158
Induction Machine: Constructing the Model Preflux2D 9.2 Copyright © 2006 Magsoft Corporation All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, Web distribution or information storage and retrieval systems—without the written permission of the publisher. www.magsoft-flux.com Cover illustration: Model showing shade plot of the induction motor

Tutorial Induction Machine Geometry

Embed Size (px)

Citation preview

Page 1: Tutorial Induction Machine Geometry

Induction Machine:Constructing the Model

Preflux2D 9.2

Copyright © 2006 Magsoft Corporation

All rights reserved. No part of this work may be reproduced or used in any form or by anymeans—graphic, electronic, or mechanical, including photocopying, recording, taping, Webdistribution or information storage and retrieval systems—without the written permission of the publisher.

www.magsoft-flux.com

Cover illustration: Model showing shade plot of the induction motor

Page 2: Tutorial Induction Machine Geometry

1 About this document xv

About Preflux 9.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xv

The New Supervisor · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xv

The Preflux window · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xvii

Interaction with the program · · · · · · · · · · · · · · · · · · · · · · · · xviii

Dialog boxes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xviii

Format for user input · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xx

Activate commands · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xxi

Use the toolbar buttons · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xxi

Use the menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xxii

Use the data tree · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · xxiii

Selecting items from the graphics display · · · · · · · · · · · · · · · xxiv

Notes for experienced/new users · · · · · · · · · · · · · · · · · · · · xxviii

1 Get started with Preflux 9.2 1

Start Flux 9.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1

The new Flux Supervisor · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2

Program manager · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3

Directory manager · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5

Project manager· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6

Open Preflux 9.2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8

iii

ContentsOpen a new project · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9

Using the icon in the toolbar · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 9

Preflux 9.2 project window · · · · · · · · · · · · · · · · · · · · · · · · · · 11

Graphics display · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11

Toolbar · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12

The data tree · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13

Console Window · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14

Command Line · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15

Preflux 9.2 project commands and functions · · · · · · · · · · · · · · 15

Windows menu commands · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15

Project menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16

Application menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16

View menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 16

Display menu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17

Select menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17

Geometry menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18

Mesh menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19

Physics menu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19

Tools menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20

Help menu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20

Take time to explore · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 22

2 Create the motor parameters 23

The model of the motor· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23

Overview: Defining parameters · · · · · · · · · · · · · · · · · · · · · · · 24

Contentsiv

Page 3: Tutorial Induction Machine Geometry

Attributes of parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25

Parameters and measurement units · · · · · · · · · · · · · · · · · · · · · · · · · · 25

Define the first parameter: The airgap width · · · · · · · · · · · · · · 26

Open the New parameter dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26

Enter the data for the AIRGAP parameter · · · · · · · · · · · · · · · · · · · · · · 28

Define the second parameter · · · · · · · · · · · · · · · · · · · · · · · · · 31

Define the remaining parameters for the motor · · · · · · · · · · · · 33

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 37

3 Create coordinate systems for the motor 41

Overview: Using coordinate systems · · · · · · · · · · · · · · · · · · · 41

Data for the coordinate systems· · · · · · · · · · · · · · · · · · · · · · · 42

Add a global coordinate system for the stator · · · · · · · · · · · · · 42

Open the New Coordinate System dialog box · · · · · · · · · · · · · · · · · · · · 43

Add the STATMAIN global coordinate system · · · · · · · · · · · · · · · · · · · · 44

Add the remaining coordinate systems · · · · · · · · · · · · · · · · · · 48

Add the ROTWORK coordinate system· · · · · · · · · · · · · · · · · · · · · · · · · 49

Add the ROTLOC system · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 50

Add the STATWORK coordinate system · · · · · · · · · · · · · · · · · · · · · · · · 51

Add the STATLOC coordinate system · · · · · · · · · · · · · · · · · · · · · · · · · 52

Define Periodicity · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 56

4 Create half of the first stator slot 57

Contents v

Notes on creating and displaying points · · · · · · · · · · · · · · · · · 57

Data for the initial points · · · · · · · · · · · · · · · · · · · · · · · · · · · · 58

Add four points for half of the first stator slot· · · · · · · · · · · · · · 58

Open the New Point dialog· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 59

Add the data to create the first point · · · · · · · · · · · · · · · · · · · · · · · · · 60

Add the data for the next 3 points · · · · · · · · · · · · · · · · · · · · · · · · · · · 63

Label the points with their reference numbers · · · · · · · · · · · · · 67

Using the Edit/Modify command · · · · · · · · · · · · · · · · · · · · · · · 69

A note about selecting items · · · · · · · · · · · · · · · · · · · · · · · · · 72

Add the first two lines of the stator slot· · · · · · · · · · · · · · · · · · 72

Open the New Line dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 73

Add Line 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74

Add Line 2, the curved bottom of the slot · · · · · · · · · · · · · · · · · · · · · · 77

Label the lines with their reference numbers · · · · · · · · · · · · · · 79

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80

5 Complete the first stator slot 81

About transformations· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 81

Add the SMIRROR transformation· · · · · · · · · · · · · · · · · · · · · · 82

Open the New Transformation dialog · · · · · · · · · · · · · · · · · · · · · · · · · 84

Add data for the SMIRROR transformation · · · · · · · · · · · · · · · · · · · · · · 85

Propagate Lines 1 and 2 with SMIRROR· · · · · · · · · · · · · · · · · · 87

Open the Propagate Lines dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · · 88

Select the lines to propagate · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 89

Contentsvi

Page 4: Tutorial Induction Machine Geometry

Add a line to close the slot· · · · · · · · · · · · · · · · · · · · · · · · · · · 92

Open the Add Line dialog with the icon in the toolbar · · · · · · · · · · · · · · 93

Build the face of the first slot · · · · · · · · · · · · · · · · · · · · · · · · · 94

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 97

6 Begin the rotor geometry 99

Add the first four points for the rotor bar· · · · · · · · · · · · · · · · · 99

Open the New Point dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100

Add the lines of the half rotor bar · · · · · · · · · · · · · · · · · · · · 104

Add the straight side of the rotor bar · · · · · · · · · · · · · · · · · · · · · · · · 104

Add arcs for the curved top and bottom of the rotor bar · · · · · · · · · · · 107

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 111

7 Complete the first rotor bar 113

Add the RMIRROR transformation · · · · · · · · · · · · · · · · · · · · · 114

Open the New Transformation dialog· · · · · · · · · · · · · · · · · · · · · · · · · 114

Add the data for the RMIRROR transformation · · · · · · · · · · · · · · · · · · 115

Apply the RMIRROR transformation· · · · · · · · · · · · · · · · · · · · 117

Open the Propagate Line dialog with the icon in the toolbar · · · · · · · · 117

Select the lines and add the data for propagation · · · · · · · · · · · · · · · · 119

Construct the face of the rotor bar · · · · · · · · · · · · · · · · · · · · 121

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 122

8 Complete the stator and rotor outlines 123

Contents vii

Add points for the stator’s outer boundary · · · · · · · · · · · · · · 123

Data for points at bottom edge of stator · · · · · · · · · · · · · · · · · · · · · · 123

Open the New Point dialog with the icon in the toolbar · · · · · · · · · · · · 123

Add the data for the points · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124

Add the straight side of the stator’s outer boundary · · · · · · · · 126

Open the New Line dialog from the Data Tree · · · · · · · · · · · · · · · · · · 126

Select the points to add Line 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127

Add a transformation for the stator and rotor sides· · · · · · · · · 128

Open the New Transformation dialog with the icon in the toolbar · · · · · 128

Add the data for the SIDES transformation · · · · · · · · · · · · · · · · · · · · 129

Apply the SIDES transformation · · · · · · · · · · · · · · · · · · · · · · 130

Open the Propagate Lines dialog with the icon in the toolbar · · · · · · · · 131

Select Line 12 to propagate · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 132

Add the stator’s outer boundary · · · · · · · · · · · · · · · · · · · · · · 133

Open the New Line dialog from the Data Tree · · · · · · · · · · · · · · · · · · 134

Add the data for Line 14 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135

Add points for the straight side of the rotor · · · · · · · · · · · · · · 137

Data for points at bottom edge of rotor · · · · · · · · · · · · · · · · · · · · · · · 137

Open the New Point dialog from the data tree · · · · · · · · · · · · · · · · · · 137

Add the data for the points · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 138

Add the line for the rotor side with point numbers · · · · · · · · · 140

Open the New Line dialog from the Data Tree · · · · · · · · · · · · · · · · · · 141

Enter the points for Line 15 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 142

Extrude Line 15 with the SIDES transformation · · · · · · · · · · · 143

Contentsviii

Page 5: Tutorial Induction Machine Geometry

Open the Extrude Lines dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 143

Select Line 15 to extrude· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 145

Add the first section of the stator’s inner boundary · · · · · · · · · 147

Open the New Line dialog with the icon in the toolbar · · · · · · · · · · · · · 147

Save your work · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 150

9 Control the mesh density: Mesh_Point and

Mesh_Line 151

Notes about this mesh· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151

Mesh requirements in the airgap · · · · · · · · · · · · · · · · · · · · · 152

Change to the Mesh context· · · · · · · · · · · · · · · · · · · · · · · · · 152

Mesh context toolbars · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 154

Add the mesh points · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 156

Open the New Mesh Point dialog· · · · · · · · · · · · · · · · · · · · · · · · · · · · 157

Add the data for the first mesh point (MRTOP) · · · · · · · · · · · · · · · · · · 158

Add the other mesh points· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 160

Assign the mesh points · · · · · · · · · · · · · · · · · · · · · · · · · · · · 163

Points for the MSBOT mesh point · · · · · · · · · · · · · · · · · · · · · · · · · · · 163

Open the Assign Mesh Point dialog · · · · · · · · · · · · · · · · · · · · · · · · · · 164

Select the points and assign the MSBOT mesh point · · · · · · · · · · · · · · 165

Assign the MRTOP mesh point · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 166

Assign the MAIRGAP mesh point · · · · · · · · · · · · · · · · · · · · · · · · · · · · 168

Assign the MSOD mesh point · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 173

Assign the MRID mesh point · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 174

Add a Mesh Line · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 177

Contents ix

Open the Add Mesh Line dialog· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 177

Add the data for the MLRBOT mesh line· · · · · · · · · · · · · · · · · · · · · · · 178

Assign MLRBOT to the rotor bar bottom· · · · · · · · · · · · · · · · · 180

Open the Assign Mesh Line dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · 180

Select the lines and assign the MLRBOT mesh line · · · · · · · · · · · · · · · 182

10 Complete the geometry 185

Add a transformation to duplicate the stator slot · · · · · · · · · · 185

Open the New Transformation dialog· · · · · · · · · · · · · · · · · · · · · · · · · 185

Add the data for the SDUPLI transformation· · · · · · · · · · · · · · · · · · · · 187

Use SDUPLI to create the other slots· · · · · · · · · · · · · · · · · · · 188

Open the Propagate Faces dialog · · · · · · · · · · · · · · · · · · · · · · · · · · · 190

Enter the data for the propagation · · · · · · · · · · · · · · · · · · · · · · · · · · 192

Add lines for the stator’s inner boundary · · · · · · · · · · · · · · · · 195

Open the New Line dialog with the icon in the toolbar · · · · · · · · · · · · · 195

Add other sections of the stator’s inner boundary · · · · · · · · · · 198

Open the Propagate Lines dialog· · · · · · · · · · · · · · · · · · · · · · · · · · · · 198

Select the line and complete the propagation · · · · · · · · · · · · · · · · · · · 199

Close the top of the stator’s inner boundary· · · · · · · · · · · · · · 201

Open the New Line dialog with the icon in the toolbar · · · · · · · · · · · · · 201

Add the data for the line · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 202

Add a transformation to duplicate the rotor bar · · · · · · · · · · · 204

Open the New Transformation dialog· · · · · · · · · · · · · · · · · · · · · · · · · 204

Add the data for the RDUPLI transformation· · · · · · · · · · · · · · · · · · · · 205

Contentsx

Page 6: Tutorial Induction Machine Geometry

Use RDUPLI to duplicate the rotor bar · · · · · · · · · · · · · · · · · · 207

Open the Propagate Faces dialog with the icon in the toolbar · · · · · · · · 207

Select the bar face · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 208

Add the data to complete the propagation · · · · · · · · · · · · · · · · · · · · · 209

Close the airgap · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 211

Open the New Line dialog with the icon · · · · · · · · · · · · · · · · · · · · · · · 211

Add the line at the bottom of the model · · · · · · · · · · · · · · · · · · · · · · 212

Add the line at the top of the model · · · · · · · · · · · · · · · · · · · · · · · · · 214

Construct the remaining faces for the geometry · · · · · · · · · · 216

Save your problem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 218

11 Generate, verify and save the mesh 219

Change to the Mesh context· · · · · · · · · · · · · · · · · · · · · · · · · 219

Generate the mesh · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 221

Mesh the Lines · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 221

Mesh the Faces· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 222

Save the mesh · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 225

Close the project · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 226

Close Preflux 2D · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 228

12 Enter the materials 231

Open the materials database (CSLMAT)· · · · · · · · · · · · · · · · · 232

Create the iron material (nonlinear steel) · · · · · · · · · · · · · · · 233

Create the aluminum material · · · · · · · · · · · · · · · · · · · · · · · 243

Contents xi

13 Model an external circuit with ELECTRIFLUX 245

Overview of the circuit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 245

Start ELECTRIFLUX · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 247

Open a new circuit problem · · · · · · · · · · · · · · · · · · · · · · · · · 249

ELECTRIFLUX toolbar · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 251

ELECTRIFLUX menus · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 252

File menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 252

Edit menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 252

View menu· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 253

Circuit menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 253

Sheet menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 254

Window menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 254

? (Help) menu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 254

Change the size of the sheet · · · · · · · · · · · · · · · · · · · · · · · · 255

Add the coils to the circuit · · · · · · · · · · · · · · · · · · · · · · · · · · 259

Place the coil components on the sheet · · · · · · · · · · · · · · · · · · · · · · · 261

Rotate the coils for proper orientation of the hot point· · · · · · · · · · · · · 265

Add the resistors to the circuit · · · · · · · · · · · · · · · · · · · · · · · 268

Place the 3 resistors on the sheet · · · · · · · · · · · · · · · · · · · · · · · · · · · 270

Rotate the resistors· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 271

Add the inductors to the circuit · · · · · · · · · · · · · · · · · · · · · · 273

Place the 3 inductors on the sheet · · · · · · · · · · · · · · · · · · · · · · · · · · 275

Rotate the inductors · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 276

Add the voltage sources to the circuit · · · · · · · · · · · · · · · · · · 278

Contentsxii

Page 7: Tutorial Induction Machine Geometry

Place the voltage sources on the sheet · · · · · · · · · · · · · · · · · · · · · · · 280

Rotate the voltage sources· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 280

Add the squirrel cage to the circuit · · · · · · · · · · · · · · · · · · · · 282

Save your circuit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 285

Connect the circuit components (wire the circuit) · · · · · · · · · · 286

Rename components· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 290

Analyze the circuit · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 291

Save and close the circuit file · · · · · · · · · · · · · · · · · · · · · · · · 293

Close ELECTRIFLUX· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 295

Contents xiii

About this document

Welcome to Preflux 9.2!

This chapter includes some general information about this document, along with a very briefintroduction to Preflux, the all-new preprocessor for both Flux2D and Flux3D.

About Preflux 9.2

Preflux 9.2 is the new preprocessor for Flux. Below is a very brief description of the new FluxSupervisor and the Preflux interface. More detailed information is presented in Chapter 1.

The New Supervisor

The new Supervisor for Preflux 9.2 organizes all the modules for both Flux2D and Flux3D.

xv

Introduction

Page 8: Tutorial Induction Machine Geometry

In addition, the Supervisor includes a directory manager and a project manager for all your Fluxproject files, along with My programs, shortcuts to other programs.

See also the online User's Guide for a complete description of the new Flux Supervisor.

About Preflux 9.2 About this document

xvi

New Flux Supervisor (for 2D and 3D)

The Preflux window

The following figure shows the Preflux window.

Preflux includes all the commands you will use to create the model geometry, the mesh, andphysical model.

About this document About Preflux 9.2

xvii

Preflux window (with complete geometry)

Page 9: Tutorial Induction Machine Geometry

Interaction with the program

Flux is essentially an object-oriented relational database. To create a geometric model, therefore,you add items (entities) to the database with which to build the model. These items may begeneral tools such as parameters, coordinate systems, or transformations, or specific items suchas points and lines, or mesh points and lines.

Dialog boxes

Preflux 9.2 features an all-new, completely Windows-based interface, so most actions areperformed through input in dialog boxes.

The following figure, for example, shows the screen with the blank dialog box open and ready tocreate the first parameter.

Interaction with the program About this document

xviii

Ready to add a new parameter

The following figure shows only the dialog box, along with the data entered for the firstparameter.

