87
TRIGONOMETRIC FUNCTION GROUP MEMBERS : NOOR AZURAH ABDULRAZAK WAN NORAZWANI MAHUSIN IRA NUSRAT JAAFAR NUR WAHIDAH SAMI’ON SITI NURHAFIZA HAFINAS

Trigonometric function

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Trigonometric function

TRIGONOMETRIC FUNCTIONGROUP MEMBERS :

NOOR AZURAH ABDULRAZAKWAN NORAZWANI MAHUSIN

IRA NUSRAT JAAFARNUR WAHIDAH SAMI’ONSITI NURHAFIZA HAFINAS

Page 2: Trigonometric function

OBJECTIVES• To find the angle and convert the angle from

degree to radian or vice versa.• To recognize the trigonometric identities, sine

and cosine rule.• To solve trigonometric equations.

Page 3: Trigonometric function

HISTORY• One of the oldest branches of mathematics.• Historical evidence shows that by about 1100 B.C.,

Chinese were making measurements of distance and height using right- triangle trigonometry.

• Greek astronomer Hipparcus, The Father of Trigonometry, is credited with compiling the 1st trigonometric tables.

• The trigonometry of Hipparcus and other astronomers was strictly a tool of measurement.

Page 4: Trigonometric function

USES IN OUR DAILY LIFE

• Making measurements of distance and height.

• Astronomers field.

• Describing physical phenomena that are “periodic”.

Page 5: Trigonometric function

ANGLES and THEIR MEASURE

• An angle is determined by rotating a ray about about its endpoint.• The starting position: initial side• The position after rotation: terminal side• The point connecting the two sides: vertex y terminal side angle initial side x vertex

Page 6: Trigonometric function

Positive angles are generated Negative angles are generated

with anticlockwise rotation. with clockwise rotation.

y y

135°

x -45° x

Page 7: Trigonometric function

QUADRANT‘A’ represent an angle measure. y Quadrant II Quadrant I angle: 90° <A< 180° angle: 0 <A< 90°

x Quadrant III Quadrant IV angle: 180° <A< 270° angle: 270° <A< 360°

Page 8: Trigonometric function

Angles

θ θ Acute angle (0°< θ < 90°) Obtuse angle (90° <θ< 180°)

180° 90 °

Right angle ( ¼ rotation) Straight angle (1/2 rotation)

Page 9: Trigonometric function

RADIAN and DEGREE

• An angle may be measured in terms of “Radians” rather than degrees.

• π radians = 180°• 2 π radians = 360°• Note: π is used to present 3.142

Page 10: Trigonometric function

CONVERT: DEGREE TO RADIANS and RADIANS TO

DEGREE.

• Degree Radians• By using formula: Degree x π radians = radians 1 180°• Radians Degree• By using formula : Radians x 180° = degree 1 π radians

Page 11: Trigonometric function

QUESTIONSConvert to radians.i. 60 °ii. 173°iii. 35°Convert to degree.iv. π 4ii. 7 π 8 iii. 3 π 5

Page 12: Trigonometric function

SOLUTIONS• Degree to Radiansi. 60° x π radians = 1.047 radians 1 180°ii. 173° x π radians = 3.019 radians 1 180°iii. 35° x π radians = 0.611 radians 1 180°• Radians to Degreei. π x 180° = 45° 4 π radiansii. 7 π x 180° = 157.5° 8 π radiansiii. 3 π x 180° = 108 ° 5 π radians

Page 13: Trigonometric function

Graph of y=sin xsin 0° sin 90° sin 180° sin 270° sin 360°

0 +1 0 -1 0

Page 14: Trigonometric function

Graph y=cos xcos 0° cos 90° cos 180° cos 270° cos 360°

+1 0 -1 0 +1

Page 15: Trigonometric function

Graph y=tan x•The period is π.•Graphs consists repetitions at intervals of π.•The tangent function is undefined at π/2.

