97
TESE DE DOUTORADO Mixotrofia do fitoplâncton em um gradiente de luz e nutrientes Mariana Rodrigues Amaral da Costa UFRN

U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

T E S E D E D O U T O R A D O

Mixotrofia do fitoplâncton emum gradiente de luz e

nutrientes

Mariana Rodrigues Amaral da CostaUFRN

Page 2: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

U N I V E R S I D A D E F E D E R A L D O R I O G R A N D E D O N O R T E

P R O G R A M A D E P Ó S - G R A D U A Ç Ã O E M E C O L O G I A

Mixotrofia do fitoplâncton em um gradientede luz e nutrientes                                          

Phytoplankton mixotrophy across nutrient and lightgradients

Mariana Rodrigues Amaral da Costa

NATAL - RN - BRASIL - 2019

Page 3: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

Tese de doutorado apresentada ao

programa de Pós-Graduação em

Ecologia da Universidade Federal do

Rio Grande do Norte para obtenção

do título de Doutora em Ecologia.

Orientação: Vanessa Becker

Co-orientação: Hugo Sarmento

Orientação doutorado sanduíche:

Fernando Unrein

Mariana Rodrigues Amaral da Costa

Mixotrofia do fitoplâncton em um gradientede luz e nutrientes                                          

Phytoplankton mixotrophy across nutrient and lightgradients

NATAL - RN - BRASIL - 2019

Page 4: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

O presente trabalho foi realizado com apoio da Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -

Código de Financiamento 001

Page 5: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

Costa, Mariana Rodrigues Amaral da. Mixotrofia do fitoplâncton em um gradiente de luz enutrientes / Mariana Rodrigues Amaral da Costa. - Natal, 2019. 94 f.: il.

Tese (Doutorado) - Universidade Federal do Rio Grande doNorte. Centro de Biociências. Programa de Pós-graduação emEcologia. Orientadora: Profa. Dra. Vanessa Becker. Coorientador: Prof. Dr. Hugo Sarmento.

1. Seca extrema - Tese. 2. Grazing - Tese. 3. Cianobactérias- Tese. 4. Disponibilidade de luz - Tese. 5. Citometria de fluxo- Tese. 6. Traços funcionais - Tese. I. Becker, Vanessa. II.Sarmento, Hugo. III. Universidade Federal do Rio Grande doNorte. IV. Título.

RN/UF/BSE-CB CDU 551.577.5

Universidade Federal do Rio Grande do Norte - UFRNSistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Leopoldo Nelson - Centro de Biociências - CB

Elaborado por KATIA REJANE DA SILVA - CRB-15/351

Page 6: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

Dedico esta tese à minha família,meu porto seguro

Page 7: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

“Não é possível refazer este país, democratizá-lo,humanizá-lo, torná-lo sério, com adolescentes brincando

de matar gente, ofendendo a vida, destruindo o sonho,inviabilizando o amor. Se a educação sozinha não

transformar a sociedade, sem ela tampouco a sociedademuda.”

Paulo Freire

Page 8: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

Crédito para imagem: Robert Fisher

Page 9: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

1

AGRADECIMENTOS

Agradeço ao programa de pós-graduação em Ecologia da UFRN e seus

excelentes docentes. Ao programa de pós-graduação de Ecologia e Recursos Naturais da

UFSCar – São Carlos –SP, por ter me acolhido durante minha estadia em São Carlos. E

ao Instituto de Investigações Biotecnológicas (IIB – INTECH) de Chascomús –

província de Buenos Aires, Argentina.

Às agências financiadoras: Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior (CAPES) pela concessão de bolsa de doutorado e pela concessão da

bolsa na modalidade doutorado sanduíche – edital PDSE 2016. Ao Conselho Nacional

de Desenvolvimento Científico e Tecnológico (CNPq) pelo financiamento da pesquisa

resultando no primeiro capítulo da tese. À Fundação de Pesquisa de São Paulo

(FAPESP) pelo financiamento nos projetos que resultaram no segundo e terceiro

capítulo da tese. Gostaria de ressaltar a importantíssima contribuição que essas agências

têm para pesquisa, ciência e tecnologia. Fortalecer nossas agências é garantir o

desenvolvimento e soberania do nosso país.

A todos os laboratórios envolvidos para o desenvolvimento dessa pesquisa:

Laboratório de Recursos Hídricos e Saneamento Ambiental (LARHISA – UFRN) e seu

grupo de pesquisa ELISA (Estudos em Limnologia do Semiárido), Laboratório de

Ecologia Aquática (LEA – UFRN), Laboratório de Microbiologia Aquática (LAMAq –

UFRN), Laboratório de Limnologia (DOL – UFRN), Laboratório de Processos e

Biodiversidade Microbiana (LMPB – UFSCar), Laboratório de Ficologia (UFSCar) e ao

Laboratório de Ecologia e Fotobiologia Aquática (LEFA – IIB- INTECH, Chascomús).

À minha orientadora Vanessa Becker, a quem devo muita gratidão durante todos

esses anos que estamos juntas na academia e na vida. Vanessa é meu espelho.

Inspiração, rigidez, amabilidade e bom humor. O que sou e o que me inspiro a ser na

academia vem da força dessa mulher. Meu muito obrigada por essa parceria que

ultrapassa os muros da universidade.

Ao meu co-orientador, Hugo Sarmento. Muito obrigada por todos os

ensinamentos, pela paciência e todo o apoio durante todo o processo da tese. Participar

de seu laboratório e de seu grupo de pesquisa foi muito importante no meu crescimento

acadêmico e pessoal. Mas gostaria de ressaltar minha gratidão pelo seu convite e por me

Page 10: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

2

acolher em São Carlos em um momento tão importante e divisor de águas na minha

vida.

Ao meu co-orientador no exterior, Fernando Unrein. Meus agradecimentos por

me acolher em Chascomús e no seu grupo de pesquisa. Viver em Chascomús foi uma

experiência transformadora. Obrigada pelos ensinamentos e pela paciência. Um brinde

ao choripan e ao churrasco argentino.

Á Inessa Bagatini, por me receber em seu laboratório de Ficologia da UFSCar

com toda sua delicadeza e dedicação e por todas as ajudas no que foi necessário para

melhorar esses trabalhos. Suas contribuições foram valiosas.

Uma tese de doutorado é um produto que não foi feito somente pelas minhas

mãos, existe toda uma equipe por trás como já mencionado. São programas de pós-

graduação de excelência, agências financiadoras, universidades públicas de alta

qualidade, laboratórios equipados e seus grupos de pesquisas, professores e orientações

excelentes. Nada se faz só. Mas essa tese de doutorado vai além disso, existe toda uma

rede apoio, essa rede é a base fortalecedora que me sustenta no grande peso que é fazer

ciência no Brasil.

Dedico e agradeço aos meus pais, Moab e Solange, meu porto seguro. Muitas (e

muitas) vezes senti medo e pensei em não continuar mas segui em frente pois sabia que

nunca ficaria desamparada. Ao meu irmão, Rodolfo, minha mão amiga e braço forte.

Estaremos sempre juntos no caminhar e desafios da vida. À minha família,

especialmente a minha avó Rosa, pelo amor, atenção e por ter segurado a nossa barra

tantas e tantas vezes. Tia Lilian, meu exemplo inspirador, tia Simone e tio Júnior. Minha

família é uma família de mulheres fortes e de garra. Ao meu avô João Batista em

memória, ainda lembro do senhor e sua lembrança me deixa mais feliz, obrigada por

inserir a poesia na minha vida.

Agradeço a Gentil Santos que esteve presente em todo esse processo e com esse

será o quarto título que ele esteve ao meu lado, você foi muito importante na minha rede

de apoio.

Existem pessoas que foram diretamente e ativamente importantes na construção

desse trabalho e na minha vida pessoal. Esse doutorado me proporcionou três casas,

uma casa para cada capítulo:

Page 11: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

3

Gostaria de agradecer a minha primeira casa, Natal – RN, UFRN, aos amigos de

laboratório. Meu núcleo: Fabiana Araújo, Gabi Moura, Maria Marcolina, Pablo Rubim e

Danyhelton, vocês estiveram presentes em todo esse processo desde quando eu era IC

até chegar aqui. Carrego vocês no meu coração. Obrigada por tornar o trabalho um

ambiente leve e divertido. Aos amigos GREMLINS: Ewaldo, Anízio, Fabíola, Letícia

Quesado, Radmila, Iagê, Maiara Menezes, Leo Teixeira, Gustavo Girão, Camila Cabral,

Laissa, Regina e Carol Medeiros. É tão importante ter um grupo como o nosso, onde são

todos amigos, nos ajudando em qualquer momento e sem competição. Não é todo lugar

que encontramos essa parceria.

Agradeço aos LIMNIONS: Carlos Júnior, Gabi Trigueiro, Jéssica Leite, Hérika

Calvalcante, Jade e Jéssica Pápera. Vocês são braço forte. Obrigada.

A todos os responsáveis pelo trabalho de campo e laboratório que resultaram no

capítulo 1 da tese, especialmente a Rosemberg Menezes, coordenador do projeto, além

de Seu Edson, Anísio, Cleto, Lenice, Isaac Falcão, Juliana Leroy, Bruno Wanderley,

Regina Nobre, Pedro Junger e Barbara Bezerra.

Gostaria de agradecer a minha segunda casa, Chascomús na Argentina,

especialmente Juliana Ospina e Marión Perez, se levo grandes amizades desse momento

são vocês. Obrigada por abrirem as portas da sua casa e das suas vidas. Agradeço muito

também a Victoria Quiroga, por todo o apoio na citometria e todas as trocas de

conhecimentos. Aos amigos do LEFA: Juli, Paula Huber, Mariana Odriozola, Manuel

Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo

Lagomarsino, Paulina Fermani, Marcela Ferraro e Horacio Zagarese. E a todos os

amigos que fiz em Chascomús: Lisset Ruiz, Melisa Alberti, Estefanía Vásquez, Rosario

Lastra e a todos que participaram dos asaditos e por compartilhar o vinho.

Se eu pudesse voltar no tempo não mudaria a decisão de ir para lá. Foi uma

experiência transformadora e de autoconhecimento. Obrigada a todos que fizeram parte

dessa minha história.

Quero agradecer minha terceira casa, São Carlos – SP. São Carlos foi um marco

na minha vida. Meu muito obrigada a República Potilombia: Pedro e Laura e os

agregados (Mika, Paulita e Helena). Nesse apartamento da rua episcopal fui muito feliz.

Page 12: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

4

Agradeço especialmente ao Pedro, pela convivência diária tanto em casa como

no laboratório, você faz parte tanto do GREMLINS, como do LMBP, das coletas do

doutorado, da potilombia e da minha vida diária. Muito obrigada meu irmão.

Agradeço a Michaela Ladeira (Milkinha), parceira de laboratório, de

comidinhas, vinhos e discos, viagens e da vida. Você é inspiração.

Agradeço a Helena Vieira, minha experiência em São Carlos não teria sido tão

extraordinária sem a sua companhia. Muito obrigada por me inserir na sua vida, na vida

de seus amigos, no Natal com sua família. Que bom que cruzamos o mesmo caminho

em momentos tão importantes de nossas vidas.

Ao LMBP: Pedro, Mika, Erick (e Sofia) e Henrique. Especialmente ao Henrique

que foi meu braço forte e com a ajuda dele saiu os experimentos do terceiro capítulo.

Meu melhor IC <3. Aos amigos do laboratório de Ficologia da UFSCar: Inessa, Nathan,

Marcelo, Guilherme e Naiara.

À rede de apoio dos amigos de São Carlos, amigos de café e cerveja, almoços e

lanches. Principalmente os cafés das marocas: Helena, Popinho, Luiza e Carol. A todos

que cruzaram meu caminho. Cada um é especial na minha vida. Fui muito feliz com

vocês. Obrigada por transformar um ano em cinco.

Por fim, mas não menos especial, minha rede de apoio das amizades que estão

sempre comigo, aquelas amigas de sempre e para sempre: Franzinha, Larinha e Jaci;

Lara, Katy e Juliana. Não existe Maricota sem elas e não existe elas sem Maricota.

Ao decidir fazer doutorado e me dedicar à pesquisa, eu nutria o desejo que com

o meu trabalho eu poderia mudar o mundo. Mal sabia eu que o doutorado mudaria a

mim. Somos resultados de nossas experiências de vida e o doutorado me proporcionou

muitas vivências. Mahalo.

Page 13: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

5

Sumário Agradecimentos ............................................................................................................................. 1

Lista de Figuras ............................................................................................................................. 6

Lista de Tabelas ............................................................................................................................. 9

Apresentação da Tese .................................................................................................................. 10

Fluxograma da Tese .................................................................................................................... 12

Resumo ........................................................................................................................................ 13

Abstract ......................................................................................................................................15

Introdução Geral ........................................................................................................................16

Fitoplâncton e abordagens funcionais ......................................................................................... 16

Eventos climáticos extremos e a dinâmica fitoplanctônica ......................................................... 17

Mixotrofia como importante traço funcional do fitoplâncton ..................................................... 20

Capítulo 1 .................................................................................................................................... 31

Capítulo 2 .................................................................................................................................... 45

Capítulo 3 .................................................................................................................................... 63

Considerações Finais ................................................................................................................... 81

Material Suplementar .................................................................................................................. 84

Page 14: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

6

Lista de Figuras

Introdução geral

Fig. 1 Esquema do modelo teórico da mudança da composição da comunidade fitoplanctônica

em resposta ao grau de eutrofização e concentração da turbidez inorgânica devido à redução da

capacidade máxima de volume de reservatórios e lagos rasos. O azul representa um ambiente

com baixa disponibilidade de nutrientes e alta disponibilidade de luz, a área verde representa um

ambiente eutrofizado com alta biomassa de cianobactérias e a área marrom representa um

ambiente com baixa disponibilidade de luz e alta turbidez inorgânica de material em suspensão

particulado devido a ressuspensão do sedimento para a coluna d’água. A linha vermelha

pontilhada representa um nível crítico de nível de água dos reservatórios e lagos

rasos..............................................................................................................................................20

Capítulo 1

Fig. 1 Study area of the Piranhas-Açu River watershed showing the 16 reservoirs

distributed in the two sub-basins, Piancó sub-basin (PB) and Seridó sub-basin (SB).

Isohyets show the differences in annual precipitation. The reservoirs in SB are located

in the drier region, within the isohyets of 500 mm, and those in PB are located within

the isohyets of 700 mm. ………………………………………………………………..35

Fig. 2 Box plots of some of the environmental variables a) maximum volume storage

(Vol %), b) maximum depth (Zmax), c) Secchi disk depth, d) water:evaporation ratio, e)

total phosphorous, and f) chlorophyll-a in the two regions (PB and SB) and in the two

sampling periods: dry and extremely dry (ED). The dotted lines separate the studied

periods. The box plot shows the median, minimum, maximum, first, and third quartiles.

The results of the two-way ANOVA are shown for each variable.

………………………………………………………………………………………….37

Fig. 3 Box plots of the total phytoplankton biomass in log scale (a) and species richness

(b) in the two regions (PB and SB) and in the two sampling periods: dry and extremely

dry (ED). The dotted lines separate the studied periods. The box plot shows the median,

minimum, maximum, first, and third quartiles. The results of the two-way ANOVA are

shown for each variable…………………………………………………………………38

Fig. 4 Relative biomass of the phytoplankton morphological functional traits (A) and

the physiological functional traits (B) between the two regions (PB and SB) and the two

study periods (dry and extremely dry) ........................................................……………38

Fig. 5 Box plot of the significant functional traits: large round/ovoid shape (A),

nitrogen-fixing (B) and potential mixotrophs (C) between the two regions (PB and SB)

and the two studied period: dry and extremely dry (ED). The box plot shows the

median, minimum, maximum, first, and third quartiles. The results of the two-way

ANOVA are shown for each variable. ……………………………………………….39

Fig. 6 Linear regression between the biomass of the potential mixotrophic algae and the

source of turbidity: (a) inorganic suspended solids (ISS) and (b) organic suspended

solids (OSS). Data represent the two regions PB (black circles) and SB (black triangles)

together during the extremely dry period. …..…………………………………………39

Page 15: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

7

Fig. 7 RDA ordination of the phytoplankton functional traits and the environmental

variables in the studied period. Dark squares and circles represent the dry period. White

squares and circles represent the extremely dry period (ED). Squares represent the

Piancó sub-basin (PB), and circles denote the Seridó sub-basin (SB). Volume (vol),

euphotic zone (Zeu), turbidity (Turb), total phosphorous (TP), conductivity (Cond),

dissolved oxygen (DO), chlorophyll-a (Chla), small round/ovoid (small), large

round/ovoid (large), coenobial (Coe), filamentous (filam), complex shapes (shapes),

colonies (colonial), nitrogen fixing (Nfix), potential for mixotrophy (mix.), high light

requirement (HighLight), and low light requirement (LowLight).

………………………………………………………………………………………….40

Fig. 8 Schematic diagram of the effect of water volume reduction altering the

phytoplankton functional traits groups. HL = high light acquisition, Nfix = nitrogen

fixation. Dashed lines imply the critical threshold for the column depth. ……………..41

Capítulo 2

Fig. 1 Experimental design illustrating unialgal and mixed cultures under three distinct

light regimes. High light (HL) consist in direct incident light in the C. obovata

monoculture, in M. aeruginosa monoculture and in the mixed cultures (C. obovata + M.

aeruginosa, C+M). Low light (LL) consisted in a physical barrier (culture tissue flask

with sediment diluted in medium WC) above the single and co-cultures. Low light +

sediment (Sed) consisted in the same light intensity from LL treatment but with the

sediment inside the treatment flasks. This experimental design was performed with

axenic and non-axenic (bacteria-added) cultures.……………………………………..50

Fig 2. Trends in Cryptomonas obovata (a) and Microcystis aeruginosa (b) carbon

biomass through experimental period (days) for the axenic experiment in High light

(HL), Low Light (LL) and Sediment (SED) treatments in the single and co-cultures.

