Truss Design Art

Embed Size (px)

Citation preview

  • 8/9/2019 Truss Design Art

    1/47

    Truss Design and Convex Optimization

    RobertM.Freund

    April 13, 2004

    c2004MassachusettsInstituteof Technology.

    1

  • 8/9/2019 Truss Design Art

    2/47

    1 Outline

    • PhysicalLawsof aTrussSystem• TheTrussDesignProblem• Second-OrderConeOptimization• TrussDesignandSecond-OrderConeOptimization• SomeComputationalResults• Semi-DefiniteOptimization

    • TrussDesignandSemi-DefiniteOptimization• TrussDesignandLinearOptimization

    • Extensionsof theTrussDesignProblem

    2 Physical Laws of a Truss System

    Atruss isastructureind= 2 or d=3dimensions,formedbynnodesandmbars joiningthesenodes. Figure1showsanexampleof atruss.

    2

    3

    4

    5

    6

    Figure 1: Example of  a truss in d = 2 dimensions, with n = 6 nodes andm= 13 bars.

    Examplesof trusses includebridges,cranes,andtheEiffelTower.

    2

  • 8/9/2019 Truss Design Art

    3/47

    Thedatausedtodescribeatruss is:

    •  asetof nodes(given inphysicalspace)•  asetof bars joiningpairsof nodeswithassociateddataforeachbar:

    –  the lengthLk of bark

    –  theYoung’smodulusE k of bark

    –  thevolumetk of bark

    •  anexternalforcevectorF  onthenodes

    Nodes

    can

    be

    static 

    (fixed

    in

    place)

    or

     free 

    (movable

    when

    the

    truss

    is stressed). The allowable movements of  the nodes defines the degrees of freedom(dof)of thetruss. WesaythatthetrusshasN  degreesof freedom.Of course,N ≤ nd.

    Movements of  nodes in the truss will be represented by a vector u of N displacements ,whereu∈   .

    N Theexternalforceonthetruss isgivenbyavectorF  ∈   .Displacementsof thenodesinthetrusscauseinternalforcesof compres-

    sionand/orexpansiontoappearinthebarsinthetruss. Letf k denotetheinternalforceof bark. Thevectorf 

    ∈ m isthevectorof forcesof thebars.

    Figure

    2

    shows

    an

    example

    of 

    a

    truss

    problem.

    In

    the

    figure,

    there

    is

    a

    singleexternal forceappliedtonode3 inthedirection indicated. Thiswillresult in internal forcesalongthebars inthetrussandwillsimultaneouslycausesmalldisplacements inallof thenodes.

    In Figure 2, nodes 1 and 5 are fixed, and the other nodes are free. Tosimplify notation we will label the 13 different bars by the nodes that heylink to: in generalthebark will joinnodes iand j. Thebarswillbe: 12,13, . . .,56.

    The internalforcef k of barkcanbepositiveornegative:

    • 

    If 

    f k ≥ 0,bark hasbeenexpandedand its internal forcecounteractstheexpansionwithcompression,seeFigure3.

    3

  • 8/9/2019 Truss Design Art

    4/47

    2

    3

    4

    5

    6

    1

     f

     f

     F13

    12

    3

    Figure2: Atrussproblem. 

    ∆ > 0  L k

    Figure

    3:

    A

    bar

    under

    expansion.

     L k

    ∆ < 0

    Figure4: Abarundercompression.

    4

  • 8/9/2019 Truss Design Art

    5/47

    •  If f 

    k

    ≤0,barkhasbeencompressedanditsinternalforcecounteracts

    the

    compression

    with

    expansion,

    see

    Figure

    4.

    2.1 Physical Laws

    2.1.1 Force Balance Equations

    Inastatictrusstheinternalforceswillbalancetheexternalforcesineverydegreeof freedom. That is,theforcesaroundeach freenodemustbalance.This is a law of  conservation of  forces. (This is akin to material balanceequations innetworks,forexample.)

    For

    example,

    consider

    the

    balance

    of 

    forces

    on

    node

    3:

    xcoordinate: −f 13 −f 23 cos(π/4) +f 35 +f 36 cos(π/4) =−F 3xy coordinate: +f 23 sin(π/4) +f 34 +f 36 sin(π/4) =−F 3y

    FortheentiretrusswewriteN  linearequationsthatrepresentthebal-anceof forcesineachdegreeof freedom.

    Inmatrixnotationthiscanbewrittenas

    Af  =−F 

    whereA isanN 

    ×mmatrix,andwhereeachcolumnof A,denotedasak,

    is

    the

    projection

    of 

    the

    bar

    onto

    the

    degrees

    of 

    freedom

    of 

    the

    nodes

    that

    barkmeets.

    Inourexample,wehave:

    5

  • 8/9/2019 Truss Design Art

    6/47

    12 13 14 16 23 24 25 34 35 36 45 46 56 

    1√    1  2√ 

    0 0 0 0

    0 0 0 0 0 0 2x52

     

    −1 0 0 0 − 1√    0 − 1√ 52

    0 0 0 0 0 0

    2y 

    0 −1 0 0 − 1√    0 0 0 1  1√ 

    22

    0 0 0 3x  1√    0 0 1 0  1√ 0 0 0 0  0 0 0 3yA=

    22 

    1√    0 0 −1 0 0 0 0  1√ 0 0  1 0 4x − 22

    1√    0 0 0 0 −1 0 0 − 1√ 0 0  0 0 4y− 22  

    2√    0 0 0 0 0 − 1√ 0 0 0

    6x0 −1 0−25

      1√    0

    0

    0

    0 0

    −1

    √ 0 0

    0

    0 0

    −1 6y25

    2.1.2  Constitutive Relationship between Forces and Distortion

    of a Bar

    If  bar k has length Lk and cross-sectional area Ack, Young’s modulus E k,

    and its length ischangedby∆k,thenthe internalforcef k isgivenby:

    ∆kf k =E kA

    c .kLk

    However,

    for

    our

    purposes

    it

    will

    be

    easier

    to

    work

    instead

    with

    the

    volume tk of bark,which is:

    kLk .tk =Ac

    Wethereforecanwritetheconstitutiverelationshipas:

    E kf k =

    L2tk∆k .

    k

    6

  • 8/9/2019 Truss Design Art

    7/47

    2

    2.1.3 Distortion and Displacements

    Displacements in the nodes will cause the lengths of  the bars to change.SupposethatL12 =L13 =L35 = 1.0,withallotherbarsmeasuredpropor-tionally. InFigure5,weshowadisplacementof:

    u= (−,−,0,0,0,0,0,0) .

