Tutorial Pw

Embed Size (px)

Citation preview

  • 8/17/2019 Tutorial Pw

    1/21

    The Plane-Wave Pseudopotential Method

    CECAM Tutorial on  Simulating Matter at the Nanoscale..., 13 Nov. 2006

  • 8/17/2019 Tutorial Pw

    2/21

    Outline

    • Solution of the DFT problem: Self-consistency, global minimization

    •  Crystals: periodicity, direct and reciprocal lattice, unit cell, Brillouin Zone

    • Plane waves (PW) basis set

    •  Pseudopotentials (PP)

    • PW+PP technicalities

  • 8/17/2019 Tutorial Pw

    3/21

    How to find the DFT ground state of a system ?

    •  Solving the Kohn-Sham equations self-consistently

    (T  + V̂   + V H (n) + V xc(n))ψi = iψi

    with charge density  n(r) =

    i

    f i|ψi(r)|2,  i =  combined  k  and band index,f i =  occupancy of states, and orthonormality constraints ψi|ψj = δ ij

    •  By constrained minimization of the energy functional

    E [{ψi}] =i

    f iψi|T  + V̂ |ψi + E H  + E xc(n) + E ion−ion

    with charge density and orthonormality constraints as above, i.e. minimize:

    E [{ψi}, {Λij}] = E [{ψi}] − Λij (ψi|ψj − δ ij)where the  Λij  are Lagrange multipliers

  • 8/17/2019 Tutorial Pw

    4/21

    Self-consistency

    Starting from some guess of the input charge density  nin(r):

    nin −→ (V H  + V xc)(nin) −→ ψi(r) −→ nout(r) =i

    f iψ∗

    i (r)ψi(r)

    Simply re-inserting   nout as   nin will almost invariably not converge . Reason: Inorder to converge, such procedure must reduce the error at each step, but the

    low-frequency (small-G) components of the error will likely not be reduced in typicalcondensed-matter systems.

    Simple mixing algorithm:

    nnew = αnout + (1 − α)nin,   0 < α

  • 8/17/2019 Tutorial Pw

    5/21

    Exchange-correlation potential

    The exchange-correlation potential and energy in LDA are relatively simple functionsof the local charge density at point   r:

    V xc(r) = vxc(n(r)), E xc[n] =    exc(n(r))n(r)drThey are easily calculated in   r-space.   Gradient-corrected   functionals depend on thegradient of the charge density as well. Slightly more complex to calculate.

  • 8/17/2019 Tutorial Pw

    6/21

    Diagonalization of the Kohn-Sham Hamiltonian

    Whatever approach one chooses, the basic building block of a DFT calculation is theevaluation of the Kohn-Sham Hamiltonian  H KS . How to solve  Hψ  = ψ   ? Expandψ  in some suitable  basis set  {φi}  as

    ψ(r) =

    i

    ciφi(r).

    For an orthonormal basis set, solve

    j

    (H ij − δ ij)cj  = 0

    where the  matrix elements  H ij  = φi|H |φj. For a non-orthonormal basis set, solve:

    j(H ij − S ij)cj

    where  S ij  = φi|φj  (overlap matrix ).

  • 8/17/2019 Tutorial Pw

    7/21

    Total energy

    Once convergence is reached, the total energy of the system may be calculated:

    E  = i

    f iψi|T  + V̂ |ψi + E H  + E xc[n] + E ion−ion

    where

    E H    =  e2

    2

       n(r)n(r)

    |r− r|   drdr

    E xc[n] =    exc(n(r))n(r)drE ion−ion   =

      e2

    2

    µ,ν 

    Z µZ ν 

    |Rµ

    −Rν 

     |(the primed sum excludes terms with  Rµ −Rν  = 0)

  • 8/17/2019 Tutorial Pw

    8/21

    Equivalent expression for the energy, using Kohn-Sham eigenvalues:

    E  =

    i

    f ii − E H  + 

      (exc(n) − V xc(n))n(r)dr + E ion−ion

    Forces, Structural Optimization, Dynamics etc

    The total energy depends on atomic positions  Rµ into the unit cell and on the lattice.Forces  acting on atoms are the derivatives of the total energy wrt atomic positions:

    Fµ = −  ∂E ∂ Rµ

    =

    i

    f iψi|  ∂ V̂ ∂ Rµ

    |ψi

    The  Hellmann-Feynman theorem holds in DFT due to its variational character!