Error bars (n=3) are standard deviations.

………………………………………………………………………………………….52

Fig 3. Trends in Cryptomonas obovata (a) and Microcystis aeruginosa (b) carbon

biomass relative to the initial time through experimental period (days) for the non-

axenic experiment in High light (HL), Low Light (LL) and Sediment (SED) treatments

observed in the single and co-cultures. Error bars (n=3) are standard

deviations……………………………………………………………………………….52

Fig. 4 Growth Rates (day-1) for Cryptomonas ovata and Microcystis aeruginosa in

single and co-cultures in experiment (a) without bacteria (axenic) and (b) with bacteria

(non-axenic). HL= high light treatment, LL = low light treatment and SED = sediment

treatment. Bars describe the standard deviation. Two-way ANOVA results for

competition and effect of light limitation with F and p-value are shown. (a) and (b) are

the results from Tukey’s post-hoc test..………………………………………………..53

Page 16: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

8

Capítulo 3

Fig 1 – The 3x3 factorial experimental design for ingestion and food vacuoles staining

experiments …………………………………………………………………………….67

Fig. 2 Cell-specific grazing rates (CSGR, bact.ind-1.h-1) from the short-term grazing

experiments for C. marssonii measured by flow cytometry (A) and by epifluorescence

microscope (B) and for O. tuberculata measured by flow cytometry (C) and by

epifluorescence microscope (D) between the distinct nutrient treatments: high nutrient

(HN), medium nutrient (MN) and low nutrient (LN); and between the distinct light

treatments: high light (HL), low light (LL) and total darkness (D). Bars are the standard

deviation (n=3), p is the p-values from the two-way ANOVA, L = light and N =

nutrient. Letters “a” and “b”, denotes differences by pots-hoc test for the nutrient

treatments and letters “c” and “d” denotes differences by the post-hoc test for the light

treatments. ……………………………………………………………………………………..71

Fig 3 – General model of the type II linear regression comparing specific grazing rates (CSGR)

obtained by flow cytometry and epifluorescence microscopy in short-term ingestion

experiments with C. marsonii and O. tuberculata. Dashed line indicates a 1:1 ratio and solid

dark line is the linear regression for data points. (R2 = 0.50, p-value <

0.001).…………………………………………………………………………………………...72

Fig 4 - Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for Chlamydomonas

sp. in the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Red dots are cells before the

addition of LyT and black dots are cells after the addition of LyT. ……………………………73

Fig 5 – Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for C. marsonii in

the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Blue dots are cells before the

addition of LyT and black dots are cells after the addition of LyT. ……………………………73

Fig 6 – Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for O. tuberculata

in the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Red dots are cells before the

addition of LyT and black dots are cells after the addition of LyT. ……………………………74

Page 17: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

9

Lista de Tabelas

Introdução geral

Tabela 1 – Metodologias propostas para estudar grazing em protistas ..........................22

Capítulo 1

Table 1 - Groups of the phytoplankton functional traits identified in the study ………36

Capítulo 2

Table 1 – Two-way ANOVA showing differences in C. obovata and M. aeruginosa ..54

Capítulo 3

Table 1 - Summary of the experiments performed ………………………………........67

Table 2 – Two-way ANOVA for LyT experiment between treatments. Asterisks (*)

indicate significant or marginally significant values. ………………………………….74

Table 3 – Comparison of study methodologies and significant results related to

treatments, n.s. indicate no significant differences between treatments (light and

nutrients). HN = High nutrient treatment, LN = Low nutrient treatment and LL = low

light treatment. …………………………………………………………………………75

Page 18: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

10

Apresentação da Tese

Este trabalho foi realizado na Universidade Federal do Rio Grande do Norte,

Programa de Pós-Graduação em Ecologia, sob a orientação da professora Dra.

Vanessa Becker (UFRN), e na Universidade Federal de São Carlos (UFSCar) sob a

coorientação do professor Dr. Hugo Sarmento (UFSCar). Além disso, conta com a

parceria do professor Dr. Fernando Unrein, do Instituto de Investigaciones

Biotecnológicas (IIB-INTECH), CONICET, Chascomús, Argentina, supervisor do

doutorado sanduíche realizado de maio de 2017 a janeiro de 2018.

A tese de doutorado está estruturada pela composição de três capítulos na

forma de artigos científicos. O primeiro capítulo intitulado “Extreme drought favors

potential mixotrophic organisms in tropical semi-arid reservoirs” foi publicado na

edição especial – Phytoplankton & Biotic Interactions da Hydrobiologia, em março de

2019. Este capítulo avaliou o efeito de duas áreas distintas em um gradiente de

precipitação pluviométrica no semiárido brasileiro sobre a estrutura e dinâmica

fitoplanctônica utilizando uma abordagem de traços funcionais. O estudo teve como

objetivo testar a hipótese que a redução do nível da água favorece a dominância de

cianobactérias em condições normais de seca, porém em eventos de seca extrema, as

algas com potencial de mixotrofia serão favorecidas devido à limitação de luz causada

pelo aumento da ressuspensão do sedimento. Este estudo contou com a parceria do Dr.

Rosemberg Fernandes Menezes, da Universidade Federal da Paraíba, coordenador do

projeto intitulado “Impactos da redução da precipitação pluviométrica sobre a

qualidade da água e biodiversidade aquática de ecossistemas lacustres da Caatinga”.

O segundo capítulo da tese intitulado “Effects of inorganic turbidity and light

availability in the competition of cyanobacteria and mixotrophic algae” teve como

objetivo simular, em laboratório, o cenário observado no primeiro capítulo onde a

baixa disponibilidade de luz, devido à alta turbidez inorgânica causada pela

ressuspensão de sedimento, leva ao sucesso competitivo de algas mixotróficas em

detrimento de cianobactérias. No estudo encontramos taxas de crescimento maiores

para a espécie mixotrófica no tratamento onde foi adicionado sedimento e com a

presença de bactérias. Os experimentos desse capítulo foram realizados na

Universidade Federal de São Carlos (UFSCar) sob a supervisão do professor Dr. Hugo

Sarmento, com parceria da professora Dra. Inessa Bagatini Lacativa do laboratório de

Ficologia da UFSCar, a ser submetido para a revista Journal of Plankton Research.

Page 19: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

11

No terceiro manuscrito da tese intitulado “Effects of light and nutrients on

phytoplankton phagotrophy: a comparison of different methods for estimating

mixotrophy”, teve como objetivo quantificar taxas de grazing sob diferentes condições

de luz e nutrientes, comparando diferentes métodos para estimar a mixotrofia. O

estudo foi realizado durante o estágio de doutorado sanduíche na Argentina, no

Instituto de Pesquisas Biotecnológicas (IIB-INTECH) durante o período de maio de

2017 a janeiro de 2018, sob a coordenação do professor Dr. Fernando Unrein. Neste

capítulo foram realizados experimentos de grazing de duas espécies de algas

flageladas (Ochromonas tuberculata e Cryptomonas marsonii), apontadas na literatura

como espécies de metabolismo mixotrófico, na predação de dois tipos de presas

distintas (bactérias coradas com fluorescência - FLB, fluorescent label bacteria; e

microesferas sintéticas - beads). Nesses experimentos, foram manipulados diferentes

níveis de luz e nutrientes, recursos que podem afetar o metabolismo mixotrófico das

algas. Além disso, também foram realizados experimentos marcando vacúolos

digestivos das algas, utilizando Lyso-Tracker, um corante fluorescente verde que tinge

compartimentos ácidos de células vivas, sendo utilizados como um proxy para

identificar atividade mixotrófica das algas. Os objetivos desse capítulo foram

determinar taxas de bacterivoria por algas flageladas em distintas condições de luz e

nutrientes, e testar novas metodologias para estimar mixotrofia, comparando com

metodologias clássicas, com a finalidade de facilitar a quantificação das taxas de

ingestão. Este trabalho será submetido para Limnology and Oceanography Methods.

O presente trabalho foi realizado com apoio da Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de

Financiamento 001.

Page 20: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

12

Fluxograma da Tese

Fluxograma – Sequência de capítulos e seus respectivos objetivos.

Page 21: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

13

Resumo Eventos de precipitação e flutuações do nível de água são fatores ambientais que afetam

de modo determinante o funcionamento de ecossistemas aquáticos, influenciando a

dinâmica fitoplanctônica e seus recursos. O cenário climático futuro prevê um aumento

na frequência e intensidade das secas nas regiões semiáridas. Eventos de seca podem

levar à redução do nível de água e consequente aumento da disponibilidade de

nutrientes, turbidez e condutividade, favorecendo a dominância de cianobactérias.

Porém, estudos recentes demonstram que algas mixotróficas possam ser melhores

competidoras em condições mais extremas, como eventos de secas prolongadas.

Organismos mixotróficos desempenham funções importantes, como produtores e

consumidores, e isto é refletido na estrutura da teia trófica. Nesse trabalho avaliamos o

efeito do gradiente de precipitação pluviométrico na região semiárida sobre a estrutura

da comunidade fitoplanctônica, baseada na abordagem dos traços funcionais.

Confirmamos nossa hipótese que em períodos de seca os principais traços funcionais

fitoplanctônicos recrutados são algas fixadoras de nitrogênio e com formas filamentosas

e/ou coloniais, esses traços são relacionados com dominância de cianobactérias, porém

em evento extremo de seca, com volumes hídricos críticos, há um colapso das

cianobactérias e a substituição de dominância de algas com potencial mixotrófico. Para

confirmar que a redução da disponibilidade de luz, causada pela ressuspensão do

sedimento era o principal fator que altera esse padrão de substituição na comunidade

fitoplanctônica, realizamos em laboratório experimentos de competição entre uma

espécie de cianobactéria (Microcystis aeruginosa) e uma alga mixotrófica

(Cryptomonas obovata) manipulando a luz e adição ou não de sedimento, em ambientes

com altos níveis de nutrientes. Além disso, realizamos experimentos de grazing para

estimar taxas de bacterivoria por algas flageladas mixotróficas (Cryptomonas marsonii e

Ochromonas tuberculata) em distintas condições de luz e nutrientes, a fim de propor

novas metodologias para facilitar a quantificação dessas taxas. Observamos que as algas

mixotróficas obtiveram maiores taxas de crescimento nos tratamentos com adição de

sedimento somente quando bactérias estavam presentes e calculamos maiores taxas de

grazing via citometria de fluxo do que através da microscopia de epifluorescência e essa

relação foi forte e significativa. Além disso, observamos que a técnica de marcação de

vacúolos digestivos das algas mixotróficas demonstrou ser uma boa metodologia para

estimar mixotrofia. Nosso estudo demonstra a importância das algas mixotróficas em

ambientes eutrofizados, como os sistemas do semiárido afetados pela baixa

Page 22: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

14

disponibilidade hídrica, e compara metodologias que facilitam a quantificação de taxas

de bacterivoria permitindo entender um melhor sobre essa forma mista de nutrição.

Portanto, o estudo da mixotrofia implica em melhor compreender seu papel na estrutura

e funcionamento das teias tróficas aquáticas.

Palavras-chave: Seca extrema, Grazing, Cianobactérias, Cryptophyceae,

disponibilidade de luz, Citometria de Fluxo, Traços Funcionais.

Page 23: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

15

Abstract Precipitation events and water level fluctuations are environmental factors that affects

aquatic ecosystem functioning influencing phytoplankton dynamic and their resources.

Nutrient availability and trophic state of arid and semi-arid regions are controlled by

quantity and rain periodicity. Future climate scenario predicts an increase in intensity

and frequency of droughts in semi-arid regions. Drought leads to water level reduction

and consequently increase nutrients concentrations, turbidity, salinity and conductivity,

favoring cyanobacteria blooms. However, recent studies shows that mixotrophic algae

can be better competitors under more extreme conditions, such as prolonged periods of

droughts. Mixotrophic organisms play important role as producers and consumers

reflecting in the structure of food webs. In this work, we evaluate the effect of

precipitation gradient in semi-arid region on the structure of phytoplankton community

based on a trait-based approach. We confirm the hypothesis that in dry period the main

phytoplankton traits are related to a high cyanobacteria biomass (nitrogen fixation,

filaments, coloniality), however, in extremely drought periods with critical water level,

cyanobacteria collapse and shifts the dominance to mixotrophic algae. To confirm that

the reduction on light availability caused by sediment resuspension was the main factor

on phytoplankton pattern, we performed laboratory experiments with competition

between cyanobacteria and a mixotrophic species, manipulating light and sediment

addition in systems with high levels of nutrients. Besides this, we also performed

grazing experiments to estimate bacterivory by flagellate algae in distinct light and

nutrients conditions and propose new methodologies to facilitate ingestion rates

quantification. Our study shows the importance of mixotrophic algae in eutrophic

environments, such as semi-arid systems affected by hydric deficit, and compare

methodologies in order to facilitate bacterivory rates quantification, allowing a better

knowledge about this kind of mixed nutrition. Therefore, research about mixotrophy

implies in paradigmatic changes in how we understand aquatic food webs nowadays, in

particular this is even more critic when it links to shifts in environmental conditions in a

changing climatic world.

Key-words: Extreme drought, Grazing, Cyanobacteria, Cryptophyceae, light

availability, flow cytometry, functional traits.

Page 24: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

16

Introdução Geral

Fitoplâncton e abordagens funcionais

O fitoplâncton é um grupo de microrganismos polifiléticos amplamente

distribuídos nos ecossistemas aquáticos, com representantes de vários grupos de algas e

bactérias fotossintetizantes que respondem às condições ambientais com diferentes

estratégias adaptativas para seu crescimento, sobrevivência e reprodução (Reynolds,

2006). São amplamente, mas não exclusivamente foto-autotróficos, portanto, seu

crescimento depende da captação de energia luminosa suficiente para sustentar a

fixação de carbono via fotossíntese. Juntamente com as macrófitas e o perifíton são

considerados produtores primários e sustentam a base da cadeia trófica aquática.

Autotrofia também requer absorção de nutrientes inorgânicos disponíveis no meio

aquático, sendo então luz e nutrientes recursos importantes para o fitoplâncton

(Reynolds, 2006).

Desta forma, a composição da comunidade fitoplanctônica afeta as teias tróficas

aquáticas e o ciclo biogeoquímico de muitos elementos, como o carbono, nitrogênio e

fósforo, devido aos diferentes requerimentos e modos de aquisição desses elementos

pelos principais grupos fitoplanctônicos (Falkowski et al. 2004, Litchman &

Klausmeier, 2008), por exemplo, alguns grupos de cianobactérias possuem a capacidade

de fixar nitrogênio e estocar fósforo (Padisák, 1997) e diatomáceas possuem grande

eficiência de sequestro de carbono (Smetacek, 1999). Outro fator importante na

estrutura trófica aquática é a palatabilidade e estratégia nutricional das espécies

fitoplanctônicas, que influenciam diretamente no fluxo de energia para os demais níveis

tróficos (Sterner & Elser, 2002).

Há um crescente interesse na ecologia de comunidades em trabalhar com os

papéis funcionais e adaptações estruturais das espécies, de forma a compreender melhor

como os sistemas são organizados, e distinguir diferenças no fluxo de energia e na

estrutura das comunidades. As abordagens funcionais trabalham com o conceito de

nicho ecológico das espécies (Salmaso & Padisák, 2007, Reynolds et al., 2012,

Litchman & Klausmeier 2008). O nicho da comunidade fitoplanctônica é bem definido

de acordo com os processos fisiológicos, morfológicos e ecológicos e estão distribuídos

em três principais eixos: i) aquisição de recursos, ii) crescimento e iii) evitar a predação

(Litchman & Klausmeier 2008).

Page 25: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

17

Uma abordagem bastante utilizada na ecologia de comunidades baseada na

teoria do nicho ecológico é a de traços funcionais, que trabalha as relações entre traços,

gradientes ambientais, interações entre espécies e performances de desempenho (McGill

et al., 2006). O fitoplâncton é ideal para implantar estudos baseado nessa abordagem

devido aos múltiplos traços já bem definidos, rápido tempo de geração e por ser

excelente para modelagem (Litchman et al., 2007). Abordagens baseadas em traços

funcionais da comunidade fitoplanctônica são projetadas para um grupo de espécies

com propriedades fisiológicas, morfológicas e ecológicas similares, indicando, assim, as

estratégias ecológicas ideais para certas condições de habitat (Reynolds, 2006; Naselli-

Flores & Barone, 2012).

Classificações morfo-funcional do fitoplâncton são cada vez mais utilizadas em

estudos ecológicos de diferentes ecossistemas aquáticos (Reynolds, 1994, Reynolds et

al., 2002; Salmaso & Padisák, 2007; Litchman & Klausmeier, 2008; Kruk et al., 2010).

A abordagem de traços funcionais apresentado por Litchman & Klausmeier, 2008,

classifica os traços do fitoplâncton por função ecológica (reprodução, aquisição de

recursos, evitar predadores) e por tipo (morfológico, fisiológico, comportamental e

história de vida). Esses traços variam em um gradiente ambiental e sofrem vários

mecanismos estruturadores da comunidade (Litchman & Klausmeier, 2008).

Classificações baseadas em características morfológicas e funcionais são poderosos

preditores da dinâmica ecossistêmica (Reynolds & Irish, 1997; McGill et al. 2006;

Brasil & Huszar, 2011).

Eventos climáticos extremos e a dinâmica fitoplanctônica

Eventos hidrológicos alteram as condições físicas e químicas da água, sendo

reconhecidos como direcionadores da estrutura e dinâmica fitoplanctônica (Huszar &

Reynolds 1997; Naselli-Flores & Barone, 2000, Medeiros et al., 2015). Apesar de

características hidrológicas distintas entre reservatórios e lagos naturais, os mecanismos

seletivos do fitoplâncton não são, de fato, diferentes nas respostas à flutuação de

disponibilidade de recursos (Reynolds, 1999). Nestes sistemas, há uma marcada

heterogeneidade espacial na produtividade fitoplanctônica devido aos gradientes

longitudinais da morfologia da bacia, velocidade de fluxo, tempo de residência, sólidos

em suspensão, luz e disponibilidade de nutrientes (Thornton et al., 1990). As variações

verticais devido à presença ou não de estratificação da coluna d’água também

Page 26: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

18

interferem na disponibilidade destes recursos (luz e nutrientes) e, consequentemente,

nos atributos da comunidade fitoplanctônica (Becker et al., 2010).

