5
J Hum Genet (2002) 47:208–212 © Jpn Soc Hum Genet and Springer-Verlag 2002 SHORT COMMUNICATION Hiroyasu Iwasa · Masahiko Kurabayashi · Ryozo Nagai Yusuke Nakamura · Toshihiro Tanaka Twenty single-nucleotide polymorphisms in four genes encoding cardiac ion channels Received: January 7, 2002 / Accepted: January 29, 2002 Since mutations in any of these five genes can be detected in nearly 40% of LQTS families, this syndrome in the re- maining families is likely to be caused by other unknown genes. Voltage-gated ion channels play important roles in the excitement of cardiomyocytes, and all the genes responsible for LQTS identified so far belong to this group. Although many channel proteins have been identified at present, only a few have been reported to be involved in cardiac excite- ment. For example, in mice, decreased expression of Kv1.5, encoded by KCNA5, prolongs QT-intervals of ECGs (London et al. 1998), and hKv1.3, encoded by alternative splicing of KCNAB1, is expressed in human ventricle and alters the functional properties of hKv1.5 (England et al. 1995). A novel class of auxiliary proteins for Kv4α subunits, K-channel interacting proteins (KChIPs), modulates the transient inward potassium current (I to ) (An et al. 2000). KChIP2, encoded by KCNIP2, is expressed with a steep gradient across the human ventricle and might be involved in the transmural gradient of I to in the free ventricular wall (Rosati et al. 2001), and KChIP2 / mice are susceptible to cardiac arrhythmias (Kuo et al. 2001). An inward calcium ion current generated by an L-type voltage-dependent cal- cium ion channel, encoded by CACNA1C, is implicated in early afterdepolarizations (January and Riddle 1989), oscil- lations in cell membrane voltage thought to initiate arrhythmias caused by long-QT syndrome. Here we report single-nucleotide polymorphisms (SNPs) and other genetic variations found in four genes encoding cardiac ion channels along with their allelic frequencies among normal and LQTS-affected Japanese subjects. Subjects and methods In the course of a search for mutations in these candidate genes in 73 unrelated Japanese LQTS patients, we identi- fied genetic variations. Our screening method was described previously (Itoh et al. 1998). In brief, we prepared genomic DNA from blood samples according to standard protocols, Abstract We here report 20 novel single-nucleotide poly- morphisms in four genes that are potentially involved in the excitement of cardiomyocytes: 1 in KCNA5 (encoding Kv1.5), 5 in KCNAB1 (encoding Kv1.3), 5 in KCNIP2 (encoding KChIP2), and 9 in CACNA1C (encoding a cardiac L-type voltage-dependent calcium ion channel, dihydropyridine receptor). We also examined their allelic frequencies in Japanese individuals. These data will be use- ful for genetic association studies designed to investigate secondary long QT syndrome or other circulatory disorders. Key words Long QT syndrome · Single-nucleotide poly- morphism · Japanese population · Voltage-gated potassium ion channel · KChIP · L-type voltage-dependent calcium ion channel Introduction Long QT syndrome (LQTS), an arrhythmogenic disorder characterized by prolongation of the QT interval on electro- cardiograms (ECGs), often causes syncope or sudden car- diac death as a result of recurrent and lethal arrhythmia. Five genes in which inherited mutations are responsible for this syndrome have been identified to date: KCNA9 (KVLQT1, KCNQ1), KCNH2 (HERG), KCNE1, KCNE2, and SCN5A (Bennett et al. 1995; Curran et al. 1995; Wang et al. 1996a, b; Splawski et al. 1997; Abbott et al. 1999). H. Iwasa · Y. Nakamura · T. Tanaka (*) Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tel. 81-3-5449-5375; Fax 81-3-5449-5406 e-mail: [email protected] H. Iwasa · M. Kurabayashi Second Department of Internal Medicine, Gunma University School of Medicine, Gunma, Japan R. Nagai Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan

Twenty single-nucleotide polymorphisms in four genes encoding cardiac ion channels