After you click OK to enter the data, most dialog boxes reopen automatically, for you tocontinue adding the same kind of entity. They will reopen until you close them. The followingfigure shows the new dialog box after the first parameter has been created.

About this document Interaction with the program

xix

New dialog, after adding the first parameter

Dialog box with input to create the first parameter (AIRGAP)

Page 10: Tutorial Induction Machine Geometry

To close a dialog, click the button or choose Cancel:

Format for user input

Interaction with the program is presented in the two-column format shown below.

� Prompts, dialog fields or responses from the program are shown in the first (shaded) column.

� The information you input or the actions you perform are shown in the right (white)column.

For instance, the following command sequence shows what you input to create the firstparameter for the problem (AIRGAP):

Field Input

Name of Parameter AIRGAP

Comment width of the airgap

Algebraic expression for the

parameter

0.25

OK

Interaction with the program About this document

xx

Closing the New parameter dialog after adding the last

parameter

Activate commands

You can activate most commands in several ways. Most commands open dialog boxes, asdescribed previously. To activate commands (open dialog boxes), you can use icons from thetoolbar, select commands from the menu, or use items in the Data Tree.

Use the toolbar buttons

You can activate most commands by selecting the appropriate icon from the toolbar button. Forexample, the icons to add (create) new items all include a yellow * symbol, as shown below:

The New Geometric Parameter dialog can be opened with the fourth of the Add buttons, thebutton:

Program Input

click

About this document Activate commands

xxi

Add icons (Geometry context)

Page 11: Tutorial Induction Machine Geometry

Use the menu

All commands and dialog boxes can be opened from the menu.

For example, to open the New parameter dialog, choose Geometry, Geometric Parameter, Newto open the New parameter dialog:

Program Input

Geometry

Geometric Parameter

New

Activate commands About this document

xxii

Use the data tree

You can also click on items in the data tree to open context menus containing commands mostfrequently used.

Right click on Geometric Parameter and choose New from the context menu, as shown below:

Program Input

Right click Geometric Parameter

New

About this document Activate commands

xxiii

Page 12: Tutorial Induction Machine Geometry

Selecting items from the graphics display

All the items you add to the database are automatically numbered for reference. For example, theAIRGAP parameter is assigned the Parameter Number 2 by Flux (the default parameter, PI, isnumber 1).

You can use these reference numbers to select items; for example, when you are creating a line,you need to select and enter specific points. If you know the reference numbers for the points,you can type those numbers into the dialog fields.

However, for most actions, you can select items from the graphics screen. The following figureshows the new line dialog, with the Point field activated, that is, ready for the input of thestarting point. When a field is activated, it is filled with light blue, as shown:

Selecting items from the graphics display About this document

xxiv

Ready to enter the starting point of a line segment

When a field is activated, you can select items from the graphics screen. The figure below showsPoint 4 being selected to add the first line for the stator slot. Note that 3 is shown in the"Starting point" field of the dialog.

About this document Selecting items from the graphics display

xxv

Creating the first line of the stator slot

Page 13: Tutorial Induction Machine Geometry

As the point is selected, the item number is displayed in the field, as shown in the followingfigure:

You can also type the item number (point number, in this case) into the dialog field.

Selecting items from the graphics display About this document

xxvi

Point 3 selected as starting point of a straight line

The creation of Line 1 is shown in the following dialog and command sequence:

You must enter or verify the information in the New Line dialog as follows:

Program Input

Type of Line Segment defined by Starting and Ending Points

Point defining segment

Starting Point 3

Ending Point 4

About this document Selecting items from the graphics display

xxvii

Dialog box to create Line 1, side of stator slot

Page 14: Tutorial Induction Machine Geometry

As soon as you choose Point 4, the line will be added and the dialog will close momentarily:

The dialog will then reopen. To stop adding lines, close the New Line dialog with or Cancel.

Program Input

Starting Point Cancel

Notes for experienced/new users

If you are an experienced user of Flux, you may want to look carefully at Chapter 1, theorientation to Flux 9.2, to see the changes in the new interface.

If you are new to Flux2D, we recommend that you read and work through the complete text ofthis tutorial.

Notes for experienced/new users About this document

xxviii

Line 1 added to the problem database

Get started with Preflux 9.2

Start Flux 9.2

From the Windows Taskbar, select Start, All Programs, Cedrat (or your Flux2D installationdirectory) and Flux 9.2:

1

Chapter 1

Starting Flux 9.2

Page 15: Tutorial Induction Machine Geometry

The new Flux Supervisor

The Supervisor window will open:

The Supervisor is organized into three basic areas:

� the Program manager

� the Directory manager

� the Project manager

The new Flux Supervisor Get started with Preflux 9.2

Chapter 12

Flux 9.2 Supervisor

Program manager

The Program manager lists and launches all the Flux modules (Geometry & Physics, Circuit,etc.), as well as a Dos shell and the Explorer:

Get started with Preflux 9.2 The new Flux Supervisor

Chapter 1 3

Program manager

Page 16: Tutorial Induction Machine Geometry

You can start any module by double clicking on its name in the program manager:

You can switch from Flux2D to Flux3D or Flux for skewed applications by selecting theappropriate tab at the bottom of the modules list:

In the My programs area, below the module tree, there are shortcuts to the Dos Shell and theExplorer.

You can add shortcuts to other programs. Right click on System tools or anywhere inside thearea and choose Add programs:

The new Flux Supervisor Get started with Preflux 9.2

Chapter 14

Adding shortcuts to My programs

Starting the Circuit module from the Program manager

Directory manager

The Directory manager shows your computer's complete directory, and if a completed project isselected, a preview of the geometry is displayed. If no project is selected, the "FluxView" icon isdisplayed.

Get started with Preflux 9.2 The new Flux Supervisor

Chapter 1 5

Directory manager and preview of

geometry

Page 17: Tutorial Induction Machine Geometry

Project manager

The project manager displays all your Flux projects.

If this is your first use of Flux, this area will be empty.

The new Flux Supervisor Get started with Preflux 9.2

Chapter 16

Flux projects (working directory)

In the Program manager, check that the Flux2D tab is on top. If you are not sure, look at the top of the Supervisor's program manager area:

Get started with Preflux 9.2 The new Flux Supervisor

Chapter 1 7

2D Standard version (for general use)

Page 18: Tutorial Induction Machine Geometry

Open Preflux 9.2

To open Preflux 9.2, in the Program manager in the Construction folder, double click Geometry& Physics.

Program Input

Double click Geometry & Physics

Open Preflux 9.2 Get started with Preflux 9.2

Chapter 18

Get started with Preflux 9.2 Open a new project

Chapter 1 9

The main Preflux window will open.

In the Preflux window there are three main menus, Project, View, and ? (Help), but to see thecomplete set of Preflux Geometry and Mesh commands, you must open a new project.

Open a new project

Using the icon in the toolbar

To create a new Flux project, click the icon in the toolbar:

Program Input

click

Preflux window

Page 19: Tutorial Induction Machine Geometry

Using the menu

If you prefer, choose Project, New from the menu:

Program Input

Project

New

The Preflux 9.2 project window will open, as described in the following section.

� The Project window opens in the Geometry context by default. The Geometry icon

over the Data Tree will be depressed, as shown in the following figure.

Open a new project Get started with Preflux 9.2

Chapter 110

Preflux 9.2 project window

The Preflux 9.2 project window, like those of other Flux programs, is divided into three mainareas.

� Graphics display

� Problem data tree

� Console window

Graphics display

The largest is the Graphics display area, which (by default) occupies most of the screen.However, you can resize the different areas of the screen and, if you wish, you can hide the datatree, the command line, and/or the Console window.

Get started with Preflux 9.2 Preflux 9.2 project window

Chapter 1 11

Preflux 9.2 project window (showing complete geometry)

Page 20: Tutorial Induction Machine Geometry

Toolbar

The toolbar along the top includes project management icons (New, Open, Save), as well asspecial icons for display, selection, creation, and manipulation of geometric and mesh entities.

The following figure shows the Project, Undo, New, Propagate, Extrude, and Assign iconsavailable in the Geometry context:

The following figure shows the Check, View, and Select sets of icons:

The following figures identify the Geometry toolbar icons:

Preflux 9.2 project window Get started with Preflux 9.2

Chapter 112

Toolbar (Geometry context): Project, New, Propagate, Extrude, Assign icons

Toolbar (Geometry context): Check, View, Select icons

The data tree

The data tree, on the left side of the screen, displays all the problem data in a tree structure. Forexample, you can see all the geometric parameters in a model, as shown in the following figure.

Get started with Preflux 9.2 Preflux 9.2 project window

Chapter 1 13

Parameters list in problem Data Tree

Page 21: Tutorial Induction Machine Geometry

The Data tree displays the individual entries that are expanded using the key in the tree.

You can select multiple items from the Data tree. Click the first item, hold down the Shift key,and select the other items.

Console Window

Across the bottom of the screen is the Console or Text output window, which displays a textrecord of program responses. This record is saved in a log file (Preflu2D.log). In addition, thecommands entered as saved as a “spy” file (Preflu2D.py), as in earlier versions of Flux.

You can use spy files and Python commands to automate the execution of repetitive commandsequences, for example, to create and position sets of objects.

Preflux 9.2 project window Get started with Preflux 9.2

Chapter 114

Selecting points7-10 from the list in the Selection tree

Command Line

Directly below the graphics area and the console window status area is the Python bar orcommand line. You must first click on the expansion arrow to reveal the command line.

You can run Flux by entering Python commands in this line.

Preflux 9.2 project commands and functions

Below are brief descriptions of the commands and options shown in the Preflux project window.

Windows menu commands

The Windows menu commands are located in the menu bar across the very top of the Prefluxwindow.

Get started with Preflux 9.2 Preflux 9.2 project commands and functions

Chapter 1 15

Python command line revealed below console window

Page 22: Tutorial Induction Machine Geometry

Project menu

The Project menu is shown below:

Within the Project menu are commands to manage projects, spy files and command files.

Application menu

With the Application menu, you can select the type of physical model you are building. Inprevious versions of Flux, this was done in a separate application (prophy).

View menu

The View menu includes commands to enlarge the Graphics area or a selected area of the display,as well as to shift the perspective of the graphics display.

Preflux 9.2 project commands and functions Get started with Preflux 9.2

Chapter 116

Display menu

The Display menu allows you to select which elements of your model you would like to display.

Select menu

The Select menu allows you to choose which item of your model you want to “pick” using themouse:

Get started with Preflux 9.2 Preflux 9.2 project commands and functions

Chapter 1 17

Page 23: Tutorial Induction Machine Geometry

Geometry menu

The Geometry menu is used to create, edit and delete the different elements of the model. Forexample, new points and lines can be created. In addition, operations on the various elements canbe performed, such as transformations and extrusion.

Preflux 9.2 project commands and functions Get started with Preflux 9.2

Chapter 118

Using the Geometry menu to add a new

Coordinate system.

Using the Geometry menu to propagate points

Mesh menu

Within the mesh menu are commands for managing the elements required for generating a mesh.This includes creating and assigning mesh points, mesh lines and mesh generators.

Physics menu

The physics menu contains operations required to define the physical model of the problem. Thisincludes defining the model symmetries and defining and assigning materials to the variousregions of the model.

Get started with Preflux 9.2 Preflux 9.2 project commands and functions

Chapter 1 19

Using the Mesh menu to create a mesh line

Using the Physic menu to add a new material.

Page 24: Tutorial Induction Machine Geometry

Tools menu

Included in the Tools menu is the Undo command, to revert the project to a previous state.There are also commands to define and use custom colors in your model.

Help menu

The Help menu provides access to the online help for Flux, including a searchable index andlinks to the complete User’s Guide and other manuals.

Preflux 9.2 project commands and functions Get started with Preflux 9.2

Chapter 120

A selection from the online Help is shown here:

Get started with Preflux 9.2 Preflux 9.2 project commands and functions

Chapter 1 21

Page 25: Tutorial Induction Machine Geometry

Take time to explore

Take a few minutes to look at the menus and the icons in the Preflux project window.

For instance, as you move your mouse over the icons, you will see labels that identify them:

You will begin the model by creating parameters to define basic dimensions of the motorgeometry.

Take time to explore Get started with Preflux 9.2

Chapter 122

Preflux project window

Create the motor parameters

The model of the motor

The model is based on a 4-pole, 3-phase, 36-slot, 28-bar induction motor. Because of the motor’speriodicities, we will model only ¼ of it (1 pole). Our model, therefore, consists of 9 stator slotsand 7 rotor bars. The airgap is set to 0.25 mm.

The following figure is a diagram of the model, showing its structure and dimensions.

23

Chapter 2

Model of the problem (all dimensions in mm)

Page 26: Tutorial Induction Machine Geometry

This tutorial will show you how to construct the geometry and create the mesh for one pole ofthis induction motor. To simplify the process, you will begin by creating parameters andcoordinate systems for the model. Then you will create the first stator slot and the first rotor bar.Both the geometry and mesh of the remaining stator slots and rotor bars will be created bypropagation.

The following figure is a diagram of the model as you will construct it in Preflux2D:

Overview: Defining parameters

You will begin the motor geometry by defining parameters to represent dimensions of variousparts of the motor.

There are several reasons to use parameters. First of all, parameters simplify problem entry. Also,identifying dimensions with names makes modifications much easier. For instance, entering thewidth of the airgap as a parameter means you can change the size of the airgap in one step, inonly a few seconds, and Preflux 9.2 will automatically update the entire model. Without theairgap parameter, to change the width of the airgap would require redefining the coordinates ofevery point in the airgap, redrawing every adjacent line, and so on. Parameters also allow you tomodify the scale of a geometry through their relationship with coordinate systems.

Overview: Defining parameters Create the motor parameters

Chapter 224

Model to be constructed in Preflux2D

Attributes of parameters

Parameters are defined with three attributes:

1. name (an abbreviated label)

2. comment (an optional concise description), and

3. mathematical expression (a value or formula).

Parameter names may be up to 80 characters long but must not include spaces or specialcharacters, such as & @ %.

Comments describe briefly what the parameter represents and may be up to 80 characters long.(Comments are optional.)

The following are valid in terms of mathematical expression:

a. Constantb. Arithmetic operators (+,-,*,/,**)c. Arithmetic functions (SQRT, LOG, SIN, etc.)d. Other parameterse. Combinations of any of these

Parameters and measurement units

Please note that parameters are independent of any unit of measurement. In other words, thenumerical value entered for a parameter is not changed when the unit of measurement is changed.Any measurement unit associated with a parameter derives from the coordinate system in whichthe parameter is used.

For example, a parameter may be defined with a value of 10 and used in a coordinate system withmillimeters as units of measurement. This parameter’s value will still be 10 if the coordinatesystem’s units are changed to inches or meters or any other available unit. Thus, when you useparameters, you can also modify the scale of a geometric feature without reentering each point oritem.

Create the motor parameters Overview: Defining parameters

Chapter 2 25

Page 27: Tutorial Induction Machine Geometry

Define the first parameter: The airgap width

Your project window should be open in the Geometry context, as shown in the following figure:

Open the New parameter dialog

Using the icon in the toolbar

Open the New parameter dialog by clicking the New Parameter icon in the toolbar:

Screen Input

click

Define the first parameter: The airgap width Create the motor parameters

Page Chapter 226

Ready to add parameters

Using the menu

If you prefer, choose Geometry, Geometric Parameter, New from the menu:

Program Input

Geometry

Geometric Parameter

New

The New parameter dialog will open:

Create the motor parameters Define the first parameter: The airgap width

Chapter 2 Page 27

New parameter dialog box

Page 28: Tutorial Induction Machine Geometry

Enter the data for the AIRGAP parameter

You will need to enter a name, a comment (if you wish) and the algebraic expression (or value)for the parameter.

The Name field shows the default parameter name, ParameterGeom_1. When you type in thename, you can type in upper or lower case. Once the parameter is created, the name will bestored and displayed in uppercase letters: AIRGAP. The same behavior is true for the commentfield.

If you wish, you can use the TAB key to move from one field to the next, and then press theENTER key or click OK to complete the data entry for the parameter.

The following figure shows the New parameter dialog with the information needed to define theAIRGAP parameter:

Enter the information for the AIRGAP parameter as follows:

Program Input

Name of Parameter(PARAMETRE_GEOM1)

AIRGAP

Comment width of the airgap

Definition

Algebraic expression for the

parameter

0.25

OK

When you click OK, the dialog will close and the AIRGAP parameter will be added to thedatabase.

Define the first parameter: The airgap width Create the motor parameters

Chapter 228

Creating the AIRGAP parameter

Notice that the Console window displays a message confirming the creation of the AIRGAPparameter:

Click the next to Geometric parameters in the Data Tree to see the parameters:

Create the motor parameters Define the first parameter: The airgap width

Chapter 2 29

AIRGAP parameter in data tree

AIRGAP, ParameterGeom(2), created

Page 29: Tutorial Induction Machine Geometry

The New parameters dialog will open again, ready for you to add another parameter. Your screenshould resemble the following figure:

The dialog reopens with a new default parameter name (AIRGAP_1).