    Once forces are calculated, one can perform structural optimization, moleculardynamics, etc.

  • 8/17/2019 Tutorial Pw

    9/21

    Periodicity

    Let us consider the case of the   infinite perfect crystals , having translation symmetry.A perfect crystal is described in terms of 

    •   a  unit cell  that is periodically repeated•   a  basis  of atomic positions  di  in the unit cell

    •   a   lattice  of translation vectors  R = n1R1 + n2R2 + n3R3•   a  reciprocal lattice  of vectors  G  such that  G ·R = 2πl, with  l   integer.

    Such conditions hold if  G = m1G1 + m2G2 + m3G3  with  Gi ·Rj  = 2πδ ij.

  • 8/17/2019 Tutorial Pw

    10/21

    Non periodic systems ?

    What about e.g. defects in crystals, surfaces, alloys, amorphous materials, liquids,molecules, clusters? none of these has perfect periodicity. One can use  supercells,introducing an artificial periodicity.

    The supercell geometry is dictated by the type of system under investigation:

    •  Molecules, clusters:the supercell must allow a minimum distance of at least a few A (

    ∼ 6) between

    the closest atoms in different periodic replica.

  • 8/17/2019 Tutorial Pw

    11/21

    •  Defects in crystals:

    the supercell is commensurate with the perfect crystal cell. The distance betweenperiodic replica of the defect must be “big enough” to minimize spurious defect-defect interactions.

    •   Surfaces:slab geometry . The number of layers of the materials must be “big enough” tohave “bulk behaviour” in the furthest layer from the surface. The number of empty layers must be “big enough” to have minimal interactions between layers in

    different regions.

    •  Alloys, amorphous materials, liquids:the supercell must be “big enough” to give a reasonable description of physical

    properties.

  • 8/17/2019 Tutorial Pw

    12/21

    Band Structure

    The one-electron states ψ(r) of a perfect crystal Hamiltonian H  = T +V   are describedby a  band index  i  and a  wave vector  k.

    It is convenient to consider the   thermodynamic limit : a slab of crystal composed of 

     N   = N 1 N 2 N 3  unit cells, N → ∞, obeying Periodic Boundary Conditions:

    ψ(r + N 1R1) = ψ(r + N 2R2) = ψ(r + N 3R3) = ψ(r).

    There are N   wave vectors   k   in the unit cell of the reciprocal lattice, called theBrillouin Zone. The one-electron states (energy bands) can be written as

    ψi,k(r) = eik·rui,k(r)

    where  ui,k(r)  is translationally invariant:

    ui,k

    (r

    +R

    ) = ui,k

    (r

    ).

  • 8/17/2019 Tutorial Pw

    13/21

    Most popular basis sets:

    •   Localized  basis sets:Bloch sums  φk =

     R

    exp(−ik ·R)φ(r−R)  of functions centered on atoms–

     Linear Combinations of Atomic Orbitals (LCAO)–  Gaussian-type Orbitals (GTO)–  Linearized Muffin-Tin Orbitals (LMTO)

    •  Delocalized  basis sets:

    –   Plane Waves (PW)

    •   Mixed  basis sets:–  Linearized Augmented Plane Waves (LAPW)–  Projector Augmented Plane Waves (PAW)

  • 8/17/2019 Tutorial Pw

    14/21

    PW basis set

    A PW basis set for states of wave vector  k   is defined as

    r

    |k + G

    =

      1

    √  N Ωei(k+G)·r,

      h̄2

    2m|k + G

    |2

    ≤E cut

    Ω =  unit cell volume, N Ω =  crystal volume,  E cut  =  cutoff on the kinetic energy of PWs (in order to have a finite number of PWs!). The PW basis set is   complete   forE cut

    → ∞ and  orthonormal :

     k + G

    |k + G

    = δ GG

    The components on a PW basis set are the  Fourier transform:

    |ψi

    = G ci,k+G|

    k + G

    ci,k+G = k + G|ψi =   1√ 

     N Ω

       ψi(r)e

    −i(k+G)·rdr =

     ψi(k + G).

