25
- p. 1/24 Two-loop QCD amplitudes for Higgs b + ¯ b + g Prakash Mathews Saha Institute of Nuclear Physics Higgs+1 jet Two loop amplitudes b + ¯ b H + g IBP, LI, MI Two loop IR structure Summary with Taushif Ahmed, Maguni Mahakhud, Narayan Rana and V. Ravindran RADCOR 2015

Two-loop QCD amplitudes for Higgs · 2015. 6. 15. · • As the experimental accuracy improves it is important to include the sub-dominant contributions to the production • Higgs

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • - p. 1/24

    Two-loop QCD amplitudes for Higgs → b+ b̄+ g

    Prakash Mathews

    Saha Institute of Nuclear Physics

    • Higgs+1 jet

    • Two loop amplitudes b+ b̄ → H + g• IBP, LI, MI

    • Two loop IR structure

    • Summary

    with Taushif Ahmed, Maguni Mahakhud, Narayan Rana and V. Ravindran

    RADCOR 2015

  • - p. 2/24

    Run-I@LHC

    • At the experimentally accessible energy scales, the Run-I@ LHC hasestablished the SM framework as the true theory of electrowe ak interactions

    • The discovered new boson at 125 GeV behaves like the SM scalar and itsmass fixes the last free parameter of the Lagrangian

    • Negative results from the searches for signals of new physic s tightlyconstrain many new physics scenarios, surviving parameter space is nolonger appropriate to address the physics problems they wer e intented tosolve

    • Experimental program at the LHC relies heavily on the precis e theoreticalpredictions for the relevant signals and the many QCD backgr ounds

    • Remarkable agreement between the predicted SM values and th e measuredcross sections spanning a broad range is a significant valida tion of thetheoretical framework

  • - p. 3/24

    The Higgs

    • Post discovery of a new particle

    mH = 125.09 ± 0.24 GeV

    ATLAS & CMS combined measurement in the H → γγ and H → ZZ → 4ℓchannels for

    √s = 7, 8 TeV

    PRL 114 (2015) 191803

    • With increasing dataset, emphasis shifted to determining it s properties andtesting the consistency of the SM against the data

    • Spin, Charge conjugation and Parity probed by examining the angulardistributions of the decay channels H → γγ, H → ZZ, H → WW . Datafavours a CP-even, spin-zero particle

    • Strengths of the couplings with gauge bosons and fermions ex plored for anumber of benchmark models

    • Results consistent with expectation of a SM Higgs boson

  • - p. 4/24

    Precision studies

    • Precise theoretical predictions of the Higgs boson observa ble will bekey to precision studies of its properties at the LHC

    • New physics models look for deviation from the SM predictions andconstraining these models needs precise theoretical inputs

    • Theoretical uncertainties as a result of the missing higher o rderterms in pQCD at the LHC energies are large and is comparable to t heexperimental errors

    • To study the properties of the Higgs boson, differential dis tributionof the Higgs boson play an important role

    • Observables with jet vetos enhance the significance of the si gnalconsiderably enabling the study the properties of Higgs cou plings

  • - p. 5/24

    Exclusive observables

    • NNLO predictions of the Higgs bosons with one jet through eff ectivegluon fusion process is available

    Gehrmann, Jaquier, Glover, Koukoutsakis

    Boughezal, Caola, Melnikov, Petriello, Schulze

    • As the experimental accuracy improves it is important to includ e thesub-dominant contributions to the production

    • Higgs through bb̄ annihilation with 1-jet is one such process and isknown only upto NLO level

    • Here we present one of the ingradients for the production Hig gs+1jet in bb̄ anhillation viz. two loop QCD amplitudes

  • - p. 6/24

    Branching fraction of SM Higgs

    • Branching fraction of SM Higgs as a function of Higgs mass

  • - p. 6/24

    Branching fraction of SM Higgs

    • Branching fraction of SM Higgs as a function of Higgs mass

    • Mass range of interest MH = 120 − 130 GeV, significant contribution comes fromH→ bb̄, τ+τ−, WW ∗ and ZZ∗

  • - p. 7/24

    Interaction part of the action

    b-quarks with ◦ scalar Higgs (SM) and ◦ pseudoscalar Higgs (MSSM)