Define the first parameter: The airgap width Create the motor parameters

Chapter 230

Ready to add another parameter

Ready to define second parameter

Define the second parameter

The second parameter is SOD, the stator's outer diameter, with a value of 170.

Click on the New parameters dialog to activate it (if necessary), and enter the information asfollows:

Program Input

Name of Parameter (AIRGAP_1) SOD

Comment outer diameter of the stator

Definition

Algebraic expression for the parameter

170

OK

Your dialog should look like the one shown below:

Again, when you click OK, the SOD parameter is created, and the dialog will close.

Create the motor parameters Define the second parameter

Chapter 2 31

SOD, parameter for stator's outer diameter

Page 30: Tutorial Induction Machine Geometry

The New parameters dialog will open again, as before.

It will re-open after every parameter until you close it.

Define the second parameter Create the motor parameters

Chapter 232

Ready to add another parameter

Define the remaining parameters for the motor

Now define the other parameters for the motor. Use the following table as a guide to enter theinformation for the parameters. Each row of the table presents the information needed to defineone parameter. You have already entered the information to define the first two parameters,AIRGAP and SOD, so those rows of the table are cross-hatched.

Motor parameters

Number Name Comment Expression

2 AIRGAP width of the airgap 0.25

3 SOD outer diameter of stator 170

4 SID inner diameter of stator 117

5 SSHEIGHT height of stator slot 13

6 SSOPEN stator slot opening 3.8

7 SSBR bottom radius of statorslot

3.6

8 RBHEIGHT height of rotor bar 18

9 RBTOPR top radius of rotor bar 2.75

10 RBBOTR bottom radius of rotorbar

1.15

11 ROD outer diameter of rotor 116.5

12 TOPRB location of top of rotor bar

110.26

13 RID inner diameter of rotor 38

� The expression for a parameter must not contain any spaces!

Create the motor parameters Define the remaining parameters for the motor

Chapter 2 33

Page 31: Tutorial Induction Machine Geometry

After the last parameter (RID) is entered, and the New parameters dialog opens again, close it:

You can click the button or choose Cancel.

Program Input

Name of Parameter (RID_1) Cancel

Define the remaining parameters for the motor Create the motor parameters

Chapter 234

Closing the New Geometric Parameter dialog to stop adding

parameters

Your screen should resemble the following figure:

Create the motor parameters Define the remaining parameters for the motor

Chapter 2 35

Parameters entered

Page 32: Tutorial Induction Machine Geometry

Notice all the parameters listed in the data tree:

Notice, too, that as you move your cursor over the parameter names, the comments are displayedto help you identify the parameters.

Define the remaining parameters for the motor Create the motor parameters

Chapter 236

Parameters in data tree

Save your problem

Before you continue, save your problem.

Using the icon in the toolbar

Click the Save icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Project, Save from the menu:

Program Input

Project

Save

Create the motor parameters Save your problem

Chapter 2 37

Page 33: Tutorial Induction Machine Geometry

The "Save" Flux project dialog will open.

Your current project directory (working directory) will be displayed in the first field at the top,"Save in:" .

If you want to save to another directory, click the and browse to the directory you wish (forexample, ours is called "Flux_Work"). Then enter a name for your project and click Save. (Enterany name you wish. We show Ind_Motor only as an example).

Save your problem Create the motor parameters

Chapter 238

Saving project for the first time

To save a project (first save)

To save the problem to the directory you have chosen, proceed as follows:

Program Input

Save in: Flux_Work [or your workingdirectory]

File Name: Ind_Motor

Save

The Console will display a message that your project has been saved:

Next, you will create coordinate systems for the motor.

Create the motor parameters Save your problem

Chapter 2 39

Project saved for the first time

Page 34: Tutorial Induction Machine Geometry

Create coordinate systems for themotor

Overview: Using coordinate systems

All geometric features must be defined with respect to a coordinate system, either the defaultXY1 system or a user-defined coordinate system. With a user-defined system you can save timeby defining only small parts of the geometry and then duplicating and positioning these parts tocomplete the model. This problem features a periodic structure, so through user-definedcoordinate systems, you can create most of the geometry by duplicating one stator slot and onerotor bar. You also save time if you want to modify the geometry later, because several types ofchanges can be made by modifying the coordinate system.

Coordinate systems are defined with the following attributes:

1. name (an abbreviated label)

2. comment (concise description)

3. definition of system (global or local)

4. coordinate system of definition (for local systems)

5. type of coordinates (Cartesian, etc.)

6. the coordinates of the origin (values)

7. the orientation of the axes (values)

8. the unit of length (for global systems), and

9. the unit of angle (for global systems).

41

Chapter 3Data for the coordinate systems

The following tables summarize the data for the coordinate systems.

Stator coordinate systems

Name Comment System Defined in Type X Y theta-Z

STATMAINMain statorcoordinatesystem

2D_GLOBALCartesian2D

0 0 0

STATWORKWorking system for stator

LOCAL STATMAINCartesian2D

0 0 5

STATLOCLocal statorsystem

LOCAL STATWORKCartesian2D

SID/2 0 0

Rotor coordinate systems

Name Comment System Defined in Type X Y theta-Z

ROTMAINMain rotorcoordinatesystem

2D_GLOBALCartesian2D

0 0 0

ROTWORKWorking system for rotor

LOCAL ROTMAINCartesian2D

0 090/(7*2)

ROTLOCLocal systemfor rotor

LOCAL ROTWORKCartesian2D

TOPRB/20 0

Add a global coordinate system for the stator

Begin by defining a global coordinate system (STATMAIN) for the stator. This systemestablishes the orientation of the stator as a whole.

A global coordinate system such as STATMAIN is independent; it is not defined within ordependent on any other coordinate system. A local coordinate system, however, must be definedwithin an existing system and therefore is dependent on the existing system. Local coordinatesystems may be defined within a global system or within other existing local coordinate systems.

Types of coordinates include Cartesian and cylindrical.

Data for the coordinate systems Create coordinate systems for the motor

Chapter 342

Page 35: Tutorial Induction Machine Geometry

Open the New Coordinate System dialog box

Using the icon in the toolbar

To open the New Coordinate system dialog, click the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Coordinate System, New from the menu.

Program Input

Geometry

Coordinate System

New

Create coordinate systems for the motor Add a global coordinate system for the stator

Chapter 3 43

The New Coordinate System dialog will open:

Add the STATMAIN global coordinate system

To define the STATMAIN coordinate system, enter or verify the information as follows:

Program Input

Name of Coordinate System(REPERE1)

STATMAIN

Comment main stator coordinate system

Definition

Type of Coordinate System Cartesian

Add a global coordinate system for the stator Create coordinate systems for the motor

Chapter 344

New Coordinate System dialog

Page 36: Tutorial Induction Machine Geometry

Program Input

Defined with respect to theGlobal or a Local CoordinateSystem

Global

After you select Global, the dialog will display different fields:

Create coordinate systems for the motor Add a global coordinate system for the stator

Chapter 3 45

Adding the STATMAIN coordinate system

Enter or verify the information in the dialog as follows:

Program Input

Length Unit MILLIMETER

Angle Unit DEGREE

Origin of the Coordinate System

Formula or Value

Origin: first component 0

Origin: second component 0

Rotation Angle about Z axis(Angle Unit of CoordinateSystem)

0

OK

When you click OK, the STATMAIN coordinate system will be added, and the dialog will closemomentarily.

Add a global coordinate system for the stator Create coordinate systems for the motor

Chapter 346

Page 37: Tutorial Induction Machine Geometry

The New Coordinate System dialog will open again. Your screen should resemble the followingfigure:

Create coordinate systems for the motor Add a global coordinate system for the stator

Chapter 3 47

STATMAIN coordinate system added to the database

Add the remaining coordinate systems

The rotor is also represented with three separate coordinate systems. The first applies to theentire rotor geometry, while the remaining two apply to the rotor bar geometry. For thisproblem, we use two global coordinate systems for the machine (one for the stator and one forthe rotor) in order to study the eccentricity effect. Otherwise, a common global coordinatesystem could be used for both the stator and the rotor.

The following figures show the information for each coordinate system. After entering theinformation as shown, click the OK button. The dialog will briefly close and reopen, ready forthe next coordinate system definition. Be careful that you correctly select a Global or Localcoordinate system and, if Local, the coordinate system it is based on.

Add the remaining coordinate systems Create coordinate systems for the motor

Chapter 348

To add ROTMAIN coordinate system

Page 38: Tutorial Induction Machine Geometry

Add the ROTWORK coordinate system

Create coordinate systems for the motor Add the remaining coordinate systems

Chapter 3 49

To add the local ROTWORK system

Add the ROTLOC system

Add the remaining coordinate systems Create coordinate systems for the motor

Chapter 350

Adding the ROTLOC coordinate system

Page 39: Tutorial Induction Machine Geometry

Add the STATWORK coordinate system

Create coordinate systems for the motor Add the remaining coordinate systems

Chapter 3 51

To add STATWORK coordinate system

Add the STATLOC coordinate system

Add the remaining coordinate systems Create coordinate systems for the motor

Chapter 352

To add STATLOC local coordinate system to the database

Page 40: Tutorial Induction Machine Geometry

When the New Coordinate System dialog opens again, close it with the button or bychoosing Cancel:

Program Input

Name of Coordinate System(STATLOC_1)

Cancel

Create coordinate systems for the motor Add the remaining coordinate systems

Chapter 3 53

Closing the New Coordinate System dialog

To see the complete list of coordinate systems, click the next to Coordinate System in thedata tree:

Add the remaining coordinate systems Create coordinate systems for the motor

Chapter 354

Coordinate systems in data tree

Page 41: Tutorial Induction Machine Geometry

Define Periodicity

In previous versions of Flux, you needed to specify boundary conditions. With Flux 9.2,boundary conditions are automatically created based on symmetry and periodicity.

Since we are modeling one quarter, or 90 degrees, of the model, we need to define a periodicityreflecting this. Select the icon from the toolbar to create a new periodicity.

Program Input

Click

The New Periodicity dialog opens.

Proceed as follows:

Program Input

Geometrical type of theperiodicity

Rotation about Z axis withnumber of repetitions

Repetition number of theperiodicity about Z

4

Offset angle with respect tothe X line

0

Create coordinate systems for the motor Define Periodicity

Chapter 3 55

Defining a periodicity for the induction motor

Physical aspects of periodicity Odd (anticyclic boundaryconditions)

OK

Save your problem

Using the icon in the toolbar

Save your problem now (if you wish) by clicking the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Project, Save from the menu.

Program Input

Project

Save

Save your problem Create coordinate systems for the motor

Chapter 356

Page 42: Tutorial Induction Machine Geometry

Create half of the first stator slot

Now you can use the coordinate systems and parameters to create the initial points and lines ofthe stator geometry.

The geometry can be constructed in many different ways besides the one we present. We createthe geometry in this particular way in order to introduce you to the tools and features you arelikely to use most often.

Notes on creating and displaying points

Points can be created as a set of coordinates in a specified coordinate system, or as an image of anexisting point through a geometric transformation. The points of this problem geometry all useCartesian coordinates. The coordinates can be values, functions, parameters, or any combinationsof these. You will also use several of the stator parameters as the coordinates of the points of thetop half of the first stator slot.

As the points are entered, Preflux 9.2 automatically assigns a reference number to each point.Reference numbers are assigned to all geometric items—in the order in which they are entered.For instance, our first parameter, the AIRGAP, is ParameterGeom(2); the default parameter, PI,as you may recall, is ParameterGeom(1).

You may notice that some of the reference numbers in our figures may not be the same as yours.If you create points or lines in a different order than we use in the text, your reference numberswill be different. Do not be alarmed at this difference. Items may be entered in any order youwish, but it is the order that determines the reference number.

You may wish to use these reference numbers, for example, to select items, but the numbers arenot automatically displayed. To see the reference numbers on your screen, use the Display menu. (You will see how to display the reference numbers later, after you have entered the points.)

Finally, you may notice that as several points are entered, you may not be able to see individualpoints. Use the Zoom All icon whenever you want to see a view of the complete geometry.Use the Zoom Region icon to enlarge a selected area of the screen to see a specific point orfeature. After using Zoom Region, choose Zoom All to restore the full display.

57

Chapter 4Data for the initial points

The following table shows the data for the first four points, which form the upper half of thefirst stator slot. Use the table to enter the information, or work through the complete commandsequence below.

� If you enter the points exactly as they are listed, they will be numbered in this

order, and your screen displays will match those shown in this tutorial.

Coordinates of 4 points of the upper half of the stator slot

Point Coordinate system X coordinate Y coordinate

P1 STATLOC 0 0

P2 STATLOC SSHEIGHT 0

P3 STATLOC 0 SSOPEN/2

P4 STATLOC SSHEIGHT-SSBR SSBR

Add four points for half of the first stator slot

The first four points define the upper half of the first stator slot. These points will be entered as aset of coordinates in the STATLOC coordinate system. Three of the points are defined using the parameters you defined earlier.

The following figure shows these four points:

Data for the initial points Create half of the first stator slot

Chapter 458

Points for upper half of first stator slot

Page 43: Tutorial Induction Machine Geometry

Open the New Point dialog

Using the icon in the toolbar

To add the first point, open the New Point dialog by clicking the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Point, New from the menu.

Program Input

Geometry

Point

New

Create half of the first stator slot Add four points for half of the first stator slot

Chapter 4 59

The New Point dialog will open:

Add the data to create the first point

In the New Point dialog, make sure the "Geometric Definition" tab is on top. Then enter orverify the information as follows:

Program Input

Type of the Point Point defined by its Parametric Coordinates

Coordinate System fordefinition

STATLOC

Local coordinates

Formula or Value

First coordinate 0

Second coordinate 0

OK

Add four points for half of the first stator slot Create half of the first stator slot

Chapter 460

New point dialog

Page 44: Tutorial Induction Machine Geometry

Your dialog should resemble the following figure.

When you click OK, the point will be added. The New Point dialog will close and then reopen.

Create half of the first stator slot Add four points for half of the first stator slot

Chapter 4 61

Information to define Point 1

Your screen should resemble the following figure:

Add four points for half of the first stator slot Create half of the first stator slot

Chapter 462

Point 1 created

Page 45: Tutorial Induction Machine Geometry

The New point dialog box should be open again:

Notice that the dialog displays the coordinates from point 1, and that the Formula or Value fieldfor the First coordinate is active. To create Point 2, you can simply enter the new coordinatesand click OK or press Enter.

� You must press the Enter key to enter point coordinates. If you want to enter the

default coordinate, press Enter. The data will be entered and the next field will be

activated.

Add the data for the next 3 points

The following figures show the dialogs and the coordinate values you must enter to create points2, 3, and 4:

Program Input

Point 2

SSHEIGHT

0

OK

Create half of the first stator slot Add four points for half of the first stator slot

Chapter 4 63

New point dialog—after creation of Point 1

Program Input

Point 3

0

SSOPEN/2

OK

Point 4

SSHEIGHT-SSBR

SSBR

OK

Add four points for half of the first stator slot Create half of the first stator slot

Chapter 464

Page 46: Tutorial Induction Machine Geometry

You will see the four points in your graphics window.

Create half of the first stator slot Add four points for half of the first stator slot

Chapter 4 65

First four points (upper half of stator slot)

When the New Point dialog reopens, close it.

You can click the icon, or choose Cancel.

Program Input

First coordinate Cancel

Add four points for half of the first stator slot Create half of the first stator slot

Chapter 466

Closing the New Point dialog to stop adding points

Page 47: Tutorial Induction Machine Geometry

Your screen should resemble the following figure.

Label the points with their reference numbers

To display the reference numbers for the points you have entered so far, from the menu, chooseDisplay, Display Point Numbers.

Program Input

Display

Display point numbers

Notice that Point is the only active choice now, because you have added only points to thegeometry so far.

Create half of the first stator slot Label the points with their reference numbers

Chapter 4 67

Points 1-4

You should then see the reference numbers for the points on your screen, as shown in thefollowing figure:

These four points define the upper half of the stator slot with respect to the STATLOCcoordinate system. (If you want to remove the point numbers, choose Display, Display pointnumbers.)

Label the points with their reference numbers Create half of the first stator slot

Chapter 468

Points labeled with reference numbers

Page 48: Tutorial Induction Machine Geometry

Using the Edit/Modify command

If you want to see additional information about a specific point or any other geometric item, usethe Edit command from the Geometry menu.

Program Input

Geometry

Point

Edit

The Selection of Point to edit dialog will open for you to select the point to edit or modify. (Wechose Point 1.)

Create half of the first stator slot Using the Edit/Modify command

Chapter 4 69

Choosing Point 1 to edit

The "Edit Point[1]" dialog will open:

Note that the title bar of the dialog includes the number of the point you are editing.

