78
TU/e Polydiagnostics on the COST lamp Aim: To calibrate various methods against each others find the truth & and nothing but the truth For validating models Joost van der Mullen Technische Universiteit Eindhoven Madeira Model Inventory Workshop April 12-16: 2005

TU/e Polydiagnostics on the COST lamp Aim: To calibrate various methods against each others find the truth & and nothing but the truth For validating models

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

TU/e

Polydiagnostics on the COST lamp

Aim: To calibrate various methods against each othersfind the truth & and nothing but the truth

For validating models

Joost van der MullenTechnische Universiteit Eindhoven

MadeiraModel Inventory WorkshopApril 12-16: 2005

TU/e

The problems; the challenges

Three methods to measure the temperature

Usually give three (or even more) answers

Even for so-called “LTE” plasma: differences up to 30%

Difficult to answer the question: is LTE present? Or: are the method (in)correct?

Impossible to validate the models

TU/e

Final Goal

To find Easy/Global observables

To Characterise the plasma: ne, Te etc

To determine the state of the lamp:Light technical propertiesRemaining Lifetime

Candidate Easy/Global observables(Filtered) EmissionElectronic behavior

TU/e

Polydiagnostics on good defined plasma

Different people Various techniques

Limited amount of Lamps

Cost Reference LampFamily

TU/e

The COST reference LampFamily:

Second generation: (in preparation)1) Outer envelope is filled with N_2; Additional convection cooling 2) electrodes simplified (no spirals but rods) Request on last COST meeting: plasma-electrode interactions.  

First generationShortcomings: burner wall too hot limitation in life span & power.

Invitation to work on 1ste generation: requests for the final design.  The followings types 1 ste generation are available: a) Pure Hg; b) Hg with Na  c) Hg with Dy.

TU/e

Provided from: EINLighTRED

Philips Licht

ASML Draka

Tue/N

Eindhoven

INstitute for

Lighting

Technology

Research and

EDucation

Philips NatLab

COSTEuropa

Philips Aachen

TU/e

The plasmas: in MH lamps

10 bar Hg10 mbar add

Color non-uniformity

Segregation

TU/e

2-D

3D

Plasma: orientation dependent

Gravitation

TU/e

Main characteristics

Main feature: Majority plasma propertiesMinority species

Largely non-linear

Example: Color: orientation dependent

Fe(ion) = 109 Fg(ion)

Chemistry: 10 bar Hg : 20 mbar DyI3

TU/e

General exploration phenomena

Demands: High Efficiency RadiationLong life span

T largeHigh Tcentral

Low Twall

High pHg large

Buoyancy

Continuity

TU/e

Elemental: whats in that name ??

Species: H2O; OH; O; H; H+ etc.

[H] = atomic concentration: H atoms per volume

{H} = elemental concentration: all H atoms per volumeirrespective binding/state

{H} = [H] + 2[H2O] + [H+]

TU/e

Radial segregation; Diffusion

Centrum

T high

atoms

small

fast

Wall

T low

Molecules

Large

slow

Nelea va = Nele

m vm

Nelea / Nele

m = vm /va << 1

TU/e

Axial segregation

Large Nele at wall pushed down

Small Nele at centr pushed up

Net effect: Emiting species Pushed-down

Or differently

Quick atoms can leave upstream easilySlow molecules stay streaming downwards

TU/e

Competition

Convection

Diffusion

Chemistry

Radiation

TU/e

Methods

Grand Modeling

Radiation Transport

3D

Polydiagnostics

X-ray Abs Tomo

Emission

Absorption: LaserD

Thomson Sc

Flow Patterns

E-Field

Chemistry

DiffusionX-ray Flouresc

Absorption Broadband

Self-Absorption

In Search for COST cooperation

TU/e

Convergence

Polydiagnostics

X-ray Abs Tomo

X-ray Flouresc

Emission

Laser Diode Abs

Thomson Sc

Normal Terrestial: 1 g Zero g

The Truth

TU/e

The Final Goal

Can we by just looking to easy/global observables

Characterise the plasma: ne; Te, etcAssess the status of the lamp: Efficiency

Remaining lifetime

Examples Easy/Global observables: Emission/FiltersV/I response

TU/e

Settings

Model – Diagnositcs validation for Several settings

Buffer gasRadiation “gas”

Fillings

Power Quantity Waveform

GravitationZero gExtreme g

VesselGeometry

TU/e

Zero g: methods limited

TU/e

Normal conditionsmany possibilities

Guided by Atomic State Distribution Function (ASDF)