Devido às mudanças climáticas, há uma forte necessidade em se conhecer como

alterações no clima e nas condições ambientais podem afetar a estrutura trófica e a função

dos ecossistemas. Alterações na temperatura, aumento do dióxido de carbono atmosférico

e aumento na frequência e intensidade de eventos extremos (seca e inundações) são

considerados os principais estressores que contribuem para as mudanças climáticas

(Woodward et al., 2010). De acordo com o Painel Intergovernamental sobre Mudanças

Climáticas (IPCC), as regiões semiáridas tropicais estão entre as que mais sofrerão com o

aquecimento global da Terra (IPCC, 2014), onde as previsões mostram um aumento na

frequência e intensidade das secas (Marengo et al., 2009; Roland et al., 2012). Estas

regiões são caracterizadas por altas temperaturas e precipitação anual inferior à

evapotranspiração potencial, levando a um déficit hídrico durante a maior parte do ano, o

que influencia diretamente na disponibilidade e a qualidade da água da região (Barbosa et

al., 2012; Figueiredo & Becker, 2018).

A comunidade fitoplanctônica desenvolveu várias estratégias adaptativas

referentes a mudanças nas condições ambientais. Como o fitoplâncton responde às

mudanças climáticas depende de sua plasticidade fenotípica e a adaptação de

organismos dentro das populações (Schimidt et al., 2018). Muitas espécies podem

tolerar mudanças nas concentrações de carbono (Raven et al., 2011), outras como

dinoflagelados, crisofíceas e criptofíceas, podem mudar suas estratégias nutritivas para

mixotrofia dependente de recursos limitantes (Ward et al., 2011, Unrein et al., 2014).

Quantificar o papel que cada resposta tem na adaptação do fitoplâncton é um campo

crescente em estudos experimentais.

O grau de eutrofização dos lagos e reservatórios também constitui relevância

para o fitoplâncton, quanto maior o grau de trofia maior a biomassa fitoplanctônica,

principalmente de grupos de cianobactérias potencialmente tóxicas e formadora de

florações (Naselli-Flores et al., 2007, Paerl & Otten, 2013). A eutrofização é

caracterizada como um processo de enriquecimento dos ecossistemas aquáticos por

aumento nas concentrações de nutrientes, principalmente nitrogênio e fósforo (Dodds et

al., 2009), porém o grau de eutrofização pode ser agravado por atividades antrópicas,

como por exemplo, poluição pontual e difusa (Dodds et al., 2009, Paerl & Otten, 2013).

Além disso, alterações nos padrões de temperatura e precipitação podem ter

consequências diretas e indiretas no processo de eutrofização e na comunidade

Page 27: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

19

fitoplanctônica, como redução da diversidade de espécies e floração de cianobactérias

potencialmente tóxicas que afetam a qualidade da água (Jeppesen et al., 2015).

Estudos sobre a dinâmica fitoplanctônica em regiões áridas e semiáridas

mostram a relevante importância das condições ambientais e dos fatores físicos para a

estrutura da comunidade (Naselli-Flores & Barone, 2005; Zohary et al., 2010, Costa et

al., 2018). O regime de luz possui profundo impacto sobre a dinâmica do fitoplâncton e

a dominância de espécies depende de fatores chave como intensidade de luz,

profundidade da coluna d’água e regime de mistura (Huisman & Weissing 1994, Zohary

et al., 2010).

Eventos de seca podem levar à redução no nível da água, afetando os principais

recursos para o fitoplâncton, concentrando nutrientes em um menor volume de água e

reduzindo a transparência da água, seja pelo auto sombreamento da biomassa de algas

e/ou cianobactérias ou pelo aumento da turbidez inorgânica de material particulado,

devido à ressuspensão de sedimento para a coluna d’água (Costa et al., 2016). A

literatura mundial aponta que essas condições ambientais são favoráveis para a

dominância de cianobactérias (Moss et al., 2001; Soares et al., 2013, Jeppesen et al.,

2015, Brasil et al., 2016). Porém um novo cenário vem sendo observado na região

semiárida brasileira nos eventos de seca prolongada, o nível crítico hídrico desfavorece

o grupo de cianobactérias, havendo maior contribuição de algas eucariontes adaptadas a

baixa luz e com metabolismo mixotrófico (Medeiros et al., 2015, Costa et al., 2016,

2019).

Diante desse cenário de mudanças climáticas, propomos um modelo teórico

onde a redução volume dos reservatórios e lagos rasos aumenta o grau de trofia (i.e

oligotrófico/mesotrófico para eutrófico/hipereutrófico), e a concentração da turbidez

inorgânica e material suspenso particulado alteram a composição da comunidade

fitoplanctônica. Em maiores volumes de água e menor concentração de nutrientes, os

grupos fitoplanctônicos favorecidos seriam as algas verdes (clorofíceas) e algas

mixotróficas (e.g. crisofíceas) que são adaptadas à limitação por nutrientes e possuem

uma maior demanda por luz. A redução do nível de água, com eventos regulares de

seca, aumenta os níveis de eutrofização tornando um ambiente propício para o

estabelecimento de florações de cianobactérias potencialmente tóxicas

(Cylindrospermopsis raciborskii, Microcystis aeruginosa) afetando a biodiversidade

aquática desses ambientes. Porém, inferimos que existe um nível crítico de volume de

água em eventos extremos de seca, como seca prolongada, aumentando a turbidez

Page 28: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

20

inorgânica do sistema, com redução brusca da disponibilidade de luz. Neste caso,

favorecendo grupos das diatomáceas e de espécies flageladas com metabolismo

mixotrófico (criptofíceas), apesar da alta concentração de nutrientes. O mecanismo por

trás disso provavelmente é o aumento da biomassa fitoplanctônica sedimentada como

fonte de carbono para a comunidade de bactérias heterotróficas, que por sua vez são

consumidas pelas espécies fitoplanctônicas que podem mudar a estratégia nutritiva de

autotrofia para heterotrofia via fagocitose (i.e. mixotrofia) (Fig. 1).

Fig. 1 Esquema do modelo teórico da mudança da composição da comunidade fitoplanctônica

em resposta ao grau de eutrofização e concentração da turbidez inorgânica devido à redução da

capacidade máxima de volume de reservatórios e lagos rasos. O azul representa um ambiente

com baixa disponibilidade de nutrientes e alta disponibilidade de luz, a área verde representa um

ambiente eutrofizado com alta biomassa de cianobactérias e a área marrom representa um

ambiente com baixa disponibilidade de luz e alta turbidez inorgânica de material em suspensão

particulado devido a ressuspensão do sedimento para a coluna d’água. A linha vermelha

pontilhada representa um nível crítico de nível de água dos reservatórios e lagos rasos.

Mixotrofia como importante traço funcional do fitoplâncton

A mixotrofia é uma estratégia nutricional que combina autotrofia e heterotrofia

em um mesmo organismo, envolvendo o uso de luz para produzir energia química e a

capacidade de ingestão e digestão de compostos orgânicos (Sanders, 1991, Jones, 1997).

Esta estratégia nutricional é um importante traço funcional fitoplanctônico no qual

representa uma vantagem adaptativa quando as condições ambientais são limitantes (i.e.

baixa concentração de nutrientes e/ou baixa disponibilidade de luz) (Rothhaupt, 1996).

Antigamente se acreditava que as algas eram autotróficas obrigatórias, porém estudos

Page 29: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

21

recentes mostram que muitas espécies de fitoplâncton possuem metabolismo

mixotrófico e argumentam que esta estratégia pode ser mais regra do que exceção tanto

em ambientes marinhos como em ecossistemas continentais (Mitra et al., 2014; Ward &

Follows, 2016; Stoecker et al., 2017; Gerea et al., 2018), podendo contabilizar de 50% a

95% da bacterivoria total nos oceanos (Unrein et al., 2007, 2014; Hartmann et al., 2012,

Mitra et al., 2013).

A combinação de estratégias nutricionais mistas faz com que esses organismos

possuam papéis de produtores e consumidores, e isto é refletido em efeitos na estrutura

e dinâmica trófica aquática, no fluxo de carbono e nutrientes se relacionando com

processos ecossistêmicos e manutenção da biodiversidade (Sinistro et al., 2006, Beisner

et al., 2019). Portanto, é relevante incorporar a mixotrofia em modelos biogeoquímicos,

Os principais fatores que influenciam a contribuição relativa da nutrição autotrófica

versus heterotrófica nos organismos mixotróficos é a fisiologia da própria espécie e as

condições ambientais (Hansen, 2011). Apesar de ser uma estratégia adaptativa que

confere uma vantagem competitiva, ela representa um custo energético alto aos

organismos.

A mixotrofia é frequentemente observada em criptofíceas, crisofíceas,

primnesiofíceas e dinoflagelados, mas raramente é observada em clorofíceas, e devido

a esses grupos apresentarem pelo menos um flagelo em suas estruturas, podemos nos

referir a eles como fitoflagelados mixotróficos (Selosse et al., 2017). Fitoflagelados

mixotróficos juntamente com nanoflagelados heterotróficos representam uma fração

muito relevante na bacterivoria total nos ecossistemas aquáticos (Unrein et al., 2007;

Gerea et al., 2018), e possuem uma ampla gama de comportamentos e habilidades na

aquisição de carbono para energia ou crescimento celular (Stoecker et al., 2017).

Fitoflagelados estão amplamente distribuídos em ambientes aquáticos, e nos últimos 30

anos vem sendo amplamente estudado em ecossistemas continentais, confirmando sua

atividade heterotrófica com a utilização de presas fluorescentes ingeridas como um

método para estimar mixotrofia (Floder et al., 2006; Saad et al., 2016; Anderson et al.,

2017).

Estudos com o tema da mixotrofia vêm crescendo e se tornando um hot topic na

ecologia aquática devido sua importância nos processos e funções ecossistêmicas.

Porém, apesar da mixotrofia ser reconhecida atualmente como comum, estando presente

em todos os ambientes e numa grande diversidade de espécies planctônicas (Selosse et

al., 2017) ainda é difícil quantificar seus efeitos e contribuição para os ecossistemas

Page 30: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

22

aquáticos devido à falta de informações (Ward & Follows, 2016; Stoecker et al. 2017,

Beisner et al., 2019). Uma razão para isso é a dificuldade de medir quais células estão

ingerindo e acessar qual a contribuição da heterotrofia desses organismos mixotróficos.

São necessárias estimativas através do tempo e espaço para avaliar quais as

condições ambientais e/ou habitats que podem favorecer a mixotrofia. Existem algumas

metodologias propostas para se estudar o grazing de protistas com a finalidade de

quantificar o impacto de protistas na comunidade bacteriana. Dentre elas podemos citar

estudos manipulando a comunidade por métodos de filtrações, inibição e diluição,

utilizando presas marcadas fluorescentemente para quantificação de taxas de ingestão e

estimativas da atividade mixotrófica (Tabela 1).

Os métodos utilizados em pesquisas com mixotrofia têm suas origens em

abordagens que foram desenvolvidas para estudar e distinguir a heterotrofia e a

autotrofia (Beisner et al., 2019). Devido a essa variedade de metodologias os resultados

de vários estudos não podem ser diretamente comparáveis, porém pode-se fazer

observações gerais sobre o impacto do grazing de protistas na comunidade bacteriana

(Medina et al., 2017).

Tabela 1 – Metodologias propostas para estudar grazing em protistas

Método Presas Quantificação Referência

Diluição

FLB, FLA CF Landry et al. 1995

Fracionamento de tamanho BH ME Wright and Coffin,

1984

Inibidores metabólicos

BH ME Sherr et al., 1986

Ingestão de

presas lábeis fluorescentemente

FLA, FLB,

RLB, FMP

ME e CF Vazquez-Dominguez

et al., 1999,

Hollibaugh et al.,

1980)

Marcadores de vacúolos digestivos FLA, FLB,

RLB, FMP

ME e CF Sintes & del Giorgio,

2010,

Anderson et al., 2017

FLB = bactérias lábeis fluorescentes, FLA = autótrofos lábeis fluorescentes, BH =

bactérias heterotróficas, RLB = bactérias lábeis radioativas, FMP = beads de látex. CF =

citometria de fluxo, ME = microscopia de epifluorescência.

O método mais comum para se quantificar grazing é o uso de microscópio de

epifluorescência para observar presas (naturais ou artificiais) marcadas

Page 31: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

23

fluorescentemente ingeridas pelos protistas (Unrein et al., 2007; McKie-Krisberg et al.,

2014; Saad et al., 2016), o uso de presas marcadas permite o cálculo de taxas de

ingestão específica por cada protista em incubações de curto tempo de duração ou de

longo tempo por desaparecimento utilizando medidas em microscópio de

epifluorescência. Além disso, pode ser usado para identificar características

morfológicas das espécies (e.g. posição dos cloroplastos, forma geral, presença e forma

da lórica). Apesar de comumente usada em estudos de ingestão de presas, essa

metodologia requer um longo tempo em microscópio e treinamento de pessoas

qualificadas.

Portanto, é necessário incluir e combinar novas metodologias que permitam

obtenção de resultados acurados mais ágeis, desta maneira mais experimentos e mais

amostras ambientais poderiam ser analisadas promovendo mais informações em um

menor intervalo de tempo. Entretanto, não existem ainda protocolos consolidados.

Sugerimos que a citometria de fluxo pode ser uma alternativa para quantificar

mixotrofia rotineiramente devido sua alta capacidade de quantificar e distinguir

milhares células em minutos através da fluorescência de pigmentos das células dos

organismos, heterótrofos podem ser identificados usando corantes de DNA

(fluorescência verde) e autótrofos através da autofluorescência de seus pigmentos

próprios.

Outra abordagem que pode ser utilizada para estudar a atividade mixotrófica é a

identificação de vacúolos digestivos de protistas que estão atuando heterotroficamente.

Essa metodologia consiste em marcar os vacúolos digestivos utilizando fluorocromos,

os mais usuais são LysoSensor Blue DND-167 (Carvalho & Granéli, 2006) e

LysoTracker Green (DND-26) (Sintes & del Giorgio, 2010; Anderson et al., 2017). Esse

método depende da acidificação dos vacúolos digestivos (lisossomos) dos protistas para

a digestão de presas ingeridas.

Já estão sendo proposta novas alternativas como a análise de estudos de

genômica e metagenômica para indicar o potencial para mixotrofia em protistas.

Estudos genômicos são capazes de identificar mudanças na expressão de genes durante

a alternância de autotrofia para a heterotrofia (Liu et al., 2015). Métodos futuros vão se

beneficiar dos avanços que vêm sendo feitos em nanotecnologia, micromanipulação e

microscopia combinada com isótopos estáveis e estudos genômicos (Beisner et al.,

2019).

Page 32: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

24

É importante compilar dados para observar o que vêm sendo realizado em

estudos sobre mixotrofia em protistas, e analisar as lacunas de conhecimentos de forma

a preenchê-las. Nesse sentido, teremos mais dados efetivos que nos permita entender

melhor sobre essa forma mista de nutrição, e promover novas metodologias capazes de

facilitar os estudos nessa área, melhores estimativas vão permitir modelos mais

confiáveis para predizer mudanças nos ambientes aquáticos.

O estudo da mixotrofia implica em mudanças paradigmáticas da forma de como

se compreende a ecologia das teias tróficas aquáticas, em particular em ecossistemas

aquáticos continentais eutrofizados, isso é ainda mais crítico quando conectamos às

alterações das condições ambientais em um mundo que enfrenta rápidas mudanças

climáticas.

Page 33: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

25

Referências

Anderson, R., S. Charvet, & P. J. Hansen, 2018. Mixotrophy in Chlorophytes and

Haptophytes — Effect of Irradiance , Macronutrient , Micronutrient and Vitamin

Limitation. 9: 1–13.

Anderson, R., K. Jürgens, & P. J. Hansen, 2017. Mixotrophic phytoflagellate

bacterivory field measurements strongly biased by standard approaches: A case study.

Frontiers in Microbiology 8:.

Azam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil, & F. Thingstad, 1983. The

Ecological Role of Water-Column Microbes in the Sea. Marine Ecology Progress Series

10: 257–263, http://www.int-res.com/articles/meps/10/m010p257.pdf.

B-Béres, 2012. The effects of Microcystis aeruginosa ( cyanobacterium ) on

Cryptomonas ovata ( Cryptophyta ) in laboratory cultures : Why these organisms do not

coexist in The effects of Microcystis aeruginosa ( cyanobacterium ) on Cryptomonas

ovata ( Cryptophyta ) in l. Hydrobiologia The International Journal of Aquatic Sciences

ISSN Hydrobiologia 691: 97–107.

Barbosa, J. E. D. L., E. S. F. Medeiros, J. Brasil, R. D. S. Cordeiro, M. C. B. Crispim, &

G. H. G. Da Silva, 2012. Aquatic systems in semi-arid Brazil: limnology and

management. Acta Limnologica Brasiliensia 24: 103–118.

Becker, V., L. Caputo, J. Ordo, R. Marce, L. O. Crossetti, & V. L. M. Huszar, 2010.

Driving factors of the phytoplankton functional groups in a deep Mediterranean

reservoir. Water research 44: 3345–3354.

Beisner, B. E., H. Grossart, & J. M. Gasol, 2019. REVIEW A guide to methods for

estimating phago-mixotrophy in nanophytoplankton. Journal of Plankton Research 00:

1–13.

Costa, M. R. ., J. . Attayde, & V. Becker, 2016. Effects of water level reduction on the

dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes.

Hydrobiologia 778:.

Costa, M. R. A., R. F. Menezes, & H. Sarmento, 2019. Extreme drought favors potential

mixotrophic organisms in tropical semi-arid reservoirs. 2: 43–54.