    SbI = −λ∫

    d4x φ(x) ψb(x) ψb(x) SM

    = −λ̃∫

    d4x φ̃(x) ψb(x) γ5 ψb(x) MSSM

    Yukawa coupling: λ =

    √2

    υmb λ̃ =

    −λ sinαcosβ

    φ̃ = h

    λ cosαcosβ

    φ̃ = H

    λ tanβ φ̃ = A

    • α: mixing angle between weak and mass eigenstates of neutralscalars

    • Scale of the problem is the Higgs boson mass and b-quark mass ismuch smalller, hence both in the phase space integral and matri xelements, the b-quark mass is treated as massless like the light quarkflavours, while retaining the b-quark mass in the Yukawa coupl ing

  • - p. 8/24

    Variable Flavour Scheme (VFS)

    • In the VFS, one assumes the initial state b-quarks inside the p roton,as a result of emission of collinear b b̄ states from the gluonsintrinsically present inside the proton

    • Being collinear, give large logs, which need to be resummed. Th eresummed contribution is the source for non-vanishing b and b̄ partondistribution functions inside the proton in the VFS scheme. A ctiveflavours nf = 5

    • Fully inclusive cross section for Higgs production in assoc iationwith bottom quark to NNLO level accuracy is known in the VFS

    Harlander, Kilgore

  • - p. 9/24

    Higgs decay H(q) → b(p1) + b̄(p2) + g(p3)

    • Mandelstam variables

    s ≡ (p1 + p2)2 > 0, t ≡ (p2 + p3)2 > 0, u ≡ (p1 + p3)2 > 0

    s+ t+ u = M2H ≡ Q2 > 0

    • Dimensionless invariants

    0 < x ≡ s/Q2 < 1, 0 < y ≡ u/Q2 < 1, 0 < z ≡ t/Q2 < 1

    x+ y + z = 1

    • Two-loop four-point functions with one off-shell external leg andmassless internal propagators can be expressed in terms of HPL s and2dHPLs as functions of dimensionless invariants

  • - p. 10/24

    Analytical continuation: Higgs+1 jet production Q2 = M2H > 0

    • Continuation from the Euclidean region to any physical Mink owskian regionrequires in general the analytic continuation

    1 → 3 ⇐⇒ 2 → 2

    • b(−p1) + b(−p2) → g(p3) + H(p4) s > 0, t < 0, u < 00 < u1 ≡ −us < 1, 0 < v1 ≡

    Q2

    s< 1

    • b(−p2) + g(−p3) → b(p1) + H(p4) s < 0, t > 0, u < 00 < u2 ≡ −ut < 1, 0 < v2 ≡

    Q2

    t< 1

    • b(−p1) + g(−p3) → b(p2) + H(p4) s < 0, t < 0, u > 00 < u3 ≡ − tu < 1, 0 < v3 ≡

    Q2

    u< 1

    • Relations for HPLs and 2dHPLs needed for analytic continuati on of the2-loop, 4-point master integrals to kinematics of all 2 → 2 scatterings with oneoff-shell external leg

    Gehrmann and Remiddi NPB640 (2002) 379

  • - p. 11/24

    Amplitude |M〉 = Sµ(b, b̄; g)εµ of H(q) → b(p1)+ b̄(p2)+g(p3)

    • Using equations of motion and p3 · ε = 0 the general form

    Sµ(b, b̄; g) = ū(p1){

    A′ p1µ + A′′ p2µ + A2 /p3γµ

    }

    v(p2)

    • QCD Ward identities ⇒ A′/p2.p3 = −A′′ /p1.p3 ≡ A1. Amplitude reduces

    Sµ(b, b̄; g) εµ = ū(p1){

    A1 (p2.p3 p1µ − p1.p3 p2µ) + A2 /p3γµ}

    v(p2) εµ

    ≡ A1 T1 + A2 T2

    • Coefficients Am (m = 1, 2) can be expanded in powers of as = g2s/16π2

    Am =λ

    µǫR4π

    √asT

    aij

    {

    A(0)m + asA(1)m + a

    2sA

    (2)m + O(a3s)

    }

    Coefficients A(l)1,2 completely specify the amplitude order by order inperturbation theory