     F3

    2

    3

    4

    5

    6

    1

    Figure5: Exampleof asmalldisplacement inanode.

    Table

    1

    shows

    the

    new

    lengths

    of 

    the

    bars

    under

    the

    displacement

    u

    =

    (−,−,0,0,0,0,0,0). Thethirdcolumnof thetableshowsthelinearization(first-order Taylor approximation) of  the lengths of  the bars, and the lastcolumnshowsthecomputationof theinnerproduct:

    (ak)T u .

    Notethatif issmall,thenthedistortionof barkisnicelyapproximatedbythe linearexpression:

    ∆k =−(ak)T u .

    7

  • 8/9/2019 Truss Design Art

    8/47

    Bark OldLength NewLength LinearizedLength LinearizedChange∆k

    (ak

    )T u

    12 1 

    1 + 2( −1) 1− − 13 1 1 1 0 014 1√  1√  1√  0 016

    23

    5√ 2

    5√ 2 + 22

    5√ 2

    0

    0

    0

    0 24

    25

    1√ 5

    1 + 2( + 1)  

    5 + 2( + 1)

    1 + √ 5 + 1√ 

    5

    1√ 

    5

    −1−√ 5

    34 1 1 1 0 035 1√  1√  1√  0 036 2

    √ 

    2

    √ 

    2

    √ 

    0 0

    45

    2

    2

    2

    0

    0

    46 1 1 1 0 056 1 1 1 0 0

    Table1: Changes inthe lengthsof thebarsundernodaldisplacement

    Wethereforewritetheinternalforceonbark  duetoafeasibledisplace-mentu as:

    E kf k =− 2 tk(ak)T uLk

    LetthematrixB  bethefollowingdiagonalmatrix:

    L21

    E 1t10

    E 1t1

    L21

    0

    B  = ... , B−1 = ... .

    0 L2m

    E mtm0 E mtm

    L2m

    Thenwecanwritetheaboverelationshipas:

    f  =−B−1AT u ,

    which

    is:

    Bf  +AT u = 0 .

    8

  • 8/9/2019 Truss Design Art

    9/47

    2.1.4 Equilibrium Conditions and Compliance

    Nowwecanwritethephysical lawsof thetrusssystemas:

    Af  = −F  (conservationof forces)

    Bf  +AT u = 0 (forces,distortions,anddisplacements)

    The compliance  of  the truss is the work (or energy) performed by thetruss,which isthesumof theforcestimesdisplacements:

    1F T u .

    2

    “1

    nience.

    Notice that the larger the compliance, the more work or displacementthatthetrussundergoesunderthe loadF . Ideally,wewould likethecom-pliancetobeasmallnumber.

    Combiningtheequilibriumconditions,wewrite:

    We really do not need the fraction2

    ”, but we will keep it for conve-

    =

    −Af 

    = AB−1AT u

    = Ku

    wherethematrixK  isdefinedtobe:

    K =AB−1AT  .

    ThematrixK  iscalledthestiffness  matrix of thetruss. NotethatK  isanSPSDmatrix.

    9

  • 8/9/2019 Truss Design Art

    10/47

    Usingthis,wecanwritethecomplianceas:

    1 1F T u = uT Ku .

    2 2

    Notefromthisthatthecompliancewillalwaysbeanonnegativequantity,asintuitionsuggests. Moregenerally,of course,wewouldexpectthestiffnessmatrix K  to be SPD, and so the compliance will generally be a positivequantity.

    2.1.5 Solving the Equations and Computing the Compliance

    Wesolvetheequationsystem:

    Ku  =F 

    toobtainthenodaldisplacementsu,andthenobtaintheforcesonthebarsbycomputing:

    f  =−B−1AT u . Foreachbark,this lastexpression issimply:

    E kf k =

    2 tk(ak)T 

    u .

    Lk

    Thecompliance isthencomputedas:

    1 1F T u = uT Ku .

    2 2

    2.2 

    Viewing the Equilibrium Conditions as the Solution to

    an Optimization Problem

    We can also view the truss equilibrium conditions as the solution to anoptimizationproblem. Considerthefollowingoptimizationproblem:

    10

  • 8/9/2019 Truss Design Art

    11/47

    m1 1 L2

    OP: minimizef ̃

    k f ̃22 tk E k

    k

    k=1

    m

    s.t.  akf ̃k =−F . k=1

    ProblemOPseeksaforcevectorf ̃ thatsatisfiestheforcebalanceequa-tions:

    m

    −F  = akf ̃k =Af̃ , k=1

    andthatminimizestheweightedsumof squaresof theforces:

    m 1 L21 k f ̃22 tk E k

    k .k=1

    ProblemOP isaconvexquadraticproblem. TheKKToptimalitycon-ditionsforthisproblemare:

    m

    akf k =−F  k=1 

    L2 T k f k +aku= 0 for k= 1, . . . , m . tkE k

    Noticethatwecanrewritetheseoptimalityconditionsas:

    Af  =−F 

    Bf +AT u= 0 ,

    which

    are

    precisely

    the

    equilibrium

    conditions

    for

    the

    truss

    system.

    Thisshowsthatthetrusssystemisnature’ssolutiontoanoptimizationproblem.

    11

  • 8/9/2019 Truss Design Art

    12/47

    Theoptimalobjectivefunctionvalueof theoptimizationproblemOPis:

    m1 1 L2 1 1 1 1k f 2 = f T Bf =− f T AT u=− uT Af  = F T u ,2 tk E k

    k 2 2 2 2k=1

    which is the compliance of  the truss. Therefore we see that the optimalobjectivevalueof OP isthecomplianceof thetrusssystem.

    3 The Truss Design Problem

    Let us now consider the volumes tk of  the bars k to be design parametersthatwewishtodetermine. Wecanwritethesystemof equations:

    F  =Ku

    as:

    F  = Ku

    = AB−1AT u

    m

    B−1AT = (ak) uk

    k=1

    m

    = −(ak)f kk=1

    m E k

    = tkL2

    (ak)(ak)T u

    k=1 k

    = K (t)u

    wherethestiffnessmatrix isnowwrittenas:

    m E k

    K (t) = tkL2

    (ak)(ak)T  .

    k=1 k

    12

  • 8/9/2019 Truss Design Art

    13/47

    NoteinthisexpressionthatK =K (t)isaweightedsumof rank-onematri-ces

    (weighted

    by

    the

    volumes

    tk). Putanotherway,K =K (t) isaweightedsumof outer-productmatrices.