Passive spectroscopy Emission Intensity: Line ContinuumIntegrated, Line Shape/Reversal

Active SpectroscopyFluorescence: LIF Xray FAbsorption: Laser (line) broadbandScattering: Thomson

TU/e

The ASDF

                    

TS Slope by TS

  ES

E

SahaJump

Ion. En.0

by

LIF and AS

Ln

(n/g

)

 

LiRe

TU/e

Emission Spectroscopy

• Intensity as function of Wavelength• Wavelength calibration big effort• Calibrate Intensity of lines ALI• Calculate Density of Dysprosium• Atomic State Distribution Function (ASDF)• Gives T; gives various n’s

TU/e

Setup ES

Czerny-Turner 1m-monochromator

ST-6 CCD

ST-2000 CCD

lamp lens

dia

Two CCDGlobalPrecise

TU/e

Spectral Impression: grass fieldLine identification: not trivial

400 450 500 550 600 650 700

0

10000

20000

30000

40000

50000

60000

70000

In

ten

sity

(co

un

ts)

Wavelength

TU/e

Radial profile Dy1

0.000 0.001 0.002 0.003 0.0040

2500

5000

7500

10000

12500

15000

17500

Inte

nsity (

W/m2)

Radius (m)

TU/e

Abel inversion

)(xI

(r): emission as a function of radius rI(x): measured lateral emission-line intensity

.35

16

35

8

35

6

7

12

3

8

3

4

5

2

3

2

3

12

2

624426226

4224224

22222

220

xRxRxRxRc

xRxRxRc

xRxRc

xRc

6

0

)(n

nnrcr

R

x

drxr

rrxI

22)(2)(

0

0

),(2)(y

dyyxxI I(x )

y

x

rR

(r)

y 0

-y 0

TU/e

ALI

ln

1ln

pE pI

)(4

1,,

ppql

p nhAD

Ij

DhA

In

pq

lp

4

)ln(ln

eB

p

p

p

Tk

I

g

n

3/22

2

eBeie Tkm

h

TU/e

ASDF for central position

T=5524 K

319103 mg

n

ground

ground

1 2 3 4 5 6 7 8 9 1034

36

38

40

42

ln

(n/g

)

Eup (eV)

DyI DyII

NoteSteeperSlope

TU/e

Future Plans

• Join forces with Plasimo• Compare results with that of other techniques

• Still much work : Spectrum identificationMeasurements

Important Part of the collection Easy/Global Observable

ALI will be The reference frame:For other thechniquesCOST cooperation

TU/e

Absorption Spectroscopy

burnerouter balloon

lens I lens IIlaser lens III interference

filter

diode array

Dy groundstate density

Charlotte Groothuis

TU/e

Linking absorption with density

sIsds

sdI

,

ssnAg

gs qpq

q

p ,8

,2

)(rnq

TU/e

Lateral

TU/e

TU/e

Lateral

TU/e

Segregation parameter

λ ≡ ∂p /∂z

TU/e

X-ray absorption

Xiaoyan Zhu & Evert Ridderhof

X-ray CCD

Cooling plate +shielding frame

d1d2

x-raysource

L

TU/e

Procedure

Hg is dominant

p /p <<1

(n T)any pos = (n T)wall

Pyrometer

Tg on any position

Xray

TU/e

XRA on Helios lamp

• Exposure time: 200s.on off

258

464

788

852

1012

TU/e

TU/e

The Wall temperature as a function axial position z

-4.5 0.0 4.5 9.0 13.5 18.0 22.5

1300

1400

1500

1600

1700

1800-25 0 25 50 75 100 125

wa

ll te

mp

era

ture

(K

)

axial position z (mm)

Hg Hg+NaI Hg+NaI/CeI

3

Z (%)

TU/e

The Radial T profile as a F(z)

-1.0 -0.5 0.0 0.5 1.01000

1500

2000

2500

3000

3500

4000

4500

5000

5500

radi

al te

mpe

ratu

re (

K)

normalized radial position

95% 65% 55% 30% 10%

New

TU/e

The Shape as a F(z)

0 2 4 6 8 10 12 14 16 18

0.9

1.0

1.1

1.2

1.3

1.4

1.50 10 20 30 40 50 60 70 80 90 100

Z (%)F

WH

M

axial position z(mm)

Hg Hg+NaI Hg+NaI/CeI

3

TU/e

The shape as a F(power)

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

9.5mm to the bottom boundary of the burner

no

rma

lize

d t

em

pe

ratu

re

normalized radial position

70 W 90 W 120 W 144 W

TU/e

The Radial T profile as a F(z)

-1.0 -0.5 0.0 0.5 1.01000

1500

2000

2500

3000

3500

4000

4500

5000

5500

radi

al te

mpe

ratu

re (

K)

normalized radial position

95% 65% 55% 30% 10%

T of 5000 KIn Hg part

Are low

Blame Abel Inv ?