  • - p. 12/24

    Projection Operators

    • Using appropriate d-dimensional projection operators and summing over thespin, coefficients A1,2 can be extracted to a particular order in pQCD

    Am =∑

    spins

    P(Am) Sµ(b, b̄; g) εµ

    • Projection operators

    P(A1) =2(d − 2)

    s2 t u (d − 3)T1† +

    1

    s t u (d − 3)T2†

    P(A2) =1

    s t u (d − 3)T1† +

    1

    2 t u (d − 3)T2†

    • By suitably crossing the Higgs decay (1 → 3) amplitudes can be related toHiggs + 1 jet (2 → 2) production amplitude, with the A1,2 now expressed interms of ui and vi

  • - p. 13/24

    Calculation of unrenormalised ampliudes |M̂ (l)〉

    Process H → b + b̄ + g to 2-loop

    |M〉 = λ̂µǫ0

    (

    âsµǫ0

    ) 12

    {

    |M̂(0)〉 +(

    âsµǫ0

    )

    |M̂(1)〉 +(

    âsµǫ0

    )2

    |M̂(2)〉 + O(â3s)}

    • Dimensional regularisation d = 4 + ǫ

    • Gauge choice: ◦ External gluon (axial) ◦ Internal gluon (Feynman)

    • Feynmann diagrams are generate using QGRAF

    ◦ Tree level 2◦ 1-loop level 13◦ 2-loop level 251

    • Convert raw QGRAF symbolic output to FORM readable formatincorporating the Feynman rules (in-house FORM codes)

    • The Integrals are reduced to master integrals (MI) using IBP and LI identities(mathematica packages FIRE and LiteRed)

  • - p. 14/24

    Planar topologies of master integrals

    Gehrmann and Remiddi

  • - p. 15/24

    Non-planar topologies of master integrals

    Gehrmann and Remiddi

  • - p. 16/24

    1-loop

    • Integral belongs to one of the following sets:

    {D, D1, D12, D123} , {D, D2, D23, D123} , {D, D3, D31, D123}

    D = k21, Di = (k1−pi)2, Dij = (k1−pi−pj)2, Dijk = (k1−pi−pj−pk)2

    • Scalar products {Sij} with loop momenta k1 and external momentapi can be expressed, in terms of D’s in a set. Each set {D} form acomplete basis and are linearly independent

    • At 1-loop, number of {Sij} = max number of propagators. Does nothold for 2-loop and additional auxilliary denominators need to beintrocuced

    I =∫ l

    ℓ=1

    ddkℓ{Sij}

    Dn11 · · · Dnmm

    NLO m ≤ 4 {Sij} = 4NNLO m ≤ 7 {Sij} = 9

  • - p. 17/24

    Two Loop

    • Nine independent scalar products involving loop momenta k1,2 and externalmomenta p1,2,3. Feynman integral contain terms belonging to one of thefollowing six sets:

    {D0, D1, D2, D1;1, D2;1, D1;12, D2;12, D1;123, D2;123} ,

    {D0, D1, D2, D1;1, D2;1, D1;12, D2;12, D1;123, D0;3} ,

    {D0, D1, D2, D1;2, D2;2, D1;23, D2;23, D1;123, D2;123} ,

    {D0, D1, D2, D1;2, D2;2, D1;23, D2;23, D1;123, D0;1} ,

    {D0, D1, D2, D1;3, D2;3, D1;31, D2;31, D1;123, D2;123} ,

    {D0, D1, D2, D1;3, D2;3, D1;31, D2;31, D1;123, D0;2}

    D0 = (k1 − k2)2, Dα = k2α, Dα;i = (kα − pi)2, Dα;ij = (kα − pi − pj)2,

    D0;i = (k1 − k2 − pi)2, Dα;ijk = (kα − pi − pj − pk)2 α = 1, 2; i = 1, 2, 3

  • - p. 18/24

    UV divergences; d = 4 + ǫ; MS scheme

    • Bare couplings related to renormalised âsµǫ0Sǫ =

    asµǫ

    R

    Z(µ2R)

    âs

    µǫ0Sǫ =

    as

    µǫR

    [

    1 + as

    (

    1

    ǫra1;1

    )