Within this dialog you can make several kinds of changes. You can

� change the coordinate system and coordinates of the point under the Geometric Definitiontab

� see the values of the coordinates in meters and change the "nature" of the point under theGeometric complements tab

� see the surface region (if any) to which the point is assigned under the Region tab

� check or modify the Mesh point (if any) assigned to this point under the Mesh tab, and

� change the color and "visibility" of the point under the Appearance tab.

Look at the other tabs and options in this dialog if you wish.

� Do not make any changes to Point 1 at this time.

Using the Edit/Modify command Create half of the first stator slot

Chapter 470

Editing Point 1

Page 49: Tutorial Induction Machine Geometry

When you are ready to proceed, close the Edit point dialog.

Click the icon or choose Cancel.

Program Input

Edit Point[1]click or Cancel

Next you will draw the first two lines, for the straight side and curved bottom of the slot.

Create half of the first stator slot Using the Edit/Modify command

Chapter 4 71

Closing the Edit Point dialog

A note about selecting items

When you want to select geometric items from the graphics display, you must indicate whichtype of item you want to select by choosing one of the selection icons (shown below).

The Selection icons include an arrow symbol and are located in the toolbar below and to the rightof the ? (Help) menu.

Make sure the Select point icon is depressed.

If you prefer, you can choose Select, Select points from the menu.

Program Input

Select

Select points

The Select Point icon should be depressed now.

Add the first two lines of the stator slot

In Preflux 2D, lines may be drawn as straight segments or arcs of a circle.

You will use two types of line connections for the induction motor geometry: the straight line"Segment defined by Starting and Ending points" for the straight sides of the stator slots, rotorbars and the sides of the stator and rotor; and "Arc defined by its radius, Starting and Endingpoints" for the others.

A note about selecting items Create half of the first stator slot

Chapter 472

Page 50: Tutorial Induction Machine Geometry

The first two lines for the stator slot are (1) a straight line segment between points P3 and P4,and (2) an arc between P2 and P4.

Open the New Line dialog

Using the icon in the toolbar

To open the New Line dialog, click the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Line, New from the menu:

Program Input

Geometry

Line

New

Create half of the first stator slot Add the first two lines of the stator slot

Chapter 4 73

The New Line dialog will open:

Add Line 1

Make sure the Geometric Definition tab is on top.

Then proceed as follows.

Program Input

Type of Line Segment defined by Starting and Ending Points

Points defining segment

Point

Starting Point 3

To enter the starting and ending points, you can either type the point number into the field inthe dialog, or select the point from the Graphics display.

Add the first two lines of the stator slot Create half of the first stator slot

Chapter 474

New Line dialog

Page 51: Tutorial Induction Machine Geometry

The following figure shows Point 4 being selected from the Graphics display:

To complete the first line, select Point 4 as the end point:

Program Input

Ending point 4

As soon as Point 4 is selected, you will see the line in the Graphics display, and the dialog willclose momentarily.

Create half of the first stator slot Add the first two lines of the stator slot

Chapter 4 75

Selecting the ending point (4) for the straight side of the stator slot

The following figure shows Line 1:

When the New Line dialog opens again, close it, because the next line you create must be an arc.

Add the first two lines of the stator slot Create half of the first stator slot

Chapter 476

Closing New Line dialog (after adding Line 1)

Line 1, straight side of stator slot

Page 52: Tutorial Induction Machine Geometry

Add Line 2, the curved bottom of the slot

Line 2 is an arc between points 2 and 4.

� Arcs must be created in a counterclockwise direction, so be sure to choose point

P2 first.

Click the icon again or choose Geometry, Line, New from the menu.

The New Line dialog with data for the arc Line(2) is shown in the following figure:

Create half of the first stator slot Add the first two lines of the stator slot

Chapter 4 77

Adding Line 2 (arc for bottom of stator slot)

Enter or verify the information as follows:

Program Input

Type of Line Arc defined by its radius,

Starting and Ending Points

System Coordinates ...the arcaround 2 ....

STATLOC

Arc radius ssbr

EXTREM_POINTS

Point

Starting point of the arc 2

Ending point of the arc 4

As soon as you select Point 4, you will see Line 2. Cancel the next line dialog when it appears:

Add the first two lines of the stator slot Create half of the first stator slot

Chapter 478

Line 2

Page 53: Tutorial Induction Machine Geometry

Label the lines with their reference numbers

Because you will need to select these lines, label them now. Choose Display, Display LineNumbers from the menu:

Program Input

Display

Display line numbers

You should see the lines labeled:

If you want to remove the line numbers, choose Display, Display line numbers.

In the next chapter, you will create the geometric transformation to make a mirror image of thehalf stator slot and thus complete the first stator slot.

Create half of the first stator slot Label the lines with their reference numbers

Chapter 4 79

Lines 1 and 2 labeled

Save your problem

If you wish, save your problem now. Click the icon in the toolbar.

Program Input

click

Save your problem Create half of the first stator slot

Chapter 480

Page 54: Tutorial Induction Machine Geometry

Complete the first stator slot

In this chapter you will create and apply a geometric transformation to complete the first statorslot. Later you will duplicate the first slot to create the remaining stator slots for the model.

Geometric transformations are especially useful for a repetitive geometry, such as both the statorand rotor in this problem. A transformation can duplicate individual geometric features such aslines, points, or faces. In this chapter you will create a transformation to duplicate the upper halfof the first stator slot.

About transformations

Transformations are created in a way similar to parameters or coordinate systems. Atransformation is defined by the following:

1. name

2. comment

3. type of transformation (e.g., Affine Transformation with respect ... 2 points), and

4. elements defining the transformation, such as center of rotation, vector of translation, orangle of rotation.

As you may recall, the periodicities of the stator slots enable us to simplify the construction ofthe geometry. To complete the first stator slot, you will define a transformation to create amirror image of Lines 1 and 2, the upper half of the slot.

81

Chapter 5Add the SMIRROR transformation

To create a mirror image of the upper half of the stator slot, you must designate the line ofsymmetry between point P1, and the point in the middle of the slot, P2. This line will not bedrawn, but the two points must be selected as part of the affinity-line transformation.

Add the SMIRROR transformation Complete the first stator slot

Chapter 582

Points 1 and 2 designate the line of symmetry for the stator slot

Page 55: Tutorial Induction Machine Geometry

The following figure shows Point 2 being selected to define the symmetry line:

Complete the first stator slot Add the SMIRROR transformation

Chapter 5 83

Point 2 selected to define line of symmetry

Open the New Transformation dialog

Using the icon in the toolbar

To add the SMIRROR transformation, open the New Transformation dialog with the iconin the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Transformation, New from the menu.

Program Input

Geometry

Transformation

New

Add the SMIRROR transformation Complete the first stator slot

Chapter 584

Page 56: Tutorial Induction Machine Geometry

The New Transformation dialog will open:

Add data for the SMIRROR transformation

In the New Transformation dialog, enter or verify the following:

Program Input

Name of Geometric

Transformation

SMIRROR

Comment mirror image of half statorslot

Type of GeometricTransformation

Affine Transformation withrespect to a line defined by 2points

Points for definition ofaffinity line

Point

First point of straight line 1

Second point of straight line 2

Complete the first stator slot Add the SMIRROR transformation

Chapter 5 85

New Transformation dialog (to add SMIRROR)

Program Input

Scaling factor (Example: -1 =line symmetry

-1

OK

When you click OK, the SMIRROR transformation will be added and the dialog will closemomentarily.

Remember, you will not see the line of symmetry on your screen.

When the New Transformation dialog opens again, close it

You can click the button or choose Cancel:

Program Input

Name of the GeometricTransformation (SMIRROR_1)

Cancel

Add the SMIRROR transformation Complete the first stator slot

Chapter 586

Closing the New Transformation dialog

Page 57: Tutorial Induction Machine Geometry

Propagate Lines 1 and 2 with SMIRROR

To apply the SMIRROR transformation, you will need to select Lines 1 and 2 from yourgraphics screen. The following figure shows the lines:

Complete the first stator slot Propagate Lines 1 and 2 with SMIRROR

Chapter 5 87

Lines to be propagated with the SMIRROR transformation

Open the Propagate Lines dialog

Using the icon in the toolbar

Open the Propagate Lines dialog with the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Propagate, Propagate Lines from the menu.

Program Input

Geometry

Propagate

Propagate Lines

Propagate Lines 1 and 2 with SMIRROR Complete the first stator slot

Chapter 588

Page 58: Tutorial Induction Machine Geometry

The Propagate Lines dialog will open:

Select the lines to propagate

If you select the lines from the screen, remember to hold down the Ctrl key to select both linesat the same time.

Complete the first stator slot Propagate Lines 1 and 2 with SMIRROR

Chapter 5 89

Propagate Lines dialog

The following figure shows Line 2 being selected:

Below is the dialog ready to complete the propagation:

Propagate Lines 1 and 2 with SMIRROR Complete the first stator slot

Chapter 590

Propagate Lines dialog for second half of stator slot

Selecting Line 2 for propagation

Page 59: Tutorial Induction Machine Geometry

Enter the following information:

Program Input

Lines to propagate

Lines

1 + Ctrl

2

Transformation for propagation SMIRROR

Number of times to apply thetransformation

1

OK

When you click OK, the lines will be added:

Complete the first stator slot Propagate Lines 1 and 2 with SMIRROR

Chapter 5 91

Second half of stator slot, Lines 3 and 4, created by propagation

The Propagate Lines dialog will reopen.

Close it with the button or Cancel.

Program Input

Lines Cancel

Add a line to close the slot

Add a line to close the outline of the stator slot by connecting points P5 and P3 in our example.(Point P1, you may recall, is used only to specify the line of symmetry.) The line that closes thestator slot outline is a small arc based on the inner diameter of the stator.

Remember, an arc must be entered in the counterclockwise direction, so be sure to select point P5first and then P3.

Add a line to close the slot Complete the first stator slot

Chapter 592

Closing the Propagate Lines dialog

Page 60: Tutorial Induction Machine Geometry

Open the Add Line dialog with the icon in the toolbar

Open the Add Line dialog with the icon in the toolbar.

Program Input

click

The New Line dialog will open.

Make sure the Geometric Definition tab is on top. Then enter the information as follows:

Program Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

Complete the first stator slot Add a line to close the slot

Chapter 5 93

New Line dialog: Line 5 to close the stator slot

Program Input

System Coordinates which orient the arc around a Z axis

STATLOC

Arc radius sid/2

EXTREM_POINTS

Point

Starting point of the arc 5

Ending point of the arc 3

As soon as you choose P3, the line will be added. You should see the complete outline of the firststator slot, as shown in the following figure.

Build the face of the first slot

Now that the outline of the slot is closed, the “face” of the slot can be generated. The facerepresents the surface of the structure and must be constructed in order to generate the mesh.Faces are generated automatically in Preflux.

Build the face of the first slot Complete the first stator slot

Chapter 594

Outline of first stator slot

Page 61: Tutorial Induction Machine Geometry

Using the icon in the toolbar

To build the faces, click the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Face, Build Faces from the menu

Program Input

Geometry

Face

Build Faces

The program will immediately construct the face for the stator slot.

Complete the first stator slot Build the face of the first slot

Chapter 5 95

You will see the face of the slot as shown in the following figure:

The Console window will display a series of messages as the face is constructed; an examplefollows.

Build the face of the first slot Complete the first stator slot

Chapter 596

Text output in Console for building face of stator slot

First stator slot completed

Page 62: Tutorial Induction Machine Geometry

Save your problem

Save your problem by clicking the icon in the toolbar, or by choosing Project, Save from themenu.

Program Input

Project

Save

Next you will begin the rotor geometry.

Complete the first stator slot Save your problem

Chapter 5 97

Begin the rotor geometry

You have already created the rotor parameters and coordinate systems. In this chapter you willcreate points and lines for the top half of the first rotor bar.

Add the first four points for the rotor bar

Because of the symmetry of the rotor bar, you can use a geometric transformation to create amirror image of half of the bar. Therefore, you will define points for only half of the rotor bargeometry.

Define four new points for the top half of the first rotor bar within the ROTLOC coordinatesystem. The table below shows the information needed to define these four points. Use the tableto enter this information, or follow through the detailed program sequence below.

Rotor bar points

Point Coordinate system X coordinate Y coordinate

P7 ROTLOC RBTOPR 0

P8 ROTLOC 0 RBTOPR

P9 ROTLOC RBTOPR+RBBOTR-RBHEIGHT

RBBOTR

P10 ROTLOC RBTOPR-RBHEIGHT 0

99

Chapter 6

Page 63: Tutorial Induction Machine Geometry

Open the New Point dialog

Using the icon in the toolbar

Open the New Point dialog again with the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Point, New from the menu.

Program Input

Geometry

Point

New

Add the first four points for the rotor bar Begin the rotor geometry

Chapter 6100

The New point dialog will open.

Make sure the Geometric Definition tab is on top. Then enter or verify the following:

Field Input

Geometric Definition

Type of the Point Point defined by its Parametric Coordinates

Coordinate system fordefinition

ROTLOC

Local coordinates

Formula or Value

First coordinate rbtopr

Second coordinate 0

OK

Point 7 will be added.

Begin the rotor geometry Add the first four points for the rotor bar

Chapter 6 101

Data for Point 7, first point of rotor bar

Page 64: Tutorial Induction Machine Geometry

When the New point dialog opens again, continue to add Points 8, 9, and 10.

Program Input

0

rbtopr

OK

rbtopr+rbbotr-rbheight

rbbotr

OK

rbtopr-rbheight

0

OK

When the New point dialog reopens, close it.

Program Input

New Point Cancel

Add the first four points for the rotor bar Begin the rotor geometry

Chapter 6102

You should see the four new points as shown in the following figure:

Begin the rotor geometry Add the first four points for the rotor bar

Chapter 6 103

Points for top half of rotor bar

Page 65: Tutorial Induction Machine Geometry

Add the lines of the half rotor bar

Connect the upper left and upper right points of the rotor bar (points P8 and P9) with a straightline.

Add the straight side of the rotor bar

Open the New Line dialog with the icon or choose Geometry, Line, New from the menu.

Program Input

Geometry

Line

New

Add the lines of the half rotor bar Begin the rotor geometry

Chapter 6104

The New line dialog will open:

Make sure the Geometric Definition tab is on top. Then enter or verify the following.

Field Input

Geometric Definition

Type of Line Segment defined by Starting and Ending Points

Points defining segment

Point

Starting Point 9

Ending Point 8

Begin the rotor geometry Add the lines of the half rotor bar

Chapter 6 105

Adding Line 6

Page 66: Tutorial Induction Machine Geometry

Click OK to create Line 6:

Because the next two lines to be added are arcs, close the New line dialog with the button, orclick Cancel.

Program Input

Starting Point Cancel

Add the lines of the half rotor bar Begin the rotor geometry

Chapter 6106

Closing New Line dialog (for line segments)

Line 6, straight side of first rotor bar

Add arcs for the curved top and bottom of the rotor bar

The second and third connecting lines for the rotor are arcs that form the curved top and bottom of the rotor bar.

� Remember that arcs must be formed in a counterclockwise direction. Be careful to

select the points in the proper order.

Open the New Line dialog from the Data Tree

Open the New Line dialog again with the button, or right click Line in the Data Tree andthen choose New.

Program Input

Right click Line

New

Begin the rotor geometry Add the lines of the half rotor bar

Chapter 6 107

Page 67: Tutorial Induction Machine Geometry

The New Line dialog will open:

Enter or verify the following:

Prompt Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

System Coordinates whichorients the arc around a Z axis

ROTLOC

Arc Radius rbbotr

EXTREM_POINTS

Point

Starting point of the arc 9

Ending point of the arc 10

As soon as you select Point 10, Line 7 will be created, and the New Line dialog will reopen.

Add the lines of the half rotor bar Begin the rotor geometry

Chapter 6108

Adding Line 7

The following figure shows point 8 being selected for Line 8.

In the New Line dialog, enter or verify the following for Line 8:

Prompt Input

Geometric Definition

System Coordinates whichorients the arc around a Z axis

ROTLOC

Arc Radius rbtopr

EXTREM_POINTS

Point

Starting point of the arc 7

Ending point of the arc 8

When the New Line dialog reopens, Cancel it.

Begin the rotor geometry Add the lines of the half rotor bar

Chapter 6 109

Adding Line 8

Page 68: Tutorial Induction Machine Geometry

The following figure shows the top half of the rotor bar:

Add the lines of the half rotor bar Begin the rotor geometry

Chapter 6110

Top half of rotor bar

Save your problem

Before you continue, you may wish to save your work.

Click the icon or choose Project, Save from the menu.

Program Input

Project

Save

Begin the rotor geometry Save your problem

Chapter 6 111

Page 69: Tutorial Induction Machine Geometry

Complete the first rotor bar

In this chapter you will create a transformation and apply it to complete the first rotor bar. For asymmetry transformation, as you may recall, you must designate the two points that define theline of symmetry. For the rotor bar, these points are P7 and P10, and these points are selectedwhen the RMIRROR transformation is defined. Remember, the line of symmetry will not bedrawn; it serves only as a reference for the transformation.

