22
TV-Regularization in Tomography Part 1: Introduction and Overview Philipp Lamby Interdisciplinary Mathematics Institute, University of South Carolina Peter Binev, Wolfgang Dahmen, Ronald DeVore, Philipp Lamby, Andreas Platen, Dan Savu, Robert Sharpley

TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

TV-Regularization in TomographyPart 1: Introduction and Overview

Philipp Lamby

Interdisciplinary Mathematics Institute,University of South Carolina

Peter Binev, Wolfgang Dahmen, Ronald DeVore,Philipp Lamby, Andreas Platen, Dan Savu, Robert Sharpley

Page 2: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Outline

Description of the Experimental Setup

Basic Reconstruction Algorithms

Recent Papers on TV-regularized Tomography

Limited Angle Tomography

Page 3: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Experimental Setup

I The aim is to identify the position, size and shape of heavyatom clusters in a carrier material from a tilt series of STEMmicrographs.

I The electron gun scans theobject rastering along aCartesian grid in thexy -plane.

I The specimen is tiltedaround an axis parallel tothe y -axis.

I We are confined to alimited tilt range (±600)

I The mechanics is notprecise.

y

x

z

Sk

k

Page 4: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Tilt Series

Page 5: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Program

Work Steps

1. Register the micrographs.

2. Invert the Radon transform in every slice y = const.

3. Stack the slices to get a 3D reconstruction.

Notes on Step 2

I Problem is a typical limited angle tomography from parallelprojections.

I The intensity values measure the Z 2-distribution along therays taken by the electron beams.

I We will make the assumption that the distribution in theslices can be well represented by piecewise constant functions.

Page 6: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

The Radon Transform (2D)

Let θ ∈ [0, 2π], r ∈ R. Set eθ = (cos(θ), sin(θ)). Define

L(θ, r) :={x ∈ R2 : 〈eθ, x〉 = r

}.

Definition

Rf (θ, r) :=f̂ (θ, r) := f̂θ(r) :=

∫L(θ,r)

f (x)dm(x)

=

∫ ∞−∞

f (r cos θ − t sin θ, r sin θ + t cos θ) dt

Symmetry: f̂ (θ, r) = f̂ (θ + π,−r)

Page 7: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

The Projection-Slice Theorem

Let s ∈ R and θ ∈ [0, 2π] and denote with

f̃ (k) :=

∫Rn

f (x)e−ix ·kdx , k ∈ Rn.

the Fourier-transform of a n-variate function f . Then

f̃ (seθ) = ˜̂fθ(s).

Proof: f̃ (seθ) =

∫ ∞−∞

(∫x ·eθ=r

f (x)e−isx ·eθ dm(x)

)dr

=

∫ ∞−∞

(∫x ·eθ=r

f (x)dm(x)

)e−isr dr

=

∫ ∞−∞

f̂ (θ, r)e−isr dr = ˜̂fθ(s).

Page 8: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Illustration of the Projection-Slice Theorem

�Rf (r)

F(u,v)

f(x,y)

1D-Fourier-Transform

2D-Fourier-Transform

�r

r

u

v

Page 9: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Fourier-Methods

I The PST motivates the following algorithm:I Measure the projections f̂θi , i = 1, . . . , n

I Compute their Fourier transforms ˜̂fθi .I Interpolate the Fourier data onto a Cartesian grid.I Take the inverse 2D FFT to obtain f (x , y).

I This algorithm has not been very popular in the past, becauseI The interpolation step leads to inaccuracies,I The algorithm requires complete data.

I But there are new developments:I Equally-Sloped Tomography (later).

Page 10: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Backprojection

I The Radon transform integrates the values of f along a line.

I Its dual operator averages the value of all the line integralsthrough a given point:

2Bf̂ (x) = ˇ̂f (x) =1

∫ 2π

0f̂ (θ, xeθ) dθ

I Backprojection is the adjoint and “almost” an inverse of theRadon transform:

ˇ̂f (x) =1

r∗ f (x)

I ϕ̌ is an average of plane waves.

I In practice one replaces the integral with a trapezoidal sum.

Page 11: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Illustration of the Backprojection Algorithm

Intermediate and final results after 1,6,12,18,24 and 30 projections

Page 12: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Filtered Backprojection

Using the inverse Fourier transform, the PST and introducing polarcoordinates one gets:

f (x) =1

∫R2

f̃ (k)e ixkdk

=1

∫ 2π

0

∫ ∞0

f̃ (reθ)e ixreθ r dr dθ

=1

∫ π

0

∫ ∞−∞

˜̂fθ(r) |r | e irxeθ dr dθ

=1

∫ π

0F−1[˜̂fθ(r) |r |](xeθ) dθ

=: B[Q(θ, r)](x)

Page 13: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Filtered Backprojection Algorithm

For k = 1, . . . , nθI Measure the Projection f̂θk (r).

