1
Me H Me Me Me H O O Me H Me Me Me H O O O TESO Br 13 Me H Me Me Me H OH Me HO R 1 O TESO D 10 Me H Me Me Me O HO Me R 1 O TESO O OR 2 O OBOM Me H Me Me Me O R 1 O TESO O OMs O OBOM Me H Me Me Me O R 1 O TESO O OH O OBOM OH OH Me H Me Me Me O OH R 1 O O O O O OBOM 4 20 5 Me H Me Me Me H O O O Me H Me Me Me HO OH Me HO R 1 O TESO D O 1 5 6 2 13 4 Me H Me Me Me H O O O TESO 10 Me H Me Me Me O OH Me R 1 O TESO O O O R 1 = TBS Me H Me Me Me O OAc R 1 O AcO O O O OBOM O Me H Me Me Me HO OH R 1 O O OH O OBOM OH Me H Me Me Me HO OAc O AcO OBz O OH O OH Ph NHBz O Taxol ® Me H Me Me Me HO OAc HO AcO OBz O OBOM O BzN O OBn Ph Me Me Me Me O OEt O CHBr 3 c. NBS, BPO then DTBMP, Ag(I), TESOH (68%) [gram scale] d. LiBr, Li 2 CO 3 (88%) [gram scale] a. Cr(V) HFIP/TMSOH /t-BuOH [gram scale] h. TPAP, NMO (81%) [gram scale] j. TBAI, BF 3 •OEt 2 then 2-Fpyr then TMSimid m. Burgess reagent then HF n. MsCl then OsO 4 (68%) o. DIPEA then IBX (62%) r. TASF then PhLi (48%) e. MeMgBr then DIBAL then LiAlD 4 (74%) g. DMDO (49%) [gram scale] k. Ti(III), Et 3 SiH (67%) l. BOMCl (84%) [gram scale] LHMDS then H 2 , Pd/C (85%) q. KOt-Bu then triphosgene then Ac 2 O (60%) p. KOt-Bu, (PhSeO) 2 O i. Na, i-PrOH Me H Me Me Me O HO Me R 1 O TESO O OR 2 O O 7 6 5 Me O Me Me Me HO R 1 O OH Me TES HO O H 2 4 Me H Me Me Me HO OH Me O R 1 O TESO O 2 then DMDO (43%) s. 5 5 6 2 4 1 2 5 6 7 4 20 20 5 10 9 10 9 13 2 13 7 b. CuBr 2 (55%, 2 steps) 5 13 2 • 4 steps • simple workup • no s-BuLi • short reaction time • simple ligand • recrystallization (96% ee) Me H Me Me Me O OH Me R 1 O TESO O OR 2 O X then triphosgene (51%, 2 steps) [gram scale] Me H Me Me Me O OH Me R 1 O TESO O OR 2 O 7 6 7 a b c 18 (R 2 , X) H, I TMS, I TMS, I=O [>100 g prepared] [gram scale] f. NaHMDS, TBSCl (94%) [gram scale] (32%) (73%) then DMDO Two-Phase Synthesis of Taxol Yuzuru Kanda , Hugh Nakamura, Shigenobu Umemiya, Ravi Kumar Puthukanoori, Venkata Ramana Murthy Appala, Gopi Krishna Gaddamanugu, Bheema Rao Paraselli, and Phil S. Baran* Department of Chemistry, Scripps Research, Chemveda Life Sciences. This work J. Am. Chem. Soc. 2020, 142, 10526. JOC Perspective 10.1021/acs.joc.0c01287 5. Step g Me Me Me Me H H OTES AcO AcO OAc OAc O O 4 1 2 12 11 – Literature Precedent – Repurposing taxabaccatin III intermediates –C2 Stereochemistry and KIE Effect C2 C2 ketone / Product α-H major : ND β-H major : trace β-D 10 : 20% –C10 Stereochemistry Effect –C4 Substituent Effect • sterically too hindered for directing group chemistry • chemo-, regio-, stereoselective triple