113

Chapter 7

Line of symmetry for the rotor bar, between points P7 and P10

Add the RMIRROR transformation

Open the New Transformation dialog

Using the icon in the toolbar

To add the RMIRROR transformation, open the New Transformation dialog by clicking the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Transformation, New from the menu.

Program Input

Geometry

Transformation

New

Add the RMIRROR transformation Complete the first rotor bar

Chapter 7114

Page 70: Tutorial Induction Machine Geometry

The New Transformation dialog will open:

Add the data for the RMIRROR transformation

In the New Transformation dialog, enter or verify the following:

Program Input

Name of the GeometricTransformation

RMIRROR

Comment mirror image of half rotor bar

Type of GeometricTransformation :

Affine Transformation withrespect to a line defined by 2Points

Points for definition ofaffinity line

Point

First point of straight line 10

Second point of straight line 7

Complete the first rotor bar Add the RMIRROR transformation

Chapter 7 115

Adding the RMIRROR transformation

Program Input

Scaling factor (Example: -1 =line symmetry)

-1

OK

When you click OK, the RMIRROR transformation will be added.

When the New Transformation dialog reopens, close it.

Program Input

Name of GeometricTransformation (RMIRROR_1)

Cancel

Add the RMIRROR transformation Complete the first rotor bar

Chapter 7116

Page 71: Tutorial Induction Machine Geometry

Apply the RMIRROR transformation

Now apply the RMIRROR transformation with the Propagate command. You will need to selectthe three lines of the half bar to be duplicated using the transformation. You may select the linesin any order; our example shows the selection of the small arc on the left (L7), then the straightsegment (L6), and finally the right arc (L8).

The following figure shows the three lines of the top of the rotor bar.

Open the Propagate Line dialog with the icon in the toolbar

To propagate these lines, click the button in the toolbar.

Program Input

click

Complete the first rotor bar Apply the RMIRROR transformation

Chapter 7 117

Top half of rotor bar (lines to be propagated)

The Propagate Line dialog will open:

Apply the RMIRROR transformation Complete the first rotor bar

Chapter 7118

Propagating lines of the top half of the rotor bar

Page 72: Tutorial Induction Machine Geometry

Select the lines and add the data for propagation

To select all three lines at the same time, remember to press and hold down the Ctrl key afteryou select the first line. The following figure shows the lines selected:

Proceed as follows:

Program Input

Lines to propagate

Lines LINE

7 + Ctrl

6

8

Transformation for propagation RMIRROR

Number of times to apply thetransformation

1

OK

Complete the first rotor bar Apply the RMIRROR transformation

Chapter 7 119

Lines 6, 7, and 8 selected to propagate

When you click OK, you will see the new lines, as shown in the following figure:

When the Propagate Lines dialog reopens, close it.

Program Input

Lines to propagate

Lines Cancel

Apply the RMIRROR transformation Complete the first rotor bar

Chapter 7120

Outline of first rotor bar completed with RMIRROR transformation

Page 73: Tutorial Induction Machine Geometry

Construct the face of the rotor bar

Now construct the face of the rotor bar.

Using the icon in the toolbar

To construct the face automatically, click the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Face, Build Faces from the menu.

Program Input

Geometry

Face

Build Faces

Complete the first rotor bar Construct the face of the rotor bar

Chapter 7 121

You will see the rotor bar and stator slot, as shown in the following figure:

Save your problem

If you wish, save your problem now. Click the button in the toolbar.

Program Input

click

Save your problem Complete the first rotor bar

Chapter 7122

First rotor bar complete

Page 74: Tutorial Induction Machine Geometry

Complete the stator and rotoroutlines

In this chapter you will create points and lines for the outer boundaries of the stator and rotor.

Add points for the stator’s outer boundary

Create the outer edges of the stator, beginning with a straight segment that connects the innerand outer boundaries of the stator. First you will create points and their connecting line for thestraight bottom edge of the outline, and then use a geometric transformation to create the otherstraight edge at the top of the model.

Data for points at bottom edge of stator

The following table shows the data for these points.

Point Coordinate System X coordinate Y coordinate

P13 STATMAIN sod/2 0

P14 STATMAIN sid/2 0

Open the New Point dialog with the icon in the toolbar

Open the New Point dialog with the button in the toolbar.

Program Input

click

123

Chapter 8The New Point dialog will open:

Add the data for the points

Make sure the Geometric Definition tab is on top. Then enter or verify the following:

Program Input

Geometric Definition

Type of the Point Point defined by its Parametric Coordinates

Coordinate System fordefinition

STATMAIN

Local coordinates

Formula or Value

First coordinate sod/2

Second coordinate 0

OK

Point 13 will be added.

Add points for the stator’s outer boundary Complete the stator and rotor outlines

Chapter 8124

To add Point 13

Page 75: Tutorial Induction Machine Geometry

When the New point dialog reopens, enter or verify the following:

Program Input

Geometric Definition

Coordinate System fordefinition

STATMAIN

Local coordinates

Formula or Value

First coordinate sid/2

Second coordinate 0

OK

You should see the two new points:

Complete the stator and rotor outlines Add points for the stator’s outer boundary

Chapter 8 125

Points for bottom edge of stator

Add the straight side of the stator’s outer boundary

Now you must connect these points.

Open the New Line dialog from the Data Tree

To open the New Line dialog, click the button in the toolbar, or in the data tree, right clickLine and choose New.

Program Input

Right click Line

New

The New Line dialog will open.

Add the straight side of the stator’s outer boundary Complete the stator and rotor outlines

Chapter 8126

Adding Line 12

Page 76: Tutorial Induction Machine Geometry

Select the points to add Line 12

The following figure shows Point 13 being selected to complete Line 12.

In the New Line dialog, enter or verify the following:

Program Input

Geometric Definition

Type of Line Segment defined by Starting and Ending Points

Points defining segment

Point

Starting point 14

Ending Point 13

Complete the stator and rotor outlines Add the straight side of the stator’s outer boundary

Chapter 8 127

Adding Line 12 (bottom edge of stator)

As soon as you choose point 13, Line 12 will be created:

When the New Line dialog reopens, close it.

Program Input

Starting Point Cancel

Add a transformation for the stator and rotor sides

Add a transformation to duplicate the straight sides of the stator and the rotor.

Open the New Transformation dialog with the icon in the toolbar

Open the New Transformation dialog with the button in the toolbar.

Program Input

click

Add a transformation for the stator and rotor sides Complete the stator and rotor outlines

Chapter 8128

Line 12 (stator’s bottom edge)

Page 77: Tutorial Induction Machine Geometry

The New Transformation dialog will open:

Add the data for the SIDES transformation

In the New Transformation dialog, enter or verify the following:

Program Input

Name of GeometricTransformation

SIDES

Comment duplicate stator and rotorsides

Type of GeometricTransformation

Rotation defined by Angles andpivot point coordinates

Coordinate System fordefinition :

STATMAIN

Coordinates of the pivot point

Formula or Value

1st coordinate 0

2nd coordinate 0

Complete the stator and rotor outlines Add a transformation for the stator and rotor sides

Chapter 8 129

Adding the SIDES transformation

Program Input

Rotation Angle about Z axis(Angle Unit of Coordinate System

90

OK

When you click OK, the SIDES transformation will be added.

When the New Transformation dialog reopens, close it.

Program Input

Name of GeometricTransformation (SIDES_1)

Cancel

Apply the SIDES transformation

Use the SIDES transformation to create the upper straight side of the stator. You will need toselect Line 12:

Apply the SIDES transformation Complete the stator and rotor outlines

Chapter 8130

Line 12

Page 78: Tutorial Induction Machine Geometry

Open the Propagate Lines dialog with the icon in the toolbar

Open the Propagate Lines dialog with the button in the toolbar.

Program Input

click

The Propagate Line dialog will open.

Complete the stator and rotor outlines Apply the SIDES transformation

Chapter 8 131

Propagating Line 12 (straight side of stator)

Select Line 12 to propagate

The following figure shows Line 12 being selected.

Enter or verify the following:

Program Input

Lines to propagate

Lines

12

Transformation for propagations SIDES

Number of times to apply thetransformation

1

OK

Apply the SIDES transformation Complete the stator and rotor outlines

Chapter 8132

Selecting Line 12 to propagate

Page 79: Tutorial Induction Machine Geometry

When you click OK, Line 13 will be added. You may need to click the "Zoom all" button tosee Line 13:

Close the Propagate Line dialog.

Program Input

Lines to propagate

Line Cancel

Add the stator’s outer boundary

Now connect points 13 and 16 to create the outer arc of the stator.

Complete the stator and rotor outlines Add the stator’s outer boundary

Chapter 8 133

Line 13 (created by propagation)

Open the New Line dialog from the Data Tree

Open the New Line dialog from the Data Tree. Right click Line and choose New.

Program Input

Right click Line

New

The New Line dialog will open.

Add the stator’s outer boundary Complete the stator and rotor outlines

Chapter 8134

Adding Line 14

Page 80: Tutorial Induction Machine Geometry

Add the data for Line 14

The following figure shows P16 being selected for Line 14.

In the New Line dialog, enter or verify the following:

Program Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

System Coordinates which orient the arc around a Z axis

STATMAIN

Arc Radius sod/2

Starting point of the arc 13

Ending point of the arc 16

Complete the stator and rotor outlines Add the stator’s outer boundary

Chapter 8 135

Adding Line 14

As soon as you select Point 16, you will see Line 14:

When the New Line dialog reopens, close it.

Program Input

Starting point of the arc Cancel

Add the stator’s outer boundary Complete the stator and rotor outlines

Chapter 8136

Line 14 (stator’s outer boundary)

Page 81: Tutorial Induction Machine Geometry

Add points for the straight side of the rotor

Now you will add points for the straight side of the rotor.

Data for points at bottom edge of rotor

The following table includes the data for these new points.

Point Coordinate System X coordinate Y coordinate

P17 ROTMAIN rod/2 0

P18 ROTMAIN rid/2 0

Open the New Point dialog from the data tree

In the Data Tree, right click Point and choose New.

Program Input

Right click Point

New

Complete the stator and rotor outlines Add points for the straight side of the rotor

Chapter 8 137

The New Point dialog will open:

Add the data for the points

In the New Point dialog, enter or verify the following:

Program Input

Geometric Definition

Type of the Point Point defined by its Parametric Coordinates

Coordinate System fordefinition

ROTMAIN

Local coordinates

Formula or Value

First coordinate rod/2

Second coordinate 0

OK

Add points for the straight side of the rotor Complete the stator and rotor outlines

Chapter 8138

Data for Point 17, of the rotor's lower straight side

Page 82: Tutorial Induction Machine Geometry

Click OK to add Point 17. The New Point dialog will reopen.

Enter the following for Point 18:

Program Input

Geometric Definition

Coordinate System fordefinition

ROTMAIN

Local coordinates

Formula or Value

First coordinate rid/2

Second coordinate 0

OK

Click OK to add Point 18. When the New Point dialog reopens, close it.

Program Input

First coordinate Cancel

You will use these points (P17 and P18) to construct the line for the lower side of the rotor.

Complete the stator and rotor outlines Add points for the straight side of the rotor

Chapter 8 139

Data for Point 18, of the rotor's lower straight side

Add the line for the rotor side with point numbers

The point P17 is very close to point P14 at the inner edge of the stator, and thus it may bedifficult to distinguish on the screen, even when enlarged.

Instead of enlarging the display two or three times to select Points 17 and 18 from the screen,however, you can create the line by entering the point numbers with the keyboard.

Add the line for the rotor side with point numbers Complete the stator and rotor outlines

Chapter 8140

Points 18 and 17

Page 83: Tutorial Induction Machine Geometry

Open the New Line dialog from the Data Tree

To open the New Line dialog, in the Data Tree, right click Line and choose New.

Program Input

Right click Line

New

The New Line dialog will open:

Complete the stator and rotor outlines Add the line for the rotor side with point numbers

Chapter 8 141

To add Line 15, the lower straight side of the rotor

Enter the points for Line 15

In the New Line dialog, enter or verify the following:

Program Input

Geometric Definition

Type of Line Segment defined by Starting and Ending Points

Points defining segment

Points

Starting point 17

Ending point 18

Click OK to add Line 15. The following figure shows Line 15 (enlarged).

Add the line for the rotor side with point numbers Complete the stator and rotor outlines

Chapter 8142

Line for the lower rotor side (Line 15)

Page 84: Tutorial Induction Machine Geometry

Extrude Line 15 with the SIDES transformation

Now extrude Line 15 with the SIDES transformation, which will create the opposite side line aswell as the inner and outer diameters of the rotor.

Open the Extrude Lines dialog

In the Data Tree, right click Line and choose Extrude Lines.

Program Input

Right click Line

Extrude Lines

Complete the stator and rotor outlines Extrude Line 15 with the SIDES transformation

Chapter 8 143

The Extrude Lines dialog will open:

Extrude Line 15 with the SIDES transformation Complete the stator and rotor outlines

Chapter 8144

Extrude Line 15 (rotor's lower edge)

Page 85: Tutorial Induction Machine Geometry

Select Line 15 to extrude

The following figure shows Line 15 selected for extrusion.

In the Extrude Lines dialog, enter or verify the following:

Prompt Input

Lines 15

Transformation for extrusion SIDES

Number of times to apply thetransformation

1

Extrusion type Standard

Building options for extrusion Add only Lines and Points

OK

Complete the stator and rotor outlines Extrude Line 15 with the SIDES transformation

Chapter 8 145

Selecting Line 15 to extrude

When you click OK, you will see Lines 16, 17 & 18.

When the Extrude dialog reopens, close it.

Program Input

Extrude Lines Cancel

Extrude Line 15 with the SIDES transformation Complete the stator and rotor outlines

Chapter 8146

Lines 16, 17 & 18 (rotor’s upper side & rotor inner and outer diameters)

Page 86: Tutorial Induction Machine Geometry

Add the first section of the stator’s inner boundary

Finally, create the first section of the stator’s inner boundary. The stator slot openings lie alongthis inner boundary, and it also defines the outer edge of the airgap. You will create an arc ofcircle between the stator’s straight lower boundary and the first stator slot (points P14 and P5, in our example). Later you will duplicate this small arc to produce the stator’s inner boundary.

Enlarge the area around the first stator slot so that you can select the points from the screen.

� Remember, an arc of circle must be defined in the counterclockwise direction, so

be sure to choose point P14 first.

Open the New Line dialog with the icon in the toolbar

Open the New Line dialog with the button.

Program Input

click

Complete the stator and rotor outlines Add the first section of the stator’s inner boundary

Chapter 8 147

First stator slot and lower boundary

The New Line dialog will open.

Enter or verify the following:

Program Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

System Coordinates which orient the arc around a Z axis

STATMAIN

Arc Radius sid/2

Points defining the arc

Starting point of the arc 14

Ending point of the arc 5

Add the first section of the stator’s inner boundary Complete the stator and rotor outlines

Chapter 8148

To add Line 19 (first section of stator's inner boundary)

Page 87: Tutorial Induction Machine Geometry

As soon as you choose Point 5, you should see the small arc between the stator boundary and thefirst slot, forming the bottom section of the airgap:

When the New Line dialog reopens, close it.

Program Input

Starting point of the arc Cancel

Complete the stator and rotor outlines Add the first section of the stator’s inner boundary

Chapter 8 149

First section of airgap between stator and rotor (Line 19)

Save your work

Now is a good time to save your problem and take a break if you wish. Click the button orchoose Project, Save from the menu.

Program Input

Project

Save

Next you will create custom mesh points for the stator slot and rotor bar. Then you canduplicate both the face and the mesh together to complete the geometry.

Save your work Complete the stator and rotor outlines

Chapter 8150

Page 88: Tutorial Induction Machine Geometry

Control the mesh density:Mesh_Point and Mesh_Line

Mesh elements are created by the automatic mesh generator in Preflux 9.2, and the default meshis usually satisfactory in terms of quality, accuracy and size (number of nodes). However,because the automatic mesh generator is controlled by predefined mesh weights, it may not beappropriate in every case.

You can adjust or control the density of the mesh through custom mesh points and mesh lines.In this chapter you will create custom mesh points and a mesh line and apply them to points onthe stator slot and rotor bar.

Preflux 9.2 includes a feature with which you can propagate a face and its mesh at the same time.We will take advantage of this feature to duplicate the stator slots and rotor bars.

Notes about this mesh

For this problem, a fine mesh is required only around the airgap, especially in these three areas:

� The top of the rotor bars (next to the airgap). Due to the skin effect, the current through the rotor bars is concentrated at the top of the bars.

� The stator teeth. The teeth present a possible region of saturation due to the high fluxdensity in the area.

� The airgap itself. A fine mesh in and around the airgap will produce higher accuracy on theforce computation.

151

Chapter 9Mesh requirements in the airgap

A single layer of elements is required in the airgap. In other words, for triangular elements, oneside of each triangle must lie on one of the boundaries of the airgap.

The following figure (enlarged) shows a single layer of elements in the airgap. The airgap is thenarrow column in the center. Notice how the triangular elements are placed to form the singlelayer.