Page 16: Trigonometric function

RIGHT ANGLE TRIANGLE TRIGONOMETRY

Sine θ = Opposite side = y Hypotenuse Hypotenuse r r Opposite θ side ,y Cosine θ = Adjacent side = x Adjacent Hypotenuse r side , x Tangent θ = Opposite side = y Adjacent side x

Page 17: Trigonometric function

• Tan θ = sin θ cos θ• Sec θ = 1 = r cos θ x• Cosec θ = 1 = r sin θ y• Cot θ = 1 = x tan θ y

Page 18: Trigonometric function

TRIGONOMETRY RATIOS FOR SPECIAL

ANGLES

30° 2 45° 2 1

45°

1 60° 1

3

Page 19: Trigonometric function

0° 30° 45° 60° 90°

sin θ 0

1

cos θ 1

0

tan θ 0

1 UNDEFINED

3

1

21

23

2

1

3

1

2

1

2

3

2

Page 20: Trigonometric function

TRIGONOMETRIC IDENTITIES

• sin²θ + cos²θ = 1

• 1 + cot²θ = cosec²θ

• Tan²θ + 1 = sec²θ

Page 21: Trigonometric function

How to proven?? y

p(x,y) phytagoras theorem:

r² = x² + y²…….① r y

θ x

Page 22: Trigonometric function

From graph…

cos θ = x sin θ = y r r Divided ① by r² gives : r² = x² + y² r² r² r² 1 = x ² + y² r r

Page 23: Trigonometric function

1 = cos² θ + sin ² θ……..②Divide ② by cos ² gives : 1 = cos² θ + sin²θ cos² θ cos² θ cos² θ 1 ²= 1 + sin θ ² cos θ cos θ

Page 24: Trigonometric function

sec²θ = 1 + tan²θ………③Divide ② by sin²θ 1 = cos²θ + sin²θ sin²θ sin²θ sin²θ 1 ² = cos θ ² + 1 sin θ sin θ cosec ²θ = cot²θ + 1

Page 25: Trigonometric function

Negative angles

• sin (-θ )= - sin θ

• cos (- θ ) = cos θ

• tan (-θ ) = - tan θ

Page 26: Trigonometric function

Prove the following identities

a) ( 1 + sin θ)² = 1 + sin θ cos²θ 1- sin θ

Solution

( 1 + sin θ)² = ( 1 + sin θ ) ( 1 + sin θ ) cos²θ 1- sin²θ = ( 1 + sin θ ) ( 1 + sin θ ) ( 1 - sin θ ) ( 1 + sin θ )

Page 27: Trigonometric function

= 1 + sin θ 1- sin θ

b) ( 1 + tan² θ )² = sec ⁵ θ cos θ

Page 28: Trigonometric function

solution

( 1 + tan² θ )² = ( sec²θ )² cos θ cos θ = sec⁴ θ cos θ = 1 x sec⁴ θ cos θ = sec θ x sec⁴ θ = sec ⁵ θ

Page 29: Trigonometric function

c) ( sin θ + cos θ )² + ( sin θ - cos θ )² = 2SolutionLHS= ( sin θ + cos θ )² + ( sin θ – cos θ) ( sin θ – cos θ)= sin²θ + 2 sin θ cos θ + cos²θ + sin²θ – 2 sin θ cos θ +

cos²θ= sin² θ + cos² θ + sin² θ + cos² θ = 1+ 1= 2LHS = RHS SO, PROVEN.

Page 30: Trigonometric function

d) sec θ – tan θ = cos θ 1 + sin θSolutionRHS, cos θ = cos θ 1 – sin θ 1 + sin θ 1 – sin θ = cos θ –cos θ sin θ 1- sin ²θ

Page 31: Trigonometric function

= cos θ –cos θ sin θ cos²θ = cos θ - cos θ sin θ cos²θ cos²θ = 1 - sin θ cos θ cos θ = sec θ - tan θ RHS = LHS , SO PROVEN

Page 32: Trigonometric function

Trigonometric Equation

• A trigonometric equation is an equations that contains a trigonometric expression with a variable, such as sin x

Page 33: Trigonometric function

Step in solving trigonometric equations

• Step 1 : Identify the range for the given angle• Step 2 : identify the quadrant for the basic

angle• Step 3 : Find the basic angle (α )• List all the answers in radian or degree ( depends on the given range )

Page 34: Trigonometric function

Solve the following equations for angles in the given range

a) tan θ = 1 , 0 ≤ � θ ≤ 360

b) tan 2x = 1 0 ≤ x ≤ 360 �

Page 35: Trigonometric function

solutions

a) Step 1 : 0 ≤ � θ ≤ 360 Step 2 : quadrant 1 and 3Step 3 : tan α = 1

α = = 45 �

Step 4 : θ = 45 , 225 � �

1tan 1

Page 36: Trigonometric function

b) tan 2x = 1step 1 : 0 ≤ � θ ≤ 360

0 ≤ 2x ≤ 720 �step 2 : quadrant 1 and 3step 3 : tan α = 1

α = α = 45 �

step 4 : 2x = 45 , 225 , 405 ,585 � � � � x = 22.5 , 112.5 , 202.5 , 292.5 � � � �

1tan 1

Page 37: Trigonometric function

TRIGONOMETRIC EQUATION

1. Solution of trigonometric equation such as = k , = k , = k

2. Solve equations in quadratic form3. Express , and in

term of t where sin cos tan

tan2

t

sin cos tan

Page 38: Trigonometric function

Express , & in term of t where

2t 1+t²

1-t²

sin cos tan tan2

t

2

2

2 tantan 2

1 tan

2 tan2tan

1 tan2

22 2 2

2 2 2 4

2 4 2

2 2 2

22 2

2

(2 ) (1 )

4 1 2

2 1

1 1

1

1

x t t

x t t t

x t t

x t t

x t

x t

2

2

1

t

t

Page 39: Trigonometric function

2t 1+t²

2

2

2

2

2tan

12

sin1

1cos

1

t

tt

t

t

t

Equation in the form a cos Ɵ + b sin Ɵ =k

Can be solved using these expression

21 t

Page 40: Trigonometric function

Example• Solve the equation 3cos x -8sin x= -2, 0°≤Ɵ≤360°

2

2 2

2 2

2 2

2

2

2

3cos 8sin 2

1 23 8 2

1 1

3 1 8 2 2 1

3 3 16 2 2

16 5 0

4

2

16 16 4 1 5

2

16 236

20.3066

16.3066

x x

t t

t t

t t t

t t t

t t

b b act

a

t

t

tan2

xt

Page 41: Trigonometric function

0 360

0 1802

x

x

1

tan 0.30662

tan 0.30662

17.052

34.1

x

x

x

x

1

tan 16.30662

tan 16.30662

86.49

180 86.492

93.512

187.02

x

x

x

x

x

34.9 ,187.02x

Tan positive in quadrant 1 and 3 tan negative in quadrant 2 and 4

Page 42: Trigonometric function

Express a cos Ɵ ± b sin Ɵ as R cos (Ɵ±α) or R sin (Ɵ±α)

Equating the coefficient of cos Ɵ: R cos α = a …………….(1)Equating the coefficient of sin Ɵ: R sin α = b …………….(2)

(1)²+(2)²

cos cos sin

(cos cos sin sin ) cos sin

cos cos sin sin cos sin

R a b

R a b

R R a b

2 2 2 2 2 2

2 2 2 2 2

2 2 2

2 2

cos sin

cos sin

R R a b

R a b

R a b

R a b

Page 43: Trigonometric function

(1)÷(2)

where where

sin

cos

tan

R b

R ab

a

cos sin cosa b R

2 2

tan

R a b

b

a

sin cos sin( )a b R

2 2

tan

R a b

b

a

Page 44: Trigonometric function

Example Express 4 cos Ɵ – 3 sin Ɵ = 1 in the form of R cos (Ɵ + α) andsolve for Ɵ.

4cos 3sin cos( )

(cos cos sin sin )

cos cos sin sin

cos 4

sin 3

R

R

R R

R

R

2 24 3

25

5

R

R

R

1

3tan

43

tan4

36.87

cos( 36.87 )R

Page 45: Trigonometric function

1

4cos 3sin 5cos 36.87

4cos 3sin 1

5cos 36.87 1

1cos 36.87

51

( 36.87 ) cos5

36.87 78.46

36.87 78.46 ,360 78.46

41.59 ,244.67

Page 46: Trigonometric function

Equation in linear form

Example 1Solve 4 sin θ – 3 cos θ = 0 for angles in therange Solution

4 sin θ = 3 cos θ

=

sin

cos

3

4

Page 47: Trigonometric function

=

tan α = α = α = 36.9 � θ = 36.9 , 216.9 � �

tan 3

4

3

4

1 3tan

4

Page 48: Trigonometric function

Equation in quadratic form

Solve the following trigonometric equations1. 2 sin ² x+ 5 cos x + 1 for -180 ≤ x ≤ 180 � �Solution

sin ² x + cos ² x = 1sin ² x = 1- cos ² x2(1- cos ² x) + 5 cos x + 1 = 02 - 2 cos ² x + 5 cos x + 1 = 0 - 2 cos ² x + 5 cos x + 3 = 0

Page 49: Trigonometric function

2 cos ² x – 5 cos ² x – 3 = 0let y = cos x2y²- 5y – 3 = 0( y-3 )( 2y+1 ) = 0y = 3 and y = cos x = cos α =

α = α = 60 �

1

2

1

21

21 1

cos2

Page 50: Trigonometric function

x = 120 , -120 � �x = -120 , 120 � �

cos x = 3 ( no solution )