    + a2s

    (

    1

    ǫ2ra2;2 +

    1

    ǫra2;1

    )

    + O(a3s)]

    Sǫ = exp

    [

    ǫ

    2(γE − ln 4π)

    ]

    , ra1;1 = 2β0 , ra2;2 = 4β20 , ra2;1 = β1

    β0 =

    (

    11

    3CA −

    4

    3TFnf

    )

    , β1 =

    (

    34

    3C2A −

    20

    3CATFnf − 4CF TFnf

    )

    λ̂

    µǫ0Sǫ =

    λ

    µǫR

    [

    1 + as

    (

    1

    ǫrλ1;1

    )

    + a2s

    (

    1

    ǫ2rλ2;2 +

    1

    ǫrλ2;1

    )

    + O(a3s)]

    rλ1;1 = 6CF , rλ2;2 =(

    18C2F + 6β0CF

    )

    , rλ2,1 =

    (

    3

    2C

    2F +

    97

    6CF CA −

    10

    3CF TF nf

    )

  • - p. 19/24

    UV

    • Using the bare couplings

    |M〉 = λµǫR

    (as)12

    (

    |M(0)〉 + as|M(1)〉 + a2s|M(2)〉 + O(a3s))

    |M(0)〉 =(

    1

    µǫR

    ) 12

    |M̂(0)〉

    |M(1)〉 =(

    1

    µǫR

    ) 32 [

    |M̂(1)〉 + µǫR(ra1

    2+ rλ1

    )

    |M̂(0)〉]

    |M(2)〉 =(

    1

    µǫR

    ) 52 [

    |M̂(2)〉 + µǫR(3ra1

    2+ rλ1

    )

    |M̂(1)〉

    +µ2ǫR

    (

    ra22

    − r2a1

    8+

    ra12

    rλ1 + rλ2

    )

    |M̂(0)〉]

    ra1=

    ( 1

    ǫra1;1

    )

    , ra2=

    ( 1

    ǫ2ra2;2

    +1

    ǫra2;1

    )

    , rλ1=

    ( 1

    ǫrλ1;1

    )

    , rλ2=

    ( 1

    ǫ2rλ2;2

    +1

    ǫrλ2;1

    )

    |M̂(l)〉 unrenormalised color-space vector represents the lth loop amplitude

  • - p. 20/24

    Infrared factorisation: Catani’s formula

    • IR divergent structure of amplitudes well understood. Reno rmalised amplitudes

    |M(1)〉 = 2 I(1)b (ǫ) |M

    (0)〉 + |M(1)fin〉

    |M(2)〉 = 2 I(1)b (ǫ) |M

    (1)〉 + 4 I(2)b (ǫ) |M

    (0)〉 + |M(2)fin〉

    • Universal substraction operators I(i)

    I(1)b (ǫ) =

    1

    2

    e−ǫ2γE

    Γ(1 + ǫ2)

    {

    ( 4

    ǫ2−

    3

    ǫ

    )

    (CA − 2CF )[(

    −s

    µ2R

    ) ǫ2]

    +(

    −4CA

    ǫ2+

    3CA

    2ǫ+

    β0

    )

    [

    (

    −t

    µ2R

    ) ǫ2+(

    −u

    µ2R

    ) ǫ2

    ]}

    ,

    I(2)b (ǫ) = −

    1

    2I(1)b (ǫ)

    [

    I(1)b (ǫ) −

    2β0

    ǫ

    ]

    +e

    ǫ2γE Γ(1 + ǫ)

    Γ(1 + ǫ2)

    [

    −β0

    ǫ+ K

    ]

    I(1)b (2ǫ)

    +(

    2H(2)q (ǫ) + H

    (2)g (ǫ)

    )

    Catani PLB427 (1998) 161; Sterman et. al. PLB552 (2003) 48

  • - p. 21/24

    IR

    H(2)q (ǫ) =

    1

    ǫ

    {

    CACF

    (

    −245

    432+

    23

    16ζ2 −

    13

    4ζ3

    )

    + C2F

    ( 3

    16−

    3

    2ζ2 + 3ζ3

    )

    +CFnf

    ( 25

    216−

    1

    8ζ2

    )