Change to the Mesh context

The Mesh commands are available only in the Mesh context. The following figure shows theMesh context button selected.

Above the Data Tree, click the button to change to the Mesh context.

Program Input

click

Mesh requirements in the airgap Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9152

Airgap with single layer of elements

Page 89: Tutorial Induction Machine Geometry

The Mesh context screen is shown below:

Note that in the figure above, the two faces are not displayed.

Control the mesh density: Mesh_Point and Mesh_Line Change to the Mesh context

Chapter 9 153

Project window: Mesh context

Displaying only the points and lines may make it easier for you to select points and lines whenyou assign the Mesh_Points and Mesh_Line you have created.

To hide the faces, click the icon in the toolbar, or choose Display, Display Faces from themenu.

Program Input

Display

Display faces

You can change the display at any time.

Mesh context toolbars

The Mesh context includes some of the same icons and commands as the Geometry context.Most of the Display and Select icons are the same, and you can add parameters andtransformations in the Mesh context.

The following figures show the Mesh toolbar icons:

Mesh context toolbars Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9154

Mesh toolbar icons: New-Assign–Check

Mesh toolbar icons: Display–Select

Page 90: Tutorial Induction Machine Geometry

The following figures identify the Mesh toolbar icons:

Control the mesh density: Mesh_Point and Mesh_Line Mesh context toolbars

Chapter 9 155

Add the mesh points

You can specify mesh density through either the Mesh_Points or Mesh_Lines options. For thisproblem, we use mesh points and one mesh line, around the narrow bottom of the rotor bar.With mesh points, Preflux 9.2 automatically adjusts the distribution of nodes between twogeometric points. With mesh lines, a geometric line is divided into a prescribed number ofsegments, and nodes are placed at the ends of the line segments.

You will create 5 custom mesh points (weight values). Preflux 9.2 has default mesh pointsnamed Large, Medium and Small already defined, and you could modify these and apply them.However, creating additional mesh points provides better control over the mesh density acrossthe geometry.

The following table shows the information to define the 5 custom mesh points.

Custom mesh points

Name Comment Value (mm) Color

MRTOP Rotor bar top 0.8 Turquoise

MSBOT Stator slot bottom 2 Turquoise

MAIRGAP Moving airgap 0.4 Yellow

MSOD Stator’s outer diameter 7 Cyan

MRID Rotor’s inner diameter 6 Cyan

The following figure shows the location of the mesh points for the stator slot, the rotor bar, andthe airgap.

There are two additional points assigned to the MAIRGAP mesh point, as shown on page 170.

Add the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9156

Mesh points for rotor bar, airgap, and stator slot

Page 91: Tutorial Induction Machine Geometry

Open the New Mesh Point dialog

Using the icon in the toolbar

Open the New Mesh Point dialog with the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Mesh, Mesh Point, New from the menu.

Program Input

Mesh

Mesh point

New

Control the mesh density: Mesh_Point and Mesh_Line Add the mesh points

Chapter 9 157

The New Mesh Point dialog will open:

Add the data for the first mesh point (MRTOP)

In the New Mesh Point dialog, enter or verify the following:

Prompt Input

Name of the Mesh Point MRTOP

Comment top of rotor bar

Appearance

Mesh Point Color Turquoise

Add the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9158

Selecting the color of the MRTOP mesh point

Page 92: Tutorial Induction Machine Geometry

Now click the Definition tab; the dialog should look like the one shown in the following figure:

Continue as follows:

Program Input

Definition

Associated Length Unit MILLIMETER

Value of the Mesh Point (Length of elements)

0.8

OK

When you click OK, the MRTOP mesh point will be added. The Console will show theconfirmation message:

Control the mesh density: Mesh_Point and Mesh_Line Add the mesh points

Chapter 9 159

MRTOP mesh point added

Setting the value of the MRTOP mesh point

Add the other mesh points

When the New Mesh Point dialog reopens, continue to add the other mesh points as follows.

Program Input

MSBOT

bottom of stator slot

Appearance

Turquoise

Definition

2

OK

MAIRGAP

moving airgap

Appearance

Yellow

Add the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9160

Page 93: Tutorial Induction Machine Geometry

Program Input

Definition

0.4

OK

MSOD

outer diameter of stator

Appearance

Cyan

Definition

7

OK

Control the mesh density: Mesh_Point and Mesh_Line Add the mesh points

Chapter 9 161

Program Input

MRID

inner diameter of rotor

Appearance

Cyan

Definition

6

OK

The New Mesh Point dialog will reopen.

Add the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9162

Closing New Mesh Point dialog

Page 94: Tutorial Induction Machine Geometry

Close the dialog with the button or Cancel.

Program Input

Name of the Mesh Point (MRID_1) Cancel

Assign the mesh points

Now you will assign the mesh points to the geometry. Remember you can use the Zoom regionbutton to enlarge your display. Clicking the Zoom all button will display the wholemodel.

Points for the MSBOT mesh point

First, assign the MSBOT mesh point to the points at the bottom of the stator slot. The followingfigure shows the points you will need to select.

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 163

Points to select for MSBOT mesh point

Open the Assign Mesh Point dialog

Using the icon in the toolbar

Open the Assign Mesh Point dialog with the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Mesh, Assign mesh information, Assign Mesh Point to Points from themenu.

Program Input

Mesh

Assign mesh information

Assign Mesh Point to Points

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9164

Page 95: Tutorial Induction Machine Geometry

The Assign Mesh Point to Points dialog will open.

You can type the point numbers in the fields or select the points from the Graphics display.

� To select more than one point at a time from the Graphics display, press and hold

down the Control key (Ctrl) while you select the first point.

Select the points and assign the MSBOT mesh point

Enter or verify the following:

Program Input

List of Points

Points

4 + Ctrl

2

6

Mesh point to assign to Points MSBOT

OK

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 165

Assigning the MSBOT mesh point to the bottom of the first stator slot

You will see the 3 points with a turquoise color on your screen:

Assign the MRTOP mesh point

The following figure shows the points to select for the MRTOP mesh point.

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9166

Points to select for MRTOP mesh point

MSBOT mesh points assigned

Page 96: Tutorial Induction Machine Geometry

The Assign mesh point dialog should be open.

Proceed as follows:

Program Input

List of Points

Points

8 + Ctrl

12

Mesh point to assign to Points MRTOP

OK

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 167

Assigning MRTOP mesh point

You will see the MRTOP mesh points marked as shown below.

Assign the MAIRGAP mesh point

The following figure shows the lower points to select for the MAIRGAP mesh point.

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9168

Points to select for MAIRGAP mesh point (bottom edge)

MRTOP mesh points assigned

Page 97: Tutorial Induction Machine Geometry

The New Mesh Point dialog should still be open.

Remember to hold down the Ctrl key to select multiple points from the screen.

Proceed as follows:

Program Input

List of Points

Points

3 + Ctrl

7

1

5

14

17

Mesh point to assign to Points MAIRGAP

OK

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 169

Assigning lower points to MAIRGAP mesh point

The points will be colored yellow:

Two additional points at the top of the geometry should also be assigned to the MAIRGAP meshpoint. The following figure shows these points:

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9170

Points to select for MAIRGAP mesh point (at top of geometry)

Points assigned to MAIRGAP mesh point

Page 98: Tutorial Induction Machine Geometry

Enlarge the area around these points with the button.

Program Input

click

The Assign mesh point dialog should be open.

Proceed as follows:

Program Input

List of Points

Points

15 + Ctrl

19

Mesh point to assign to Points MAIRGAP

OK

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 171

Assigning remaining points to MAIRGAP mesh point

These points will also be colored yellow.

Now click the button to display the whole model.

Program Input

click

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9172

Points 15 and 19 assigned to MAIRGAP mesh point

Page 99: Tutorial Induction Machine Geometry

Assign the MSOD mesh point

The following figure shows the points to select for the MSOD mesh point.

The Assign mesh point dialog should still be open:

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 173

Assigning points to MSOD mesh point

Points to select for MSOD mesh point

Proceed as follows:

Program Input

List of Points

Points

13 + Ctrl

16

Mesh point to assign to Points MSOD

OK

The points will be colored blue.

Assign the MRID mesh point

Finally, assign the MRID mesh point. The following figure shows the points to select:

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9174

Points to select for MRID mesh point

Page 100: Tutorial Induction Machine Geometry

The Assign mesh point dialog should still be open:

Proceed as follows:

Program Input

List of Points

Points

20 + Ctrl

18

Mesh point to assign to Points MRID

OK

These points will also be colored blue.

When the Assign mesh point dialog opens again, close it.

Program Input

List of Points

Points

Cancel

Control the mesh density: Mesh_Point and Mesh_Line Assign the mesh points

Chapter 9 175

Assigning the MRID mesh point

You should see the mesh points displayed as shown below:

Assign the mesh points Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9176

Mesh points assigned

Page 101: Tutorial Induction Machine Geometry

Add a Mesh Line

Now add a Mesh Line to control the mesh density around the bottom of the rotor bar. ThisMesh Line will be Arithmetic (meaning the segments are equal divisions) with a value of 2.

Adding a Mesh Line is very similar to adding a Mesh Point. Each Mesh Line is assigned a name, acomment (if you wish), a color, a type and a value.

Open the Add Mesh Line dialog

Using the icon in the toolbar

To open the Add Mesh Line dialog, click the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Mesh, Mesh Line, New from the menu.

Program Input

Mesh

Mesh line

New

Control the mesh density: Mesh_Point and Mesh_Line Add a Mesh Line

Chapter 9 177

The Add Mesh Line dialog will open.

Add the data for the MLRBOT mesh line

In the Mesh Line dialog, enter or verify the following.

Program Input

Name of the Mesh Line MLRBOT

Comment bottom of rotor bar

Appearance

Mesh Line Color Red

Add a Mesh Line Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9178

Adding the MLRBOT mesh line

Page 102: Tutorial Induction Machine Geometry

Now click the Definition tab.

Proceed as follows:

Program Input

Definition

Type of the Mesh Line Arithmetic

Number of segments (of elements)

2

OK

Control the mesh density: Mesh_Point and Mesh_Line Add a Mesh Line

Chapter 9 179

Adding the type and value for the MLRBOT mesh line

Assign MLRBOT to the rotor bar bottom

Now assign the MLRBOT mesh line to the lines at the bottom of the rotor bar (these are Line#7 and Line #9 in our example).

The following figure shows the lines to select for the MLRBOT mesh line.

Open the Assign Mesh Line dialog

Using the icon in the toolbar

Open the Assign Mesh Line dialog with the button in the toolbar.

Program Input

click

Assign MLRBOT to the rotor bar bottom Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9180

Lines to select for MLRBOT mesh line

Page 103: Tutorial Induction Machine Geometry

Using the menu

If you prefer, choose Mesh, Assign mesh information, Assign Mesh Line to Lines from themenu.

Program Input

Mesh

Assign mesh information

Assign Mesh Line toLines

The Assign Mesh Line dialog will open.

Control the mesh density: Mesh_Point and Mesh_Line Assign MLRBOT to the rotor bar bottom

Chapter 9 181

Assigning MLRBOT mesh line

Select the lines and assign the MLRBOT mesh line

Select the two lines at the bottom of the rotor bar and assign them to MLRBOT. Remember tohold down the Ctrl key to select multiple lines from the screen. Proceed as follows:

Program Input

List of Lines

Lines

7 + Ctrl

9

Mesh Line to assign to Lines MLRBOT

OK

When you click ok, the lines will be colored red, as shown in the following figure.

Assign MLRBOT to the rotor bar bottom Control the mesh density: Mesh_Point and Mesh_Line

Chapter 9182

Lines 7 and 9 assigned to MLRBOT mesh line

Page 104: Tutorial Induction Machine Geometry

When the Assign dialog reopens, close it.

Program Input

List of Lines

Lines Cancel

Next you will complete the geometry using transformations to duplicate the stator slot and rotorbar. The mesh point information for the slot and bar will also be duplicated.

To access the geometric tools, return to the Geometry Context. Above the Data Tree, click the button to change to the Geometry context.

Program Input

click

Control the mesh density: Mesh_Point and Mesh_Line Assign MLRBOT to the rotor bar bottom

Chapter 9 183

Closing Assign Mesh Line dialog

Complete the geometry

Now you will create transformations to duplicate the stator slot and the rotor bar. You will seehow quickly most of the geometry can be completed. You will also create the stator’s inneroutline with a transformation. Finally, you will add small lines to close the airgap.

Add a transformation to duplicate the stator slot

First add a transformation to duplicate the entire stator slot.

Open the New Transformation dialog

Using the icon in the toolbar

Open the New Transformation dialog with the button in the toolbar.

Program Input

click

185

Chapter 10

Page 105: Tutorial Induction Machine Geometry

Using the Data Tree

If you prefer, use the Data Tree. Right click on Transformation and choose New

Program Input

Right click Transformation

New

The New Transformation dialog will open:

Add a transformation to duplicate the stator slot Complete the geometry

Chapter 10186

To add SDUPLI transformation

Add the data for the SDUPLI transformation

In the New Transformation dialog, enter or verify the following:

Program Input

Name of GeometricTransformation

SDUPLI

Comment duplicate stator slots

Type of Geometric Transformation

Rotation defined by Angles andpivot point coordinates

Coordinate System fordefinition

STATWORK

Coordinates of the pivot point

Formula or Value

1st coordinate 0

2nd coordinate 0

Rotation Angle about Z axis(Angle Unit of CoordinateSystem)

10

OK

Complete the geometry Add a transformation to duplicate the stator slot

Chapter 10 187

Page 106: Tutorial Induction Machine Geometry

When the New transformation dialog reopens, close it.

Program Input

Name of GeometricTransformation (SDUPLI_1)

Cancel

Use SDUPLI to create the other slots

Now use the SDUPLI transformation to create duplicates of the first stator slot and place themin the proper positions along the inner outline of the stator. You will be duplicating both theentire face (lines and points) and the mesh information of the original stator slot.

You may wish to display the full geometry so that you can watch the slots being duplicated. If so,click the button in the toolbar.

Program Input

click

Use SDUPLI to create the other slots Complete the geometry

Chapter 10188

Closing New Transformation dialog

Also, make sure the stator slot and rotor bar faces are displayed, as shown in the following figure.

Click the icon in the toolbar.

Program Input

click

Complete the geometry Use SDUPLI to create the other slots

Chapter 10 189

Bar and slot faces displayed

Page 107: Tutorial Induction Machine Geometry

Open the Propagate Faces dialog

Using the icon in the toolbar

Open the Propagate Faces dialog with the button :

Program Input

click

Using the menu

If you prefer, choose Geometry, Face, Propagate Faces from the menu.

Program Input

Geometry

Face

Propagate Faces

Use SDUPLI to create the other slots Complete the geometry

Chapter 10190

The Propagate faces dialog will open:

Complete the geometry Use SDUPLI to create the other slots

Chapter 10 191

To duplicate the first stator slot

Page 108: Tutorial Induction Machine Geometry

Enter the data for the propagation

You will need to select the slot face (Face number 1) from the screen or type the number of theslot face (1, in our example) into the field in the dialog.

Program Input

Faces to propagate

Faces

1

The following figure shows the slot face being selected from the screen.

Proceed as follows:

Program Input

Transformation for propagation SDUPLI

Number of times to apply thetransformation

8

Use SDUPLI to create the other slots Complete the geometry

Chapter 10192

Selecting the slot face for propagation

Program Input

Building options for propagation

Add faces and associated Linked Mesh Generator

OK

As soon as you click ok, the other slots will be generated.

The following figure shows all nine stator slots.

Complete the geometry Use SDUPLI to create the other slots

Chapter 10 193

Stator slots added through propagation with SDUPLI transformation

Page 109: Tutorial Induction Machine Geometry

When the Propagate faces dialog reopens, close it.

Program Input

Faces to propagate

Faces Cancel

Use SDUPLI to create the other slots Complete the geometry

Chapter 10194

Closing the Propagate Faces dialog

Add lines for the stator’s inner boundary

Next you will create another section of the stator’s inner boundary, between the first and secondslots, and duplicate this line with the SDUPLI transformation.

Enlarge the first and second slots, as shown in the following figure:

Open the New Line dialog with the icon in the toolbar

To open the New line dialog click the button in the toolbar.

Program Input

click

Complete the geometry Add lines for the stator’s inner boundary

Chapter 10 195

Points to select for new section of stator's inner boundary

Page 110: Tutorial Induction Machine Geometry

The New Line dialog will open:

Enter or verify the following:

Program Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

System Coordinates which orient the line around a Z axis

STATMAIN

Arc Radius SID/2

EXTREM_POINTS

Point

Starting point of arc 3

Ending point of arc 25

Add lines for the stator’s inner boundary Complete the geometry

Chapter 10196

Adding Line 60 (stator's inner boundary)

As soon as you choose Point 25, you will see the line on your screen:

When the New line dialog opens again, close it.