    Indesigningthetruss,wemustchoosethevolumestk of thebarssubjectto linearconstraintsonthevolumesof thebars:

    M t ≤ d

    t ≥ 0 ,

    wheretypicallytheseconstraintsincludeupperandlowerboundsonthe

    volumes

    of 

    certain

    bars,

    as

    well

    as

    an

    overall

    cost

    or

    volume

    constraint:

    m

    tk ≤ V . k=1

    The criterion intruss design is to choose the volumes tk of the bars soastominimizethecomplianceof thetruss,namely:

    1minimizet,u F 

    T u .2 

    Such

    a

    truss

    will

    be

    the

    most

    resistant

    to

    the

    external

    force

    F . 

    Thesingle-loadtrussdesignproblemcanbestatedas: 

    1(TDP

    1): minimizet,u F 

    T u2

    s.t.  K (t)u=F 

    M t ≤ d

    t≥ 0mu∈ N , t ∈   .

    13

  • 8/9/2019 Truss Design Art

    14/47

     

     

    whichisthesameas:

    1(TDP

    1): minimizet,u F 

    T u2

    m

    s.t. tkE k (ak)(ak)

    T  u=F L2

    k=1 k

    M t ≤ d

    t≥ 0m

    u∈

    , t∈   .

    Thedecisionvariableshereareuandt. However,oneshouldreallythinkof thedecisionvariablesastonly,sinceoncetischosen,uwillbedeterminedbythesolutiontothesystemof equations:

    m

    tkE k

    (ak)(ak)T  u=F .

    L2k=1 k

    Note that as written, the truss design problem TDP is not  a convex

    problem.

    4 A Convex Version of the Truss Design Problem

    Recallthatforgivenvolumestk onthebarsof thetruss,thatthecomplianceof thetruss istheoptimalobjectivevalueof thequadraticproblem:

    m1 1 L2

    OP: minimizef ̃

    k f ̃22 tk E k

    k

    k=1

    m

    s.t. 

    akf ̃k =

    −F .

    k=1

    14

  • 8/9/2019 Truss Design Art

    15/47

    The truss design problem is then to choose the values of  the volumest

    = (t1, . . . , tm) on the bars so that the optimal solution of  OP (which wehave shown is the compliance of  the truss) is minimized, subject to theconstraintsont:

    M t ≤ d

    t ≥ 0 .

    Wewritethisallas:

    1 1 L2kf 2

    (TDP2)

    :

    minimizef,t 2

    tk E k ktk>0

    s.t.  akf k =−F tk>0

    Mt ≤ d

    t≥ 0mf ∈ m, t ∈   .

    Notice here that we have made two modifications to the optimizationproblem. First,wehavemodifiedthesummation intheobjectivefunction,sothatbarswithzerovolume(tk =0)arenolongercounted,sincetheywillnotexist. Second,wechangedthenotation,usingf  insteadof f ̃. Becausethe summations with the tk > 0 is rather awkward mathematically, wefurtherre-writeTDP2 asfollows:

    15

  • 8/9/2019 Truss Design Art

    16/47

    m1(TDP

    2): minimizef,t,s

    2sk 

    k=1 

    m

    s.t.  akf k =−F k=1

    M t ≤ d

    L2k f 2 ≤ tksk fork= 1, . . . mE k k

    t≥ 0, s ≥ 0mf ,t ,s∈   .

    Inthisproblem,wehavereplacedthequantity 

    1 L2 k f 2tk E k

    k

    withthenewvariablesk subjecttothecondition:

    L2k f 2E k

    k ≤ tksk .

    Wecanfurtherre-writethisnowas:

    16

  • 8/9/2019 Truss Design Art

    17/47

    m1(TDP

    2): minimizef,t,s

    2sk 

    k=1 

    s.t. Af  =−F 

    M t ≤ d

    L2k f 2 ≤ tksk fork= 1, . . . mE k k

    t

    ≥0, s

    ≥0

    mf ,t ,s∈   .

    Thislastproblemhasalinearobjectivefunction,andlinearconstraintsexceptfortheconstraints:

    L2k f 2E k

    k ≤ tksk .However, it isprettyeasytoshowthattheconstraints:

    L2k f 2 ≤ tksk, tk ≥ 0, sk ≥ 0E k

    k

    describe

    a

    convex

    region,

    and

    so

    this

    formulation

    is

    actually

    a

    convex

    opti-mizationproblem.

    5 Second-Order Cone Optimization

    Asecond-orderconeoptimizationproblem(SOCP)isanoptimizationprob-lemof theform:

    T SOCP: minx c x

    s.t.

    Ax

    =

    b

    Qix +di ≤ giT x +hi , i = 1, . . . , k .

    17

  • 8/9/2019 Truss Design Art

    18/47

    Inthisproblem,thenormvisthestandardEuclideannorm:√ 

    v := vT v .

    The norm constraints in SOCP are called “second-order cone” con-straints.

    NoticefirstthatSOCP isaconvexproblem,sincethefunction:

    Qix +di − giT 

    x +

    hi

    isaconvexfunction.

    Noticealsothat linearoptimization isaspecialcaseof SOCP, if weset

    Qi = 0, di = 0, hi = 0, and gi tobetheith unitvectorfori= 1, . . . , n.

    Alsonoticethatanyconvexquadraticconstraintcanbeconverted intoasecond-orderconstraint. Toseethis,supposewehaveaconstraint:

    1xT Qx +q T x +r≤ 0 ,

    2

    whereQisSPSD.Wecanfactor

    Q=M T M 

    forsomematrixM ,andthenwriteourconstraintas:

    1√ 2

    M x , q tx +r + 1

    2

    −q tx − r+ 1 2

    .

    If yousquarebothsidesandcollectterms,youwillseethatthisisindeedequivalenttotheoriginalconvexquadraticconstraint.

    18

  • 8/9/2019 Truss Design Art

    19/47

    Finally,notethatwecanalways formulateaconvexquadraticproblemas

    an

    SOCP,

    since

    we

    can

    create

    a

    new

    variable

    xn+1 andwriteourquadraticproblemas:

    minx,xn+1 xn+1

    s.t....