De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E.

Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. van Donk, M. Winder, &

M. Lürling, 2013a. Plankton dynamics under different climate conditions in tropical

freshwater systems (a reply to the comment by Sarmento, Amado & Descy, 2013).

Freshwater Biology 58: 2211–2213.

De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E.

Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder, &

M. Lürling, 2013b. Plankton dynamics under different climatic conditions in space and

time. Freshwater Biology 58: 463–482.

Edwards, K. F., 2019. Mixotrophy in nanoflagellates across environmental gradients in

Page 34: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

26

the ocean. Proceedings of the National Academy of Sciences of the United States of

America 116: 6211–6220.

Figueiredo, A. do V., & V. Becker, 2018. Influence of extreme hydrological events in

the quality of water reservoirs in the semi-arid tropical region. Brazilian Journal of

Water Resources 23: 1–8.

Fischer, R., R. Ptacnik, R. Fischer, H. Giebel, H. Hillebrand, & R. Ptacnik, 2017.

Importance of mixotrophic bacterivory can be predicted by light and loss rates

Importance of mixotrophic bacterivory can be predicted by light and loss rates. Oikos

126: 713–722.

Floder, S., T. Hansen, & R. Ptacnik, 2006. Energy — Dependent Bacterivory in

Ochromonas minima — A Strategy Promoting the Use of Substitutable Resources and

Survival at Insufficient Light Supply. Protist 157: 291–302.

Flynn, K. J., D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen, E.

Granéli, & J. M. Burkholder, 2013. Misuse of the phytoplankton-zooplankton

dichotomy: The need to assign organisms as mixotrophs within plankton functional

types. Journal of Plankton Research 35: 3–11.

Gasol, J. M., & P. A. Del Giorgio, 2000. Using flow cytometry for counting natural

planktonic bacteria and understanding the structure of planktonic bacterial communities.

Scientia Marina 64: 197–224,

http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/755/772.

Gasol, J. M., & X. A. G. Morán, 2015. Flow Cytometric Determination of Microbial

Abundances and Its Use to Obtain Indices of Community Structure and Relative

Activity : 159–187, http://link.springer.com/10.1007/8623_2015_139.

Gerea, M., C. Queimalin, & F. Unrein, 2018. Grazing impact and prey selectivity of

picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes. Hydrobiologia 5–

21.

González, J. M., 1999. Bacterivory rate estimates and fraction of active bacterivores in

natural protist assemblages from aquatic systems. Applied and Environmental

Microbiology 65: 1463–1469.

Grujcic, V., J. K. Nuy, M. M. Salcher, T. Shabarova, V. Kasalicky, J. Boenigk, M.

Jensen, & K. Simek, 2018. Cryptophyta as major bacterivores in freshwater summer

plankton. ISME Journal Springer US 12: 1668–1681, http://dx.doi.org/10.1038/s41396-

018-0057-5.

Hammer, A., R. Schumann, & H. Schubert, 2002. Light and temperature acclimation of

Rhodomonas salina ( Cryptophyceae ): photosynthetic performance. Aquatic Microbial

Ecology 29: 287–296.

Hansson, T. H., H. Grossart, P. A. Giorgio, N. F. St-gelais, & B. E. Beisner, 2019.

Environmental drivers of mixotrophs in boreal lakes. 1–18.

Hartmann, M., C. Grob, G. a. Tarran, a. P. Martin, P. H. Burkill, D. J. Scanlan, & M.

V. Zubkov, 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings

Page 35: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

27

of the National Academy of Sciences of the United States of America 109: 5756–5760.

IPCC, 2007. Climate Change 2007: impacts, adaptation and vulnerability: contribution

of Working Group II to the fourth assessment report of the Intergovernmental Panel.

Genebra, Suíça. .

Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein, & R. Massana,

2012. Grazing rates of protists in wetlands under contrasting light conditions due to

floating plants. Aquatic Microbial Ecology 65: 221–232.

Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P.

Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas,

M. Kernan, M. Søndergaard, & M. Beklioğlu, 2015. Ecological impacts of global

warming and water abstraction on lakes and reservoirs due to changes in water level and

related changes in salinity. Hydrobiologia 750: 201–227.

Leitão, E., K. A. Ger, & R. Panosso, 2018. Selective grazing by a tropical copepod

(Notodiaptomus iheringi) facilitates microcystis dominance. Frontiers in Microbiology

9: 1–11.

Litchman, E., & C. a. Klausmeier, 2008. Trait-Based Community Ecology of

Phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

Liu, Z., A. C. Jones, V. Campbell, K. D. Hambright, K. B. Heidelberg, & D. A. Caron,

2015. Gene expression in the mixotrophic prymnesiophyte, Prymnesium parvum,

responds to prey availability. Frontiers in Microbiology 6: 1–12.

Marengo, J. a., T. Ambrizzi, R. P. da Rocha, L. M. Alves, S. V. Cuadra, M. C.

Valverde, R. R. Torres, D. C. Santos, & S. E. T. Ferraz, 2009. Future change of climate

in South America in the late twenty-first century: intercomparison of scenarios from

three regional climate models. Climate Dynamics 35: 1073–1097.

McGill, B. J., B. J. Enquist, E. Weiher, & M. Westoby, 2006. Rebuilding community

ecology from functional traits. Trends in ecology & evolution 21: 178–185.

McKie-Krisberg, Z. M., R. J. Gast, & R. W. Sanders, 2015. Physiological Responses of

Three Species of Antarctic Mixotrophic Phytoflagellates to Changes in Light and

Dissolved Nutrients. Microbial Ecology 70: 21–29.

Medina, L. E., C. D. Taylor, M. G. Pachiadaki, C. Henríquez-castillo, O. Ulloa, V. P.

Edgcomb, & R. Anderson, 2017. A Review of Protist Grazing Below the Photic Zone

Emphasizing Studies of Oxygen-Depleted Water Columns and Recent Applications of

In situ Approaches. 4:.

Mitra, A., K. J. Flynn, J. M. Burkholder, T. Berge, A. Calbet, J. A. Raven, E. Granéli, P.

M. Glibert, P. J. Hansen, D. K. Stoecker, F. Thingstad, U. Tillmann, S. Väge, S.

Wilken, & M. V. Zubkov, 2014. The role of mixotrophic protists in the biological

carbon pump. Biogeosciences 11: 995–1005.

Naselli-Flores, L., & R. Barone, 2005. Water-Level Fluctuations in Mediterranean

Reservoirs: Setting a Dewatering Threshold as a Management Tool to Improve Water

Quality. Hydrobiologia 548: 85–99.

Page 36: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

28

Pålsson, C., & W. Granéli, 2003. Diurnal and seasonal variations in grazing by

bacterivorous mixotrophs in an oligotrophic clear- water lake. 289–307.

Princiotta, S. D., S. P. Hendricks, & D. S. White, 2019. Production of Cyanotoxins by

Microcystis aeruginosa Mediates Interactions with the Mixotrophic Flagellate

Cryptomonas. Toxins 11: 1–16.

Roland, F., V. L. M. Huszar, V. Farjalla, a Enrich-Prast, A. M. Amado, & J. P. H. B.

Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland

waters. Brazilian journal of biology = Revista brasleira de biologia 72: 709–722,

http://www.ncbi.nlm.nih.gov/pubmed/23011300.

Rothhaupt, K. ., 1996. Laboratorary experiments with a mixotrophic chrysophyte and

obligately phagotrophic and photographic competitors. Ecology 77: 716–724.

Saad, J. F., F. Unrein, P. M. Tribelli, N. López, & I. Izaguirre, 2016. Influence of lake

trophic conditions on the dominant mixotrophic algal assemblages. Journal of Plankton

Research 00: 1–12, http://www.plankt.

Sarmento, H., A. M. Amado, & J.-P. Descy, 2013. Climate change in tropical fresh

waters (comment on the paper ‘Plankton dynamics under different climatic conditions

in space and time’ by de Senerpont Domis et al ., ). Freshwater Biology 58: 2208–2210.

Sarmento, H., & J. M. Gasol, 2012. Use of phytoplankton-derived dissolved organic

carbon by different types of bacterioplankton. Environmental Microbiology 14: 2348–

2360.

Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol, & J. P. Descy, 2008.

Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern

Africa. Freshwater Biology 53: 756–771.

Schiaffino, M. R., J. M. Gasol, I. Izaguirre, & F. Unrein, 2013. Picoplankton abundance

and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic

Microbial Ecology 68: 231–250.

Selosse, Marc-André, Charpin, Marie, Not, F., 2017. Mixotrophy everywhere on land

and in water : the grand e hypothesis. Ecology letters 20: 246–263.

Sherr, B. F., E. B. Sherr, & R. D. Fallon, 1987. Use of monodispersed, fluorescently

labeled bacteria to estimate in situ protozoan bacterivory. Applied and environmental

microbiology 53: 958–965.

Simon, M., H. Grossart, B. Schweitzer, & H. Ploug, 2002. Microbial ecology of organic

aggregates in aquatic ecosystems. .

Sintes, E., & P. A. del Giorgio, 2010. Community heterogeneity and single-cell

digestive activity of estuarine heterotrophic nanoflagellates assessed using lysotracker

and flow cytometry. Environmental Microbiology 12: 1913–1925.

Stoecker, D. K., P. J. Hansen, D. A. Caron, & A. Mitra, 2017. Mixotrophy in the Marine

Plankton. Annual Review of Marine Science 9: 311–335.

Page 37: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

29

Tarbe, A., F. Unrein, S. Stenuite, S. Pirlot, & D. Sinyinza, 2011. Protist Herbivory : a

Key Pathway in the Pelagic Food Web of Lake Tanganyika. Microbial Ecology 62:

314–323.

Torchiano, M., 2018. effsize: Efficient Effect Size Computation. R package version

0.7.4.

Unrein, F., J. M. Gasol, F. Not, I. Forn, & R. Massana, 2014. Mixotrophic haptophytes

are key bacterial grazers in oligotrophic coastal waters. The ISME journal 8: 164–176,

http://dx.doi.org/10.1038/ismej.2013.132.

Unrein, F., R. Massana, L. Alonso-Sáez, & J. M. Gasol, 2007. Significant year-round

effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal

system. Limnology and Oceanography 52: 456–469.

Urabe, J., T. B. Gurung, T. Yoshida, T. Sekino, & M. Nakanishi, 2000. Diel changes in

phagotrophy by Cryptomonas in Lake Biwa. 45: 1558–1563.

Ward, B. A., & M. J. Follows, 2016. Marine mixotrophy increases trophic transfer

efficiency, mean organism size, and vertical carbon flux. Proceedings of the National

Academy of Sciences 113: 2958–2963,

http://www.pnas.org/lookup/doi/10.1073/pnas.1517118113.

Woodward, G., D. M. Perkins, & L. E. Brown, 2010. Climate change and freshwater

ecosystems: impacts across multiple levels of organization. Philosophical transactions

of the Royal Society of London. Series B, Biological sciences 365: 2093–2106.

Zohary, T., J. Padisák, & L. Naselli-Flores, 2010. Phytoplankton in the physical

environment: Beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–

269.

Page 38: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

30

Page 39: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

31

CAPÍTULO 1

EXTREME DROUGHT FAVORS POTENTIAL MIXOTROPHIC ORGANISMS

IN TROPICAL SEMI-ARID RESERVOIRS

Mariana R. A. Costa1, Rosemberg F. Menezes 2,3, Hugo Sarmento4, José L. Attayde2, Leonel da S.L.

Sternberg5 & Vanessa Becker1,6

1Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em Ecologia,

Natal, RN, Brazil.

2Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Ecologia, Natal, RN, Brazil.

3 Universidade Federal da Paraíba (UFPB), Campus II, Departamento de Fitotecnia e Ciências

Ambientais, Areia, PB, Brazil.

4Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, São Carlos – SP,

Brazil.

5Department of Biology, University of Miami, Coral Gables, Florida, USA

6Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Engenharia Civil, Natal, RN,

Brazil.

Corresponding author: E-mail: [email protected]

Publicado na edição especial da Hydrobiologia – Phytoplankton & Biotic

Interactions

Page 40: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

32

Page 41: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

33

Page 42: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

34

Page 43: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

35

Page 44: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

36

Page 45: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

37

Page 46: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

38

Page 47: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

39

Page 48: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

40

Page 49: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

41

Page 50: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

42

Page 51: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

43

Page 52: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

44

Page 53: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

45

CAPÍTULO 2

EFFECTS OF INORGANIC TURBIDITY AND LIGHT IN THE

COMPETITION BETWEEN A BLOOM-FORMING

CYANOBACTERIA AND A MIXOTROPHIC PHYTOFLAGELLATE

Mariana R. A. Costa1, Henrique Miceli Gonçalves2, Inessa Lacativa Bagatini3

Fernando Unrein4, Vanessa Becker1,5 & Hugo Sarmento2.

1Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em

Ecologia, Natal, RN, Brazil.

2Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, São Carlos

– SP, Brazil.

3 Universidade Federal de São Carlos (UFSCar), Departamento de Botânica, São Carlos – SP,

Brazil.

4 Instituto de Investigaciones Biotecnológicas (IIB-INTECH) – Instituto Tecnológico de

Chascomús – CONICET. Chascomús, Argentina.

1,5 Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Engenharia Civil,

Natal, RN, Brazil

Corresponding author: E-mail: [email protected]

A ser submetido para Journal of Plankton Research

Page 54: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

46

Abstract

Climate change is altering hydrological regimes, increasing water scarcity of lakes and

reservoirs, especially in semi-arid regions. The drastic reduction of water volume

sometimes reaches a critical level, enabling sediment resuspension, which increases

inorganic turbidity and reduces light availability in the water column. In this context,

the ecosystem dynamics is altered, affecting biological communities, mainly primary

producers that depend on light availability. Recent studies indicate that eutrophic

environments usually dominated by cyanobacteria, may shift towards a domination of

mixotrophic algae if a drastic reduction of water volume occurs, as a response to the

decrease in light availability. The aim of this study was to evaluate the effect of

inorganic turbidity on the competition between a mixotrophic phytoflagellate and bllom

forming cyanobacteria in laboratory experiments. To do so, cultures of cyanobacteria

Microcystis aeruginosa Kützing and mixotrophic Cryptomonas obovata Czosnowski

were grown axenically and non-axenically, separately and in co-culture under different

conditions of turbidity and light. We found that in treatments with sediment (high

turbidity), the mixotrophic species had higher growth rates than the cyanobacteria, but

only in treatments containing heterotrophic bacteria. This may be because Cryptomonas

can change its nutritive strategy from autotrophy to heterotrophy due light limiting

conditions. Given the increasing water scarcity already observed in most semi-arid

regions, this work seeks to understand its effect on competition within phytoplankton

community.

Keywords: Interspecific competition, growth rate, inorganic turbidity, light availability,

sediment.

Page 55: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

47

Introduction

It urges understanding how climate changes affect ecosystem’s trophic structure

and function. Temperature changes, increase of atmospheric carbon dioxide and the

increase in frequency and intensity of extreme events, such as droughts and floods, are

considered as major stressors associated with climate change (Woodward et al., 2010).

According to the Intergovernmental Panel on Climate Change (IPCC, 2007), tropical

regions are very susceptible to global warming and its effects on tropical aquatic

ecosystems is still under debate (De Senerpont Domis et al., 2013b, 2013a; Sarmento et

al., 2013).

Future climate scenario predicts more intense and frequent droughts in semi-arid

regions (Marengo et al. 2009). Droughts lead to water level reduction and consequent

increase of nutrients, turbidity, conductivity and changes in phytoplankton composition,

biomass and richness, increasing the risk of eutrophication and favoring cyanobacterial

blooms (Naselli-Flores & Barone, 2005; Jeppesen et al., 2015; Costa et al., 2016).

Cyanobacterial blooms generate serious problems in water quality and management and

became a public health problem due their potential toxicity (Paerl and Huisman, 2009,

Paerl et al., 2016). Moreover, blooms of cyanobacteria can affect food web structure

altering energy flow from producers to higher trophic levels (Heathcore et al., 2016).

Worldwide literature links cyanobacterial blooms with eutrophication (e.g. Naselli-

Flores et al., 2007, Jeppesen et al., 2015). However, a new scenario has been recently

reported for semi-arid regions during extreme drought events (Medeiros et al., 2015,

Costa et al., 2016, 2018). Water level reduction caused by high evapotranspiration rates,

leads to the collapse of cyanobacteria biomass and favor the dominance of

phytoplankton species adapted to low light and with mixotrophic metabolism (Medeiros

et al., 2015, Costa et al. 2016, Costa et al., 2019). These studies suggest that the critical

water volume and sediment resuspension increases inorganic turbidity and consequently

reduce light availability, enhancing mixotrophic algae.

Mechanisms of phytoplankton selection depend on environmental conditions and

species adaptions that allow them to survive under such conditions (Reynolds, 1998). In

this sense, species morphology and physiology are important components for resource

acquisition: size, shape and high or low light demand will influence on photosynthesis

rates, nitrogen fixation provides adaptive strategy and may sustain a high cyanobacterial

biomass (Schindler et al., 2008) and mixotrophy also represents an adaptive strategy

when nutrients or/and light are limiting (Rothhaupt, 1996).

Page 56: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

48

One common mixotrophic genus Cryptomonas found in freshwater

demonstrated to be an important grazer on bacterioplankton (Grujcic et al., 2018), thus

presenting a big role in energy flux. During extreme droughts in semi-arid reservoirs,

this genus was also found to follow cyanobacterial blooms, as Microcystis aeruginosa

(Costa et al 2019). The bloom-forming cyanobacteria Microcystis aeruginosa is

ubiquitously distributed and often founded in eutrophic water bodies, and recognized to

have allelopathic effects on other phytoplankton species (Paerl & Otten, 2013).