  • Upload
    h-iwasa

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

4600/208 N. Matsuda et al.: EGF receptor and osteoblastic differentiationJ Hum Genet (2002) 47:208–212 © Jpn Soc Hum Genet and Springer-Verlag 2002

SHORT COMMUNICATION

Hiroyasu Iwasa · Masahiko Kurabayashi · Ryozo NagaiYusuke Nakamura · Toshihiro Tanaka

Twenty single-nucleotide polymorphisms in four genes encoding cardiacion channels

Received: January 7, 2002 / Accepted: January 29, 2002

Since mutations in any of these five genes can be detectedin nearly 40% of LQTS families, this syndrome in the re-maining families is likely to be caused by other unknowngenes.

Voltage-gated ion channels play important roles in theexcitement of cardiomyocytes, and all the genes responsiblefor LQTS identified so far belong to this group. Althoughmany channel proteins have been identified at present, onlya few have been reported to be involved in cardiac excite-ment. For example, in mice, decreased expression of Kv1.5,encoded by KCNA5, prolongs QT-intervals of ECGs(London et al. 1998), and hKv�1.3, encoded by alternativesplicing of KCNAB1, is expressed in human ventricle andalters the functional properties of hKv1.5 (England et al.1995). A novel class of auxiliary proteins for Kv4α subunits,K-channel interacting proteins (KChIPs), modulates thetransient inward potassium current (Ito) (An et al. 2000).KChIP2, encoded by KCNIP2, is expressed with a steepgradient across the human ventricle and might be involvedin the transmural gradient of Ito in the free ventricular wall(Rosati et al. 2001), and KChIP2�/� mice are susceptible tocardiac arrhythmias (Kuo et al. 2001). An inward calciumion current generated by an L-type voltage-dependent cal-cium ion channel, encoded by CACNA1C, is implicated inearly afterdepolarizations (January and Riddle 1989), oscil-lations in cell membrane voltage thought to initiatearrhythmias caused by long-QT syndrome.

Here we report single-nucleotide polymorphisms (SNPs)and other genetic variations found in four genes encodingcardiac ion channels along with their allelic frequenciesamong normal and LQTS-affected Japanese subjects.

Subjects and methods

In the course of a search for mutations in these candidategenes in 73 unrelated Japanese LQTS patients, we identi-fied genetic variations. Our screening method was describedpreviously (Itoh et al. 1998). In brief, we prepared genomicDNA from blood samples according to standard protocols,

Abstract We here report 20 novel single-nucleotide poly-morphisms in four genes that are potentially involved in theexcitement of cardiomyocytes: 1 in KCNA5 (encodingKv1.5), 5 in KCNAB1 (encoding Kv�1.3), 5 in KCNIP2(encoding KChIP2), and 9 in CACNA1C (encoding acardiac L-type voltage-dependent calcium ion channel,dihydropyridine receptor). We also examined their allelicfrequencies in Japanese individuals. These data will be use-ful for genetic association studies designed to investigatesecondary long QT syndrome or other circulatory disorders.

Key words Long QT syndrome · Single-nucleotide poly-morphism · Japanese population · Voltage-gated potassiumion channel · KChIP · L-type voltage-dependent calcium ionchannel

Introduction

Long QT syndrome (LQTS), an arrhythmogenic disordercharacterized by prolongation of the QT interval on electro-cardiograms (ECGs), often causes syncope or sudden car-diac death as a result of recurrent and lethal arrhythmia.Five genes in which inherited mutations are responsible forthis syndrome have been identified to date: KCNA9(KVLQT1, KCNQ1), KCNH2 (HERG), KCNE1, KCNE2,and SCN5A (Bennett et al. 1995; Curran et al. 1995; Wanget al. 1996a, b; Splawski et al. 1997; Abbott et al. 1999).