Program Input

Starting point of the arc Cancel

Complete the geometry Add lines for the stator’s inner boundary

Chapter 10 197

Line 60 (stator’s inner boundary)

Page 111: Tutorial Induction Machine Geometry

Add other sections of the stator’s inner boundary

Now you will duplicate this line, also with the SDUPLI transformation.

Open the Propagate Lines dialog

Open the Propagate Lines dialog with the button in the toolbar or by choosing Geometry,Propagate, Propagate Lines from the menu.

Program Input

Geometry

Propagate

Propagate Lines

The Propagate lines dialog will open:

Add other sections of the stator’s inner boundary Complete the geometry

Chapter 10198

Propagating Line 60 (stator's inner boundary)

Select the line and complete the propagation

The following figure shows the line selected for propagation.

Proceed as follows:

Program Input

Lines to propagate

Lines

60

Transformation for propagation SDUPLI

Number of times to apply thetransformation

7

OK

As soon as you choose ok, the lines will be added.

Complete the geometry Add other sections of the stator’s inner boundary

Chapter 10 199

Selecting Line 60 for propagation

Page 112: Tutorial Induction Machine Geometry

The following figure shows an enlargement of the new sections of the stator’s inner boundary:

When the Propagate lines dialog reopens, close it.

Program Input

Lines to propagate

Lines Cancel

Add other sections of the stator’s inner boundary Complete the geometry

Chapter 10200

Propagated lines of the stator’s inner boundary

Close the top of the stator’s inner boundary

Finally, connect the last stator slot and the upper edge of the stator. Enlarge the area around thelast stator slot:

Open the New Line dialog with the icon in the toolbar

Open the New Line dialog with the icon in the toolbar.

Program Input

click

Complete the geometry Close the top of the stator’s inner boundary

Chapter 10 201

Points to select to close stator’s inner boundary

Page 113: Tutorial Induction Machine Geometry

The New Line dialog will open.

Add the data for the line

In the New Line dialog, enter or verify the following:

Program Input

Geometric Definition

Type of Line Arc defined by its Radius,Starting and Ending Points

System Coordinates which orient the line around a Z axis

STATMAIN

Arc Radius SID/2

EXTREM_POINTS

Point

Starting point of arc 56

Ending point of arc 15

Close the top of the stator’s inner boundary Complete the geometry

Chapter 10202

Adding Line 68 to close stator's inner boundary

As soon as you choose Point 15, you should see Line 68:

When the New Line dialog reopens, close it.

Program Input

Starting point of the arc Cancel

The stator outline is now complete.

We note here that geometric transformations are not required. If you wished, the entire statorcould have been constructed by defining the coordinates of every point and entering all the linesindividually. However, as you have seen, transformations speed up the creation of the geometry,especially for geometries made up of duplicate parts, such as both the stator and the rotor in thisexample.

Next you will complete the rotor geometry, in much the same way.

Complete the geometry Close the top of the stator’s inner boundary

Chapter 10 203

Line 68 (last section of stator’s inner boundary)

Page 114: Tutorial Induction Machine Geometry

Add a transformation to duplicate the rotor bar

Add a transformation to duplicate the rotor bar.

Open the New Transformation dialog

Open the New Transformation dialog with the button or by choosing Geometry,Transformation, New from the menu.

Program Input

Geometry

Transformation

New

Add a transformation to duplicate the rotor bar Complete the geometry

Chapter 10204

Program Input

Complete the geometry Add a transformation to duplicate the rotor bar

Page 115: Tutorial Induction Machine Geometry

Program Input

Rotation Angle about Z axis(Angle Unit of CoordinateSystem)

90/7

OK

The Console will show the confirmation message for the RDUPLI transformation:

When the New Transformation dialog reopens, close it.

Program Input

Name of GeometricTransformation (RDUPLI_1)

Cancel

You may want to display the full geometry so that you can watch the rotor bars being duplicated.Use the button to show the full geometry.

Program Input

click

Add a transformation to duplicate the rotor bar Complete the geometry

Chapter 10206

Confirmation message for RDUPLI transformation

Use RDUPLI to duplicate the rotor bar

Now apply the RDUPLI transformation to duplicate the rotor bar a total of 6 times, and therotor geometry will be almost finished.

Open the Propagate Faces dialog with the icon in the toolbar

Open the Propagate Faces dialog with the button:

Program Input

click

Complete the geometry Use RDUPLI to duplicate the rotor bar

Chapter 10 207

Page 116: Tutorial Induction Machine Geometry

The Propagate Faces dialog will open:

Select the bar face

You will need to select the bar face from the screen or enter the face number (2, in our example)in the dialog.

Program Input

Faces to propagate

Faces

2

Use RDUPLI to duplicate the rotor bar Complete the geometry

Chapter 10208

To propagate the first rotor bar

The following figure shows the bar face being selected.

Add the data to complete the propagation

Complete the propagation as follows:

Program Input

Transformation for propagation RDUPLI

Number of times to apply thetransformation

6

Building options forpropagation

Add faces and associated Linked Mesh Generator

OK

Complete the geometry Use RDUPLI to duplicate the rotor bar

Chapter 10 209

Selecting the face of the rotor bar for duplication

Page 117: Tutorial Induction Machine Geometry

Use RDUPLI to duplicate the rotor bar Complete the geometry

As soon as you click ok, you will see the 6 new rotor bars:

When the Propagate Faces dialog reopens, close it.

Program Input

Faces to propagate

Faces

Cancel

Only two more lines are needed to complete the geometry.

Chapter 10210

Rotor bars produced with RDUPLI

Close the airgap

To complete the model, you must close the airgap by creating two very small lines, betweenpoints P17 and 14, and between points P15 and P19.

Add the line at the bottom of the model first.

Enlarge the area below the first bar and slot, as shown here:

Open the New Line dialog with the icon

Open the New Line dialog with the button:

Program Input

click

Complete the geometry Close the airgap

Chapter 10 211

Points to select to close the airgap at the bottom of the model

Page 118: Tutorial Induction Machine Geometry

The New Line dialog will open:

Add the line at the bottom of the model

In the New Line dialog, enter or verify the following:

Program Input

Geometric Definition

Type of Line Segment defined by Starting and Ending Points

Points defining segment

Point

Starting point 17

Ending point 14

Close the airgap Complete the geometry

Chapter 10212

Adding Line 105

As soon as you choose Point 14, you will see Line 105:

Complete the geometry Close the airgap

Chapter 10 213

Line 105, closing the lower edge of the airgap

Page 119: Tutorial Induction Machine Geometry

Add the line at the top of the model

Now enlarge the area at the top of the model to add the last line:

The New Line dialog should still be open:

Close the airgap Complete the geometry

Chapter 10214

Adding last line to close top of airgap

Points to select for Line 106, the last line to close the airgap at the top of the model

Proceed as follows:

Program Input

Starting Point 15

Ending Point 19

As soon as you choose Point P19, you will see Line 106:

When the New Line dialog reopens, close it.

Program Input

Starting Point Cancel

Complete the geometry Close the airgap

Chapter 10 215

Line 106 closing the top of the airgap

Page 120: Tutorial Induction Machine Geometry

Construct the remaining faces for the geometry

With the airgap "closed," you can now construct the remaining faces for the geometry.

Using the icon in the toolbar

To construct the faces, click the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Geometry, Face, Build Faces from the menu:

Program Input

Geometry

Face

Build Faces

Construct the remaining faces for the geometry Complete the geometry

Chapter 10216

The following figure shows all 19 faces of the complete model geometry:

The Console window confirms the creation of the final 3 faces:

Be sure that you see that 19 faces have been created in all.

Complete the geometry Construct the remaining faces for the geometry

Chapter 10 217

Confirmation: 19 faces created

Complete model geometry created in Preflux 9.2

Page 121: Tutorial Induction Machine Geometry

Save your problem

Before you continue, you may want to save your problem. If so, click the button in thetoolbar.

Program Input

click

Save your problem Complete the geometry

Chapter 10218

Generate, verify and save the mesh

In this chapter you will complete the mesh for the geometry. The Preflux automatic meshgenerator creates the nodes and surface elements, constructs 2nd order elements, and verifies themesh.

Change to the Mesh context

Change to the Mesh command menu by choosing the Mesh context button (located directlyabove the data tree):

Program Input

click

219

Chapter 11

Page 122: Tutorial Induction Machine Geometry

Mesh context screen is shown in the following figure:

Change to the Mesh context Generate, verify and save the mesh

Chapter 11220

Mesh context

Generate the mesh

Mesh the Lines

The mesh is generated first on the lines, then on the faces.

Using the icon in the toolbar

To mesh the lines, click the button in the toolbar.

Program Input

click

Using the menu

If you prefer, choose Mesh, Mesh, Mesh Lines from the menu:

Program Input

Mesh

Mesh

Mesh Lines

Generate, verify and save the mesh Generate the mesh

Chapter 11 221

Page 123: Tutorial Induction Machine Geometry

In your graphics display, you should see many more points displayed in the graphics window.These are the nodes on the lines.

Mesh the Faces

Now mesh the faces.

Using the icon in the toolbar

Click the button in the toolbar:

Program Input

click

Generate the mesh Generate, verify and save the mesh

Chapter 11222

Output from Mesh_lines

Using the menu

If you prefer, choose Mesh, Mesh, Mesh Faces from the menu:

Program Input

Mesh

Mesh

Mesh Faces

It may take several seconds for the program to generate the mesh. The following figure showsboth nodes and surface elements:

Generate, verify and save the mesh Generate the mesh

Chapter 11 223

Mesh nodes and surface elements

Page 124: Tutorial Induction Machine Geometry

As soon as the 2nd order elements have been generated, Preflux automatically verifies the qualityof the mesh. In the Console window you will see the results of the verification:

If you want to see the mesh elements more clearly, turn off the display of the nodes by clickingthe button:

Program Input

click

Generate the mesh Generate, verify and save the mesh

Chapter 11224

Mesh verification

Your display should resemble the following:

Save the mesh

To save this mesh, click the button in the toolbar:

Program Input

click

Generate, verify and save the mesh Save the mesh

Chapter 11 225

Mesh (surface elements only)

Page 125: Tutorial Induction Machine Geometry

Close the project

To close the project, choose Project, Close from the menu

Program Input

Project

Close

Close the project Generate, verify and save the mesh

Chapter 11226

You will return to the main Preflux window.

Generate, verify and save the mesh Close the project

Chapter 11 227

Ready to close Preflux 2D

Page 126: Tutorial Induction Machine Geometry

Close Preflux 2D

Close Preflux 2D now by choosing Project, Exit from the menu. We will be returning here aftercreating the materials and circuit for the problem. Upon our return, we will use the newcapabilities of Flux 9 to define the physical model.

Program Input

Project

Exit

Close Preflux 2D Generate, verify and save the mesh

Chapter 11228

You will return to the Flux Supervisor.

Generate, verify and save the mesh Close Preflux 2D

Chapter 11 229

Flux Supervisor

Page 127: Tutorial Induction Machine Geometry

Enter the materials

This chapter describes how to enter new materials and properties and modify existing ones. Themodel involves three materials: iron, aluminum, and air. You will create material models for theiron (as a nonlinear steel), and aluminum . The air material is modeled as a vacuum.

For this problem you will model the aluminum with linear material properties using constantvalues for the conductivity and relative permeability. It is not necessary to enter other propertiesof these materials, such as the thermal properties, since Flux2D takes into account only theproperties relevant to the analysis (magnetodynamic formulation).

231

Chapter 12Open the materials database (CSLMAT)

To define the three materials, in the Flux Supervisor, in the Construction folder, double clickMaterials database.

Program Input

Double click Materials database

Open the materials database (CSLMAT) Enter the materials

Chapter 12232

Opening the materials database (CSLMAT)

Page 128: Tutorial Induction Machine Geometry

CSLMAT will open:

Create the iron material (nonlinear steel)

A material is defined by a name, a comment, and at least one property. The name of the materialmay have a maximum of 20 characters and must start with a letter. The comment is limited to 40characters. Comments are optional, but they may be useful as a reference.

From the CSLMAT menu, select:

Program Input

Selected command 1 Add

Selected command 1 Material

Name of the material : iron

Comment nonlinear steel

Enter the materials Create the iron material (nonlinear steel)

Chapter 12 233

CSLMAT (materials database) menu

Program Input

To register, define at leastone property

Please select the property 1 iso MU

Select a model 9 scalar spline

Your screen should resemble the following figure:

You will now enter the initial points to define the scalar spline curve. The magnetic field, H, isentered in A/m, and the magnetic flux density, B, is entered in Tesla.

Table 1 (below) includes the values you should enter to define the points. If necessary, you canmake corrections after the last point has been entered.

Chapter 12

Create the iron material (nonlinear steel) Enter the materials

234

Selecting the scalar spline model for the iron material (nonlinear steel)

Page 129: Tutorial Induction Machine Geometry

Table 1. Points for B-H curve

Point number H (A/m) B (Tesla)

1 0.00 0.00

2 129.50 0.50

3 243.25 1.10

4 1850.00 1.60

5 3700.00 1.70

6 9900.00 1.85

7 22100.00 2.00

8 43000.00 2.10

The first point is entered by default as 0, 0 so that row of the table is cross-hatched. You willbegin with the values for the second point.

The screen shown on the previous page is the “Graphics mode” screen. The values are entered inthe fields at the bottom of the window, as shown in the following figure:

Enter the materials Create the iron material (nonlinear steel)

Chapter 12 235

“Graphics mode” entry for B-H values

If you click on “Array mode,” however, you will see the following screen:

You may enter the values in either mode.

236

Create the iron material (nonlinear steel) Enter the materials

Chapter 12

Array mode screen to enter B-H values

Page 130: Tutorial Induction Machine Geometry

We will show entry in Graphic mode; the points will be displayed with an � symbol in thegraphics window as they are entered.

For example, the following figure shows the screen after values for the 2nd point have beenentered:

As other points are entered, they will also be displayed on the graph. Enter the values for points2-7 as follows:

Program Input

H (A/m) = 129.5

B (Tesla) = 0.5

H (A/m) = 243.25

B (Tesla) = 1.1

H (A/m) = 1850

B (Tesla) = 1.6

Enter the materials Create the iron material (nonlinear steel)

Chapter 12 237

2nd point of nonlinear steel B-H curve

Program Input

H (A/m) = 3700

B (Tesla) = 1.7

H (A/m) = 9900

B (Tesla) = 1.85

H (A/m) = 22100

B (Tesla) = 2.0

H (A/m) = 43000

B (Tesla) = 2.1

H (A/m) =

When you have finished entering the values for the 8 points, your screen display should resemblethe one shown below:

238

Create the iron material (nonlinear steel) Enter the materials

Chapter 12

Eight points entered for the nonlinear steel B-H curve

Page 131: Tutorial Induction Machine Geometry

Choose “End definition” to stop entering values:

Program Input

H(A/m) End_definition

239

Enter the materials Create the iron material (nonlinear steel)

Chapter 12

All initial values entered

Now you will need to validate the initial points of the spline curve and enter the saturationmagnetization for the iron. Your screen should resemble the following figure:

You must select the smoothing method for the curve and enter the value of the saturationmagnetization. Proceed as follows:

Program Input

Validate

Please select the smooth method 1 Automatic_smooth

Value of the saturationmagnetization

240

Create the iron material (nonlinear steel) Enter the materials

Chapter 12

Accepting the initial points for the B-H curve

Page 132: Tutorial Induction Machine Geometry

You will see a blue field where you should enter the value:

Enter 2.07 as the value for the saturation magnetization:

Program Input

Value of the saturationmagnetization (Tesla)

2.07

Checking spline functionsinterpolation

The smoothed curve passesthrough the 3 green points

241

Enter the materials Create the iron material (nonlinear steel)

Chapter 12

Entering the saturation magnetization for the iron material

You will see the curve with 3 points displayed as green � symbols. The smoothed curve passesthrough these points:

The B-H curve is drawn by Flux2D to best fit the points you have entered. It is likely that thecurve does not pass through some of the points. If the curve is not satisfactory, you can modifythe 3 selected points, the saturation value, or the weighting factor, to get the curve you want.You can also change the maximum value of the abscissa to view the graph in greater detail. Whenyou are ready, choose Quit and accept the curve as follows:

Program Input

Quit

Validate

Please select the property

Quit

You will return to the Add screen.

242

Create the iron material (nonlinear steel) Enter the materials

Chapter 12

Points chosen for the smoothed curve

Page 133: Tutorial Induction Machine Geometry

Create the aluminum material

Finally, enter the properties for the linear aluminum. Proceed as follows:

Program Input

1 Material

Name of the material : aluminum

Comment linear aluminum for inductionmachine

Please select the property 3 iso RHO

Please select the model 1 scalar cst

Enter the resistivity value in the blue field at the top.

Validate your entry for the aluminum and then close the materials database. Proceed as follows:

Program Input

Value = 0.278e-7

Please select the line whosevalue is to be changed

1 Validate

Please select the property Quit

Selected command Quit

Selected command STOP

You will return to the Flux Supervisor. Next, you will model the external circuit.