    }

    H(2)g (ǫ) =

    1

    ǫ

    {

    C2A

    (

    −5

    24−

    11

    48ζ2 −

    1

    4ζ3

    )

    + CAnf

    (29

    54+

    1

    24ζ2

    )

    −1

    4CFnf −

    5

    54n2f

    }

    K =

    (

    67

    18−

    π2

    6

    )

    CA −10

    9TFnf

    Born amplitude |M(0)〉 and the finite parts |M(l)fin〉, l = 1, 2 are process dependent,needs to be explicitly computed

  • - p. 22/24

    lth loop amplitude |M(l)〉 = 4π T aij{A(l)1 T1 +A

    (l)2 T2}

    • Renormalised coefficients A(l)m in terms of their bare counterparts Â(l)m

    A(0)m =

    (

    1

    µǫR

    ) 12

    Â(0)m

    A(1)m =

    (

    1

    µǫR

    ) 32 [

    Â(1)m + µ

    ǫR

    (ra1

    2+ rλ1

    )

    Â(0)m

    ]

    A(2)m =

    (

    1

    µǫR

    ) 52 [

    Â(2)m + µ

    ǫR

    (3ra12

    + rλ1

    )

    Â(1)m

    +µ2ǫR

    (

    ra2

    2−

    r2a1

    8+

    ra1

    2rλ1 + rλ2

    )

    Â(0)m

    ]

    • Subtracting terms proportional to universal part I(l)b , Finite parts of A(l)m

    A(1)m = 2 I

    (1)b (ǫ) A

    (0)m + A

    (1)finm

    A(2)m = 2 I

    (1)b (ǫ) A

    (1)m + 4 I

    (2)b (ǫ) A

    (0)m + A

    (2)finm

    • IR poles structure agree exactly, providing a crucial test o f our computation

  • - p. 23/24

    Finite parts of A(l)finm

    A(l)finm =

    l∑

    n=0

    A(0)m B(l)m;n lnn(

    − Q2

    µ2

    )

    A(0)1 = −

    4i

    t uand A(0)2 = i

    (1

    t+

    1

    u

    )

    • Coefficients B(l)m;n are given in the paper.

    • Without using projectors, we independently computed 〈M(0)|M(l)〉 forl = 1, 2, as an additional check

    • Corresponding coefficients for Higgs+ 1 jet production at ha drons collidersare also provided in the arXiv submission using analyticall y continued HPLsand 2d HPLs

    Gehrmann and Remiddi NPB640 (2002) 379

  • - p. 24/24

    Summary

    • The potential sub dominant contribution to Higgs + 1 jet produ ctionat LHC comes from b+ b̄ → H + g

    • Amplitudes for the partonic process H → b+ b̄+ g and processesrelated by crossing are presented to 2-loop level in QCD

    • The crossing processes, contribute to exclusive observabl esinvolving Higgs boson and a jet

    • The IR structure of the amplitudes are in accordance with theprediction of Catani upto two loop level

    Two-loop QCD amplitudes for Higgs b + + gmynaranjaRun-I@LHCmynaranjaThe HiggsmynaranjaPrecision studiesmynaranjaExclusive observablesmynaranjaBranching fraction of SM HiggsmynaranjaBranching fraction of SM Higgs

    mynaranjaInteraction part of the actionmynaranjaVariable Flavour Scheme (VFS)mynaranjaHiggs decay H (q) b (p1) + (p2) + g (p3) mynaranjaAnalytical continuation: Higgs+1 jet production Q2=MH2>0mynaranjaAmplitude |M"526930B = S (b,;g) of H (q) b (p1) + (p2) + g (p3) mynaranjaProjection OperatorsmynaranjaCalculation of unrenormalised ampliudes |(l) "526930B mynaranjaPlanar topologies of master integrals mynaranjaNon-planar topologies of master integralsmynaranja1-loop mynaranjaTwo Loop mynaranjaUV divergences; d=4+; MS schememynaranjaUVmynaranjaInfrared factorisation: Catani's formulamynaranjaIRmynaranjalth loop amplitude |M(l) "526930B = 4 Taij { A1(l) T1 + A2(l) T2 } mynaranjaFinite parts of Am(l)fin mynaranjaSummary