H. Iwasa · Y. Nakamura · T. Tanaka (*)Laboratory of Molecular Medicine, Human Genome Center,Institute of Medical Science, University of Tokyo, 4-6-1Shirokanedai, Minato-ku, Tokyo 108-8639, JapanTel. �81-3-5449-5375; Fax �81-3-5449-5406e-mail: [email protected]

H. Iwasa · M. KurabayashiSecond Department of Internal Medicine, Gunma University Schoolof Medicine, Gunma, Japan

R. NagaiDepartment of Cardiovascular Medicine, Graduate School ofMedicine, University of Tokyo, Tokyo, Japan

B. Jochimsen et al.: Stetteria hydrogenophila 209T

able

1.

Pol

ymer

ase

chai

n re

acti

on (

PC

R)

prim

ers

used

to

cove

r th

e co

ding

reg

ion

of K

CN

A5,

KC

NIP

2, K

CN

AB

1, a

nd C

AC

NA

1C

Ann

ealin

gR

efer

ence

d cD

NA

Ref

eren

ced

Gen

eE

xona

For

war

d pr

imer

Rev

erse

pri

mer

tem

pera

ture

sequ

ence

geno

me

sequ

ence

KC

NA

51.

1A

CC

CC

A G

TC

TC

C C

CA

GA

GA

CG

AT

G A

AG

AA

G G

GG

TC

G58

NM

_002

234

NT

_024

413

1.2

AG

A C

CC

TG

C C

TG

AG

T T

CA

GC

CA

TT

C C

CT

AC

T C

CA

CT

G C

62N

M_0

0223

4N

T_0

2441

3K

CN

IP2

1G

CT

CA

C C

TG

CT

G C

CT

AG

T G

GC

C C

TG

TG

T C

AC

AT

A C

GC

58A

Y02

6329

NT

_030

094

2G

TC

CC

A T

TA

AA

C C

AA

GT

G C

CC

C T

CC

AC

A C

AC

AT

G C

AG

58A

Y02

6330

NT

_030

094

3C

GC

TG

A T

AG

AC

C T

CG

AA

G A

TG

CC

C C

AG

AA

C C

TC

CA

G C

TA

G58

AY

0263

31N

T_0

3009

44,

5C

CC

TC

C C

AT

CA

C A

TG

AG

CT

TT

GG

C C

TG

GA

G A

TC

CT

G58

AY

0263

31N

T_0

3009

46,

7G

AG

TT

C A

GG

GC

C A

GG

AT

CC

CT

CC

A G

CC

TA

C C

CA

CT

C58

AY

0263

31N

T_0

3009

48

CA

A G

TA

CA

C G

TA

CC

C T

GC

AC

TG

C C

CA

GA

G A

GA

CC

T G

AG

62A

Y02

6331

NT

_030

094

9T

CC

CC

G T

CT

GT

G A

CT

CA

GG

GA

AG

C A

CC

AT

A G

CA

GG

A G

58A

Y02

6331

NT

_030

094

KC

NA

B1

1T

TA

AA

G T

TA

AG

C A

CC

GT

GG

CA

AT

C A

GC

AG

T A

CC

TG

T A

T58

Eng

land

et

al. 1

995

Eng

land

et

al. 1

995c

2G

AC

AA

T A

TG

AG

A C

TG

AG

A A

GC

TG

TG

G G

AG

AG

G G

TC

AT

G A

TG

58E

ngla

nd e

t al

. 199

5N

T_0

0555

33

GG

C T

TC

CA

A T

AG

TA

T G

TA

CA

G T

GC

CA

AA

T T

GT

TT

C A

TT

CT

C T

GA

C58

Eng

land

et

al. 1

995

NT

_005

553

4G

AA

TG

T T

GT

CA

A A

CC

AG

C T

CT

GC

CC

C T

CA

CA

T A

GA

CA

T G

58E

ngla

nd e

t al

. 199

5N

T_0

0555

35

AC

C A

AA

CT

G C

AA

AA

T G

AC

TG

AG

A A

GC

CA

T G

AA

AT

T G

TC

AC

58E

ngla

nd e

t al

. 199

5N

T_0

0555