However, a study with mixed co-cultures of Microcystis and Cryptomonas indicated no

allelopathic effect of the cyanobacteria, but showed that a selective grazing by

zooplankton facilitate Microcystis dominance (Leitão et al., 2018). The coexistence of

these species may depend on the proportion of cell abundance from each species in

initial conditions (B-Béres et al., 2012) and a recent study showed that the mixotrophic

flagellate can benefit from cyanotoxins under low concentrations of nitrogen and

phosphorus in culture (Princiotta et al., 2019).

Therefore, we tested in microcosm experiments whether the replacement of

cyanobacteria by mixotrophs during extreme drought in shallow waters is favored by

high inorganic turbidity and to nutritional strategy. We performed competition

experiments using the cyanobacteria Microcystis aeruginosa and the mixotrophic

cryptophyte Cryptomonas obovata manipulating inorganic turbidity, to simulate a turbid

shallow lake, in both axenic and non-axenic phytoplankton cultures. Our hypothesis was

that Cryptomonas would have competitive success due their mixotrophic metabolism

under lower light availability and in non-axenic cultures (with bacteria present).

Materials and Methods

Culture and growth conditions

Axenic strains of Cryptomonas obovata (CCMA-UFSCar 148) and Microcystis

aeruginosa (CCMA-UFSCar 666) were used in this study. Axenic cultures were

maintained in sterile WC medium (Guillard & Lorenzen, 1972), pH 7, in temperature

controlled room at 23 ± 1°C and irradiance of 50µmol photons m−2 s−1 under a

light:dark cycle of 12:12 h. Cultures were kept in exponential growth phase by

biweekly dilution into fresh medium. Flasks were gently swirled regularly to prevent

clusters of cells. The algal inocula were checked for axenic conditions before the

Page 57: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

49

experiment in WC medium supplemented with peptone + glucose and epifluorescence

microscopy examination.

The strains of C. obovata grew as motile spheroid single cells, mean 20.39 x

14.38 µm and M. aeruginosa grew as spherical single or double cells with a mean 5.8

µm of diameter. Cell biovolume was calculated from approximated geometric models

(Hillebrand et al., 1999) and the fresh-weight unit was expressed in mass (mg L-1)

(Wetzel & Likens, 2000) and then converted to carbon biomass by multiplying cell

density and biovolume using the formulae: pgC cell−1 = 0.1204 × (µm3)1.051 (Rocha and

Duncan, 1985). Cryptomonas ovata carbon content was 393.70 pgC cell-1 and

Microcystis aeruginosa was 15.5 pgC cell-1.

Experimental design

Two experiments, one with axenic and other with non-axenic cultures, were

performed using the same experimental design at different time. The non-axenic

cultures were prepared by adding environmental bacterial inoculum as described below.

For both, axenic and non-axenic, we used monospecific cultures (i.e., control) of each

strain and mixed co-cultures (treatment, C. obovata + M. aeruginosa) under different

light conditions (high and low light) and with and without sediment addition to simulate

a natural condition of turbid shallow lakes (Fig 1).

We estimated 20 µE.m-2s-1 as “low light” based in measures from turbid shallow

lakes in a semi-arid region, using the average light in the mixed layer (expressed in

µE.m2s) according to Riley (1957). The low light treatment (LL) in our experiment had

20 µE.m-2s-1) and the high light treatment (HL) had 95 µE.m-2s-1. We used tissue culture

flasks filled with 30 ml of medium with sediment representing the same light intensity

in treatments with sediment (20 µE.m-2s-1). Therefore, LL and sediment treatments had

the same light intensity, but the LL treatment did not have the influence of inorganic

particles in suspension. The sediment was collected in the Boqueirão de Parelhas

reservoir located in the Brazilian semi-arid region. To avoid contamination, sediment

was muffled at 490º C for 5 hours and then autoclaved with culture medium.

The experiments run in triplicates in tissue culture flasks with 30 ml of the single

and co-cultures of Cryptomonas obovata and Microcystis aeruginosa under laboratory-

controlled conditions at constant temperature (23 ºC) and 12:12h dark:light cycle in a

shaker incubator (INFORS HT multitron). Flasks were randomly distributed among the

Page 58: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

50

stirring table and were gently shaken (55 rpm) to stir up sediment. The experiment had

the duration of 6 days, and samples (0.9 ml) were taken every two days and fixed with

paraformaldehyde + glutaraldehyde (1% final concentration) to quantify phytoplankton

by flow cytometry (BD Accuri C6). At least 10 000 events were acquired for each

sample. Phytoplankton cells were detected by their signature in a plot of side scatter

(SSC, proxy for cell size) versus FL3-H (red fluorescence, proxy for phytoplankton

pigments).

The non-axenic experiment was performed the same way of the axenic, but 10%

(v/v) of a 0.7 µm-filtered water from Lobo reservoir was added to each flask as bacterial

inoculum.

The inoculated cell number of C. obovata and M. aeruginosa were, respectively,

~6.0x103 and ~2.5x105 in the axenic experiment, and ~2.0x104 for C. obovata and

~6.5x105 for M. aeruginosa in the non-axenic experiment. Microcystis cultures were

diluted in fresh medium to begin under same biomass of Cryptomonas. Relative

biomass of phytoplankton species was estimated by biovolume of each algae in their

monocultures from approximated geometric models (Hillebrand et al., 1999). Light

intensity was measured by using a photosynthetically active radiation (PAR) photometer

(Biospherical QLS-100.

Fig. 1 Experimental design illustrating unialgal and mixed cultures under three distinct

light regimes. High light (HL) consist in direct incident light in the C. obovata

monoculture, in M. aeruginosa monoculture and in the mixed cultures (C. obovata + M.

aeruginosa, C+M). Low light (LL) consisted in a physical barrier (culture tissue flask

with sediment diluted in medium WC) above the single and co-cultures. Low light +

Page 59: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

51

sediment (Sed) consisted in the same light intensity from LL treatment but with the

sediment inside the treatment flasks. This experimental design was performed with

axenic and non-axenic (bacteria-added) cultures.

Growth rates and data analysis

Difference in phytoplankton concentration over time between controls and

treatments were evaluated by comparing temporal trends in cell density and by

comparing growth rates or changes in biomass between controls and treatments (i.e.,

single and co-cultures).

The effect of competition was assessed comparing Cryptomonas and Microcystis

growth rates over six days in single species (i.e. control) and co-cultures (i.e. treatment)

and the effect of light limitation was assessed comparing growth rates of the species

between light treatments (HL, LL and SED). Phytoplankton growth rates in controls and

treatments were estimated using the slope of the regression line between natural log

transformed of biomass concentrations and the experimental period (day-1). A two-way

ANOVA and post-hoc Tukey’s test was performed to test significant differences

between treatments to examine the effect of light limitation and to test significant

differences between mono and co-cultures in light treatments to examine the effect of

competition. ANOVA assumptions were checked for normality and homogeneity of

variance.

All analyses were performed in R Statistical Software (version 3.5.2, <www.r-

project.org>).

Results

Single cultures and co-cultures carbon biomass

Trends in phytoplankton carbon biomass in each treatment through time in

axenic experiment (Fig 2) and in non-axenic experiment (Fig 3) shows an increase in

biomass through time for all treatments and both phytoplankton species, except for C.

obovata in the treatment with sediment added. Biomass increase was bigger in single

cultures than in co-cultures for both experiments and phytoplankton species. However,

biomass decrease was observed in LL and SED treatments in axenic experiment for C.

obovata from day 4 both in single and co-cultures (Fig 2A).

When bacteria was added to cultures (non-axenic experiment), C. obovata and

M. aeruginosa carbon biomass increased through time in all treatments, both in single

and co-cultures, except for a decrease in day 4 in LL treatment (Fig3 A and B).

Page 60: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

52

Fig 2. Trends in Cryptomonas obovata (a) and Microcystis aeruginosa (b)

carbon biomass through experimental period (days) for the axenic experiment in High

light (HL), Low Light (LL) and Sediment (SED) treatments in the single and co-

cultures. Error bars (n=3) are standard deviations.

Fig 3. Trends in Cryptomonas obovata (a) and Microcystis aeruginosa (b)

carbon biomass relative to the initial time through experimental period (days) for the

non-axenic experiment in High light (HL), Low Light (LL) and Sediment (SED)

treatments observed in the single and co-cultures. Error bars (n=3) are standard

deviations.

Page 61: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

53

Growth rates

Positive growth rates of Cryptomonas and Microcystis were observed for single

and co-cultures in high light (HL) treatments in axenic experiment (Fig. 4 A) and in all

treatments in the experiment with bacteria (non-axenic) (Fig. 4 B). Negative growth rate

was observed for Cryptomonas when sediment was added in both cultures and in LL

only in mixed co-culture (Fig. 4 A). The two-way ANOVA showed significant

differences between light treatments (p < 0.001) and no effect of competition (p = 0.194

and p = 0.301)in axenic and non-axenic experiments, respectively. Without bacteria

SED was significantly different from HL (p < 0.001) and LL (p = 0.009) (Fig.4). With

bacteria added HL showed significant differences from LL (p = 0.005) and SED (p =

0.001), sediment and LL had no significant differences (p = 0.873) (Fig. 4).

Fig. 4 Growth Rates (day-1) for Cryptomonas ovata and Microcystis aeruginosa in

single and co-cultures in experiment (a) without bacteria (axenic) and (b) with bacteria

(non-axenic). HL= high light treatment, LL = low light treatment and SED = sediment

treatment. Bars describe the standard deviation. Two-way ANOVA results for

competition and effect of light limitation with F and p-value are shown. (a) and (b) are

the results from Tukey’s post-hoc test.

Analyzing the effect of competition (single and co-cultures) and differences in

algae growth rate among each treatment was observed significant differences between

Page 62: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

54

C. obovata and M. aeruginosa for all treatments in both experiments, except for SED in

non-axenic experiment (Table 1). The effect of competition was observed in LL (p <

0.001) and SED (p = 0.001) in axenic experiment and in HL did not shown effect of

competition (Table 1). In non-axenic experiment the competition only had effect in SED

treatment (p = 0.002), single cultures were significant different from co-cultures and

Cryptomonas had higher growth than Microcystis when sediment and bacteria were

added (Fig. 4 B).

Table 1 – Two-way ANOVA showing differences in C. obovata and M. aeruginosa

growth rate and the effect of competition (single and co-cultures) in high light (HL),

low light (LL) and SED (sediment) treatment with the interaction of this two factors.

HL LL SED

F p- value F p- value F p- value

Axenic

Algae growth 6.06 0.039 * 9.82 0.016 * 760.02 <0.001*

competition effect 0.55 0.477 115.55 <0.001* 20.70 0.001 **

interaction 0.47 0.510 138.7 <0.001* 24.38 0.001 **

Non-axenic

Algae growth 25.47 <0.001** 18.04 0.005** 0.62 0.454

competition effect 2.28 0.169 0.33 0.586 18.63 0.002**

interaction 0.03 0.859 0.27 0.617 6.27 0.036 *

Discussion

We evaluated the interaction between a photoautotrophic bloom-forming

cyanobacterium and a eukaryotic mixotrophic phytoflagellate manipulating light

availability and inorganic turbidity. We found out that inorganic turbidity provided by

sediment may enhance the growth rates of the mixotrophic phytoplankton over

cyanobacteria in a nutrient-rich environment, as long as bacteria (prey) are available

(non-axenic experiments).

Mixotrophic plankton is now recognized as a rule more than an exception in a

wide range of aquatic environments (Unrein et al., 2007; Flynn et al., 2012). Some

studies have documented that mixotrophic algae can account to 50% - 95% of total

bacterivory in the ocean (Unrein et al., 2007, 2014; Hartmann et al. 2012). However,

most studies involving phytoplankton mixotrophy are from marine, oligotrophic

systems and until now, little is known about mixotrophy in eutrophic and turbid

freshwater systems. Since light is crucial to phytoplankton survival and growth it is

Page 63: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

55

important to understand how inorganic turbidity affects light availability for

phytoplankton, mainly in turbid shallow lakes.

Our results indicated that Cryptomonas biomass decreased and exhibited

negative growth rates in the treatment with sediment and without bacteria. Nevertheless,

in the presence of bacteria, we observed an increase of Cryptomonas biomass compared

to the initial time and positive growth rates but only in monocultures. This result

suggests that Cryptomonas relied on heterotrophic bacteria to enhance its growth rates.

However we cannot discard the nutrient remineralization by bacteria, that might have

contributed to algal growth (Sarmento & Gasol, 2012). Still, phagotrophy in

Cryptomonas is well described and it is probable that phagotrophy occurred in our

experiments (Urabe et al., 2000; Pålsson & Granéli, 2003; Grujcic et al., 2018). In both

cases, in the presence of heterotrophic bacteria, Cryptomonas grew faster than

Microcystis, which indicates an increase in competitive fitness for the mixotrophic

species.

During the begging of the experiment, we observed the formation of

spontaneous micro-aggregates only in the experiment containing bacteria in sediment

treatment flasks with Cryptomonas (single and co-cultures). These micro-aggregates

caused a sediment flocculation and a reduction on cells count, which is the reason why

the sediment treatment starts with a low Cryptomonas abundance. This aggregation may

be a bacterially mediated process (Simon et al., 2002) or a spontaneous complexation of

the organic compounds (Sarmento & Gasol, 2012). The interaction of bacteria with

particles has been studied and is considered a relevant process and an indication of

specialization (Smith et al., 1992, Grossart et al., 2006, Sarmento & Gasol, 2012).

Further, Cryptophyceae can produce extracellular compounds mainly polysaccharides

and have positive impact on bacteria (B-Béres et al., 2012, Giroldo et al., 2006).

Light and prey concentrations are important factors that influence

photosynthesis, growth and feeding rates of mixotrophic algae. Most studies with

mixotrophs showed that irradiance is required at least to match respiration needs, so

most mixotrophic algae cannot grow in complete darkness even if they fed (Floder et

al., 2006). Also, they will grow until a saturation irradiance, as it does with pure

phototrophs and cyanobacteria. As a consequence, mixotrophs should have higher

growth rates over photoautotrophs, due the acquisition of nutrients ingested with prey

when nutrients (mainly phosphorous) are limited (Fischer et al., 2017). However, to

simulate a eutrophic system in our study nutrients were not limiting.

Page 64: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

56

Studies in semi-arid regions demonstrated the effect of water volume reduction

(caused by extreme droughts) altering phytoplankton dynamic and groups succession

due light penetration (Costa et al., 2016, 2019). However, it was not tested how the

inorganic turbidity affect phytoplankton until now, our findings suggests that the

mixotrophic phytoflagellate had an advantage in a turbid low light environment.

However, this was only true to monocultures, indicating that Microcystis had

advantaged in co-cultures may due allelopathic effects on the mixotrophic species.

Furthermore, colored dissolved organic matter (cDOM) may also explain this

phytoplankton pattern. “Browner” lakes seems to favor phytoplankton that adopted

mixed nutritional strategy than photoautotrophic species due reduced light penetration

(Hansson et al., 2019).

It has been argued that mixotrophs can outcompete photoautotrophic

phytoplankton under light limited conditions (Jones, 2000) and dominate in humic and

brown colored lakes (Routhaupt, 1996, Hansson et al., 2019). However, our results

emphasize that light alone does not explain it all. Sediment particles and the presence of

prey (bacteria) are key factors to understand the mechanisms behind the dominance of

mixotrophic algae in nutrient rich-turbid environments. In addition, the cyanobacteria

has physiological strategies to outcompete the mixotroph under this experimental

conditions. Considering the climatic changes are affecting aquatic systems and we are

already experiencing changings in phytoplankton dynamics, it is necessary incorporate

the mixotrophy and its consequence in to food webs knowledge, since the increase of

inorganic turbidity predicted by climate change may lead to increased mixotrophy

Acknowledge

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq/Universal,

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)

(CAPES/PNPD–Project N : 2304/2011), Fundação de Pesquisa de São Paulo

(FAPESP) (Processes: 2014/14139-3 and 2016/50494-8).

References

Anderson, R., S. Charvet, & P. J. Hansen, 2018. Mixotrophy in Chlorophytes and

Haptophytes — Effect of Irradiance , Macronutrient , Micronutrient and Vitamin

Limitation. 9: 1–13.

Page 65: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

57

Anderson, R., K. Jürgens, & P. J. Hansen, 2017. Mixotrophic phytoflagellate

bacterivory field measurements strongly biased by standard approaches: A case study.

Frontiers in Microbiology 8:.

Azam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil, & F. Thingstad, 1983. The

Ecological Role of Water-Column Microbes in the Sea. Marine Ecology Progress Series

10: 257–263, http://www.int-res.com/articles/meps/10/m010p257.pdf.

B-Béres, 2012. The effects of Microcystis aeruginosa ( cyanobacterium ) on

Cryptomonas ovata ( Cryptophyta ) in laboratory cultures : Why these organisms do not

coexist in The effects of Microcystis aeruginosa ( cyanobacterium ) on Cryptomonas

ovata ( Cryptophyta ) in l. Hydrobiologia The International Journal of Aquatic Sciences

ISSN Hydrobiologia 691: 97–107.

Barbosa, J. E. D. L., E. S. F. Medeiros, J. Brasil, R. D. S. Cordeiro, M. C. B. Crispim, &

G. H. G. Da Silva, 2012. Aquatic systems in semi-arid Brazil: limnology and

management. Acta Limnologica Brasiliensia 24: 103–118.

Becker, V., L. Caputo, J. Ordo, R. Marce, L. O. Crossetti, & V. L. M. Huszar, 2010.

Driving factors of the phytoplankton functional groups in a deep Mediterranean

reservoir. Water research 44: 3345–3354.

Beisner, B. E., H. Grossart, & J. M. Gasol, 2019. REVIEW A guide to methods for

estimating phago-mixotrophy in nanophytoplankton. Journal of Plankton Research 00:

1–13.

Costa, M. R. ., J. . Attayde, & V. Becker, 2016. Effects of water level reduction on the

dynamics of phytoplankton functional groups in tropical semi-arid shallow lakes.

Hydrobiologia 778:.

Costa, M. R. A., R. F. Menezes, & H. Sarmento, 2019. Extreme drought favors potential

mixotrophic organisms in tropical semi-arid reservoirs. 2: 43–54.

