCHT Battery feeding, Overvoltage protection, Ringing control, Supervision, CODEC& filter, Hybrid circuit and Test

BRA Basic Rate Access

Page 189: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-2

BRI Basic Rate Interface

C

CAC Connection Admission Control

CAP Carrierless Amplitude Modulation

CAR Committed Access Rate

CBR Constant Bit Rate

CES Circuit Emulation Service

CHAP Challenge-Handshake Authentication Protocol

CID Caller Identification Display

CL Connection Line

CLIP Calling Line Identification Presentation

CMM Capability Maturity Model

CPE Customer Premises Equipment

CPU Center Processing Unit

CRC Cyclic Redundancy Check

CSMA/CD Carrier Sense Multiple Access with Collision Detection

D

DAC Digit-Analog Converter

DC Direct Current

DCC Data Communication Channel

DCD Data Carrier Detected

DCE Data Circuit-terminal Equipment

DDI Direct-Dialing-In

DDN Digital Data Network

DMT Discrete Multi-tone

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

DSR Data Set Ready

DSU Data Service Unit

DTE Data Terminal Equipment

DTMF Dual Tone Multi-Frequency

DTR Data Terminal Ready

DWMT Discrete Wavelet Multi-Tone

E

Page 190: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-3

EC Echo Cancellation

ECC Embedded Control Channel

EIA Electronics Industry Association

EOC Embedded Operations Channel in DS1 Rate Interface

ETSI European Telecommunications Standards Institute

F

FDD Frequency Division Duplex

FDM Frequency-Division Multiplexing

FE Fast Ethernet

FEC Forward Error Correction

FoIP Fax over IP

FSK Frequency Shift Keying

FTTB Fiber To The Building

FTTC Fiber To The Curb

FWHM full-width at half maximum

FXO Foreign Exchange Office

G

GE Gigabit Ethernet

GUI Graphic User Interface

H

HDLC High-speed Data link Control

HDSL High-speed digital subscriber line

HW Highway

I

IEEE Institute of Electrical and Electronics Engineers

IGMP Internet Group Management Protocol

IMA Inverse Multiplexing for ATM

IP Internet Protocol

IPoA IP over ATM

IPoE IP over Ethernet

IPoEoA IP over Ethernet over ATM

ISDN Integrated Services Digital Network

ITU International Telecommunications Union

Page 191: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-4

ITU-T International Telecommunication Union- Telecommunication Standardization Sector

L

LAN Local Area Network

LE Local Exchange

LED Light Emitting Diode

LOF Loss Of Frame

LOS Loss Of Signal

LT Line Termination

M

MDF Main Distribution Frame

MFC Multiple Frequency Control

MGCP Media Gateway Control Protocol

MIB Management Information Base

MLM Multi-Longitudinal Mode (laser)

MoIP Modem over IP

MSN Multi-subscriber Number

MSTP Multi-Service Transmission Platform

MTA Multifunctional Terminal Adapter

N

NA Not applicable

NAT Network Address Translation

NGN Next Generation Network

N-ISDN Narrow-band ISDN

NNI Network Node Interface (Network-to-Network)

nrt-VBR Non-Real Time Variable Bit Rate

NT Network Termination

O

OAM Operation and Maintenance

OLT Optical Line Terminal

ONU Optical Network Unit

OSPF Open Shortest Path First

P

PAR Peak to Average

Page 192: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-5

PBX Private Branch Exchange

PCM Pulse-Code Modulation

PCR Peak Cell Rate

PDH Plesiochronous Digital Hierarchy

PNNI Private Network-Network Interface

POTS Plain Old Telephone Service

PPP Point-to-Point Protocol

PPPoA PPP over ATM

PPPoE PPP Over Ethernet

PRA Primary Rate Access

PRI Primary Rate Interface

PSD Power Spectrum Density

PSTN Public Switched Telephone Network

PVC Permanent Virtual Channel

PVP Permanent Virtual Path

Q

QAM Quadrature Amplitude Modulation

QoS Quality of Service

R

RIP Routing Information Protocol

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

RTU Remote Test Unit

rt-VBR real time Variable Bit Rate

S

SAR Segmentation And Reassembly

SCR Sustainable Cell Rate

SDH Synchronous Digital Hierarchy

SDT Structured Data Transfer

SF Signal Fail

SHDSL Single-pair High-speed Digital Subscriber Line

SM Switching Module

SNI Service Node Interface

SNMP Simple Network Management Protocol

Page 193: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-6

SNR Signal-to-noise ratio

SONET Synchronous Optical Network

SRTS Synchronous Residual Time Stamp

SRU SHDSL Regenerator Unit

SSM Synchronization Status Message

STM Synchronous Transfer Mode

STP Shielded Twisted Pair

SVC Switched Virtual Channel

T

TCM Time Compressed Multiplex

TCP Transport Control Protocol

TDM Time Division Multiplex

TFTP Trivial File Transfer Protocol

TMN Telecommunications Management Network

TTL time to live

TU Tributary Unit

U

UBR Unspecified Bit Rate

UDP User Datagram Protocol

UDT Unstructured Data Transfer

UNI User Network Interface

UTP Unshielded Twisted Pair

V

VBR Variable Bit Rate

VC Virtual Channel

VCC Virtual Channel Connection

VCI Virtual Channel Identifier

VDSL Very High Speed DSL

VLAN Virtual Local Area Network

VOD Video on Demand

VoIP Voice over IP

VP Virtual Path

VPC Virtual Path Connection

VPI Virtual Path Identifier; Virtual Path Identifier

Page 194: UA5000 Technical Manual

Technical Manual HONET Integrated Services Access Network Appendix C Abbreviations and Acronyms

C-7

VPL Virtual Path Link

W

WAN Wide Area Network

WRR Weighted Round Robin

WWW World Wide Web

X

xDSL x Digital Subscriber Line