    T 1xT Qx +q x≤ xn+1 ,2

    which

    can

    be

    further

    re-written

    as

    an

    SOCP.

    6  Truss Design and Second-Order Cone Optimiza

    tion

    Wenowpresentasecond-orderconeoptimizationproblemthatisequivalentto the truss design problem TDP2. Recall this version of  the truss designproblem:

    m1(TDP

    2): minimizef,t,s

    2sk 

    k=1 

    s.t. Af  =−F 

    M t ≤ d

    L2k f 2 ≤ tksk fork= 1, . . . mE k

     

    k

    t≥ 0, s ≥ 0mf ,t ,s∈   .

    Letusnowmakethesimplechangeof variables:

    19

  • 8/9/2019 Truss Design Art

    20/47

     

    1wk = 2 tk +1sk2

    yk = −1 tk +1sk2 2

    Thensk =wk +yk andtk =wk− yk, and so:

    2 2tksk = (wk− yk)(wk +yk) = wk− yk,

    andsotheconstraintL2k

    f 2

    k ≤ tkskE k

    becomes:

    L2kf 2 2E k

    k ≤ wk− y2 .kWecanrearrangethisandtakesquarerootstoobtain:

    L2k f 2 +y2 ≤ wk ,E k

    k k

    whichwecan inturnwriteas:

    Lk

    yk,√  f k ≤ wk .

    E k

    Thereforewecanre-writeTDP2 as:

    1(CTDP): minimizef,w,y e

    T (w +y)2

    s.t. Af  =−F 

    yk,√ Lk f k

    ≤ wk , k = 1, . . . , mE k

    M (w

    − y)

    ≤ d

    mw ,y ,f  ∈   .

    20

  • 8/9/2019 Truss Design Art

    21/47

    NoticethatCTDP isasecond-orderconeproblem. Theobjectivefunc-tion and the first and third set of  constraints are linear equations and in-equalities. Thesecondsetof constraintsaresecond-order-coneconstraints,sincetheLHS isthenormof a2-dimensionalvector:

    (v1, v2):=

    yk ,

    Lk√ E k

    f k

    ,

    andtheRHSisthe linearexpression:

    wk.

    Proposition 6.1 Suppose  that  (f ,w ,y) is  a  feasible  or  optimal  solution  of CTDP.

    Let:

    t=w −y and  s=w+y.Then 

    (f ,t ,s) is the  corresponding  feasible  or  optimal solution of  TDP 2.

    6.1 

    Other Formulations and Formats for the Truss Design

    Problem

    We

    have

     just

    seen

    how

    to

    formulate

    the

    truss

    design

    problem

    as

    the

    convex

    optimization problem TDP2 and more specially as the second-order coneoptimization problem CTDP. In addition to these two formulations of  theproblem,thereisawaytoformulatethetrussdesignproblemasaninstanceof amoregeneraltypeof convexproblemcalleda“semi-definiteoptimizationproblem” (SDO for short). The topic of  SDO and its application to trussdesign isdiscussedhereininSections8and9.

    Finally,whentheonlyconstraintsonthevolumevariablest1, . . . , tm arenonnegativityconditionsandatotal-volumeconstraintof theform:

    m

    tk ≤V , k=1

    then the truss design problem can actually be converted to a linear opti-mizationproblem. This isshownherein inSection10.

    21

  • 8/9/2019 Truss Design Art

    22/47

    7 Some Computational Results

    Inthissectionwereportsomecomputationalresultsonsolvingtrussdesignproblems. Wesolvedthreedifferenttypesof trussdesignproblems. Thefirsttype is a basic bridge design, and is illustrated in Figure 6. In the figure,thearrowscollectivelycomprisetheforcevectorF  appliedtothestructure,andthecircles(intheleftlowerandrightlowercorners)arethefixednodesof  the structure. The stars in the figures are the other nodes in the trussstructure. Figure7showsthesetof barsthatcanbeusedtoconstructthebridge. These bars were generated by considering bars between any twonodeswhose“distance”fromoneanotherwasthreenodesor less.

    7

    6

    5

    4

    3

    2

    1

    0

    0 2 4 6 8 10 12 14 16

    Figure6: Theforcesandnodesforthebasicbridgedesignmodel.

    Thesecondtypeof problemthatwesolvedistheproblemof designingahangingsupportforaloadsuchasatrafficsign,andisillustratedinFigure

    22

  • 8/9/2019 Truss Design Art

    23/47

    0 2 4 6 8 10 12 14 16

    0

    1

    2

    3

    4

    5

    6

    7

    Figure 7: The set of possible bars for the basic bridge design problem.

    23

  • 8/9/2019 Truss Design Art

    24/47

    8. The circles on the left part of the figure correspond to the fixed nodes, andthe arrow on the right side is a force that will be applied (the gravitationalforce of the traffic sign).

    0 5 10 15 20 25 30

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Figure 8: The forces and nodes for the hanging sign design model.

    The third type of problem that we solved is the problem of designinga crane to handle a gravitational load, and is illustrated in Figure 9. Thecircles on the bottom of the figure correspond to the fixed nodes, and thearrow on the right side is a force that will be applied (the gravitational forceof the traffic sign).

    For the problems shown in Figures 6, 8, and 9, the truss design modelsolutions are shown in Figures 10, 11, and 12. In these figures, the thickness

    of the image of the bars is drawn proportional to the volumes of the bars inthe optimal solutions.

    24

  • 8/9/2019 Truss Design Art

    25/47

    40

    35 

    30 

    25 

    20 

    15 

    10 

    0

    0 2 4 6 8 10 12 14 16 18 20 

    Figure9: Theforcesandnodesforthecranedesignmodel.

    25 

  • 8/9/2019 Truss Design Art

    26/47

    7

    6

    5

    4

    3

    2

    1

    0

    0 2 4 6 8 10 12 14 16

    Figure10: Optimalsolutiontothebasicbridgedesignproblem.

    26

  • 8/9/2019 Truss Design Art

    27/47

    20

    18

    16

    14

    12

    10

    8

    6

    4

    2

    0

    0 5 10 15 20 25 30

    Figure11: Optimalsolutiontothehangingsigndesignproblem.