De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E.

Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. van Donk, M. Winder, &

M. Lürling, 2013a. Plankton dynamics under different climate conditions in tropical

freshwater systems (a reply to the comment by Sarmento, Amado & Descy, 2013).

Freshwater Biology 58: 2211–2213.

De Senerpont Domis, L. N., J. J. Elser, A. S. Gsell, V. L. M. Huszar, B. W. Ibelings, E.

Jeppesen, S. Kosten, W. M. Mooij, F. Roland, U. Sommer, E. Van Donk, M. Winder, &

M. Lürling, 2013b. Plankton dynamics under different climatic conditions in space and

time. Freshwater Biology 58: 463–482.

Edwards, K. F., 2019. Mixotrophy in nanoflagellates across environmental gradients in

the ocean. Proceedings of the National Academy of Sciences of the United States of

America 116: 6211–6220.

Figueiredo, A. do V., & V. Becker, 2018. Influence of extreme hydrological events in

the quality of water reservoirs in the semi-arid tropical region. Brazilian Journal of

Water Resources 23: 1–8.

Fischer, R., R. Ptacnik, R. Fischer, H. Giebel, H. Hillebrand, & R. Ptacnik, 2017.

Importance of mixotrophic bacterivory can be predicted by light and loss rates

Importance of mixotrophic bacterivory can be predicted by light and loss rates. Oikos

Page 66: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

58

126: 713–722.

Floder, S., T. Hansen, & R. Ptacnik, 2006. Energy — Dependent Bacterivory in

Ochromonas minima — A Strategy Promoting the Use of Substitutable Resources and

Survival at Insufficient Light Supply. Protist 157: 291–302.

Flynn, K. J., D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen, E.

Granéli, & J. M. Burkholder, 2013. Misuse of the phytoplankton-zooplankton

dichotomy: The need to assign organisms as mixotrophs within plankton functional

types. Journal of Plankton Research 35: 3–11.

Gasol, J. M., & P. A. Del Giorgio, 2000. Using flow cytometry for counting natural

planktonic bacteria and understanding the structure of planktonic bacterial communities.

Scientia Marina 64: 197–224,

http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/755/772.

Gasol, J. M., & X. A. G. Morán, 2015. Flow Cytometric Determination of Microbial

Abundances and Its Use to Obtain Indices of Community Structure and Relative

Activity : 159–187, http://link.springer.com/10.1007/8623_2015_139.

Gerea, M., C. Queimalin, & F. Unrein, 2018. Grazing impact and prey selectivity of

picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes. Hydrobiologia 5–

21.

González, J. M., 1999. Bacterivory rate estimates and fraction of active bacterivores in

natural protist assemblages from aquatic systems. Applied and Environmental

Microbiology 65: 1463–1469.

Grujcic, V., J. K. Nuy, M. M. Salcher, T. Shabarova, V. Kasalicky, J. Boenigk, M.

Jensen, & K. Simek, 2018. Cryptophyta as major bacterivores in freshwater summer

plankton. ISME Journal Springer US 12: 1668–1681, http://dx.doi.org/10.1038/s41396-

018-0057-5.

Hammer, A., R. Schumann, & H. Schubert, 2002. Light and temperature acclimation of

Rhodomonas salina ( Cryptophyceae ): photosynthetic performance. Aquatic Microbial

Ecology 29: 287–296.

Hansson, T. H., H. Grossart, P. A. Giorgio, N. F. St-gelais, & B. E. Beisner, 2019.

Environmental drivers of mixotrophs in boreal lakes. 1–18.

Hartmann, M., C. Grob, G. a. Tarran, a. P. Martin, P. H. Burkill, D. J. Scanlan, & M.

V. Zubkov, 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings

of the National Academy of Sciences of the United States of America 109: 5756–5760.

IPCC, 2007. Climate Change 2007: impacts, adaptation and vulnerability: contribution

of Working Group II to the fourth assessment report of the Intergovernmental Panel.

Genebra, Suíça. .

Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein, & R. Massana,

2012. Grazing rates of protists in wetlands under contrasting light conditions due to

floating plants. Aquatic Microbial Ecology 65: 221–232.

Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P.

Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas,

M. Kernan, M. Søndergaard, & M. Beklioğlu, 2015. Ecological impacts of global

warming and water abstraction on lakes and reservoirs due to changes in water level and

Page 67: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

59

related changes in salinity. Hydrobiologia 750: 201–227.

Leitão, E., K. A. Ger, & R. Panosso, 2018. Selective grazing by a tropical copepod

(Notodiaptomus iheringi) facilitates microcystis dominance. Frontiers in Microbiology

9: 1–11.

Litchman, E., & C. a. Klausmeier, 2008. Trait-Based Community Ecology of

Phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

Liu, Z., A. C. Jones, V. Campbell, K. D. Hambright, K. B. Heidelberg, & D. A. Caron,

2015. Gene expression in the mixotrophic prymnesiophyte, Prymnesium parvum,

responds to prey availability. Frontiers in Microbiology 6: 1–12.

Marengo, J. a., T. Ambrizzi, R. P. da Rocha, L. M. Alves, S. V. Cuadra, M. C.

Valverde, R. R. Torres, D. C. Santos, & S. E. T. Ferraz, 2009. Future change of climate

in South America in the late twenty-first century: intercomparison of scenarios from

three regional climate models. Climate Dynamics 35: 1073–1097.

McGill, B. J., B. J. Enquist, E. Weiher, & M. Westoby, 2006. Rebuilding community

ecology from functional traits. Trends in ecology & evolution 21: 178–185.

McKie-Krisberg, Z. M., R. J. Gast, & R. W. Sanders, 2015. Physiological Responses of

Three Species of Antarctic Mixotrophic Phytoflagellates to Changes in Light and

Dissolved Nutrients. Microbial Ecology 70: 21–29.

Medina, L. E., C. D. Taylor, M. G. Pachiadaki, C. Henríquez-castillo, O. Ulloa, V. P.

Edgcomb, & R. Anderson, 2017. A Review of Protist Grazing Below the Photic Zone

Emphasizing Studies of Oxygen-Depleted Water Columns and Recent Applications of

In situ Approaches. 4:.

Mitra, A., K. J. Flynn, J. M. Burkholder, T. Berge, A. Calbet, J. A. Raven, E. Granéli, P.

M. Glibert, P. J. Hansen, D. K. Stoecker, F. Thingstad, U. Tillmann, S. Väge, S.

Wilken, & M. V. Zubkov, 2014. The role of mixotrophic protists in the biological

carbon pump. Biogeosciences 11: 995–1005.

Naselli-Flores, L., & R. Barone, 2005. Water-Level Fluctuations in Mediterranean

Reservoirs: Setting a Dewatering Threshold as a Management Tool to Improve Water

Quality. Hydrobiologia 548: 85–99.

Pålsson, C., & W. Granéli, 2003. Diurnal and seasonal variations in grazing by

bacterivorous mixotrophs in an oligotrophic clear- water lake. 289–307.

Princiotta, S. D., S. P. Hendricks, & D. S. White, 2019. Production of Cyanotoxins by

Microcystis aeruginosa Mediates Interactions with the Mixotrophic Flagellate

Cryptomonas. Toxins 11: 1–16.

Roland, F., V. L. M. Huszar, V. Farjalla, a Enrich-Prast, A. M. Amado, & J. P. H. B.

Ometto, 2012. Climate change in Brazil: perspective on the biogeochemistry of inland

waters. Brazilian journal of biology = Revista brasleira de biologia 72: 709–722,

http://www.ncbi.nlm.nih.gov/pubmed/23011300.

Rothhaupt, K. ., 1996. Laboratorary experiments with a mixotrophic chrysophyte and

obligately phagotrophic and photographic competitors. Ecology 77: 716–724.

Saad, J. F., F. Unrein, P. M. Tribelli, N. López, & I. Izaguirre, 2016. Influence of lake

trophic conditions on the dominant mixotrophic algal assemblages. Journal of Plankton

Page 68: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

60

Research 00: 1–12,

http://www.plankt.oxfordjournals.org/lookup/doi/10.1093/plankt/fbw029.

Sarmento, H., A. M. Amado, & J.-P. Descy, 2013. Climate change in tropical fresh

waters (comment on the paper ‘Plankton dynamics under different climatic conditions

in space and time’ by de Senerpont Domis et al ., ). Freshwater Biology 58: 2208–2210.

Sarmento, H., & J. M. Gasol, 2012. Use of phytoplankton-derived dissolved organic

carbon by different types of bacterioplankton. Environmental Microbiology 14: 2348–

2360.

Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol, & J. P. Descy, 2008.

Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern

Africa. Freshwater Biology 53: 756–771.

Schiaffino, M. R., J. M. Gasol, I. Izaguirre, & F. Unrein, 2013. Picoplankton abundance

and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic

Microbial Ecology 68: 231–250.

Selosse, Marc-André, Charpin, Marie, Not, F., 2017. Mixotrophy everywhere on land

and in water : the grand e hypothesis. Ecology letters 20: 246–263.

Sherr, B. F., E. B. Sherr, & R. D. Fallon, 1987. Use of monodispersed, fluorescently

labeled bacteria to estimate in situ protozoan bacterivory. Applied and environmental

microbiology 53: 958–965.

Simon, M., H. Grossart, B. Schweitzer, & H. Ploug, 2002. Microbial ecology of organic

aggregates in aquatic ecosystems. .

Sintes, E., & P. A. del Giorgio, 2010. Community heterogeneity and single-cell

digestive activity of estuarine heterotrophic nanoflagellates assessed using lysotracker

and flow cytometry. Environmental Microbiology 12: 1913–1925.

Stoecker, D. K., P. J. Hansen, D. A. Caron, & A. Mitra, 2017. Mixotrophy in the Marine

Plankton. Annual Review of Marine Science 9: 311–335,

http://www.annualreviews.org/doi/10.1146/annurev-marine-010816-060617.

Tarbe, A., F. Unrein, S. Stenuite, S. Pirlot, & D. Sinyinza, 2011. Protist Herbivory : a

Key Pathway in the Pelagic Food Web of Lake Tanganyika. Microbial Ecology 62:

314–323.

Torchiano, M., 2018. effsize: Efficient Effect Size Computation. R package version

0.7.4.

Unrein, F., J. M. Gasol, F. Not, I. Forn, & R. Massana, 2014. Mixotrophic haptophytes

are key bacterial grazers in oligotrophic coastal waters. The ISME journal 8: 164–176,

http://dx.doi.org/10.1038/ismej.2013.132.

Unrein, F., R. Massana, L. Alonso-Sáez, & J. M. Gasol, 2007. Significant year-round

effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal

system. Limnology and Oceanography 52: 456–469.

Urabe, J., T. B. Gurung, T. Yoshida, T. Sekino, & M. Nakanishi, 2000. Diel changes in

phagotrophy by Cryptomonas in Lake Biwa. 45: 1558–1563.

Ward, B. A., & M. J. Follows, 2016. Marine mixotrophy increases trophic transfer

efficiency, mean organism size, and vertical carbon flux. Proceedings of the National

Page 69: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

61

Academy of Sciences 113: 2958–2963,

http://www.pnas.org/lookup/doi/10.1073/pnas.1517118113.

Woodward, G., D. M. Perkins, & L. E. Brown, 2010. Climate change and freshwater

ecosystems: impacts across multiple levels of organization. Philosophical transactions

of the Royal Society of London. Series B, Biological sciences 365: 2093–2106.

Zohary, T., J. Padisák, & L. Naselli-Flores, 2010. Phytoplankton in the physical

environment: Beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–

269.

Page 70: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

62

Page 71: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

63

CAPÍTULO 3

COMPARISON OF DIFFERENT TECHNIQUES TO ACCESS THE

EFFECT OF LIGHT AND NUTRIENTS ON PHYTOPLANKTON

PHAGOTROPHY

Mariana R. A. Costa1, Hugo Sarmento2, Vanessa Becker1,3, Inessa L. Bagatini4

& Fernando Unrein5.

1Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-Graduação em

Ecologia, Natal, RN, Brazil.

2 Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, São Carlos

– SP, Brazil.

3 Universidade Federal do Rio Grande do Norte (UFRN), Departamento de Engenharia Civil,

Natal, RN, Brazil

4 Universidade Federal de São Carlos (UFSCar), Departamento de Botânica, São Carlos – SP,

Brazil.

5 Instituto de Investigaciones Biotecnológicas (IIB-INTECH) – Instituto Tecnológico de

Chascomús – CONICET. Chascomús, Argentina.

Corresponding author: E-mail: [email protected]

Page 72: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

64

Abstract

Mixotrophy is a nutritional strategy that combines autotrophy and heterotrophy in the

same organism and represents an adaptive strategy in limiting environmental conditions.

Although mixotrophy is recognized to be widespread, it is hard to quantify its effects

and contribution to carbon flux in aquatic food webs. Thus, it is necessary to develop

new methodologies that allow obtaining rapid and accurate results. The goal of this

study was to determine grazing rates (GRs) by phytoflagellates in distinct light and

nutrient conditions using different protocols, including epifluorescence microscopy

(EM) and flow cytometry (FC). We performed short-term grazing experiments by two

mixotrophic phytoflagellates (Ochromonas tuberculata and Cryptomonas marssonii)

using fluorescent latex beads as prey surrogates, manipulating different conditions of

light and nutrients. We also performed experiments using food vacuole markers

(LysoTracker - LyT), to investigate mixotrophic metabolism. The comparison of the

GRs between FC and EM demonstrated a significant and strong relationship (R2 = 0.50,

p < 0.001), being FC estimations higher than EM. The highest GRs by C. marssonii

were observed at high nutrient concentrations, which seems to be the most important

factor for GR by this species, whereas for O. tuberculata GR increased at low light

availability. Moreover, the use of LyT showed that both phytoflagellates were actively

feeding on preys. We conclude that, at least in culture, the use of flow cytometry is a

useful tool to estimate mixotrophy.

Keywords: Bacterivory, Flow Cytometry, Lyso-Tracker, Ochromonas, Cryptomonas.

Page 73: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

65

Introduction

Aquatic microorganism interactions have an important role for biogeochemical

cycle and account for large amounts of carbon transfer among trophic levels (Azam et

al., 1983). Mixotrophic organisms act both as producers and consumers in aquatic

ecosystems, shaping food web structure, carbon flux and ecosystem functioning

(Stoecker et al., 2017). Limiting resources for photosynthesis (i.e. light and nutrients)

are recognized to drive mixotrophs success across different environments, although,

little is known about how environmental conditions acts for the prevalence of

mixotrophy (Edwards, 2019)(Edwards, 2019)(Edwards, 2019)(Edwards, 2019).

Moreover, mixotrophic plankton is now recognized to be widespread in a range

of aquatic environments and this mode of nutrition could be more a rule than an

exception both in marine and in freshwater ecosystems (Unrein et al., 2007; Flynn et al.,

2013; Stoecker et al., 2017). Some studies have documented that mixotrophic

phytoflagellates can account up about 50% -95% of total bacterivory at sea (Unrein et

al., 2007; Hartmann et al., 2012) and in many freshwater systems (Urabe et al. 2000,

Gerea et al., 2018). In this sense, is paramount to incorporate this nutritional strategy

into food webs and biogeochemical models.

Although mixotrophy is recognized to be widespread and relevant to ecosystem

functioning, it is hard to quantify its effects and contribution to carbon fluxes due to the

restrict amount of effective grazing rates measurements and the knowledge of which

species are actually phagotrophic (Ward & Follows, 2016; Stoecker et al., 2017). One

reason for that is the difficulty to measure ingestion rates and the contribution of

phagotrophy by mixotrophic organisms as an indicator of heterotrophic activity.

A technique usually used to quantify grazing is counting ingested fluorescent

particles in epifluorescence microscopy (Unrein et al., 2007; McKie-Krisberg et al.,

2015; Saad et al., 2016). However, it requires a long time on the microscope and

qualified personal training. Therefore, faster and more automatic techniques or methods

that allow achieving good quantification and accuracy would be useful. In this way,

more experiments and environmental samples may be analysed providing more data in a

shorter time. There is the to propose a protocol for estimating ingestion rates using flow

cytometry to detect fluorescent label preys ingested by protists present in natural

communities (González, 1999). However, there are no consolidated protocols yet

(Beisner et al., 2019). Flow cytometry can quantify thousands of cells in minutes

(Shapiro, 2003) and has been used in microbial ecology routinely to estimate abundance

Page 74: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

66

of several aquatic organisms (Gasol & Del Giorgio, 2000; Sarmento et al., 2008;

Schiaffino et al., 2013). It detects information of cells size and complexity plus the

fluorescence emitted by natural pigments or fluorescent probes (Gasol & Morán, 2015).

Flow cytometry can also capture fluorescent probes signal inside other organisms.

Acidotropic probes, such as LyT, can be used as food vacuole markers and visualized

by flow cytometry, been a proxy for digestive activity by mixotrophic phytoplankton

(Rose et al., 2004; Sintes & del Giorgio, 2010; Anderson et al., 2017).

Future works will be benefited by the improvement in nano and genomics

technology combining with traditional methods, and better estimates on mixotrophic

activity will allow more reliable biogeochemical models to predict changes in aquatic

food webs in a changing world (Beisner et al., 2019).

The goal of this study was to evaluate the use of flow cytometry to estimate

mixotrophy comparing it to the time-consuming epifluorescence microscopy counts. For

that, using both techniques, we have quantified bacteria ingestion rates by two

mixotrophic phytoflagellates under different light and nutrient conditions.

