27
Trends in Front- End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory [email protected] , +1(631)344-5336 TIPP - Amsterdam - June 2014

Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory [email protected], +1(631)344-5336 TIPP - Amsterdam

Embed Size (px)

Citation preview

Page 1: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Trends in Front-End ASICs for Particle Physics

Gianluigi De Geronimo Brookhaven National Laboratory

[email protected] , +1(631)344-5336

TIPP - Amsterdam - June 2014

Page 2: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Outline

• CMOS Technologies

• ASICs for Particle Physics

• Challenges and Paradigm

Page 3: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Microelectronics

Art of combining micrometer-scale components into a single monolithic device: Integrated Circuit (IC)

The most widely adopted IC technologies use the MOSFETMetal-Oxide-Semiconductor Field-Effect Transistor

~ 20,000 µm ~ 20 µm

L

D G S

Page 4: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

The Rapid Evolution of Microelectronics

1960 1970 1980 1990 2000 2010 2020 2030 2040

1n

10n

100n

10µ

1MHz

first MOSFET

first IC

Intel 4004Tra

ns

isto

r ch

an

ne

l le

ng

th L

Year

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

Nu

mb

er

of

tra

ns

isto

rs / d

ie

1960 1970 1980 1990 2000 2010 2020 2030 2040

1n

10n

100n

10µ

> 3GHzXbox One 28nm

6-core I7 45nm

Intel 80286

first MOSFET

first IC

Intel 80486

10-core XEON 32nm

Tra

ns

isto

r ch

an

ne

l le

ng

th L

Year

1MHz

Intel 4004

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

Nu

mb

er

of

tra

ns

isto

rs / d

ie~ 20 -1 every 20 years

~ 202 eve

ry 20 ye

ars

Page 5: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

From Planar FET to FinFET (3D FET)

Conducting channels on three sides of a vertical "fin" structure, providing "fully depleted" operation - introduced in late '90s

• Combine 20nm-Planar FETs and sub-20nm FinFETs

• 55% drop in power dissipation or 35% boost in speed compared to 28nm-Planar

Planar FET FinFET (3D FET)

Page 6: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

The Rapid Evolution of Microelectronics

1960 1970 1980 1990 2000 2010 2020 2030 2040

1n

10n

100n

10µ ~ 20 -1 every 20 years

~ 202 eve

ry 20 ye

ars

Exotic Transistors• single-electron• carbon-nanotube• ...

Introduced in the ’90s, exotic transistors made considerable progress, but are still far from achieving reproducibility and reliability required by microelectronics

Page 7: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

High-Density Interconnects - 2.5D and 3D

2.5D TSVactive dies

passive Si interposer with planar and vertical (TSV) interconnects

micro-bumps

active die

active dies with TSVsflip-chip bumpsstack many dies with different functionalities

micro-bumps

3D TSV

· Through-Silicon Via (TSV) vertical interconnects through active or passive die - µm diameter· Micro-Bump / Metal-Metal Bonds2D interconnects - µm size

Page 8: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

1960 1970 1980 1990 2000 2010 2020 2030 2040

1n

10n

100n

10µ

The Rapid Evolution of Microelectronics

Progress heavily driven by consumer electronics

~ 20 -1 every 20 years

~ 202 eve

ry 20 ye

ars ?!

TSVExotic Transistors• single-electron• carbon-nanotube• ...

Page 9: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Semiconductor Market

PP has little chance to make an impact on evolution

Bil

lio

n D

oll

ars

YearPP

50M?

computing

communications

storage

controlmedical industrial

entertainment

toys

Page 10: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Microelectronics and Particle Physics

Radiation Detectors ?

data processing and computing,communication,...

Require custom-designed front-end electronics frequentlyin the form of Application-Specific Integrated Circuits

• optimized front-end circuit• small physical size• low power dissipation• radiation tolerance• cost (in context of whole detector)• ...

Front-end ASIC

Page 11: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

AMPLEX (1988) - First Large Scale

16 channels, ~800 MOSFETs (~50/ch)3µm CMOS, 5V, 1.1 mW/ch, 16 mm²amplifier/filter/track & hold/muxfor Silicon micro-strips at UA2

Page 12: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Institute WG1Radiation

WG2Top level

WG3Sim./ Ver

WG4I/ O

WG5Analog

WG6IPs

Bari C A A

Bergamo-Pavia A C A B

Bonn C A A B B A

CERN B(*) (*) A C(*) A B(*)

CPPM A B C C B A

Fermilab A B A

LBNL B A B B A A

LPNHEParis A B A A

NIKHEF A A A

New Mexico A

Padova A A

Perugia B A B

Pisa B A A A

PSI B A C A A

RAL B B A C

Torino C B C B A A

UCSC C B C A

FE-I5 (2016-17?)

260k pixels, 1G MOSFETs (~4,000/px)65nm, 1.2V, 0.5-1 W/cm², >400mm²high complexity/functionality, DSPfor ATLAS vertex hybrid pixels

19 institutionsspecialized working groups

100 collaborators(~50 ASIC designers)

ARCHITECTURE 2X2 pixel unit

Page 13: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Compare to Evolution of Microelectronics

Delay from characterization, prototyping prices, resources

1960 1970 1980 1990 2000 2010 2020 2030 2040

1n

10n

100n

10µ

VMM

Xbox One

6-core I7 FE-I5

FE-I4

FILASAMPLEX

first MOSFET

first IC

Tra

ns

isto

r ch

an

ne

l le

ng

th L

Year

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

Nu

mb

er

of

tra

ns

isto

rs / d

ie

Page 14: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

VMM (2015-16?)