    27

  • 8/9/2019 Truss Design Art

    28/47

    40

    35 

    30 

    25 

    20 

    15 

    10 

    0

    0 2 4 6 8 10 12 14 16 18 20 

    Figure12: Optimalsolutiontothecranedesignproblem.

    28 

  • 8/9/2019 Truss Design Art

    29/47

    Notice inFigure10thatthebasicbridgedesigndoesnotautomaticallyinclude

    horizontal

    bars

    for

    a

    “road

    surface”

    on

    the

    base

    of 

    the

    structure.

    In

    order to force there to be such a road surface, we must add lower boundsonthevolumesof thosebarsonthebaseof structure. If weaddsuchlowerbounds,theoptimalbridgedesign isasshown inFigure13.

    7

    6

    5

    4

    3

    2

    1

    0

    0 2 4 6 8 10 12 14 16

    Figure13: Optimalsolutionof thebridgedesignproblem,withlowerboundsonthe“roadsurface”barvolumes.

    7.1 Details of Problems Solved

    Forthebridgedesignproblem,we included lower-boundconstraintsonthevolumesof theroad-surfacebarsaswellasaconstraintonthetotalvolume

    of 

    the

    structure.

    With

    the

    lower-bound

    constraints

    in

    the

    model,

    the

    model

    mustbesolvedeitherasasecond-orderconeproblem(SOCP)orasasemi-definiteoptimizationproblem(SDO).Forthehangingsigndesignproblem

    29

  • 8/9/2019 Truss Design Art

    30/47

    Name Sizeof grid Nodes Arcs Degreesof freedom MaximumVolumen

    m

    Bridge-16×7 16×7 136 1,547 268 1,600Bridge-20×10 20×10 231 2,878 458 2,000Bridge-30×10 30×10 341 4,368 678 4,000Sign-10×20 10×20 231 2,878 444 1,000Sign-20×30 20×30 651 9,058 1,280 2,000Sign-30×40 30×40 1,271 18,438 2,512 3,000Crane-10×20 10×20 96 818 188 2,000Crane-20×40 20×40 291 3,188 578 5,000Crane-30×40 30×40 401 4,678 798 10,000

    Table

    2:

    Dimensions

    of 

    the

    truss

    design

    problems.

    aswellasforthecranedesignproblem,theonlyconstraintonthevolumeswas a constraint on the total volume of  the truss structure. This made itpossibletosolvetheseproblemsusing linearoptimization.

    We solved three different instances of  each of  the bridge, hanging sign,and cranedesignproblems, with differentnumbers of  nodes correspondingtodifferentmeshes. Table2showsdetailsof themodelsthatwesolved. Theright-mostcolumninthetableshowsthevalueof thevolumeconstraintonthevolumeof thetrussstructure.

    Table3showsthenumberof variablesandthenumberof inequalitiesintheseproblems,andTable4showsthenumberof variablesandthenumberof equations/constraints/matrixdimensionof theseproblems.

    Table 5 shows the compliance of  the optimal truss design for the nineproblemsthatweresolved.

    Table 6 shows the iterations of  the interior-point algorithms that wereused to solve the truss design problems. For the linear problems and thesecond-order cone problems, we used LOQO to solve the model. For the

    semi-definite

    optimization

    models,

    we

    used

    an

    SDO

    algorithm

    called

    SDPa.Therunningtimesof thesemethods isshown inTable7.

    30

  • 8/9/2019 Truss Design Art

    31/47

    ProblemLP

    Model

    SOCP

    Model

    Variables Inequalities Variables Inequalities2m 2m 3m m+ 1 + LBs

    Bridge-16×7 † † 4,641 1,564Bridge-20×10 † † 8,634 2,899Bridge-30×10 † † 13,104 4,399Sign-10×20 5,756 5,756 8,634 2,879Sign-20×30 18,116 18,116 27,174 9,059Sign-30×40 36,876 36,876 55,314 18,439Crane-10×20 1,636 1,636 2,454 819Crane-20

    ×40 6,376 6,376 9,564 3,189

    Crane-30×40

    9,356

    9,356

    14,034

    4,679

    Table3: Numberof variablesand inequalitiesinthetrussdesignproblems.†The linearoptimizationmodelcannotbeused forthemodifiedbridgede-signmodel.

    ProblemLPModel SOCPModel SDOModel

    Variables Equations Variables Constraints MatrixDimension2m N  3m N +m+1+LBs N +m+ 2

    Bridge-16×7

    4,641

    1,832

    1,685Bridge-20×10 † † 8,634 3,357 3,111

    Bridge-30×10 † † 13,104 5,077 4,711Sign-10×20 5,756 444 8,634 3,323 3,111Sign-20×30 18,116 1,280 27,174 10,339 9,711Sign-30×40 36,876 2,512 55,314 20,951 19,711Crane-10×20 1,636 188 2,454 1,007 916Crane-20×40 6,376 578 9,564 3,767 3,481Crane-30×40 9,356 798 14,034 5,477 5,081

    Table 4: Number of  variables and equations in the truss design problems.

    †The linearoptimizationmodelcannotbeused forthemodifiedbridgede-

    sign

    model.

    31

  • 8/9/2019 Truss Design Art

    32/47

    Problem LP SOCP SDP

    Bridge-16×7 † 27.43365 27.15510Bridge-20×10 † 52.58314 52.10850Bridge-30×10 † 132.46038 ‡Sign-10×20 0.77279 0.77293 0.77279Sign-20×30 2.52003 2.52056 ‡Sign-30×40 4.08573 4.08681 ‡Crane-10×20 28.67827 28.67840 28.67753Crane-20×40 286.24854 286.24954 286.19340Crane-30×40 596.73177 596.73324 596.63740

    Table

    5:

    Compliance

    of 

    the

    optimized

    truss

    design

    for

    the

    truss

    design

    prob-lems. †Thelinearoptimizationmodelcannotbeusedforthemodifiedbridgedesignmodel. ‡ThedatatoruntheSDOmodelcouldnotbeprepared forthisinstanceduetomemoryrestrictions.

    Problem LP SOCP SDO

    Bridge-16×7 † 38 36Bridge-20

    ×10

    † 55 43

    Bridge-30×10

    47

    Sign-10×20 18 61 37Sign-20×30 21 47 ‡Sign-30×40 24 53 ‡Crane-10×20 17 52 34Crane-20×40 31 158 58Crane-30×40 31 144 60

    Table 6: Number of  iterations of  the interior-point algorithm to solve thetruss design problems. †The linear optimization model cannot be used forthemodifiedbridgedesignmodel. ‡ThedatatoruntheSDOmodelcouldnot

    be

    prepared

    for

    this

    instance

    due

    to

    memory

    restrictions.