TU/e

X-ray Induced Fluorescence measurement of segregation in MH lamps

Tanya Nimalasuriya (TU/e)

Evert Ridderhof (TU/e)

John J. Curry (NIST)

Craig J. Sansonetti (NIST)

Sharvjit Shastri (APS)

TU/e

Introduction

TU/e

Advanced Photon Source

TU/e

Experiment station

E.J. Ridderhof

TU/e

XRF sketch

4 cm

X-rayBeam

Ge Detector

7 cm

Ion Chamber

Pb shield

Wslits

Wslits

burnerjacket

The x-ray beam is produced by the Sector 1 Insertion Device beam line at the Advanced Photon Source at the Argonne National Laboratory

J.J.Curry NIST

TU/e

XRF basic principle

An electron in the K shell is ejected from the atom by an external primary excitation x-ray, creating a vacancy.

An electron from the L or M shell "jumps in" to fill the vacancy. In the process, it emits a characteristic x-ray unique to this element and in turn, produces a vacancy in the L or M shell.

TU/e

XRF spectral lines

Principal fluorescence lines produced by K-shell excitation in Dy. The excited levels correspond to a singly ionized atom

X-ray induced fluorescence spectrum excited by 70 keV photons at x/R = 0.56. x is displacement from the arc axis in the direction of the detector and R=4.5 mm is the arc tube radius

J.J.Curry NIST

TU/e

XRF advantages

• X-ray induced fluorescence: - determines elemental densities of Dy,Hg - is effective anywhere in the burner

• No inversion technique is needed

• T profile with Hg densities

TU/e

XRF-Spectra

1mm above bottom electrodex, z: center

1mm above bottom electrode z: center, x: at wall

afiKa

Kai

Kaif NETEVTBYEEC )()(

4)()(

800 1200 1600 20000

20000

40000

60000

80000

100000

120000

Inte

nsity

Channel

800 1200 1600 20000

1000

2000

3000

4000

5000

6000

7000

Inte

nsity

Channel

I

CeDy I

Ce

Dy

W

TU/e

Wall influence

Dy density profile

-1.0 -0.5 0.0 0.5 1.0

1E15

1E16

1E17

Den

sity

(cm

-3)

normalised radial position

6.7% 21 % 36 % 50 %

Dissociation

Ionisation

TU/e

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

1E-4

1E-3

0.01

6.7% 21 % 36 % 50 %

Rat

io D

y/H

g

Normalised Radial Position

Ratio elemental densities Dy/ HgRelative concentration

T. Nimalasuriya, J.J. Curry, C.J. Sansonetti, E.J. Ridderhof

Wall influence

Dissociation

Ionisation

TU/e

Diffusion versus (radial) convection

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

1E-4

1E-3

0.01

6.7% 21 % 36 % 50 %

Rat

io D

y/H

g

Normalised Radial Position

TU/e

Temperature profile from Hg density

XRF 140 W XRA 142 W, X.Y. Zhu

-1.0 -0.5 0.0 0.5 1.0

1000

1500

2000

2500

3000

3500

4000

4500

5000

T (

K)

normalised radial position

6.7% 21 % 36 % 50 % 64 % 79 % 93 %

-1.0 -0.5 0.0 0.5 1.0

1000

1500

2000

2500

3000

3500

4000

4500

5000

T (

K)

normalised radial position

85% 65% 55% 30% 10%

TXRF < TXRA !!

TU/e

XRF Conclusions

In future: compare results with Absolute Line Intensity measurements and Laser Absorption Spectroscopy

Polydiagnostics

•Axial and radial segregation clearly observed

•T profile XRF shows similarities with XRA; TXRF lower !!

TU/e

Conclusions TS (versus XRA)

• TS for the first time applied on real lamp

• Indications that the LTE assumption is not valid

– Thermal: Te - T gas 2000 K XRA compared

– Chemical: Texc Te, b1 >10.

– Plasma always ionizing even at I-zero-crossing!!