oxidation • substrate directed (C2, C4, C5, C10) • KIE assisted • solvent and concentration driven –Solvent and Concentration Effect 25 / 10 x9 / 37 29 / 12 34 / 10 49 / 11 in acetone (0.09 M) C2 H instead of D in DCM (0.21 M) in CHCl 3 (0.19 M) in CHCl 3 (0.30 M) result [%] (product/C2 ketone) Me Me OTBS Me Me HO H D O H R 7 O HO Me H 10 1 12 11 7 H NOE H 9 16 O O Me Me TES 19 No C1 oxidation, C5/6, C11/12 epoxidation –C5 Substituent Effect Me H Me Me Me H OH Me HO TBSO TESO D 13 4 2 No C1 oxidation, C13 oxidation Me H Me Me Me H OH HO TBSO TESO D 4 2 No C1 oxidation, C4 oxidation Me Me Me Me H OH OTES AcO AcO OAc OAc O 1 4 20 Oritani et al. DMDO, rt, 48h 96% 8. Conclusion • efficient oxidase phase for lowly oxidized taxanes • represented a blueprint of a medicinal chemistry exploration • unpredictable chemoselectivity and reactivity for highly oxygenated taxanes (medium ring, similar FGs, proximity of FGs) • complex oxidation choreography 9. Acknowledgements and References Baran lab, Phil S. Baran, NIH, BMS, LEO pharma, Funai scholarship, Honjo scholarship, Otsu conference Shigenobu Umemiya Hugh Nakamura Could a Complex Terpene Represent a Viable Starting Point for a Medicinal Chemistry Campaign without Semisynthesis? 1. Hypothesis • C–H oxiadtions • biomimetic • divergent Me H Me Me Me H O Me medicinal chemistry (limited space) Me H Me Me Me OH HO O HO O OH OBz OAc Me Me Me O • 10 syntheses • non-divergent OR Me RO OR OR O H 10-deacetoxybaccatin III total synthesis terpene SM: convergent 6+6: build out: [3 syntheses] [6 syntheses] [1 synthesis] Me O RO RO Me Me RO OR Two-Phase semisynthesis biosynthesis Me H Me Me Me H Me taxadiene 5 13 10 9 7 2 1 4 20 • 20 enzymes • enzymatic C–H oxidations: C5, 13/10, 9, 7, 2, 1/4/20 Oxidation Level early middle late allylic oxidations C5, C10, C13 α-oxidation, C2 C2, C9 sp 3 C–H, oxetane C1, C7, C4/20 Me H Me Me Me HO O O AcO O OH OBz OAc Taxol ® (paclitaxel) Me OAc Me Me Me HO O AcO O O H O OH Bz O OH NHBz Ph O OH NHBz Ph Oxidase Phase H H 4 20 5 10 9 13 2 α-OH, α-OPG, =O olefin, β-OH α-OH, α-OPG 2H, α-OPG, =O 2H, β-OPG, =O 2H, α-OPG, =O olefin, 3H C# oxidation pattern 2 4 5 9 10 13 20 PG = TES, TBS, MOM, Ac Examined Variables TFDO, DMDO, time, temperature, co-solvent substrates (left) Me O Me Me Me H TBSO OH OMOM H TES 1 2 9 O 4 20 DMDO rt, 15 h Me H Me Me Me HO HO OMOM TBSO TESO 1 O 4 20 R 2 Me H Me Me Me H O OMOM TBSO TESO O 4 2 20 2. Step a • early stage C13 oxidation • essential oxidation for bioactivity • maximum analog diversity • Cr(V)-mediated • synergistic