36

AC

A T

GG

GC

T T

GC

TG

T C

AG

AC

A A

AA

AA

C C

CT

CT

C T

CT

AA

G C

58E

ngla

nd e

t al

. 199

5N

T_0

0555

37

AC

A G

AG

TG

T A

CG

TG

G C

TG

AG

TT

C T

GA

AT

T T

GT

TT

G G

TT

GA

T A

C58

Eng

land

et

al. 1

995

NT

_005

553

8G

TG

TA

T A

TT

TT

C C

TG

TG

A G

AG

TG

AC

A A

AA

GT

G A

AA

TG

A A

CC

TG

58E

ngla

nd e

t al

. 199

5N

T_0

0555

39

AA

T G

GA

AA

A T

GG

AA

T G

TC

AG

TG

T A

TT

CT

G A

AC

GG

A T

GA

GC

58E

ngla

nd e

t al

. 199

5N

T_0

0555

310

CT

T A

GT

GA

A A

TC

GG

T G

GT

GA

CT

GC

TT

G G

CT

TT

C A

TC

AG

T G

58E

ngla

nd e

t al

. 199

5N

T_0

0555

311

TG

C A

CT

CC

C A

AG

AA

C T

GA

CT

TC

TT

C C

CT

CC

T T

CC

TA

C T

C58

Eng

land

et

al. 1

995

NT

_005

553

12A

AC

TT

C T

GT

GC

A G

GC

TG

A T

CT

CA

TC

A A

AC

GT

C A

AA

TA

A C

TC

AC

58E

ngla

nd e

t al

. 199

5N

T_0

0555

313

AT

T G

TC

CA

G C

GC

CT

C T

AT

GA

AT

GA

G C

TT

TG

G G

AA

TA

C T

GC

58E

ngla

nd e

t al

. 199

5N

T_0

0555

314

AT

T A

TA

TT

T C

TG

TT

G G

AT

AG

A G

CT

GC

CA

AA

T G

CC

TG

A A

GG

TA

G T

AC

58E

ngla

nd e

t al

. 199

5N

T_0

0555

3

CA

CN

A1C

b1

TC

C T

CT

TC

G T

GG

CT

G C

TC

GT

G G

AA

AA

G G

CA

GG

G A

GC

58N

M_0

0071

9A

C00

5342

2G

AA

GT

G C

CC

CT

G T

TT

TC

T A

TC

TA

GG

CA

GG

T C

CC

AG

G A

GC

AT

G58

NM

_000

719

AC

0060

51.1

3G

GC

AT

T A

AC

TT

C C

TT

GA

C T

CT

GA

AA

A A

GC

AG

A G

AC

TT

G A

G58

NM

_000

719

AC

0060

51.1

4A

TT

TT

T C

TC

TC

T T

TT

CT

A T

TT

CT

GA

AG

GG

A A

AG

AA

A C

AG

AC

A G

TG

58N

M_0

0071

9N

T_0

0071

95

AA

A A

CC

CA

G T

CC

TG

A C

AG

TC

GT

A C

AC

AA

G A

AC

GG

G C

TT

C58

NM

_000

719

NT

_000

719

6C

TT

GG

T T

CA

GT

G A

GT

GG

C T

CG

GG

AG

C G

AT

AG

A G

GG

CA

G58

NM

_000

719

NT

_000

719

7C

CA

TC

C C

AT

CA

A C

CT

CA

T C

CT

C G

TT

AG

G G

TG

AA

A A

GC

TC

58N

M_0

0071

9N

T_0

0071

98

GG

T C

CC

CT

T C

GG

TC

A C

AG

GC

C A

AT

GG

G T

CA

GA

A T

CT

G58

NM

_000

719

NT

_000

719

9G

GA

GC

T G

TC

TG

T G

GA

AA

G T

AG

GT

C T

GT

GT

G C

AG

CA

A G

TG

AC

58N

M_0

0071

9N

T_0

0071

910

GC

T C

TG

CT

T C

CC

TT

T G

AC

TC

GC

T T

TT

CC

A C

CC

AT

G C

TC

58N

M_0

0071

9N

T_0

0071

911

CC

T C

AG

TC

T C

CA

CA

T T

CA

AA

T A

CT

GG

AT

T A

TT

TG

T C

TG

AT

C T

GA

GC

58N

M_0

0071

9N

T_0

0071

912

GA

G G

AG

TT

C A

GG