2) 3 cot ²θ + 5 cosec θ + 1 for -2 ≤θ≤ 2 solution

3 ( cosec ²θ-1) + 5 cosec θ + 1 = 03 cosec ²θ – 3 + 5 cosec θ + 1 = 03 cosec ²θ + 5 cosec θ – 2 = 0

Page 51: Trigonometric function

let y = cosec θ3y² + 5y – 2 = 0( 3y – 1 )( y + 2 ) = 0y = and y = - 2 cosec θ = =

= 3 ( no solution ) cosec θ = -2

1

3 1

31

sin1

3

sin

Page 52: Trigonometric function

= -2 = - 2

sin α = sin α =

α = 30 �α =

θ = , ,

1

sinsin

1

2

1

2

6

7

6

6

5

6

Page 53: Trigonometric function

sin sin sin

cos cos cos

tan tan tan

x y x y

x y x y

x y x y

COMPOUND ANGLEusing substitution, it is clear to see that;

example3

sin(30 30 ) sin 602

1 1 3sin 30 sin 30 1

2 2 2

Page 54: Trigonometric function

SUM & DIFFERENCE OF SINE

• Replacing y with –y and nothing that• Cos(-y)=cos y since cosine is even function• Sin(-y)=-sin y since sine is odd functionsin( )x y sin cos cos sinx y x y

sin sin sinx y x y

sin cos cos sinx y x y

sin cos cos sinx y x y

Page 55: Trigonometric function

Example

• Find the exact value of sin105 sin105 sin 60 45

sin 60 cos 45 cos 60 sin 45

3 2 1 2

2 2 2 2

6 2

4

Page 56: Trigonometric function

SUM & DIFFERENCE OF COSINE

cos( ) cos cos sin sinx y x y x y

cos cosx y x y

cos cos sin sinx y x y

cos cos sin sinx y x y

Page 57: Trigonometric function

Example

• Find the exact value of cos15º cos15 cos 60 45

cos60 cos 45 sin 60 sin 45

1 2 3 2

2 2 2 2

2 6

4

Page 58: Trigonometric function

SUM & DIFFERENCE OF TANGENT

• As we know…sin

tancos

sintan

cos

x yx y

x y

sin cos cos sin

cos cos sin sin

x y x y

x y x y

Page 59: Trigonometric function

sin cos cos sincos cos cos cos

tan( )cos cos sin sincos cos cos cos

x y x yx y x y

x yx y x yx y x y

sin sincos cos

sin sin1

cos cos

x yx y

x yx y

tan tan

1 tan tan

x y

x y

Page 60: Trigonometric function

Example• Find the value of 75º in exact radical form.Solution…

75º=45º+30º let x=45º y=30º

tan tantan( )

1 tan tan

x yx y

x y

tan 45 tan 30tan(45 30 )

1 tan 45 tan 30

1

131

1 13

Page 61: Trigonometric function

3 1

3 1

2 3

Page 62: Trigonometric function

COFUNCTION FORMULAS

•In a right triangle, the two acute angles are complementary. •Thus, if one acute angle of a right triangle is x, the other is

90 x

Page 63: Trigonometric function

cos cos cos sin sinx y x y x y

cos cos cos sin sin2 2 2

y y y

0 cos 1 sin

sin

y y

y

cos sin2

y y

The cofunction identity for cosine

Page 64: Trigonometric function

2y x

let

• The cofunction identity for cosine

cos sin2 2 2

x x

cos sin2

x x

sin cos2

x x

Page 65: Trigonometric function

sin cos2

x x

• Divide all equation with cos2

x

sincos2

cos cos2 2

xx

x x

sincos2sincos

2

xx

xx

tan cot2

x x

The cofunction identity for tangent

Page 66: Trigonometric function

B

a c

C A b

asin A=

c

acos B =

c

atan A = b

acot A = b

csec A =

ac

csc B = a

90A B

Page 67: Trigonometric function

EXAMPLE…

Write in term of its cofunction• Sin11º = cos (90º-11º) = cos79º

• Cot 87º = tan (90º-87º) = tan 3º

• Sec 52º =csc (90º-52º) =csc 38º

Page 68: Trigonometric function

DOUBLE ANGLE FORMULAE…

• sin 2x = 2 sin(x) cos(x)