effect (TMSOH/HFIP) O O Cr V O O O Et Me Et Me O O Na Cr(V): Solvent PhCF 3 MeCN HFIP TMSOH HFIP, TMSOH trace 20 trace trace 50 Yield [%] Unsuccessful Conditions Cr(VI), electrochem, Kharasch type (Cr, Se, Cu, Mn, Pd, Fe, Rh, Bi, Ru) 6. Step i –Stereoselective C2 Reduction Examined Substrates and Conditions – The Key C4 Motif • modified Bouveault–Blanc reduction • C2 protection from DMDO H, HSiMe 2 β-epoxide, (α-OH/OR 20 ), (α-OR diol /OR diol ) O, α-OR 10 , β-OR 10 C# oxidation pattern 1 (4/20) 10 R diol = carbonate, CMe 2 , Si(i-Pr) 2 R 10 = H, TES, R 20 = H, Boc, TBS, MOM • stereoselective C2 reduction (staggered conformation) • could be elaborated to oxetane Me H Me Me Me H Me O OH 4 Me H Me Me Me H Me OH OH 4 Na i-PrOH, solvent rt Me HO O Me 4 H 3 2 3 2:1 2:1 3:1 1:1 1:2 2:1 2:1 solvent C2 α:β PhMe hexane Et 2 O THF dioxane MTBE CPME only β-OH isomer, no reaction, or decomposition Me Me Me Me R 1 O TBSO O OMOM H 2 19 16 20 H X 4 3. Step b • regioselective (C5 over C1, 3, 10, 14, 18) • oxidation placeholder Δ 5,6 -olefin precursor (oxidation relay to C7) Previous substrates necessitated C5 PG 4. Early Stage Oxidations • C13, 5, 10 choreography gave the best yield • allylic oxidations analogous to previous syntheses: en route to Me H Me Me Me H Me OAc OAc O OH TESO Me H Me Me Me H OAc O TESO taxuyunnanine D taxabaccatin III 5 10 13 5 10 13 Me H Me Me Me H Me OAc OAc O 5 OH Me H Me Me Me H O O O Me H Me Me Me H OTMS TMSO O Me H Me Me Me H O O O OAc 7 10 9 10 11 12 7 6 5 19 TMSOTf Pd(OAc) 2 13 6 5 TMSOTf then O 2 , hν Me H Me Me Me H OTMS O O HO O O DMS Me H Me Me Me H O O O HO OH unsuccessful oxidants Shi, Mn(salen), Fe(phen) 3 (PF 6 ) 3 , CAN, DMDO 7 10 7. Step j, k • unreactive Δ 9,10 -olefin • undesired C10 and C7 stereochemistry • no suitable PG for C7 (DIBAL, LiAlD 4 , DMDO, Na) – Unsuccessful C7 Oxidation Attempts – Vinylogous(silyl)enol Ether-Mediated Oxidation Step j • highly FG tolerant • chemo-, stereoselective • orthogonally reactive and volatile reagents Oxidation Relay Step k • highly FG tolerant • novel silane additive • C9 directed C7 oxidation (poor reactivity of C9 FGs, steric hindrance at C7) • Direct C7 allylic oxidation (steric hindrance atC7) BF 3 quencher BSA pyridine 2,6-lutidine DTBP 2-Fpyridine a + SM b + SM a a b Result Additive none collidine, TMSCl H 2 O i-PrOH Et 3 SiH 42 low conv. low conv. ca. 35 67 Yield [%] Ref) Cyclase phase: Nat. Chem. 2012, 4, 21. taxuyunnanine D: J. Am. Chem. Soc. 2014, 136, 4912. taxabaccatin III: Angew. Chem. Int. Ed. 2016, 55, 8280.