GG

C A

TC

GG

T G

TC

TC

C A

GC

AC

A G

CA

C58

NM

_000

719

NT

_000

719

13C

GG

GC

T T

CT

GA

C C

AC

TG

CC

A G

GG

CT

G A

TC

TA

G G

AT

G58

NM

_000

719

NT

_000

719

14C

GG

GC

T T

CT

GA

C C

AC

TG

CC

A G

GG

CT

G A

TC

TA

G G

AT

G58

NM

_000

719

NT

_000

719

210 N. Matsuda et al.: EGF receptor and osteoblastic differentiation

Tab

le 1

.C

onti

nued

Ann

ealin

gR

efer

ence

d cD

NA

Ref

eren

ced

Gen

eE

xona

For

war

d pr

imer

Rev

erse

pri

mer

tem

pera

ture

sequ

ence

geno

me

sequ

ence

15T

CT

AA

G G

AC

AG

T T

CA

AT

A G

CT

CA

GC

CA

GA

T T

AC

GG

C G

AC

AG

C58

NM

_000

719

NT

_000

719

16G

AA

CA

C T

GT

TG

G G

GT

CT

G A

CC

CC

TA

C C

AG

AG

T G

AT

GC

T T

AG

58N

M_0

0071

9N

T_0

0071

917

TT

T T

TT

CT

G C

TG

CT

G A

CT

GC

TC

AC

A G

CT

CC

A G

GA

AG

G58

NM

_000

719

NT

_000

719

18C

CT

TC

T C

CC

CT

G T

GA

CT

GA

TC

CC

A G

GT

TA

G G

CA

GT

G58

NM

_000

719

NT

_000

719

19T

GG

AG

T T

AT

TT

A G

AA

TG

G T

GC

TG

CA

C C

TT

CC

C C

AC

CA

T T

GC

58N

M_0

0071

9N

T_0

0071

920

TT

G A

CT

TG

T C

TC

TC

C T

CC

TG

T C

GT

G C

AG

AA

G A

CA

CA

G G

CG

58N

M_0

0071

9N

T_0

0071

921

AT

C C

CA

TC

C C

CA

CC

C T

GT

GG

A G

GA

GC

A G

AA

GG

G G

AT

G55

Sold

atov

199

2N

T_0

0071

922

GA

G C

CA

CT

A A

TC

CA

A T

TA

TG

C T

GA

T G

CA

TT

G C

CC

AG

G T

TG

58N

M_0

0071

9N

T_0

0071

923

CT

G G

TG

TT

C C

TT

TG

T C

CC

TC

CT

A G

CT

GC

A T

GG

CC

C A

TC

58N

M_0

0071

9N

T_0

0071

924

CA

G G

GT

TA

C A

GG

CA

A G

CT

CC

AT

GC

A G

TG

GG

A C

CA

GT

G58

NM

_000

719

NT

_000

719

25G

CA

TC

T C

CT

GA

A G

CC

AC

G T

CC

CA

CA

A C

GG

AG

C C

CA

GA

C58

NM

_000

719

NT

_000

719

26G

AT

TA

C T

GA

AC

A T

CT

CT

G A

TA

CT

C T

GC

TG

CC

C T

CC

CA

C C

TC

TA

C58

NM

_000

719

NT

_000

719

27G

TG

AA

G G

AA

GA

T G

GG

AG

A T

CG

GC

CT

T G

CT

TT

G C

AT

AC

T C

58N

M_0

0071

9N

T_0

0071

928

CA

A G

GT

CA

C A

CA

GC

C A

GT

AA

GA

AG

AC

T G

AC

AG

C C

CA

CT

C T

G58

NM

_000

719

NT

_000

719

29T

AA

CC

C C

AC

TC

T C

CC

CA

T C

AT

G G

CT

GT

G C

TC

CT

C C

TG

58N

M_0

0071

9N

T_0

0071

930

AG

C T

CC

TC

C C

CT

CT

C C

TG

GG

G A

AT

CA

A A

GG

TC

T T

TC

TC

A G

58N

M_0

0071

9N

T_0

0071

931

CT

G G

GG

AG

G G

CA

GA

G T

AA

TA

CT

GC

CT

G C

CC

TC

C C

TT

AT

G58

Sold

atov

199

2N

T_0

0071

932

CT