243

Enter the materials Create the aluminum material

Chapter 12

Resistivity value for linear aluminum

Model an external circuit withELECTRIFLUX

Now you are ready to use ELECTRIFLUX, the circuit module, to construct a model of anexternal circuit for the motor. You can then use the circuit as the source for a magnetodynamicor a transient magnetic problem.

Overview of the circuit

The machine in our model is connected in delta; the circuit you will create is shown below.

245

Chapter 13

Circuit topology for delta connection

Page 134: Tutorial Induction Machine Geometry

The R’s in the figure above represent the stator winding end turn resistance; the L’s represent the end turn inductance. The stator windings for phases A, B and C are shown as BPA, BPB, andBMC, respectively. The squirrel cage, though electrically independent of the stator circuit, isconnected to one end of the delta to establish a common ground.

The voltage sources are each 380V, 50Hz AC, but with a phase difference of 120 degrees. PhaseC will automatically have the same voltage with another 120 degrees phase shift, as given byKirchoff’s law. Thus, there is no need to connect phase C with an external source.

In numerical computation, errors may result in zero sequence currents, which in turn cause anerror in the model. This type of error can be avoided if the voltages in the three phases are notdefined explicitly.

Place the circuit components as shown below.

The components need not be arranged exactly as shown as long as the appropriate connectionsare made.

Overview of the circuit Model an external circuit with ELECTRIFLUX

Chapter 13246

Circuit components placed on sheet

The small squares beside the components indicate the “hot” points, shown here at the top of thecoil.

The “hot” point shows the side through which the current should enter the component to give apositive voltage drop. The components must be placed so these “hot” points are on the properside. Thus, the placement of the “hot” point is essential only for the coils.

Start ELECTRIFLUX

To start the circuit module, from the Flux2D Supervisor, double click Circuit:

Model an external circuit with ELECTRIFLUX Start ELECTRIFLUX

Chapter 13 247

The “hot” point of the coil

Starting the Circuit module (ELECTRIFLUX)

Page 135: Tutorial Induction Machine Geometry

Program Input

Double click Circuit

ELECTRIFLUX will open.

Start ELECTRIFLUX Model an external circuit with ELECTRIFLUX

Chapter 13248

ELECTRIFLUX (Circuit) window

Open a new circuit problem

Open a new circuit problem.

Using the icon in the toolbar

Click the icon in the toolbar.

Program Input

click

Using the menu

If you prefer, choose File, New from the menu.

Program Input

File

New

Model an external circuit with ELECTRIFLUX Open a new circuit problem

Chapter 13 249

Page 136: Tutorial Induction Machine Geometry

A new (blank) Circuit and Sheet windows will open.

Chapter 13250

Model an external circuit with ELECTRIFLUX Open a new circuit problem

New Circuit and Sheet windows open in ELECTRIFLUX

ELECTRIFLUX toolbar

The ELECTRIFLUX toolbar includes icons for project management (New, Open, Save), as wellas special icons for managing components, selecting components, and viewing the sheet.

The following figure shows the ELECTRIFLUX toolbar.

The following figures identify the toolbar icons.

Model an external circuit with ELECTRIFLUX ELECTRIFLUX toolbar

Chapter 13 251

Page 137: Tutorial Induction Machine Geometry

ELECTRIFLUX menus

Below are brief descriptions and illustrations of the ELECTRIFLUX menus.

File menu

The File menu includes commands to open, save, print, and import/export circuit files.

Edit menu

The Edit menu includes commands to manage components on the sheet, e.g., Cut, Copy, Paste,Delete.

ELECTRIFLUX menus Model an external circuit with ELECTRIFLUX

Chapter 13252

View menu

The View menu includes commands to change the appearance of the sheet. For example, you candisplay or hide the circuit grid with View, Grid.

The Zoom commands are also accessible through the View menu.

Circuit menu

The Circuit menu includes commands to arrange components and connections, e.g., to insertconnection points, rotate elements, insert space between components, etc.

� "Automatic component skirting" is a setting that prevents circuit connections from

being made through or across components. This option is activated (checked) by

default.

Model an external circuit with ELECTRIFLUX ELECTRIFLUX menus

Chapter 13 253

Page 138: Tutorial Induction Machine Geometry

Sheet menu

The Sheet menu includes commands to manage the individual circuit sheets—to change thename, the background colors, the size of the grid, and so on.

Window menu

The Window menu includes commands for the display of the Circuit window (which includesthe Sheet window).

? (Help) menu

The ? (Help) menu includes commands to link to Flux online help (including a searchableIndex), the Flux User's Guide, and other documentation.

ELECTRIFLUX menus Model an external circuit with ELECTRIFLUX

Chapter 13254

Change the size of the sheet

Before you proceed, if you wish, you can change the size of the sheet window and circuit grid.

First, click the button to maximize the Sheet window. Then right click anywhere on the sheet toopen the context menu. Choose Sheet settings....

Program Input

click

Right click on the sheet

Sheet settings…

Model an external circuit with ELECTRIFLUX Change the size of the sheet

Chapter 13 255

To modify the sheet settings (size of sheet, etc.)

Page 139: Tutorial Induction Machine Geometry

The Sheet properties dialog will open.

Enter or verify the following:

Program Input

Sheet properties (Sheet_1)

Comment induction machine circuit

Squaring gap (pixels) 10

Line Width 1

Background color [white]

Line color [blue]

Selected line color [red]

Sheet Width 800

Sheet Height 600

OK

Change the size of the sheet Model an external circuit with ELECTRIFLUX

Chapter 13256

Modifying the sheet properties

When you click OK, the dialog closes. Adjust the sheet window (if necessary) to show your newsheet size.

Now you are ready to begin placing the circuit components on the sheet.

Model an external circuit with ELECTRIFLUX Change the size of the sheet

Chapter 13 257

New (larger) sheet with grid

Page 140: Tutorial Induction Machine Geometry

The following figure shows all the components for the circuit in place.

Change the size of the sheet Model an external circuit with ELECTRIFLUX

Chapter 13258

Circuit components placed on the sheet

Add the coils to the circuit

First, place the coils on the circuit grid.

The circuit requires a total of 3 stranded conducting coils. The solid conductors, like those in thesquirrel cage you will describe later, are solid conductors with eddy currents.

To add the coils, click Coil conductor in the components library.

Program Input

click Coil conductor

Model an external circuit with ELECTRIFLUX Add the coils to the circuit

Chapter 13 259

Page 141: Tutorial Induction Machine Geometry

You will see a red coil symbol in the top left corner of the sheet.

Add the coils to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13260

Ready to place the coil components (stator windings)

Place the coil components on the sheet

Move your mouse over the coil symbol, but do not click on the symbol yet. Move the symbolwith the mouse until the coil is in the position shown in the following figure.

Model an external circuit with ELECTRIFLUX Add the coils to the circuit

Chapter 13 261

Moving coil B1 into position

Page 142: Tutorial Induction Machine Geometry

Then click to place the coil in that position (the coil symbol will turn blue). As soon as you movethe mouse again, you will see a second (red) coil symbol.

Add the coils to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13262

Moving coil B2 into position

Click to place coil B2. Move the mouse again to place coil B3, as shown in the following figure.

Model an external circuit with ELECTRIFLUX Add the coils to the circuit

Chapter 13 263

Placing coil B3 on the sheet

Page 143: Tutorial Induction Machine Geometry

To stop adding coil components, move your mouse off the sheet.

Add the coils to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13264

To stop adding coil components to the sheet

Rotate the coils for proper orientation of the hot point

Now rotate the coil components. For each component, complete the two steps below:

1. Click the component to select it (the component will turn red).

2. Click the Rotate icon the appropriate number of times to orient the component.

Each time you click the icon the component rotates 90� clockwise. Note that all 3 coils mustbe rotated a total of 180� clockwise; you thus need to click the Rotate icon two (2) times toobtain the proper rotation for these coils.

For example, the following figure shows coil B3 after its rotation. Look closely to see that the"hot point" is below the pin on the right side of the coil.

Model an external circuit with ELECTRIFLUX Add the coils to the circuit

Chapter 13 265

To rotate coil B1

Coil B3 rotated

Page 144: Tutorial Induction Machine Geometry

Proceed as follows:

Program Input

click B1 symbol

B1 turns red

click two (2) times

B1 rotates 180� clockwise

click B2 symbol

B2 turns red

click two (2) times

B2 rotates 180� clockwise

click B3 symbol

B3 turns red

click two (2) times

B3 rotates 180� clockwise

Add the coils to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13266

With the three coils rotated, your sheet should resemble the following:

Model an external circuit with ELECTRIFLUX Add the coils to the circuit

Chapter 13 267

Coils rotated

Page 145: Tutorial Induction Machine Geometry

Add the resistors to the circuit

Now add three resistors to the circuit.

To add the resistors, click Resistor in the component library.

Program Input

click Resistor

Add the resistors to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13268

You will see a red resistor symbol in the upper left corner of the sheet.

Model an external circuit with ELECTRIFLUX Add the resistors to the circuit

Chapter 13 269

Ready to place resistor on the sheet

Page 146: Tutorial Induction Machine Geometry

Place the 3 resistors on the sheet

Move the mouse over the resistor symbol and then place the 3 resistors as shown in the followingfigure.

Move your mouse off the sheet to stop adding resistors.

Add the resistors to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13270

Resistors placed on the sheet

Rotate the resistors

Now rotate resistors R1 and R2. (Note that resistor R3 does not need to be rotated.)

Proceed as follows:

Program Input

click R1 symbol

R1 turns red

click two (2) times

R1 rotates 180� clockwise

click R2 symbol

R2 turns red

click two (2) times

R2 rotates 180� clockwise

Model an external circuit with ELECTRIFLUX Add the resistors to the circuit

Chapter 13 271

Page 147: Tutorial Induction Machine Geometry

With the resistors rotated, your sheet should resemble the following.

Add the resistors to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13272

Resistors rotated

Add the inductors to the circuit

Now add inductors to model the stator winding end turn inductances.

Click Inductor in the components library.

Program Input

click Inductor

Model an external circuit with ELECTRIFLUX Add the inductors to the circuit

Chapter 13 273

Page 148: Tutorial Induction Machine Geometry

You will see a red inductor symbol in the upper left corner of the sheet.

Add the inductors to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13274

Ready to add inductor

Place the 3 inductors on the sheet

Move the mouse to place the three inductors on the sheet, as shown in the following figure.

Move your mouse off the sheet to stop adding inductors.

Model an external circuit with ELECTRIFLUX Add the inductors to the circuit

Chapter 13 275

Inductors placed on the sheet

Page 149: Tutorial Induction Machine Geometry

Rotate the inductors

Now rotate inductors L1 and L2 (note that L3 does not need to be rotated). Proceed as follows.

Program Input

click L1 symbol

L1 turns red

click two (2) times

L1 rotates 180� clockwise

click L2 symbol

L2 turns red

click two (2) times

L2 rotates 180� clockwise

Add the inductors to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13276

With the inductors properly rotated, your sheet should resemble the following figure.

Model an external circuit with ELECTRIFLUX Add the inductors to the circuit

Chapter 13 277

Inductors rotated

Page 150: Tutorial Induction Machine Geometry

Add the voltage sources to the circuit

Now add the two voltage sources.

Click Voltage source in the components library.

Program Input

click Voltage source

Add the voltage sources to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13278

You will see a red voltage symbol in the upper left corner of the sheet.

Model an external circuit with ELECTRIFLUX Add the voltage sources to the circuit

Chapter 13 279

Ready to add voltages

Page 151: Tutorial Induction Machine Geometry

Place the voltage sources on the sheet

Move the mouse to place the voltage sources as shown in the following figure.

Move your mouse off the sheet to stop adding voltage components.

Rotate the voltage sources

Now rotate the voltage sources. Proceed as follows.

Program Input

click V1 symbol

V1 turns red

click two (2) times

Add the voltage sources to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13280

Voltages added to circuit sheet

Program Input

V1 rotates 180 clockwise

click V2 symbol

V2 turns red

click two (2) times

V1 rotates 180 clockwise

With the voltage sources rotated, your sheet should resemble the following figure.

Model an external circuit with ELECTRIFLUX Add the voltage sources to the circuit

Chapter 13 281

Voltage sources rotated

Page 152: Tutorial Induction Machine Geometry

Add the squirrel cage to the circuit

Finally, add the squirrel cage component at the top of the sheet.

Click Squirrel cage in the components library.

Program Input

click Squirrel cage

Add the squirrel cage to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13282

You will see a red squirrel cage symbol in the top left corner of the sheet.

Model an external circuit with ELECTRIFLUX Add the squirrel cage to the circuit

Chapter 13 283

Ready to place squirrel cage component

Page 153: Tutorial Induction Machine Geometry

Move your mouse to place the squirrel cage at the top center of the sheet, as shown in thefollowing figure.

Add the squirrel cage to the circuit Model an external circuit with ELECTRIFLUX

Chapter 13284

Adding the squirrel cage to the sheet

Save your circuit

Now is a good time to save your circuit file. Click the icon or choose Fire, Save from themenu.

Program Input

File

Save

The following dialog will open.

Model an external circuit with ELECTRIFLUX Save your circuit

Chapter 13 285

Saving the circuit file

Page 154: Tutorial Induction Machine Geometry

The dialog shows your working directory in the "Save in" field (e.g., ours is "Flux_Work" in thefigure above). If you wish to save the file to a different directory, click the button andbrowse to the directory you prefer.

When you are ready, enter or verify the following:

Program Input

Save in Flux_Work [working directory]

File name Ind_Motor_Circuit.ccs [or your name]

Save

Connect the circuit components (wire the circuit)

Now connect the components. Place your mouse over the pin of the squirrel cage Q1, until thecursor changes to a bull's-eye shape.

Connect the circuit components (wire the circuit) Model an external circuit with ELECTRIFLUX

Chapter 13286

Starting to connect the components (wire the circuit)

Move the mouse down to a point in line with coil B1 and click on the grid. Then move the mouseto the left to coil B1 and click to complete the first connection.

Notice that with the "Automatic component skirting" option (the default option) you cannotmake an invalid connection, such as one that passes through or over a component. The cursorchanges to a hand pointer as it passes over the components, as shown in the following figure.

You can make connections only when you see the bull's-eye cursor.

Model an external circuit with ELECTRIFLUX Connect the circuit components (wire the circuit)

Chapter 13 287

"Automatic component skirting" prevents

connections through components

Page 155: Tutorial Induction Machine Geometry

Continue to connect the components. Remember that you can click on the grid itself wheneveryou wish to make the connections more legible.

Connect the circuit components (wire the circuit) Model an external circuit with ELECTRIFLUX

Chapter 13288

Adding a point on the circuit grid

The following figure shows the connections for the complete circuit.

� The end of the squirrel cage is connected to the rest of the circuit for topological

reasons. Flux2D gives an error message if any component is left without a

connection or if two parts of the circuit are not connected.

Model an external circuit with ELECTRIFLUX Connect the circuit components (wire the circuit)

Chapter 13 289

Circuit connected

Page 156: Tutorial Induction Machine Geometry

Rename components

You can modify the names of the components if you wish.

For instance, you may want to modify the names of the coil components to indicate the phase ofthe coil. The following figures show coil B3 being renamed as BMC.

� The name of any coil component must begin with a capital B. The initial letter of

any component name cannot be changed.

To change a component name, double click the component label and then enter the new name.

Rename components Model an external circuit with ELECTRIFLUX

Chapter 13290

Renaming coil B3

The following figure shows the components with new labels.

Analyze the circuit

The Analyze command verifies that the components are properly connected and defined.Analyzing the circuit creates the *.CIF file that is used to assign physical properties andboundary conditions.

Choose Circuit, Analyse from the menu.

Model an external circuit with ELECTRIFLUX Analyze the circuit

Chapter 13 291

New component names for coils and voltage sources

Page 157: Tutorial Induction Machine Geometry

Program Input

Circuit

Analyse

The following dialog will open with a report of the analysis.

Analyze the circuit Model an external circuit with ELECTRIFLUX

Chapter 13292

Analysis of the circuit

Click Exit to close the dialog.

Program Input

The circuit is connexe. Exit

Save and close the circuit file

The circuit and transmission file are now complete. Save the circuit file by clicking the iconor by choosing File, Save from the menu.

Program Input

File

Save

Model an external circuit with ELECTRIFLUX Save and close the circuit file

Chapter 13 293

Page 158: Tutorial Induction Machine Geometry

Close the circuit by choosing File, Close.

Program Input

File

Close

The following dialog will open.

Click Yes to confirm:

Program Input

Close circuit? Yes

Save and close the circuit file Model an external circuit with ELECTRIFLUX

Chapter 13294

Confirming close of circuit

Close ELECTRIFLUX

Finally, close ELECTRIFLUX by choosing File, Exit.

Program Input

File

Exit

You return to the Flux2D Supervisor. Next you will define physical properties. This is describedin the second volume of this tutorial, Flux2D: Induction Machine Calculations.

Model an external circuit with ELECTRIFLUX Close ELECTRIFLUX

Chapter 13 295