Two-Phase Synthesis of Taxol...Two-Phase Synthesis of Taxol Yuzuru Kanda , Hugh Nakamura, Shigenobu Umemiya, Ravi Kumar Puthukanoori, Venkata Ramana Murthy Appala, Gopi Krishna Gaddamanugu,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

TESOH
n. MsCl then OsO4
(74%)
513
2
Me
H
Me
H
f. NaHMDS, TBSCl (94%)
then DMDO
Two-Phase Synthesis of Taxol Yuzuru Kanda , Hugh Nakamura, Shigenobu Umemiya, Ravi Kumar Puthukanoori, Venkata Ramana Murthy Appala, Gopi Krishna
Gaddamanugu, Bheema Rao Paraselli, and Phil S. Baran* Department of Chemistry, Scripps Research, Chemveda Life Sciences. This work
J. Am. Chem. Soc. 2020, 142, 10526. JOC Perspective
10.1021/acs.joc.0c01287
–C2 Stereochemistry and KIE Effect
C2 C2 ketone / Product α-H major : ND β-H major : trace β-D 10 : 20%
–C10 Stereochemistry Effect–C4 Substituent Effect
• sterically too hindered for directing group chemistry • chemo-, regio-, stereoselective triple oxidation • substrate directed (C2, C4, C5, C10) • KIE assisted • solvent and concentration driven
–Solvent and Concentration Effect
25 / 10 x9 / 37 29 / 12 34 / 10 49 / 11
in acetone (0.09 M) C2 H instead of D in DCM (0.21 M) in CHCl3 (0.19 M) in CHCl3 (0.30 M)
result [%] (product/C2 ketone)
–C5 Substituent Effect
Me
H
Me Me
Me Me
H OH
OTES AcO
8. Conclusion • efficient oxidase phase for lowly oxidized taxanes • represented a blueprint of a medicinal chemistry exploration • unpredictable chemoselectivity and reactivity for highly
oxygenated taxanes (medium ring, similar FGs, proximity of FGs) • complex oxidation choreography
9. Acknowledgements and References Baran lab, Phil S. Baran, NIH, BMS, LEO pharma, Funai scholarship, Honjo scholarship, Otsu conference
Shigenobu Umemiya Hugh Nakamura
Could a Complex Terpene Represent a Viable Starting Point for a Medicinal Chemistry Campaign without Semisynthesis?
1. Hypothesis
Me
H
[3 syntheses] [6 syntheses] [1 synthesis]
Me ORO
oxidations: C5, 13/10, 9, 7, 2, 1/4/20
Oxidation Level
α-oxidation, C2 C2, C9
Me
H
13
2
α-OH, α-OPG, =O olefin, β-OH α-OH, α-OPG 2H, α-OPG, =O 2H, β-OPG, =O 2H, α-OPG, =O olefin, 3H
C# oxidation pattern 2 4 5 9
10 13 20 PG = TES, TBS, MOM, Ac
Examined Variables TFDO, DMDO, time,
temperature, co-solvent substrates (left)
2
20
2. Step a • early stage C13 oxidation • essential oxidation for bioactivity • maximum analog diversity • Cr(V)-mediated • synergistic effect (TMSOH/HFIP)
O O CrV O
Kharasch type (Cr, Se, Cu, Mn,
Pd, Fe, Rh, Bi, Ru)
6. Step i –Stereoselective C2 Reduction Examined Substrates and Conditions
– The Key C4 Motif
C# oxidation pattern 1
(4/20)
10
Rdiol = carbonate, CMe2, Si(i-Pr)2 R10 = H, TES, R20 = H, Boc, TBS, MOM
• stereoselective C2 reduction (staggered conformation) • could be elaborated to oxetane
Me
H
solvent C2 α:β PhMe
Me MeMe
19
16
20
HX
4
3. Step b • regioselective (C5 over C1, 3, 10, 14, 18) • oxidation placeholder • Δ5,6-olefin precursor (oxidation relay to C7)
Previous substrates necessitated C5 PG
4. Early Stage Oxidations • C13, 5, 10 choreography gave the best yield • allylic oxidations analogous to previous syntheses:
en route to
7. Step j, k
• unreactive Δ9,10-olefin • undesired C10 and C7 stereochemistry • no suitable PG for C7
(DIBAL, LiAlD4, DMDO, Na)
– Unsuccessful C7 Oxidation Attempts
Step j • highly FG tolerant • chemo-, stereoselective • orthogonally reactive and
volatile reagents
– Oxidation Relay Step k • highly FG tolerant • novel silane additive
• C9 directed C7 oxidation (poor reactivity of C9 FGs, steric hindrance at C7) • Direct C7 allylic oxidation (steric hindrance atC7)
BF3 quencher BSA
ca. 35 67
Yield [%]