C T

CC

CC

G G

CT

GC

T C

TG

GG

T T

AG

GG

A C

AG

AC

G C

CA

TG

58N

M_0

0071

9N

T_0

0071

933

GT

G G

GT

CC

T T

GA

TT

G A

CA

TG

A G

CC

A C

AT

GC

A G

TG

AG

A G

CC

AG

58N

M_0

0071

9N

T_0

0071

934

GC

C T

GG

GC

A C

AG

TC

T A

GC

TC

CC

A C

AC

AG

A G

GA

AG

G A

GC

AG

58N

M_0

0071

9N

T_0

0071

935

TC

A T

GG

GA

G T

CT

CC

T G

CA

CG

GG

AA

C T

GG

GG

A G

AG

AC

A58

NM

_000

719

NT

_000

719

36G

CA

TG

G G

AA

GA

C T

GT

TC

A G

CG

GT

TG

C T

CT

GT

G G

AA

AG

T T

AT

C58

NM

_000

719

NT

_000

719

37T

GA

AC

G T

GG

CT

C T

CC

CT

CG

CT

GC

T G

GC

TG

T T

GA

GT

T C

58N

M_0

0071

9N

T_0

0071

938

AT

T G

TA

CT

G T

TC

CC

C A

CA

GA

T C

TC

T C

AG

CT

T G

GG

GA

A T

CA

G58

NM

_000

719

NT

_000

719

39C

TC

TG

A T

GC

CC

T G

TC

CC

T C

CT

C C

CA

TG

A A

CC

CC

G T

TA

TC

58N

M_0

0071

9N

T_0

0071

940

CT

T T

GC

TT

C T

CT

TC

G C

CT

GC

TG

AG

T G

TC

TC

T C

CC

AG

T G

C58

NM

_000

719

NT

_000

719

41C

AC

CA

A G

GG

GC

T G

AG

GA

T C

GT

G C

GG

GA

G T

CC

AG

G G

AG

58N

M_0

0071

9N

T_0

0071

942

TC

C C

CT

CT

C C

AT

AC

G T

CT

CG

GA

CC

T T

CC

TG

G A

GT

GT

G58

NM

_000

719

NT

_000

719

43T

GG

AG

G A

AA

GG

G A

GC

GT

GG

GT

CG

A G

AG

TG

C G

CC

AT

G58

NM

_000

719

NT

_000

719

44C

CC

AC

C C

CT

CC

T T

CT

TG

CC

TG

TC

T C

CT

GA

G G

GT

TG

C A

G58

NM

_000

719

NT

_000

719

45T

AA

AG

A T

GA

CC

T G

AC

CC

T G

TC

AA

A G

GC

AC

A G

AG

AG

G A

AG

C58

Sold

atov

199

2N

T_0

0071

946

CA

G T

TT

CT

G A

TG

TT

T T

TC

TT

C A

TG

GG

TC

A G

CC

TC

A G

CA

GA

G58

NM

_000

719

NT

_000

719

47G

GA

AC

A A

GC

CC

C A

TG

AG

CA

CA

TC

C A

GA

GA

G C

GA

GC

G58

NM

_000

719

NT

_000

719

48A

TG

GT

G G

CT

CT

C T

GG

CT

GG

CC

TG

T C

CA

AA

A G

TG

TG

A G

58N

M_0

0071

9N

T_0

0071

949

TC

G G

CC

AC

T C

CT

AT

T A

AC

TC

A C

CC

T G

CC

CA

T C

TG

CG

A G

TC

58N

M_0

0071

9N

T_0

0071

950

TT

C C

TT

TG

G T

TC

TT

C A

TG

GC

TA

A A

AA

AA

A G

CC

CG

C A

TC

TG

58N

M_0

0071

9N

T_0

0071

9

aE

xons

fol

low

ed b

y do

ts a

nd s

eque

ntia

l num

bers

wer

e su

bdiv

ided

for

ana

lysi

sbE

xon

num

beri

ng a

nd p

osit

ion

of t

he s

plic

ing

junc

tion

s of

CA

CN

A1C

ref

er t

o in

tron

–exo

n bo

unda

ry s

eque

nces

of

CA

CN

L1A

1 is

ofor

m 1

(So

ldat

ov 1

994)

cP

CR

pri

mer

s fo

r th

is e

xon