64 channels, >6M MOSFETs (>80k/ch)130nm, 1.2V, 0.4 W/cm², >110mm²high complexity/functionality w/DSPfor ATLAS muon spectrometer/tracker V. Polychronakos

New Small WheelssTGC , MicroMegas, 2.3M channels

analog1

data1data2

analog2

CA shaper

logic

orneighbor

addr.

6-b ADC

ART (flag + serial address)ART clock

12-b BC

Gray count

10-b ADC

8-b ADC

BC clocklogic

time

peak

4XFIFO

data/TGC clock

mux

tk clockpulser

trim

bias registerstp clock

TGC out (ToT, TtP, PtT, PtP, 6bADC)

tempDAC reset

test

64 channels

analog mon.

prompt

DSP

Page 15: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Impact on ATLAS New Small Wheels

• 60x sensing elements (32k→2M), 10x element density (5→0.5 mm)• 3x power dissipation (300→15 mW/element)• comparable data-transfer bandwidth, fully data-driven, discrimination• trigger primitives, timing measurements, programmable polarity

2005 - ASM 2015 - VMM

(1) FE ASICs will become very-high-complexity systems-on-chip (SOC) and will require high-density interconnects

Page 16: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

1980 1990 2000 2010 20200

20

40

60

80

N

umbe

r of

des

igns

Year

Number of front-end ASICs for PPrunning and in design

(2) The demand for FE ASICs is increasing

Front-end ASICs vs Year

2013~ 60 FE (out of ~140)~ 35 FE in design

sources: HEPIC 2014 White Paper et al.

Page 17: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

0

10

20

30

40

50

Num

be

r of

AS

IC D

esig

ns in

PP

Technology

running in design

Estimate 2013

allfront-end

Front-End ASICs vs Technology

(3) PP ASICs are keeping pace with technology

complexityavailability

pricesresources

Page 18: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

The PP-ASIC Paradigm

Advances in Particle Physics detectors are tightly coupled to advances in

ASICs and associated interconnects

Complexity

Demand

Technology

PP ?ASIC ?

Page 19: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

design groups ≈ 30-40

Design Groups – Current Status

active designs ≈ 30-40

Average one design per group• institutions leading collaborative efforts• institutions performing R&D on technologies

One FE-ASIC design currently requires2-4 full-time designers and 2-4 years

average, from concept to ready-for-production

...

...

...

...

CLIC

FE-I5

ABCLAPAS

VMMFSSR2

APV25

KPIXBEAN

nEXO

ASDQNOvA MAPS3D

ISR3BTARGET

ASDCDCSAO3

POM

SALT

PACIFICCLARO MAROC3

ICECAL

VELOPIX

LBNE

...

......

SAMPA

...

QIE

CBC

Page 20: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

In order to be efficient and maintain state-of-the-art ASIC groups must:• develop 1-2 new designs and 2-4 revisions per year• work with 2 technologies (re-usage & next)• perform R&D on circuits and technologies

PP currently supports/uses up to 25-30 %

The critical minimum is currently 5-6 designers

Design Groups – Current Status

Need to diversify while contributing to PP with an average of 25-30 % of resources

Page 21: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

The PP-ASIC Paradigm

The number of ASIC designers has to increase !

Complexity

Demand

Technology

PP ?ASIC ?

involve non-PP ASIC groups

increase size of PP ASIC groups

Collaborations ?• only part of the solution• communication• overhead• lead of large group

Page 22: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

In order to contribute to future PP detectors FE ASIC groups need to:

• grow (30-40%)• increase collaborations (know-how exchange)• develop/acquire "system-level FE ASIC designer"• develop/acquire "high-density interconnects“• align technologies• evolve and coordinate R&D

Evolution of Front-End ASIC Design Groups

PP community needs to contribute with 25-30%

Alternative? Pay companies (hundreds M$)

Page 23: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Aligning Technologies

Long-lasting choice (re-usage)

Collaborations (know-how)

skip technologies ... ~ jointly

• Specialized groups must perform characterization• Initial phase of pioneering projects (large groups)• Some exceptions for specialized technologies

Page 24: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Coordinating R&D

R&D on enabling circuits/technologies• low-power ADCs• low-power DSP (auto-calib., data red., program., ...)• low-power high-speed communication (standards)• low-power low-voltage analogs• high dynamic range, waveform sampling• high-density interconnects (2.5D, 3D - incl. sensors)• cryogenic• MAPS• ...

When to exit/enter a technology ?• exit too late may result in limited collaborations• enter too early may result in waste of resources

keep

< 1

W/c

Page 25: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Conclusions

G. C. Smith, V. Radeka, BNL Microelectronics, CERN, PP FE ASIC Community

Acknowledgment

Advances in PP detectors are tightly coupled to advances in front-end ASICs and associated interconnects

Front-end ASICs:• dramatic increase in complexity/functionality (SOC)• increase in demand• need to keep pace with the technologies

ASIC groups:• increase size and collaborations (know-how)• perform R&D towards SOC and interconnects• align technologies and coordinate R&D

Page 26: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

IC Designer in a “Collaboration”

Page 27: Trends in Front-End ASICs for Particle Physics Gianluigi De Geronimo Brookhaven National Laboratory degeronimo@bnl.gov, +1(631)344-5336 TIPP - Amsterdam

Prototyping Prices

Prototyping costs are increasing (price, size)

0

50k

100k

150k

200k

250k

2019?

2014

2024?2004

2014 average MPW pricefor a 16mm² prototype

Ave

rage M

PW

Pri

ce

Technology

prices 1/2 every ~5 years