    32

  • 8/9/2019 Truss Design Art

    33/47

    Problem LP SOCP SDO

    Bridge-16×7 † 93.90 257.01Bridge-20×10 † 460.96 1,088.09Bridge-30×10 † 904.86 ‡Sign-10×20 3.33 513.37 1,081.54Sign-20×30 32.08 4,254.08 ‡Sign-30×40 111.03 26,552.74 ‡Crane-10×20 0.52 41.12 446.98Crane-20×40 6.46 1,299.12 33,926.20Crane-30×40 10.67 1,599.85 95,131.49

    Table7: Runningtime(inseconds)of the interior-pointalgorithmtosolve

    the

    truss

    design

    problems.

    †The

    linear

    optimization

    model

    cannot

    be

    used

    for the modified bridge design model. ‡The data to run the SDO modelcouldnotbepreparedforthis instanceduetomemoryrestrictions.

    8 Semi-Definite Optimization

    If S  isak × kmatrix,thenS  isasymmetricpositivesemi-definite(SPSD)matrix if S  issymmetric(S ij =S  ji foranyi, j= 1, . . . , k) and

    v

    Sv

    ≥ 0

    for

    any

    v

    ∈ k

    .

    If S  isak × kmatrix,thenS  isasymmetricpositivedefinite(SPD)matrixif S  issymmetricand

    vT Sv >0 forany v∈ k, v = 0.

    LetS 

    k

    denote

    the

    set

    of 

    symmetric

    k× k matrices, and letS 

    k

    denote

    the

    +setof symmetricpositivesemi-definite(SPSD)k × kmatrices. SimilarlyletS k denotethesetof symmetricpositivedefinite(SPD)k× kmatrices.++

    33

  • 8/9/2019 Truss Design Art

    34/47

    LetS  and X  beanysymmetricmatrices. Wewrite “S 

     0”todenotethat

    is

    symmetric

    and

    positive

    semi-definite,

    and

    we

    write

    “S 

    X ” to

    denote that S − X   0. We write “S   0” to denote that S  is symmetricandpositivedefinite,etc.

    Remark 1 S k ={S ∈ S k |  S  0} is  a  convex  set  in k2.+Proof: Suppose that S, X  ∈ S k+. Pick any scalars α, β  ≥ 0 for whichα +β =1. Foranyv∈ k, we have:

    vT (αS +βX )v=αvT Sv +βv T Xv ≥ 0,

    whereby

    αS 

    +

    βX 

    ∈ S k

    +.

    This

    shows

    that

    S k

    is

    a

    convex

    set.

    +

    q.e.d.

    Asemi-definiteoptimizationproblem isanoptimizationproblemof thefollowingtype:

    SDO: minimizey bT y

    m

    s.t. C + yiAi 0i=1

    My

    ≥ g .

    wherethematricesC, A1, . . . , Am aresymmetricmatrices. Oneconvenientway of  thinking about this problem is as follows. Given values of  the mscalarvariablesy1, . . . , ym,theobjective istominimizethelinearfunction:

    m

    biyi .i=1

    Theconstraintsof SDOstatethatthevariablesy= (y1, . . . , ym)mustsatisfy

    the

    linear

    inequalities:

    M y ≥ g

    34

  • 8/9/2019 Truss Design Art

    35/47

    aswellastheconditionthatthematrixS ,definedby:

    m

    S  :=C + yiAi ,i=1

    mustbepositivesemi-definite. That is,m

    S :=C + yiAi0.i=1

    We illustratethisconstructionwiththefollowingexample: 

    SDO

    :

    minimizey1,y2 11y1 + 19y2 

    1 2 3 1 0 1 0 2 8

    s.t.  2 9 0 +y10 3 7 +y22 6 0 =S 03 0 7 1 7 5 8 0 4

    3y1 + 7y2 ≤12

    2y1 +y2 ≤6 .

    whichwecanrewrite inthefollowingform:

    SDO: minimize  11y1 + 19y2

    s.t.  

    1 + 1y1 + 0y2 2 + 0y1 + 2y2 3 + 1y1 + 8y2 

    2 + 0y1 + 2y2 9 + 3y1 + 6y2 0 + 7y1 + 0y2 03 + 1y1 + 8y2 0 + 7y1 + 0y2 7 + 5y1 + 4y2

    3y1 + 7y2 ≤

    12

    2y1 +y2 ≤6.

    35

  • 8/9/2019 Truss Design Art

    36/47

    Remark 2 SDO  is  a  convex  minimization problem.

    Proof: Theobjectivefunctionof SDOisalinearfunction,whichisconvex.yand˜Supposethat¯   yaretwofeasiblesolutionsof SDO,andlety=αȳ+βỹ ,

    whereα,β ≥0 and α+β =1. Then:m

    S  :=C + ȳiAi 0i=1

    and

    m

    X  :=C + ỹiAi 0.i=1

    Therefore,

    m m

    C +

    yiAi = C +

    (αȳ+β ̃y)Aii=1 i=1

    m m

    = α C + ȳiAi +β C + ỹiAii=1 i=1

    =

    αS 

    +

    βX 

    0

    .

    Thisshowsthatthefeasibleregionof SDO isaconvexset.q.e.d.

    Semi-definite optimization is a unifying model in optimization. Linearoptimization, quadratic optimization, second-order cone optimization, aswell as certain other convex optimization problems, can all be shown tobe special cases of  semi-definite optimization. Furthermore, semi-definiteoptimizationhasapplicationsthatspanconvexoptimization,discreteopti-

    mization,

    and

    control

    theory.

    In

    fact,

    semi-definite

    optimization

    may

    very

    wellbecomethecanonicalwaythatoptimizerswillthinkaboutoptimizationinthenextdecade.

    36

  • 8/9/2019 Truss Design Art

    37/47

    9 Truss Design and Semi-Definite Optimization

    We now present an SDO problem that is equivalent to the truss designproblemTDP.Thisproblem is:

    (STDP): minimizet,θ θ

    s.t.θ

    F T 

    m

    F tkE k (ak)(ak)

    T  0L2

    k=1 k

    M t

    ≤d

    t≥ 0mθ∈ , t ∈   .