wer

e de

sign

ed b

ased

on

the

sequ

ence

des

crib

ed in

the

ref

eren

ce

B. Jochimsen et al.: Stetteria hydrogenophila 211

after obtaining informed consent from each participant. Allexons of each gene being scrutinized, as well as flankingintronic sequences, were amplified by newly designed poly-merase chain reaction (PCR) primers to cover the codingregion of each gene (Table 1) and screened by single-strandconformation polymorphism (SSCP) analysis, and aberrantconformers were directly sequenced with ABI 3700 instru-ments (Applied Biosystems, Foster City, CA, USA). Someexons were screened by direct sequencing analysis, depend-ing on the length of the PCR fragment.

To investigate the allelic frequencies for each polymor-phism in our control population, we distinguished allele-specific sequences either by using PCR-RFLP (restrictionfragment length polymorphism) or by hybridizing allele-specific oligonucleotides to DNA from 48 to 96 normal,unrelated individuals in the manner described by Saiki et al.(1986).

Results and discussion

In total, we confirmed 20 novel SNPs (1 in KCNA5, 5in KCNAB1, 5 in KCNIP2, and 9 in CACNA1C), and exam-ined the frequency of each allele in the Japanese popula-tion, as summarized in Table 2. Three genetic variationswere not detected in any of the 192 chromosomes of thenormal controls examined. However, they did not changethe amino acid sequences and were unlikely to affectsplicing, and we consider them merely to be rare geneticvariations.

Table 2. Genetic variations of four candidate genes for long QT syndrome

Number ofFrequency of chromosomesminor alleleb examined

Gene Nucleotide changea Amino acid change Regions LQTS Control LQTS Control

KCNA5 1149C�T G383G Exon 1 0.007 0.005 146 192KCNAB1 348�T I127I Exon 4 0.007 Rare 146 192

357�77G�A Intronic variant Intron 4 0.007 Rare 146 192525�63T�C Intronic variant Intron 6 0.01 0.02 146 188525�50A�G Intronic variant Intron 6 0.01 0.02 146 188658�57G�A Intronic variant Intron 8 0.06 0.05 146 192

KCNIP2 73�91C�A Intronic variant Intron 1 0.10 0.23 146 100294�98C�T Intronic variant Intron 3 0.08 0.11 146 192649�44T�C Intronic variant Intron 7 0.51 0.49 146 100759�90C�A 3�UTR 0.007 0.01 146 192759�229C�G 3�UTR 0.007 Rare 146 192

CACNA1C 522G�A A174A Exon 4 0.01 0.01 146 192966C�T H322H Exon 7 0.007 0.01 146 1921216�11G�A Intronic variant Intron 8 0.09 0.10 146 1922437C�T R813W Exon 17 0.38 0.38 146 962574�G�A S858S Exon 19 0.01 0.01 146 963846C�T F1282F Exon 30 0.45 0.46 146 965363A�G Q1788R Exon 44 0.39 0.33 146 965603C�T P1868L Exon 45 0.48 0.50 146 965605A�G M1869V Exon 45 0.47 0.49 146 96