TU/e

Zero g

TU/e

Parabolic flights

20 seconds 1.8 G25 seconds 0 G20 seconds 1.8 G

TU/e

 

T U E ( E P G ) T U E ( G T D a n d B L N ) P h i l i p s ( C D L )

G e r r i t K r o e s e n , M a r k B a x , D a n n y v a n d e n A k k e r , G u i d o S c h i f f e l e r s , P i m K e m p s , F r a n k v a n d e n H o u t , M a r c v a n K e m e n a d e , J o b B e c k e r s , A r j a nF l i k w e e r t , T a n y a N i m a l a s u r i y a , W i n f r e d S t o f f e l s , J o o s t v a n d e rM u l l e n , X i a o - Y a n Z h u , C h a r l o t t e G r o o t h u i s , A n e t t e S e z i n , R i n a B o o m , J o h a n M e u l e n s t e e n

P e e r B r i n k g r e v e , E r w i n D e k k e r s , J o v i t a M o e r e l , R o b d e K l u i j v e r , H a n s W i j t v l i e t , R u u d d e R e g t , F r e d v a n N i j m w e e g e n , R o e l S m e e t s , G e r a r d H a r k e m a , K l a a s K o p i n g a , P a u l B e i j e r , M e i n d e r t J a n s z e n , N . N . 1 , N . N . 2 , … , N . N . 1 5

M a r c o H a v e r l a g , R o b K e i j s e r , J o s E i j s e r m a n s , J a c q u e s C l a a s s e n s , P a u l H u i j b r e g t s , W a l l y D e k k e r s , J a c q u e s H e u t s , J a n P e e r a e r , J o h n E t m a n , J o o p G e i j t e n b e e k , F o l k e N ö r t e m a n n , C e e s R e y n h o u t , B r u n o S m e t s , H a n s W e r n a r s

E x t e r n a l c o n s u l t a n t sD u t c h S p a c e : R o n H u i j s e r , J a n D o o r n i n k , G e e r t B r o u w e r , F o n s v a n W i j k , K i n g L a m , L u c v a n d e n B e r g hK a y s e r - T h r e d e : R o l a n d S e u r i g , A n d r e a s K e l l i gV e r h a e r t : P i e t R o s i e r s B r a d f o r d : G e r a r d M a a s

A s t r o n a u t : A n d r é K u i p e r s ( E S A )

TU/e

TU/e

Setup in zero g plane

TU/e

Setup PFC

TU/e

Parabolic Flights

TU/e

TU/e

Fisher model

Competition between Diffusion and Convection.

Gravitation

TU/e

Prediction forincreased convection

Left hand side:• Decrease diffusion• Increase convection• More demixing

Right hand side:• Decrease diffusion• Increase convection• Better mixing

TU/e

λ

The Convection/Diffusion competition

0g: Diffusion solely

1g:Optimal competition

2g: Convection dominant

TU/e

Results for absorption

TU/e

Sphere of Ullbricht: integrated intensityJob Beckers/Winfred Stoffels

Highly reflective diffusive

coating

Integrates all light

Homogenious light

the whole sphere

 

TU/e

ARGES burner, DyI3-salt, 5 mg Hg

1. Output increases cause of axial de-segregation

2. (right on the “Fischer curve”)

3. Output increases cause of disappearence of axial segregation (totally left on the “Fischer curve”) and new equilibrium.

4. Equilibrium comes back

TU/e

Conclusions

The total Light output varies with gravity.

Difference of the light output can be explained by the theory of axial- <-> radial segregation of lamps at the right side “Fischer curve”.

Lamps do not reach equilibrium at the end of a zero-g phase.

The results inegrated emission agree with absorption

TU/e

International Space Station

TU/e

ISS data analysis

• Dy 642 and Hg 579

• lateral profile

• abel inversion

• T profile using absolute measurement of Hg

• density profile of Dy 642

TU/e

0 200 400 600 800 1000 1200 1400 1600

0

5000

10000

15000

20000

642.73 nm

642.19 nm

Inte

nsi

ty (

cou

nts

)

Pixel column

940 960 980 1000 1020 1040 10600

5000

10000

15000

20000Data: A11593900500_C150Model: Lorentz Chi^2 = 605843.70114R^2 = 0.97897 y0 1518.81979 ±113.25358xc 971.02696 ±0.12266w 14.36558 ±0.42293A 433939.09968 ±11017.97067

Inte

nsi

ty (

cou

nts

)

Pixel column

Analysis Dy 642

TU/e

Concluding Remarks

Polydiagnostics is an enormous field

Preliminary work on active and passive spectrhas been done

Strong indications: LTE not present under high pressure conditions

There is need for much more COST projects

ALI the best platform for mutual calibrationLine identification: not trivial & A-values needed