    NoticethatSTDP isasemi-definiteoptimizationproblem. Theequiva-lenceof TDPandSTDPisaconsequenceof thefollowingtwopropositions:

    Proposition 9.1 Suppose  that (t, u) is  a  feasible  solution  of  TDP. Let:

    θ

    =

    F T u .

    Then (t, θ) is a  feasible  solution  of  STDP, and θ=F T u.

    Proposition 9.2 Suppose  that  (t, θ) is  a  feasible  solution  of  STDP. Then there  exists  a  vector u for which (t, u) is  feasible  for  TDP, and  in  fact:

    F T u≤ θ .

    Together, Propositions 9.1 and 9.2 demonstrate that any solution of STDPtranslates intoasolutiontoTDP.Therefore, inordertosolveTDP,

    37

  • 8/9/2019 Truss Design Art

    38/47

    ∗ ∗wecansolveSTDP for(t , θ   )andthensolvethe following linearequation

    ∗system

    for

    u

    :

    mt∗kE k   T  ∗

    L2aka u =F .k

    k=1 k

    AsameanstoprovePropositions9.1and9.2,wefirstshowthefollowing:

    Remark 3 Given a  vector v, a square  matrix M , and a scalar  θ, then:

    θ vT 

    Q

    :=

    0

    v M 

    if  and  only  if:

    T M 0 , there exists  u satisfying Mu =v , and  θ≥v u .

    Proof of Remark 3: Toseewhythisistrue,letusfirstsupposethatQ0.ThenclearlyM 0,sinceM  isformedbyasubsetof thecomponentsthatform Q. Now, let us suppose that there is no u such that Mu = v. ThisimpliesthatthereexistsλsuchthatλT M  =0andλT v > 0. Then:

    −(−, λT )

    θ vT 

    =

    θ2 −

    2v

    T λ +

    λT M λ

    =

    θ2 −

    2v

    T λ

    <

    0v M  λ

    for small enough, which is a contradiction. Therefore there exists usuchthatM u =v. Furthermore,forsuchau, we have:

    −1 T 0≤(−1, u T ) θ vT 

    =θ−2vT u +uT M u =θ−v uv M  u

    T whichshowsthatθ≥v u.Now

    let

    us

    prove

    the

    reverse

    of 

    these

    implications.

    Suppose

    that

    0,

    thereexistsusatisfyingMu =v, and θ≥vT u. Since M  0 we only have toprovethat:

    38

  • 8/9/2019 Truss Design Art

    39/47

    −1 T δ (x) := (−1, x T ) θ vT 

    =θ−2v x +xT Mx ≥0 ∀x . v M  x

    Butnoticethatδ (x)isaconvexquadraticfunctionof x(sinceinpartic-ularM 0),andtherefore

    ∇δ (x) = −2v+ 2M x = 0

    is

    a

    necessary

    and

    sufficient

    condition

    for

    the

    unconstrained

    minimization

    of δ (x). Sinceusatisfiesthiscondition, it istruethat

    T T δ (x)≥δ (u) = θ−2v u +uT M u =θ−v u≥0 ∀x .

    q.e.d.

    Nowletusprovethepropositions.

    Proof of Proposition 9.1: Suppose that (t, u) is a feasible solution of TDP.Let:

    θ=F T u ,

    and let

    m E kM  = tk

    L2(ak)(ak)

    T  ,k=1 k

    and letv=F . Then

    m E k

    Mu = tkL2

    (ak)(ak)T  u=F ,

    k=1 k

    andnoticeaswellthat

    39

  • 8/9/2019 Truss Design Art

    40/47

    =

    0

    because M  is the nonnegative sum of  rank-one SPSD matrices. FromRemark3,

    θ F T 

    θ vT 

    m

    F tkE k (ak)(ak)

    T  v M  0 .

    L2 k=1 k 

    Therefore (t, θ) is feasible for STDP with objective function value θ =F T u.

    q.e.d.

    Proof of Proposition 9.2: Suppose that (t, θ) is a feasible solution of STDP.ThenfromRemark3,thereexistsavectoruforwhich:

    m

    tkE k

    (ak)(ak)T  u=F ,

    L2k=1 k

    and

    θ≥F 

    u.

    Therefore

    (t, u)

    is

    feasible

    for

    TDP

    and

    θ≥F 

    u.

    q.e.d.

    10 Truss Design and Linear Optimization

    Considerthefollowingspecial,butnotunusual,instanceof thetrussdesignproblem:

    40

  • 8/9/2019 Truss Design Art

    41/47

    (TDP): minimizet,u F T u

    m

    s.t. tkE k (ak)(ak)

    T  u=F L2

    k=1 k

    m

    tk ≤ V k=1

    t≥ 0mu

    ∈ N , t

    ∈   .

    In this problem, the only constraint on the volumes of  the bars tk is avolume constraint limiting the total volume of  the bars to not exceed thegivenvalueV . Substitutingthenotation:

    m E kK (t) := tk

    L2(ak)(ak)

    T  ,k=1 k

    wecanalsoconvenientlywriteourproblemas:

    (TDP):

    minimizet,u F T u

    s.t. K (t)u=F 

    m

    tk ≤ V k=1

    t≥ 0mu∈ N , t ∈   .

    In

    this

    section,

    we

    show

    that

    when

    TDP

    has

    this

    particularly

    simple

    form,thenitcanbesolvedvialinearoptimization. Beforedoingso,wefirstwritedownadualproblemassociatedwithTDP inthisform:

    41

  • 8/9/2019 Truss Design Art

    42/47

    (DTDP): maximizev,z −2F T v− V z

    s.t. 2 L2T  kakv ≤ E k z , k = 1, . . . , m y∈ N .

    InorderforDTDPtobeanhonestdualof TDP,wenowpresentaweakdualityresult:

    Proposition 10.1 Suppose that (t, u)is  feasible  for TDP and that (v, z)is  feasible  for DTDP.Then:

    F T u≥ −2F T v− V z .