3�UTR, 3� untranslated region; LQTS, long QT syndromea Nucleotide numbering starts from the ATG start codonb Rare indicates not identified in normal controls

We believe that the data reported here will provideuseful information for association studies designed to iden-tify genes related to nonfamilial arrhythmias, for instance,drug-induced arrhythmia. In addition, variations inCACNA1C, which encodes dihydropyridine receptor, thetarget molecule of calcium antagonists, might be helpful ingenetic research for other circulatory diseases, for example,hypertension.

Acknowledgments This work was supported in part by a Research forthe Future Program Grant #00L01402 from the Japan Society for thePromotion of Science. We are grateful to Kaori Tabei for secretarialassistance.

References

Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, TimothyKW, Keating MT, Goldstein SA (1999) MiRP1 forms IKr potassiumchannels with HERG and is associated with cardiac arrhythmia. Cell97:175–187

An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, HinsonJW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000)Modulation of A-type potassium channels by a family of calciumsensors. Nature 403:553–556

Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecularmechanism for an inherited cardiac arrhythmia. Nature 376:683–685

Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED,Keating MT (1995) Molecular basis for cardiac arrhythmia: HERGmutations cause long QT syndrome. Cell 80:795–803

England SK, Uebele VN, Kodali J, Bennett PB, Tamkun MM (1995) Anovel K� channel �-subunit (hKv�1.3) is produced via alternativemRNA splicing. J Biol Chem 270:28531–28534

212 N. Matsuda et al.: EGF receptor and osteoblastic differentiation

Itoh T, Tanaka T, Nagai R, Kikuchi K, Ogawa S, Okada S, YamagataS, Yano K, Yazaki Y, Nakamura Y (1998) Genomic organizationand mutational analysis of KVLQT1, a gene responsible for familiallong QT syndrome. Hum Genet 103:290–294

January CT, Riddle JM (1989) Early afterdepolarizations: mechanismof induction and block. A role for L-type Ca2� current. Circ Res64:977–990

Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M, Nguyen-Tran VT, Gu Y, Ikeda Y, Chu PH, Ross J, Giles WR, Chien KR(2001) A defect in the Kv channel-interacting protein 2 (KChIP2)gene leads to a complete loss of Ito and confers susceptibility toventricular tachycardia. Cell 107:801–813

London B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF, Koren G(1998) Long QT and ventricular arrhythmias in transgenic mice ex-pressing the N terminus and first transmembrane segment of avoltage-gated potassium channel. Proc Natl Acad Sci U S A 95:2926–2931

Rosati B, Pan Z, Lypen S, Wang HS, Cohen I, Dixon JE, McKinnon D(2001) Regulation of KChIP2 potassium channel � subunit geneexpression underlies the gradient of transient outward current incanine and human ventricle. J Physiol 533.1:119–125

Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986)Analysis of enzymatically amplified beta-globin and HLA-DQ alphaDNA with allele-specific oligonucleotide probes. Nature 324:163–166

Soldatov NM (1992) Molecular diversity of L-type Ca2� channel tran-scripts in human fibroblasts. Proc Natl Acad Sci U S A 89:4628–4632

Soldatov NM (1994) Genomic structure of human L-type Ca2� channel.Genomics 22:77–87

Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC,Keating MT (1997) Mutations in the hminK gene cause long QTsyndrome and suppress IKs function. Nat Genet 17:338–340

Wang Q, Li Z, Shen J, Keating MT (1996a) Genomic organization ofthe human SCN5A gene encoding the cardiac sodium channel.Genomics 34:9–16

Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaayTJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ,Towbin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD,Keating MT (1996b) Positional cloning of a novel potassium channelgene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet12:17–23