90
Triple Integrals Math 212 Brian D. Fitzpatrick Duke University February 26, 2020 MATH

Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMath 212

Brian D. Fitzpatrick

Duke University

February 26, 2020

MATH

Page 2: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Overview

Triple IntegralsMotivationIterated IntegralsNonrectangular Regions

Page 3: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 4: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 5: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 6: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 7: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 8: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 9: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

Example

An object conforms to the shape of a solid W in R3.

P1

f (P1)=14 kg/m3

P2f (P2)=7 kg/m3

P3

f (P3)=9 kg/m3

P4 f (P4)=21 kg/m3

Suppose f ∈ C (R3) measures density (kg/m3) throughout W .

DefinitionThe triple integral of f on W is∫∫∫

Wf dV = mass of W (in kg)

Page 10: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 11: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 12: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

=

mass of W

Page 13: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsMotivation

ObservationTracking units allows us to interpret double integrals.∫∫∫

Wf

mass units

volume unit

dV

volume unit

= mass of W

Page 14: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Page 15: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

QuestionHow can we calculate a triple integral?

AnswerUse iterated integrals!

Page 16: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 17: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 18: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 19: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 20: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 21: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 22: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx

=

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 23: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx

= 16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 24: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx =

16 x2∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx

= 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 25: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx =

128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 26: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

Example

Suppose f = xy − z ◦C/m3 measures density throughout

W = [1, 3]× [3, 5]× [−2, 2]

The mass of W is∫∫∫W

f dV =

∫ 3

1

∫ 5

3

∫ 2

−2xy − z dz dy dx =

∫ 3

132 x dx

=

∫ 3

1

∫ 5

3xyz − 1

2z2∣∣∣∣z=2

z=−2dy dx = 16 x2

∣∣x=3

x=1

=

∫ 3

1

∫ 5

34 xy dy dx = 128 ◦C

=

∫ 3

12 xy2

∣∣y=5

y=3dx

Page 27: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors

∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 28: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 29: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx

(x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 30: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 31: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy

(y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 32: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 33: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors

∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 34: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 35: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx

(x-slicing)

∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 36: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 37: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy

(y -slicing)

∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 38: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 39: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz

(z-slicing)

Page 40: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsIterated Integrals

ObservationDouble integrals over rectangular regions come in two flavors∫ x2

x1

∫ y2

y1

f dy dx (x-slicing)

∫ y2

y1

∫ x2

x1

f dx dy (y -slicing)

Triple integrals over rectangular regions come in six flavors∫ x2

x1

∫ y2

y1

∫ z2

z1

f dz dy dx

∫ x2

x1

∫ z2

z1

∫ y2

y1

f dy dz dx (x-slicing)∫ y2

y1

∫ x2

x1

∫ z2

z1

f dz dx dy

∫ y2

y1

∫ z2

z1

∫ x2

x1

f dx dz dy (y -slicing)∫ z2

z1

∫ x2

x1

∫ y2

y1

f dy dx dz

∫ z2

z1

∫ y2

y1

∫ x2

x1

f dx dy dz (z-slicing)

Page 41: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Page 42: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

QuestionHow do we compute

∫∫∫W f dV if W is not rectangular?

AnswerOur slicing method will depend on the shape of W .

Page 43: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 44: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 45: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 46: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 47: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 48: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 49: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 50: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

y

z

6−x2

6−x3

x + 2 y + 3 z = 6

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 6

0

∫ 6−x2

0

∫ 6−x−2 y3

0f dz dy dx =

∫ 6

0

∫ 6−x3

0

∫ 6−x−3 z2

0f dy dz dx

Page 51: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 52: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 53: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 54: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 55: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 56: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 57: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 58: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

z

6− 2 y

6−2 y3

x + 2 y + 3 z = 6

Each y -slice leaves an imprint on the xz-plane.

∫∫∫W

f dV =

∫ 3

0

∫ 6−2 y

0

∫ 6−x−2 y3

0f dz dx dy =

∫ 3

0

∫ 6−2 y3

0

∫ 6−2 y−3 z

0f dx dz dy

Page 59: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 60: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 61: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 62: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 63: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 64: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 65: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 66: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x + 2 y + 3 z ≤ 6.

x

y

z

63

2

x

y

6− 3 z

6−3 z2

x + 2 y + 3 z = 6

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

0

∫ 6−3 z

0

∫ 6−x−3 z2

0f dy dx dz =

∫ 2

0

∫ 6−3 z2

0

∫ 6−2 y−3 z

0f dx dy dz

Page 67: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 68: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 69: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 70: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 71: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.

∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 72: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 73: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 74: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

y

z

√1− x2

x2

1

z = x2 + y2

Each x-slice leaves an imprint on the yz-plane.∫∫∫W

f dV =

∫ 1

0

∫ √1−x20

∫ 1

x2+y2

f dz dy dx =

∫ 1

0

∫ 1

x2

∫ √z−x20

f dy dz dx

Page 75: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 76: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 77: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 78: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 79: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 80: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 81: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 82: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the “first octant” part of x2 + y2 ≤ z ≤ 1.

x

y

z

x

y

√z

√z

z = x2 + y2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 1

0

∫ √z0

∫ √z−x20

f dy dx dz =

∫ 1

0

∫ √z0

∫ √z−y2

0f dx dy dz

Page 83: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 84: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 85: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 86: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 87: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 88: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.

∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 89: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz

Page 90: Triple Integrals - Math 212Triple Integrals Motivation Example An object conforms to the shape of a solid W in R3. P 1 f(P1)=14kg=m3 f(P2)=7kg=m3 P 2 P 3 f(P3)=9kg=m3 P 4 f(P4)=21kg=m3

Triple IntegralsNonrectangular Regions

Example

Consider the region 2 x2 + 2 z2 ≤ y ≤ x2 + z2 + 4.

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

x2 + z2 = 4

x

y

y = x2 + z2 + 4

y = 2 x2 + 2 z2

√4− z2−

√4− z2

Each z-slice leaves an imprint on the xy -plane.∫∫∫W

f dV =

∫ 2

−2

∫ √4−z2−√4−z2

∫ x2+z2+4

2 x2+2 z2f dy dx dz