Materials and Methods

Culture and growth conditions

Cultures of three freshwater non-axenic strains were used for the experiments,

Ochromonas tuberculata, (CCAP 933/27) and Cryptomonas marssonii (CCAP

979/64), both species reported in the literature with mixotrophic metabolism, and a

strictly photosynthetic chlorophyte, Chlamydomonas sp. CCAP. The cultures were

cultivated and maintained in sterile growth WC medium (Guillard & Lorenzen, 1972)

in temperature controlled room at 20 ± 1°C and irradiance of 50 µmol m–2 s–1 under a

light:dark cycle of 12:12 h. Cultures were maintained in exponential growth rate by

biweekly dilution into fresh medium. The strains grew as motile spheroid single cells,

mean 8.12 x 7.18 µm (O. tuberculata), 9.39 x 7.97 µm (C. marssonii) and 9.10 x 8.20

µm (Chlamydomonas sp.).

The abundance of background bacteria (mainly small bacillus), naturally in the

phytoplankton cultures, ranged from 2 to 5,0 x 106 cells ml -1 in the cultures used in

this study. A total of 250 ml of a dense phytoplankton culture (5x 105 cells ml-1) were

used as inoculum to experimental cultures.

Page 75: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

67

Preparation of Prey

The prey used in the grazing experiments were FLB and synthetic fluorescent

yellow-green micro-spheres (beads). The FLBs were prepared from a Brevundimonas

diminuta (syn. Pseudomonas diminuta Leifson & Hugh) strain obtained from the

Spanish Type Culture Collection (Burjassot, València) and stained with a solution of

5-([4,6 dichlorotriazin-2-yl]-amino)-fluorescein (DTAF) overnight in a water bath at

60º C according to Sherr et al. (1987). Stained cells were rinsed with filtered (0.2 µm)

carbonate-bicarbonate buffer, resuspended and centrifuged to prevent the transfer of

leftover dye to the natural samples. The cell suspensions were kept frozen (-80ºC)

until use, for more details see Unrein et al. (2007). A stock solution of a concentrated

suspension of FLBs were added to the short-term grazing experiments. FLBs mean

cell size was 0.82 x 0.48 µm.

The second prey added to the experiments was synthetic fluorescent yellow-

green microspheres (latex beads). A stock solution of a concentrated suspension of 1

µm diameter beads (Polysciences Fluoresbrite) was treated with bovine serum albumin

(0.5 mg ml-1) to avoid particles aggregation. We tested two beads size (0.5 and 1 µm),

the smallest size could not be visualized properly in the flow cytometer, therefore

beads of 1 µm were chosen for the experiments.

Experimental design

Two kinds of experiments were carried out, one short-term grazing incubations

to detect mixotrophy and calculate bacterial ingestion rates and another to detect

mixotrophy by food vacuoles staining using LyT (Table 1). Experiments were

performed at separate time.

The ingestion experiments were performed using two mixotrophic

phytoflagellate strains (C. marssonii and O. tuberculata) and two kinds of prey (beads

and FLB), resulting in four combinations of mixotroph-prey in the experiments: O.

tuberculata + beads, O. tuberculata + FLB, C. marssonii + beads, C. marssonii +

FLB. The food vacuoles staining experiments were performed using three

phytoflagellates strains (Chlamydomonas sp., C. marssonii and O. tuberculata) and

identified mixotrophs by positive vacuoles staining (Table 1).

Page 76: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

68

Table 1 – Summary of the experiments performed.

Flagellate strain Prey Experiment name

Ingestion

experiment

Cryptomonas marsonii Beads 1µm Crypto + Beads

Cryptomonas marsonii FLB Crypto + FLB

Ochromonas tuberculata Beads 1µm Ochro + Beads

Ochromonas tuberculata FLB Ochro + FLB

Flagellate strain Stain Experiment name

Food vacuoles

staning

experiment

Chlamydomonas sp. Lyso-Tracker (LyT) Chlamy-LyT

Cryptomonas marsonii Lyso-Tracker (LyT) Crypto-LyT

Ochromonas tuberculata Lyso-Tracker (LyT) Ochro-LyT

The experimental design of all experiments consisted in a 3x3 factorial design

resulting in 9 different conditions. We manipulated three levels of light: high light

(HL) 95 µmol m-2 s-1, low light (LL) 10 µmol m-2 s-1 and total darkness (D); and three

concentrations of nutrients: high nutrients (HN), medium nutrients (MN) and low

nutrients (LN). We diluted WC medium 20 times with deionized water for LN, 5 times

for MN, while HN was not diluted (Fig 1). All treatments were performed in triplicates

for the short-term ingestion experiments and two replicates for the food vacuoles

staining experiments.

To induce mixotrophy by phytoflagellates we acclimated the species for

starvation before starting the experiments. Nutrient starvation was induced by

transferring exponential-phase of each culture into each treatment-diluted (HN, MN

and LN) sterile growth medium for one week and light starvation was induced with the

same batch culture for two days. Preliminary tests (not shown) were carried out before

starting the experiments to confirm that the phytoflagellates were able to ingest prey

and to determine when the starvation phase began.

Page 77: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

69

Fig 1 – The 3x3 factorial experimental design for ingestion and food vacuoles staining

experiments.

Ingestion experiment

Short-term ingestion experiments were carried out in 10 ml microcosms. A

working solution of each prey (FLB and beads) was immediately inoculated to a

concentration of 30-40% of in situ bacterial concentration for each experiment.

Samples were taken at initial time (T0), after 25 minutes and 45 minutes and fixed for

analysis in flow cytometry (1 mL) and for epifluorescence microscopy counts (1 mL).

The incubation time was chosen since prey ingestion reached a plateau according to

Unrein et al., 2007. Samples for flow cytometry were preserved with 1%

paraformaldehyde and 0,05% glutaraldehyde fixation solution (final concentration)

and with filtered (0.2 µm) glutaraldehyde 1% final concentration for epifluorescence

microscopy counts. Samples were stored cool and in the dark until analysis.

For epifluorescence microscopy counts, 1 mL of sample were filtered on to 0.8

µm black filters (Brand, Manufacturer) and stained for 5 min with a solution of 4′,6-

diamidino-2-phenylindole (DAPI). At least 100 flagellates were counted under a Zeiss

epifluorescence microscope at 1000x magnitude using set filters for DAPI,

phycoerythrin and chlorophyll autofluorescence. For each flagellate were quantified

the presence of prey.

Page 78: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

70

Phytoflagellates, natural bacteria present in cultures and prey (beads and FLB)

were also counted by flow cytometry (FACSCalibur, Becton Dickinson) equipped

with a 15-mW argon-ion laser (488 nm emission). Natural bacteria and prey were

detected by their signature in a plot of side scatter (SSC; proxy for cell complexity)

versus FL1-H (green fluorescence) and phytoflagellates by SSC versus FL3-H (red-

fluorescence, chlorophyll). For heterotrophic bacteria (HB), 200 µl of sample was

added to a diluted SYTO-13 (Molecular Probes Inc., Eugene,OR, U.S.A.) stock, left

for about 10 min in the dark to complete the staining and run in the flow cytometer

(Gasol & Del Giorgio, 2000).

Grazing rates of phytoflagellates on prey (bacteria ind-1 h-1) were determined

through the uptake of fluorescent prey by each phytoflagellate and specific grazing

rate (CSGR) was calculated as:

𝐶𝑆𝐺𝑅 =(If − Ii) × (

𝑏𝑎𝑐𝑡𝑝𝑟𝑒𝑦)

t

Where “If “and “Ii” are the ingestion of prey at the final (f) and initial (i)

incubation time, “bact” is the abundance of natural populations of heterotrophic

bacteria, “prey” is the total abundance of inoculated prey (FLB or beads) and “t” is

the incubation time in hours. The cell-specific grazing rates (CSGR) were calculated

assuming that native prey and fluorescent prey were grazed upon at the same rates.

Food vacuoles staining experiment

Flagellate cells containing food vacuoles were determined using the acidotropic

probe Lyso-Tracker Green DND-26 (LyTG) (ThermoFisher Scientific) final

concentration 50 nM LyTG, according to the protocol from Sintes & del Giorgio

(2010). We used the presence of food vacuoles as a proxy of actively digestive activity

(Sintes & del Giorgio, 2010; Anderson et al., 2017).

The experimental design was the same 3x3 factorial performed at different

times; manipulating three levels of light (HL, LL, D) and three levels of nutrients

concentration (HN, MN, LN). Chlamydomonas sp. is considered a strictly authotrophic

algae, thus, it was used as a negative control for digestive activity. C. marssonii and O.

tuberculata were used to investigate a positive food vacuoles staining.

Page 79: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

71

Cultures live samples of each strain with no added LyTG were measured for 5

minutes by flow cytometry (FACSCalibur, Becton Dickinson) using high flow rate

(103.6 µl/min) and after we added LyTG for 5 minutes more (Sintes & del Giorgio,

2010). Algae and positive food vacuoles staining were detected by their signature in a

plot of FL3-H (red fluorescence) corresponding to the chlorophyll versus FL1-H (green

fluorescence) corresponding to the LyTG. It was possible to visualize in the plot cells

that exhibited a higher green fluorescence after incubation with LyTG. Thus, these cells

were considered to have labeled food vacuoles

Data analyses

Two-way ANOVA and post-hoc Tukey’s test was performed to observe

significant differences between treatments (light and nutrient) for each experiment.

Linear regression type II was performed to plot specific grazing rate (CSGR) from flow

cytometry against microscopy epifluorescence to compare both methodologies using the

lmodel2 function and major axis (MA) method of the package ‘lmodel2’ (Legendre,

2018). Natural log transformation was made when data were not normally distributed.

All analysis was realized in R Statistical Software (version 3.5.2, <www.r-project.org>).

Results

The green fluorescence (FL1-H) signal of FLB inside food vacuoles could not

be observed properly by the flow cytometry. Consequently, it was not possible to

measure mixotrophy using this methodology with FLBs as prey. Therefore, in this

study we present only data from the two short-term grazing experiments with beads

1µm in size as well as the LyTG staining experiments.

Short-term grazing experiments

The CSGR from the short-term grazing experiments were higher when

estimated by flow cytometry than by epifluorescence microscopy (Fig. 1) and the

experiments with C. marssonii in both methodologies had higher CSGR than with O.

tuberculata strain (Fig. 1). The two-way ANOVA revealed significant differences in

the CSGR, nutrients (p<0.001, F = 65.0), as well as the interaction among light and

nutrients (p=0.012, F = 4.87), significantly affected the CSGR, respectively, when

measured by flow cytometry for Cryptomonas (Fig. 1A), and the post-hoc test showed

that HN was significantly different from MN and LN (Fig. 1A). For the experiment

Page 80: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

72

with Cryptomonas measured by epifluorescence microscopy, CSGR was significantly

different in the light (p = 0.007, F = 6.75) and nutrient (p =0.002, F = 8.59) treatments

(Fig. 1B), the post-hoc test showed that HN was significantly different from MN and

LN, and LL was significantly different from HL and D (Fig. 1B).

The two-way ANOVA of the short-term grazing experiment with O.

tuberculata strain only showed significant differences between the light treatment (p =

0.007, F = 6.75) when CSGR were measured by flow cytometry and HL was

significantly different from LL and D (Fig. 1C). Epifluorescence microscopy with O.

tuberculata did not differ significantly between light (p = 0.069, F = 3.19) and nutrient

(p = 0.794, F = 0.23) neither showed interaction between light and nutrient (p = 0.532,

F = 0.82) (Fig. 1D).

Fig. 2 Cell-specific grazing rates (CSGR, bact.ind-1.h-1) from the short-term grazing

experiments for C. marssonii measured by flow cytometry (A) and by epifluorescence

microscope (B) and for O. tuberculata measured by flow cytometry (C) and by

epifluorescence microscope (D) between the distinct nutrient treatments: high nutrient

(HN), medium nutrient (MN) and low nutrient (LN); and between the distinct light

treatments: high light (HL), low light (LL) and total darkness (D). Bars are the standard

deviation (n=3), p is the p-values from the two-way ANOVA, L = light and N =

nutrient. Letters “a” and “b”, denotes differences by pots-hoc test for the nutrient

treatments and letters “c” and “d” denotes differences by the post-hoc test for the light

treatments.

Page 81: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

73

The mean CSGR measured by flow cytometry were on average about 3 times

higher than the rates estimated by epifluorescence microscopy counts (appendix table

1). Cross-comparations of the mixotrophic phytoflagellates CSGR measured by flow

cytometry and microscopy epifluorescence counts indicated the results from both

methods were significantly correlated (R2 = 0.50, p < 0.001). However, CSGR

measured by flow cytometry tended to be higher than by epifluorescence microscopy

(Fig. 2).

Fig. 3 – General model of the type II linear regression comparing specific grazing rates (CSGR)

obtained by flow cytometry and epifluorescence microscopy in short-term ingestion

experiments with C. marsonii and O. tuberculata. Dashed line indicates a 1:1 ratio and solid

dark line is the linear regression for data points. (R2 = 0.50, p-value < 0.001).

Food vacuoles experiment

No cells containing food vacuoles were found for Chlamydomonas sp. in all

treatments, therefore, presumed no feeding activity (Fig. 3). C. marsonii and O.

tuberculata exhibited cells containing food vacuoles (Fig. 4 and 5). Two-way ANOVA

showed significant differences for light and nutrients for O. tuberculata but no

interaction, and marginally significant differences in light for C. marsonii and in

nutrient for Chlamydomonas (Tab. 2). Post-hoc test for O. tuberculata revealed that HL

Page 82: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

74

were significantly different from D (p < 0.001) and from LL (p = 0.010), and that LN

were significantly different from HN (p < 0.001) and from MN (p = 0.006).

Fig 4 – Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for Chlamydomonas

sp. in the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Red dots are cells before the

addition of LyT and black dots are cells after the addition of LyT.

Page 83: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

75

Fig 5 – Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for C. marsonii in

the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Blue dots are cells before the

addition of LyT and black dots are cells after the addition of LyT.

Fig 6 – Cytograms of food vacuoles experiment using Lyso-Tracker (LyT) for O. tuberculata

in the nine treatments combinations. HN = high nutrient, MN = medium nutrient, LN = low

nutrient, HL = high light, LL = low light and D = total darkness. Red dots are cells before the

addition of LyT and black dots are cells after the addition of LyT.

Table 2 – Two-way ANOVA for LyT experiment between treatments. Asterisks (*)

indicate significant or marginally significant values.

C. marsonii

F / p-value

O. tuberculata

F / p-value

Chlamydomonas sp.

F / p-value

Light 4.39 0.052* 0.001* 18.45 0.533 0.67

Nutrient 1.48 0.282 0.001* 15.44 0.055* 4.17

Light*Nutrient 0.29 0.875 0.098 2.92 0.976 0.11

Page 84: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

76

In summary, experiments with Cryptomonas had significant differences in

grazing rates in HN treatment estimated by epifluorescence microscopy and by flow

cytometry; also, LL seemed to be a significant treatment when measured by flow

cytometry. However, the food vacuoles experiment did not exhibited significant

differences between treatments (Table 3). Experiments with O. tuberculata had

significant differences in grazing rates in HL treatment estimated by epifluorescence

microscopy and with food vacuoles experiment. In addition, LN treatment showed

highest number of cells containing food vacuoles stained. However, flow cytometry did

not exhibited significant differences between treatments for experiments with O.

tuberculata (Tab. 3).

Table 3 – Comparison of study methodologies and significant results related to

treatments, n.s. indicate no significant differences between treatments (light and

nutrients). HN = High nutrient treatment, LN = Low nutrient treatment and LL = low

light treatment.

Epifluorescence

Microscopy

Flow Cytometry Food vacuoles

(LyT)

C. marsonii HN HN, LL

n.s.

O. tuberculata HL n.s. HL, LN

Discussion

In this study, we performed experiments in laboratory, manipulating light and

nutrients conditions, using flow cytometry as an alternative tool to estimate mixotrophic

activity, and comparing it to the standard time-consuming epifluorescence microscopy

counts. We found out the same trend between quantifications using both techniques.

However, differences between treatments with distinct light and nutrients conditions did

not showed a robust pattern among experiments.

The use of flow cytometry is increasing in microbial ecology due its high

capacity of analyse and quantifying microorganisms abundance. It distinguish

heterotrophs (green fluorescence) using a DNA stain from autotrophs

(autofluorescence) (Gasol & Del Giorgio, 2000; Sarmento et al., 2008; Gasol & Morán,

2015). Despite this, the most common methodology to quantify grazing rates is

epifluorescence microscopy. Nevertheless, it has been proposed the use of flow

cytometry to estimate grazing rates in natural assemblages and from beads or FLB

Page 85: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

77

uptake experiments (Keller et al., 1993; González, 1999). However, there is no study of

our knowledge applying flow cytometry as a protocol to estimate mixotrophy activity.

We performed short-term ingestion incubations to estimate grazing rates of

phytoflagellates on two kind of prey (FLB and beads). However, the use of flow

cytometry using FLBs could not be validated since it was not possible to visualize the

FLB signal inside the phytoflagellates in any moment of the experiment. On the other

hand, it was possible to count beads of 1µm inside the phytoflagellates. Previous tests

using beads of 0.5 µm was performed (data not shown) and we were not able to detect

the prey signal. Perhaps, due beads of 0.5 µm and FLB signal is two lower to be

detected by flow cytometry inside the organism.

Flow cytometry it also has been used successfully to identify mixotrophs by

their positive food vacuoles (Sintes & del Giorgio, 2010; Anderson et al., 2017, 2018;

Beisner et al., 2019). This approach detects digestive vacuoles from protists that act

heterotrophically allowing their enumeration using acidotrophic fluorescent stains

(Sintes & del Giorgio, 2010). In our study, the use of LyT (Lyso-Tracker) as food

vacuoles marker demonstrated to be a good methodology to determine mixotrophy. The

negative control (Chlamydomonas sp.) did not shown any food vacuole marker,

confirming that the phytoflagellate was not doing phagotrophy. On the other hand, the

two species (C. marsonii and O. tuberculata) with mixotrophic metabolism confirmed

the presence of digestive vacuoles by the acidotropic probe, so we can infer that the

phytoflagellates were indeed feeding on bacteria. This method is considered simple, fast

and can be observed in natural live prey. However, we can mention some limitations of

this method as it is not possible to distinguish old vacuoles from new ones, and different

protists should have distinct digestion time been necessary studies in this perspective.