  • 8/17/2019 Tutorial Pw

    15/21

    Hamiltonian diagonalization

    The solution of  H KS ψi = iψi  at fixed potential:

    G H KS (k + G,k + G

    ) − iδ G,G

    ci,k+G = 0

    requires the   diagonalization  of the matrix  H KS , whose matrix elements are:

    H KS (k

    +G

    ,k

    +G

    ) = k

    +G

    |H KS |k

    + G

  • 8/17/2019 Tutorial Pw

    16/21

    Matrix element of the Hamiltonian in PWs

    •  Kinetic energy term:

    k + G|T |k + G

    =  h̄2

    2m(k

    +G

    )2

    δ GG

    •  Hartree and exchange correlation terms:

    k + G|V H |k + G = V H (G−G) = 4πe2n(G−G)

    |G−G|2   (G =  G!)

    andk + G|V xc|k + G = V xc(G−G)

    where

    f (G) =  1

       f (r)e−iG·rdr

    is the  Fourier Transform  of  f (r).

  • 8/17/2019 Tutorial Pw

    17/21

    •   External ionic potential:

    V̂  ≡ V  (r) = µ∈cell

    R

    V µ(r− dµ −R)

    k + G|V |k + G   =   1 N Ω   e−i(k+G)·r

    µ

    R

    V µ(r− dµ −R)ei(k+G)·rdr

    =

    µS µ(G

    −G

    )V µ(G

    −G

    )

    where  S µ(G)  is the  structure factor , containing geometrical information:

    S µ(G) =

    type µdi∈cell

    e−iG·di

    If the potential has spherical symmetry,  V  (r) = V  (r), then:

    V  (G) = V  (G) = 4π

       r2V  (r)

    sin(Gr)

    G  dr.

  • 8/17/2019 Tutorial Pw

    18/21

    Advantages and disadvantages of various basis sets

    •   Localized basis sets:+ fast convergence with respect to basis set size (just a few functions per atom

    needed)+ no problem with finite systems– difficult to evaluate convergence quality (no systematic way to improve

    convergence)– difficult to use (two- and three-center integrals)

    – difficult to calculate forces (Pulay forces )

    •  Plane Waves:

    – slow convergence with respect to basis set size (many more PWs than localizedfunctions needed)– require supercells with finite systems

    + easy to evaluate convergence quality (just increase cutoff)

    + easy to use (Fourier transform)+ easy to calculate forces (no Pulay forces)

  • 8/17/2019 Tutorial Pw

    19/21

    Charge density

    The calculation of the charge density

    n(r) =i,k

    f i,kψ∗

    i,k(r)ψi,k(r)

    requires in principle a sum over an infinite ( N ) number of   k-points in the BrillouinZone. As a matter of fact, for insulators just a few “special” points (i.e. a uniformgrid in most cases) are required. For metals, a much denser grid is usually required.

    Charge density in reciprocal space:

    n(G

    ) =

      1

    Ω    n(r)e−iG·rdr = Gi,k f i,kc

    i,k+G

    ci,k+G+G

    This is NOT how  n(G)   is calculated, in practical calculations

  • 8/17/2019 Tutorial Pw

    20/21

    The need for Pseudopotentials

    Are PWs a practical basis set for electronic structure calculations? Not really! Fromelementary Fourier analysis: length scale  δ  −→  Fourier components up to  q  ∼ 2π/δ .In a solid, this means ∼   4π(2π/δ )3/3ΩBZ    PWs (ΩBZ   =   volume of the BrillouinZone).

    Estimate for diamond:   1s  wavefunction has   δ  0.1 a.u., Ω = (2π)3/(a30/4) with lattice parametera0 = 6.74  a.u. −→ 250, 000  PWs!

    0 0.5 1 1.5 2 2.5 3 3.5 4

    r (a.u.)

    −1

    0

    1

    2

          R      (     r      )

    C 1s2 2s2 2p2

    1s

    2s

    2p

  • 8/17/2019 Tutorial Pw

    21/21

    Need to:

    •  get rid of core states

    • get rid of orthogonality wiggles close to the nucleus

    Solution:   Pseudopotentials   (PP). A smooth effective potential that reproduces theeffect of the nucleus plus core electrons on valence electrons.