• cos 2x = = =

• tan 2x =

2cos sin 2x x22cos 1x

21 2sin x

2

2 tan

1 tan

x

x

Page 69: Trigonometric function

DOUBLE ANGLE…

We know that,

If we let B=A,then

Hence,

sin(A+B)=sinAcosB+sinBcosA

sin(A+A)=sinAcosA+cosAsinA

sin2A=2sinAcosA

sin 2 2sin cosA A A

Page 70: Trigonometric function

We know that,

If we let B=A,then

Hence,

2 2cos2 cos sinA A A

cos( ) cos cos sin sinA B A B A B

cos( ) cos cos sin sinA A A A A A 2 2cos2 cos sinA A A

2cos2 2cos 1A A 2cos 2 1 2sinA A

Page 71: Trigonometric function

We know that

If we let B=A,

Hence,

2

2 tantan 2

1 tan

AA

A

tan tantan( )

1 tan tan

A BA B

A B

tan tantan( )

1 tan tan

A AA A

A A

2

2 tantan 2

1 tan

AA

A

Page 72: Trigonometric function

Example 1…If and lies in quadrant II, find the exactvalue of .Solution:

5sin

3

sin 2

5sin

3

y

r

2 2 2

2

2

5 13

25 169

144

x

x

x

144 12x

Page 73: Trigonometric function

So,

12cos

13

x

r

sin 2 2sin cos

5 12 120sin 2 2

13 13 169

Page 74: Trigonometric function

EXAMPLE 2….

with is acute angle, find the exact value of: Solution:a)

3if tan

4

a) tan 2

2

2 tantan 2

1 tan

32

43 3

14 4

24

7

b) tan 4

Page 75: Trigonometric function

Solution: b) tan 4

tan 4 tan(2 2 ) tan 2 tan 2

1 tan 2 tan 2

2

2 tan 2

1 tan 2

2

242

7

241

7

336

527

Page 76: Trigonometric function

HALF-ANGLE FORMULAE….

sin 2sin cos2 2

2 2cos cos sin2 2

22cos 12

21 2sin2

2

2 tan2tan

1 tan2

Page 77: Trigonometric function

HALF-ANGLE….

We know that,

Let ,

Hence,

sin 2 2sin cosA A A

2A

sin 2sin cos2 2

sin 2 2sin cos2 2 2

sin 2sin cos2 2

Page 78: Trigonometric function

We know that,

Let , Hence,

2 2cos cos sin2 2

2 2cos 2 cos sinA A A 2cos 2 2cos 1A A

2cos 2 1 2sinA A

2A

2 2cos 2 cos sin2 2 2

2

2

2cos 12

1 2sin2

2 2cos cos sin2 2

22cos 12

21 2sin2

Page 79: Trigonometric function

We know that,

Letting ,

Hence,

2

2 tan2tan

1 tan2

2

2 tantan 2

1 tan

AA

A

2A

2

2 tan 22tan 2

2 1 tan2

2

2 tan2tan

1 tan2

Page 80: Trigonometric function

Example….Without using calculator,compute the exact valueof cos 112.5⁰.Solution:cos 112.5⁰= cos

112.5⁰ lies in quadrant II,where only the sine andcosecant are (+)Thus, - sign is used in the half-angle formulae

225

2

o

Page 81: Trigonometric function

cos 112.5⁰= cos

225

2

o

01 cos225

2

21

2

2

2 2

4

2 2

2

Page 82: Trigonometric function

THE LAW OF SINES

If A, B, and C are the measures of the angles of a triangle, and a, b, and c are the lengths of the sides opposite these angles, then

A

a

sin=

B

b

sin=

C

c

sin

The ratio of the length of the side of any triangle to the sine of the angle opposite that side is the same for all three sides of the triangle.

Page 83: Trigonometric function

EXAMPLE

Solve triangle ABC if A = 50°, C = 33.5°, and b = 76.

= 50°,

C

BA50°

33.5°b = 76

a

c

Page 84: Trigonometric function

THE LAW OF COSINES

If A, B and C are the measures of the angles of a triangle, and a, b and c are the lengths of the sides opposite these angles, then

a2 = b2 + c2 – 2bc cos A b2 = a2 + c2 – 2ac cos B c2 = a2 + b2 – 2ab cos C

The square of a side of a triangle equals the sum of the squares of the other two sides minus twice their product times the cosine of their included angle

Page 85: Trigonometric function

EXAMPLE

• = 50°,

Solve the triangle with A = 60°, b = 20, and c = 30.

C

A Bc = 30

b = 20

Page 86: Trigonometric function

AREA OF TRIANGLE

Area = 1/2(a)(b)(SinC)

Page 87: Trigonometric function

EXAMPLE

Find the area of this triangle

6cm

52°

14cm