I Compute its 1D-Fourier Transform

I Multiply it with |r |I Take the inverse 1D-Fourier Transform to get Q(θk , r)

I Backproject Q(θk , r) to the image domain

Notes

I In practice one has to sample the projections.

I This requires a modification of the filter, because theprojections are not strictly band-limited.

I This leads to convolution-backprojection methods.

Page 14: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Illustration of the Filtered Backprojection Algorithm

Intermediate and final results after 1,6,12,18,24 and 30 projections

Page 15: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

TV-Regularization in Image Processing

TV-norm of an N × N Grayscale Image

cont. : ‖f ‖TV =∫‖∇f ‖ dx

isotrop : ‖f ‖TV =∑N

i ,j=2

√(fi ,j − fi−1,j)2 + (fi ,j − fi ,j−1)2

anisotrop : ‖f ‖TVa =∑N

i ,j=2 |fi ,j − fi−1,j |+ |fi ,j − fi ,j−1|

ROF-Image Denoising model

Given a noisy image v , find

u∗ = arg minu

1

2‖u − v‖22 + µ‖u‖TV

I Removes noise and fine scale artifacts

I Perserves sharp edges

Page 16: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

The Candes-Romberg-Tao Experiment

I Idea: Take an N × N-image g and compute its discrete 2DFourier transform Fg(k) for k ∈ K ⊂ {−N/2, . . . ,N/2− 1}2.Then find (∗ = `2 or ∗ = TV )

f ∗ = arg min ‖f ‖∗, s.t. F f (k) = Fg(k), k ∈ K .

I Observation: Many piecewise constant functions can bereconstructed “exactly” from only a small number ofcoefficients.

Reconstruction

from 22 “ra-

dial” lines.

←− `2

TV −→

Page 17: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Remarks

Discrete Fourier Transform

F f (k) = F f (kx , ky ) =N−1∑i=0

N−1∑j=0

f (i , j)e−2πi(kx i+ky j)/N

FFT

I Computes the points on a Cartesian grid in frequency space.

Notes

I The CRT experiment does not reflect a practical situation.

I It would be prohibitively expensive to compute the Fouriertransform for points on a polar grid.

Page 18: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Equally-Sloped Tomography

AuthorsA. Averbuch, R.R. Coifman, D.L. Donoho, M.Israeli, Y.Shkolnisky,I.Sedelnikov (2008).

Idea

I Define an pseudo-polar grid which allows for a fast,algebraically exact Fourier transform.

I There is a close connection to shearlets.

Page 19: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

The Mao-Fahimian-Osher-Miao Paper (2010)

I Given the Fourier transformation on a pseudo-polar grid, onecan compute the DFT of other points on the radial lines by1D trigonometric interpolation.

I Measure the projections for equally sloped directions andcompute their 1D-Fourier transforms.

I Let S be the operator that computes from the values on thepp-grid the values of the DFT at the “measured” frequencysamples f .

I Then find

u∗ = arg minu‖u‖TV s.t. SFpp(u) = f .

I Solve this optimization problem with Split-Bregman iterations.

Page 20: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Limited Angle Tomography

I Often, projections are not available for all directions.

I Frequency information is missing.

I Fourier methods and backprojection fail.

Reconstructionfrom 22 linesin 0o − 120o

←− FBP

CRT −→

Page 21: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Limited Angle Tomography

QuestionIs this just a problem of these particular algorithms, or is there adeeper reason for these artifacts?

Some kind of an answer

I No finite number of projections determines the phantomuniquely, (i.e. the reconstruction problem is ill-posed)

I Any infinite number of projections determines the phantomuniquely. (even a thin wedge of data in the Fourier domain!)

I But the Radon data in the limited tilt range does not givestable information about singularities parallel to missingdirections.

Page 22: TV-Regularization in Tomography Part 1: Introduction and Overviewimi.cas.sc.edu/django/site_media/media/talks/2011/TV-Regularizatio… · Philipp Lamby, Andreas Platen, Dan Savu,

Algorithms for the Limited Angle Problem

Iterated Backprojection

I Compute an initial guess for the reconstruction.I Until convergence, do

I Compute the missing data from the current solution.I Backproject using the measured and the computed data.I Enforce constraints in the reconstruction.

Sinogram Restoration

I Estimate the missing data (usually by series expansion)

I Then backproject.

Regularized ART

I Our choice - see next talk.