    Proof: For k= 1, . . . , m, we have

    E k   T tk ≥ 0 and L2

    (akv)2 ≤ z.

    k

    Multiplyingandsummingterms,weobtain:

    m

    T T vT K (t)v=

    tkE k(v ak) (akv)≤

    m

    tk z≤ V z. L2

    k=1 k   k=1

    Also,

    0≤ (u +v)T K (t)(u +v) = uT K (t)u + 2uT K (t)v+vT K (t)v= F T u + 2vT F +vT K (t)v

    ≤ F T u + 2vT F +V z. ThereforeF T u≥ −2F T v− V z.q.e.d.

    Considerthefollowingpairof primalandduallinearoptimizationmod-els:

    42

  • 8/9/2019 Truss Design Art

    43/47

    m √ Lk(LP): minimizef +,f − E k

    f k+ +f k

    −k=1

    s.t. A(f + − f −) = −F 

    f + ≥ 0 , f − ≥ 0mf +, f − ∈   .

    (LD): maximizey−

    F T y

    s.t.T −√ Lk ≤ aky≤ √ Lk , k= 1, . . . , mE k E k

    y∈ N .

    We will prove the following important result that shows how to usesolutionsof LPandLDtoconstructsolutionstoTDP:

    ¯Proposition 10.2 Suppose that (f ̄+, f −) is an optimal solution of LP and that  ȳ   is  an  optimal  solution  of  LD, and  consider  the  following  assignment 

    of 

    variables:

    m

    ¯R =

    √ Lk f ̄+ +f k−E k kk=1t̄ k =

    V  √ 

    Lk ¯f ̄+ +f k−

    k= 1, . . . , m , R   E k

    k

    Rū = − ȳ

    V  R 

    v̄ = ȳV  R2 

    z̄ = V 2

    43

  • 8/9/2019 Truss Design Art

    44/47

    Then (¯u) solves TDP  and (¯   z) solves  DTDP.t, ¯   v, ¯

    Proof: Notethatbythecomplementary slackness propertyof  linear opti-mization,wehave:

    T  + Lk +akyf  = √  f k, k = 1, . . . , m , k E kT  − −Lk −akyf  = √  f k, k = 1, . . . , m .k E k

    m

    We first show that (t, u) is feasible forTDP. Note that t≥0 and tk =k=1

    R=V . Also

    R

    RK (t)u = − K (t)y

    V  tkE kR m T = −V    L2

    akakyk=1 k

    Lk − T = −R V m

    √  E k (f + +f k)akakykV R E k L2k=1 k√ m E k + T  − T = − ak (f kaky+f kaky)Lkk=1 m  −=

    ak (f 

    +

    k) =

    −A(f 

    +

    ) =

    F.kk=1

    Wenextshowthat(v, z)isfeasibleforDTDP.Toseethis,observethatfork= 1, . . . , m, we have:

    R2 R2 L2T T (akv)2 =

    V 2(aky)

    2 ≤   √ Lk2

    =z k,V 2 E k E k

    andso(v, z)isfeasible.Finally,weshowthatthesesolutionsexhibitstrongduality:

    −2R 2R2 R2 R2 R−2F T v−V z= F T y−V R2

    = − = = R R= (−F T y) = F T u.V V 2 V V V V   V 

    q.e.d.

    44

  • 8/9/2019 Truss Design Art

    45/47

    11 Extensions of the Truss Design Problem

    •  Multiple Loads. We consider a finite set of  external loads on thetruss:

    F  ={F 1, F 2, . . . , F  J } ⊂ IRN  .

    In this case we might consider solving two types of  design problems.Thefirstistodesignthetrussstructureconservatively,soastomini-mizethemaximumcompliance:

    minimizet max j=1,...,J  F T  j u j

    Mt ≤ d,t≥ 0 s.t. K (t)u j =F  j.

    Alternatively, we might consider the “average-case” design problem:letλ j denotetherelativefrequencyorimportanceassociatedwiththe

    truss structure undergoing the external force F  j, where λ j = 1.0. j=1

    The following optimization model minimizes the average complianceof thetrussstructure:

    minimizet λ jF  jT u j

     j=1

    Mt ≤ d,t≥ 0 s.t. K (t)u j =F  j.

    •  Self-weights. Thetrussdesignproblemthatwehaveformulatedpre-sumesthatthetrussstructureitself isnotaffectedbyitsownweight.Tocorrectforthis,wecansimplyaddanexternalforcecorresponding

    to

    the

    gravitational

    force

    associated

    with

    bar

    k,

    and

    linearly

    propor-tionaltotk fork= 1, . . . , m. Letusdenotebygk ∈ IRN  thevectorthatprojects the gravitational force of  bar k onto the appropriate nodes.

    45

  • 8/9/2019 Truss Design Art

    46/47

    Then we can write the TDP of  a truss under a single external loadvector

    as:

    T m(TDP): minimizet,u F + tkgk u

    k=1

    m

    s.t.  K (t)u= F + tkgkk=1

    M t ≤ d

    t≥

    0

    mu∈ N , t ∈   .

    It is straightforward to convert this problem into a convex problem, justasforthebasecaseconsideredearlier.

    •  Reinforcement. Inthisproblem,wearegivenanexistingtrussstruc-ture,andwemustdeterminehowtostrengthenit. Tosolvethisprob-lem,wesimplyadd lowerboundsonthevolumesof theexistingbarsequaltothecurrentvolumesof thebars:

    (TDP): minimizet,u F T u

    s.t. K (t)u=F 

    M t ≤ d

    t≥ 0

    tk ≥ tk , k = 1, . . . , m mu

    ∈ N , t

    ∈   .

    46

  • 8/9/2019 Truss Design Art

    47/47

    •  Robustness of Solutions. Theoptimalsolutionof theTDPmight

    yield

    a

    truss

    design

    that

    is

    not

    rigid

    for

    a

    different

    external

    force

    than

    theoneused,andcouldchangeconsiderablyevenunderasmallchangein the external force. To obtain a robust solution, we must considermultiple external loads that will contain the possible loads that thetrusswillbesubjectto. Thiscanbemodeledbyconvexoptimizationaswell.

    •  Buckling Constraints. Thetrussdesignproblemthatwehavepre-sentedignoresthefactthatif abarisundergreatcompressionitmightactuallycollapse insteadof counteractingthatexternal forcewith itsinternalforce. Forthiswehavetoadd lowerboundsontheallowable

    internal

    forces

    in

    terms

    of 

    the

    design

    variables

    tk and

    the

    geometryof thebars. Theseconstraintscausetheresultingproblemto lose its

    convexstructure.

    •  Other Considerations . . . .

    47