Besides the increasingly studies with mixotrophy as an important trophic

strategy in the past years, we know little about environmental conditions under which

they thrive (Edwards, 2019), mainly in eutrophic systems. Many organisms has different

adaptive strategies to survive under distinct environmental conditions. This study

demonstrate that high nutrient concentrations seem to be the most important factor for

the highest grazing rate by C. marsonii, and light seem to be most important for O.

tuberculata. Therefore, in accordance with the literature Cryptophytes and O.

tuberculata have good competitive ability to survive under nutrient-rich (Hammer et al.,

2002; Grujcic et al., 2018) and in light limiting systems (Floder et al., 2006),

Page 86: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

78

respectively. Further, the differences in grazing rates, between the two species of

phytoflagellates, infer size-dependence ingestion. C. marsonii showed the highest

CSGR than O. tuberculata due bigger size C. marsonii may ingest more preys than O.

tuberculata.

Environmental conditions is not the only factor important to the feeding activity,

size and morphology of prey are associated with the ingestion rates and prey selection

by protists may be relevant (Gerea et al., 2018). The use of synthetic prey, as beads,

could be a limitation of the work. Several studies use beads of different sizes to estimate

ingestion rates (Schmidtke et al., 2006; Kamjunke et al., 2007). However, is known that

the use of beads may underestimate the ingestion rate due faster egestion compared to

FLB (Jurgens & DeMontt, 1995). Other studies demonstrated prey selection using

different kinds of natural preys like, picocyanobacteria and picoeukaryotes (Tarbe et al.,

2011; Izaguirre et al., 2012; Gerea et al., 2018). As mention above, beads demonstrate a

better visualization of the signal in flow cytometry. The comparison of the grazing rates,

between both techniques, demonstrated a significant and strong relationship, being flow

cytometry estimations higher than microscopy.

The study of mixotrophy implies in changes in how we understand the ecology

of food webs. It is critical to have accurate estimations on autotrophy and heterotrophy

balance by protists. Linking biodiversity to ecosystem ecology including this kind of

nutritional strategy requires a combination of different methods to estimate mixotrophic

activity, to advance more rapidly in the knowledge on aquatic food webs through both

experimental and observational approaches. If we consider that climatic changes are

already influencing and altering microbial ecology, it is essential evaluate in time and

space how environmental conditions and habitats favors the mixotrophy.

Acknowledge

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq/Universal,

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)

(CAPES/PNPD–Project N : 2304/2011), Fundação de Pesquisa de São Paulo

(FAPESP) (Processes: 2014/14139-3 and 2016/50494-8).

References

Anderson, R., S. Charvet, & P. J. Hansen, 2018. Mixotrophy in Chlorophytes and

Page 87: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

79

Haptophytes — Effect of Irradiance , Macronutrient , Micronutrient and Vitamin

Limitation. 9: 1–13.

Anderson, R., K. Jürgens, & P. J. Hansen, 2017. Mixotrophic phytoflagellate

bacterivory field measurements strongly biased by standard approaches: A case study.

Frontiers in Microbiology 8:.

Azam, F., T. Fenchel, J. Field, J. Gray, L. Meyer-Reil, & F. Thingstad, 1983. The

Ecological Role of Water-Column Microbes in the Sea. Marine Ecology Progress Series

10: 257–263, http://www.int-res.com/articles/meps/10/m010p257.pdf.

Beisner, B. E., H. Grossart, & J. M. Gasol, 2019. REVIEW A guide to methods for

estimating phago-mixotrophy in nanophytoplankton. Journal of Plankton Research 00:

1–13.

Edwards, K. F., 2019. Mixotrophy in nanoflagellates across environmental gradients in

the ocean. Proceedings of the National Academy of Sciences of the United States of

America 116: 6211–6220.

Floder, S., T. Hansen, & R. Ptacnik, 2006. Energy — Dependent Bacterivory in

Ochromonas minima — A Strategy Promoting the Use of Substitutable Resources and

Survival at Insufficient Light Supply. Protist 157: 291–302.

Flynn, K. J., D. K. Stoecker, A. Mitra, J. A. Raven, P. M. Glibert, P. J. Hansen, E.

Granéli, & J. M. Burkholder, 2013. Misuse of the phytoplankton-zooplankton

dichotomy: The need to assign organisms as mixotrophs within plankton functional

types. Journal of Plankton Research 35: 3–11.

Gasol, J. M., & P. A. Del Giorgio, 2000. Using flow cytometry for counting natural

planktonic bacteria and understanding the structure of planktonic bacterial communities.

Scientia Marina 64: 197–224,

http://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/755/772.

Gasol, J. M., & X. A. G. Morán, 2015. Flow Cytometric Determination of Microbial

Abundances and Its Use to Obtain Indices of Community Structure and Relative

Activity : 159–187, http://link.springer.com/10.1007/8623_2015_139.

Gerea, M., C. Queimalin, & F. Unrein, 2018. Grazing impact and prey selectivity of

picoplanktonic cells by mixotrophic flagellates in oligotrophic lakes. Hydrobiologia 5–

21.

González, J. M., 1999. Bacterivory rate estimates and fraction of active bacterivores in

natural protist assemblages from aquatic systems. Applied and Environmental

Microbiology 65: 1463–1469.

Grujcic, V., J. K. Nuy, M. M. Salcher, T. Shabarova, V. Kasalicky, J. Boenigk, M.

Jensen, & K. Simek, 2018. Cryptophyta as major bacterivores in freshwater summer

plankton. ISME Journal Springer US 12: 1668–1681, http://dx.doi.org/10.1038/s41396-

018-0057-5.

Hammer, A., R. Schumann, & H. Schubert, 2002. Light and temperature acclimation of

Rhodomonas salina ( Cryptophyceae ): photosynthetic performance. Aquatic Microbial

Ecology 29: 287–296.

Hartmann, M., C. Grob, G. a. Tarran, a. P. Martin, P. H. Burkill, D. J. Scanlan, & M.

V. Zubkov, 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings

Page 88: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

80

of the National Academy of Sciences of the United States of America 109: 5756–5760.

Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein, & R. Massana,

2012. Grazing rates of protists in wetlands under contrasting light conditions due to

floating plants. Aquatic Microbial Ecology 65: 221–232.

Keller, M.D; Shapiro, L.P; Haugen, E.M; Cucci, T.L; Sherr, E.B; Sherr, B. F., 1993.

Microbial Ecology. Microbial Ecology 28: 39–52.

Legendre, A. P., 2018. Package ‘lmodel2.’ .

McKie-Krisberg, Z. M., R. J. Gast, & R. W. Sanders, 2015. Physiological Responses of

Three Species of Antarctic Mixotrophic Phytoflagellates to Changes in Light and

Dissolved Nutrients. Microbial Ecology 70: 21–29.

Rose, J. M., D. A. Caron, M. E. Sieracki, & N. Poulton, 2004. Counting heterotrophic

nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquatic

Microbial Ecology 34: 263–277.

Saad, J. F., F. Unrein, P. M. Tribelli, N. López, & I. Izaguirre, 2016. Influence of lake

trophic conditions on the dominant mixotrophic algal assemblages. Journal of Plankton

Research 00: 1–12,

http://www.plankt.oxfordjournals.org/lookup/doi/10.1093/plankt/fbw029.

Sarmento, H., F. Unrein, M. Isumbisho, S. Stenuite, J. M. Gasol, & J. P. Descy, 2008.

Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern

Africa. Freshwater Biology 53: 756–771.

Schiaffino, M. R., J. M. Gasol, I. Izaguirre, & F. Unrein, 2013. Picoplankton abundance

and cytometric group diversity along a trophic and latitudinal lake gradient. Aquatic

Microbial Ecology 68: 231–250.

Sherr, B. F., E. B. Sherr, & R. D. Fallon, 1987. Use of monodispersed, fluorescently

labeled bacteria to estimate in situ protozoan bacterivory. Applied and environmental

microbiology 53: 958–965.

Sintes, E., & P. A. del Giorgio, 2010. Community heterogeneity and single-cell

digestive activity of estuarine heterotrophic nanoflagellates assessed using lysotracker

and flow cytometry. Environmental Microbiology 12: 1913–1925.

Stoecker, D. K., P. J. Hansen, D. A. Caron, & A. Mitra, 2017. Mixotrophy in the Marine

Plankton. Annual Review of Marine Science 9: 311–335,

http://www.annualreviews.org/doi/10.1146/annurev-marine-010816-060617.

Tarbe, A., F. Unrein, S. Stenuite, S. Pirlot, & D. Sinyinza, 2011. Protist Herbivory : a

Key Pathway in the Pelagic Food Web of Lake Tanganyika. Microbial Ecology 62:

314–323.

Unrein, F., R. Massana, L. Alonso-Sáez, & J. M. Gasol, 2007. Significant year-round

effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal

system. Limnology and Oceanography 52: 456–469.

Ward, B. A., & M. J. Follows, 2016. Marine mixotrophy increases trophic transfer

efficiency, mean organism size, and vertical carbon flux. Proceedings of the National

Academy of Sciences 113: 2958–2963.

Page 89: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

81

CONSIDERAÇÕES FINAIS

Este estudo teve como principal objetivo proporcionar dados e análises a fim de

preencher lacunas nesses aspectos supracitados. Para tanto, realizamos análise temporal

e espacial sobre a dinâmica do fitoplâncton em sistemas de água doce em região

vulnerável a eventos de seca extrema, assim como também realizamos experimentos em

laboratório para testar hipóteses levantadas após observações no campo. Por fim

realizamos experimentos a fim de testar novos protocolos com o intuito de facilitar e

mensurar taxas de bacterivoria, sob diferentes condições de luz e nutrientes, os quais

quantificamos taxas de grazing realizada por espécies mixotróficas.

Se considerarmos que as mudanças climáticas já estão influenciando padrões de

precipitações em áreas climáticas vulneráveis, como a região do semiárido tropical,

alterando as condições físicas e químicas, bem como o grau de trofia de lagos e

reservatórios, é relevante entender como o clima afeta a dinâmica e biodiversidade

aquática. O primeiro capítulo dessa tese trouxe informações sobre a ecologia e dinâmica

do fitoplâncton, utilizando uma abordagem de espaço em substituição ao tempo em uma

região climática bastante vulnerável a alterações no clima (i.e. região semiárida

brasileira) durante um evento de seca normal e de seca extrema. Dessa forma, podemos

fazer predições em relação ao futuro. Encontramos que em eventos de secas extremas e

na área de menor precipitação pluviométrica dentro de uma mesma região climática,

aumentou a proporção de organismos com metabolismo mixotrófico, contradizendo a

maior parte dos prognósticos mundiais que mostram que esses ambientes eutrofizados

tendem a favorecer e suportar uma maior biomassa de cianobactérias.

As principais conclusões do capítulo 1 da tese é que redução do nível da água

em reservatórios do semiárido, devido ao déficit hídrico, leva a alterações críticas nas

condições físicas e químicas da água, aumentando a concentração de nutrientes e de

sólidos inorgânicos, afetando a disponibilidade de luz para o fitoplâncton, colapsando a

biomassa de cianobactérias, favorecendo as espécies mixotróficas. Podemos inferir que

redução nas precipitações levam ao colapso de cianobactérias e aumentam a proporção

do fitoplâncton mixotrófico. Porém, a qualidade da água, tão importante para essas

regiões, continuam degradadas. Nossos dados são relevantes para ações necessárias de

políticas públicas eficazes para a gestão da qualidade da água no sertão brasileiro.

Page 90: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

82

Motivados em entender e testar o efeito da turbidez inorgânica causado pela

ressuspensão do sedimento (observados no capítulo 1 da tese) na disponibilidade da luz

para o fitoplâncton realizamos experimentos em laboratório de competição, entre uma

cianobactéria e uma alga mixotrófica. Por que os organismos mixotróficos podem

competir com seres autótrofos por nutrientes e luz, e com seres heterótrofos por presas é

importante entender as condições nos quais organismos mixotróficos generalistas

utilizam e são favorecidos por essa estratégia nutricional; como também sobre quais

condições esses organismos de múltiplas estratégias nutritivas eles podem coexistir.

Os dados obtidos neste capítulo 2 demonstram o efeito da turbidez inorgânica e

do material particulado na competição e nas taxas de crescimento das espécies

envolvidas (Microcystis–Cianobactéria; Cryptomonas– Criptofícea). Em ambientes com

alta concentração de turbidez inorgânica e baixa disponibilidade de luz a espécie de

metabolismo mixotrófico é favorecida em detrimento de uma cianobactéria, porém

somente na presença de bactérias. Essa por sua vez é uma evidência que essas espécies

podem está mudando sua estratégia nutritiva de autotrofia para heterotrofia sob

condições de baixa luz e alta turbidez em sistemas eutrofizados.

Além das observações realizadas em campo e em laboratório, é importante obter

dados de taxas de grazing de protistas mixotróficos para entender sua importância para

a bacterivoria total. Neste caso no capítulo 3, testamos o uso da citometria de fluxo para

facilitar as estimativas de taxas de ingestão no estudo da mixotrofia. Nossos dados

obtidos sugerem diferenças entre os tratamentos para as duas espécies de algas.

Mostrando que os nutrientes são mais importantes para a Cryptomonas e a luz para as

Ochromonas nas taxas de ingestão de presas por cada flagelado.

O viés metodológico do capítulo se torna bastante importante, uma vez que é

necessário incorporar ferramentas que auxiliem na obtenção de dados de forma mais

ágil e acurada. Combinações de uso de ferramentas e técnicas para estimar e estudar a

mixotrofia são recomendadas. O uso da citometria de fluxo é uma boa ferramenta para

se medir a atividade mixotrófica. Sendo assim sugerimos sua utilização em futuros

trabalhos para testar e afinar um novo protocolo. Além disso, sugerimos a utilização de

outras presas, de diferentes origens e tamanhos para testar seletividade e fluorescência

em futuros experimentos.

Nosso entendimento atual sobre a mixotrofia do fitoplâncton se baseia

principalmente em estudos realizados nos oceanos e em sistemas oligotróficos e pouco

Page 91: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

83

se sabe sobre como essa forma de nutrição pode influenciar a ecologia aquática de

ambientes de água doce eutrofizados continentais.

Além disso, várias revisões sobre mixotrofia no plâncton foram realizadas nos

últimos anos e é consenso que atualmente os maiores desafios que afetam a

interpretação dos papeis dos organismos mixotróficos na ecologia do plâncton é

entender a qualidade dos dados que existem e entender como os organismos estão sendo

favorecidos e como estão realizando a mixotrofia sob distintas condições ambientais.

Por fim, destacamos a importância de mais trabalhos sobre essa estratégia nutricional de

forma a obter mais e melhores estimativas a serem incorporadas em modelos e gerar um

maior entendimento para a ecologia aquática.

Page 92: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

84

Material Suplementar

Appendix 1 chapter 3

Comparison of mean Specific Grazing Rate (CSGR) and standard deviation (SD) measured by

two methodologies: epifluorescence microscopy and flow cytometry. Treatments are high

nutrient (HN), medium nutrient (MN), low nutrient (LN), high light (HL), low light

(LL) and dark (D).

Epifluorescence

microscopy Flow Cytometry

Treatment Phytoflagellate CSGR

(bact. ind-1h-1) and SD

CSGR

(bact. ind-1h-1) and SD

HN+HL Ochromonas 0.67 (0.25) 1.85 (0.11)

HN+LL 0.55 (0.19) 2.70 (0.51)

HN+D 1.05 (0.41) 3.10 (0.69)

MN+HL 0.29 (0.21) 1.24 (0.51)

MN+LL 1.10 (0.85) 1.21 (0.41)

MN+D 1.64 (1.54) 2.57 (1.39)

LN+HL 0.63 (0.40) 0.74 (0.10)

LN+LL 0.84 (0.28) 2.48 (0.98)

LN+D 0.98 (0.36) 3.76 (2.02)

HN+HL Cryptomonas 7.09 (2.24) 26.85 (6.34)

HN+LL 3.43 (0.43) 20.15 (0.73)

HN+D 4.93 (1.85) 21.53 (3.54)

MN+HL 3.31 (1.26) 1.24 (0.15)

MN+LL 1.53 (0.91) 2.80 (2.51)

MN+D 2.29 (0.70) 4.74 (0.22)

LN+HL 2.74 (0.64) 4.69 (0.72)

LN+LL 1.39 (0.49) 8.26 (6.8)

LN+D 2.53 (1.66) 1.67 (0.54)

Page 93: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

85

Appendix 2 chapter 3

Fig. 2 –Model of the type II linear regression comparing specific grazing rates (CSGR) obtained

by flow cytometry and epifluorescence microscopy in short-term ingestion experiments with

(A) Cryptomonas (R2 = 0.32, p-value = 0.007) and (B) Ochromonas (R2 = 0.26, p-value =

0.017)

Page 94: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

86

Fotos dos ambientes

Reservatórios do primeiro capitulo, localizados na região semi-árida nordestina do Brasil. Fotos

superiores representam a sub-bacia do piancó (PB) e as duas fotos inferiores representam reservatórios

da sub bacia do Seridó (RN).

Page 95: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

87

Trabalho de campo e laboratório

Instituto de investigaciones y biotecnologias

Page 96: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

88

Formação dos agregados nos tratamentos com Cryptomonas obovata e adição de

sedimento e presença de bactérias do experimento Capítulo 2.

Fotos do experimento de competição entre Microcystis aeruginosa e Cryptomonas

obovata do Capítulo 2.

Page 97: U F R N M a r i a n a R o d r i g u e s A m a r a l d a C ......Castro, Pepe, Sebastian Metz, Nadia Diovisalvi, María Eugenia Llames, Leonardo Lagomarsino, Paulina Fermani, Marcela

89

Foto Cryptomonas obovata (esquerda) e células de Microcystis aeruginosa (direita) em

microscópio óptico aumento de 40x.

Foto de Cryptomonas marssonii ingerindo uma esfera sintética (beads) no experimento

de grazing, capítulo 3.