24
© Prof. Dr.-Ing. Martin März 1 www.lee.tf.fau.de Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020 Trends and Challenges in Power Electronics Prof. Dr.-Ing. Martin März

Trends and Challenges in Power Electronics

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

© Prof. Dr.-Ing. Martin März

1www.lee.tf.fau.de

Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020

Trends and Challenges in Power Electronics

Prof. Dr.-Ing. Martin März

© Prof. Dr.-Ing. Martin März

2www.lee.tf.fau.de

Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020

■ Power electronics in a digital world

■ Technological challenges in power electronics

Content

© Prof. Dr.-Ing. Martin März

3www.lee.tf.fau.de

Power Electronics Today

Electrical Energy Electrical Energy

IT Electronicsanalog

digitalData & Informationanalog

digital

Power ElectronicsAC ~

DC =

AC ~

DC =

Electrical Energy Processing

Data Processing

1101001011011000101

0011100010010111001

1110100100010001010

00100100100010010100

11100100001001110101

00010100010100101010

Data & Information

© Prof. Dr.-Ing. Martin März

4www.lee.tf.fau.de

Power Electronics Today

Universal Power Processing Platform

?tomorrow

today

Application specific devices

Universal Data Processing Platform

today

past

Specific task is

simply defined by Apps

IT Electronics Power Electronics

Application specific devices

© Prof. Dr.-Ing. Martin März

5www.lee.tf.fau.de

Power Electronics Tomorrow

Creative teams worldwide used this

„Software Defined Inverter“ (SDI) for

Class-D audio power amplifiers

Wireless power transfer (inductive charging)

Magnetic levitation and 3D positioning

Faraday modulator (high speed laser power control)

….,

and, of course, also for various electric drive applications

Software-defined Power Conversion

Siemens »TAPAS Community Challenge«

“TAPAS features a 48V, 3-phase GaN power

stage (300 W) with on-board filters. It allows

for a high switching frequency/bandwidth

(300 kHz and beyond)“

© Prof. Dr.-Ing. Martin März

6www.lee.tf.fau.de

Power Electronics Tomorrow

DC-Grid Manager (Fraunhofer-IISB)

Several identical DC channels that can be arbitrarily

configured via software (IP/LAN)

■ voltage or current controlled source or sink

■ complex control functions like MPP tracking,

battery management or droop control

■ individual fault characteristics (short circuit,

overload, etc.)

Software-defined Power Conversion

© Prof. Dr.-Ing. Martin März

7www.lee.tf.fau.de

Power Electronics Tomorrow

Reduction of

cost by high volume production

warehousing costs

installation work

service cost and down time.

Increase in

flexibility regarding requirement changes

One building block and an infinite number

of options for customization

Software-defined Power Conversion

© Prof. Dr.-Ing. Martin März

8www.lee.tf.fau.de

Power Electronics Tomorrow

Digital

Twins

Data

AnalyticsService

Apps

Power-as-a-Sensor

Cloud

Storage

Power-as-a-Sensor

A variety of physical parameters is continuously

measured in each power converter. The idea:

make these data externally available in a

secure way, and

provide power supply and gateway

functionality for application specific sensors

… and even for advanced sensors, cost become

more and more negligible (s. Smartphones)

IoT Gateway

voltage

current

temperature

frequency

voltage

currenttime

power

motion torquespeed

faults

© Prof. Dr.-Ing. Martin März

9www.lee.tf.fau.de

Power Electronics Tomorrow

Sensors are ubiquitous and their number is constantly growing

not only because of Internet-of-Things (IoT) and Industry 4.0

Get rid of

back-up batteries

energy harvesting

extra cable installations

extra stand-by losses

by using the omnipresent power converters

as sensor platforms - because:

»Energy is where Power Electronics is!«

Power-as-a-Sensor

© Prof. Dr.-Ing. Martin März

10www.lee.tf.fau.de

Power Electronics Tomorrow

Power-as-a-Monitor

Edge Computing

Derive aggregated higher-level information, using the

data measured within a power electronic, for monitoring

the grid, load and/or system environment:

operating times, utilization rates

production process variations

predictive maintenance

fault situations

Power converters: The perfect system monitors!

© Prof. Dr.-Ing. Martin März

11www.lee.tf.fau.de

Power Electronics Tomorrow

Power-as-a-Monitor

Grid a/o load monitoring

Detection of faults, arc or instabilities

Active damping, self-adapting control

Process monitoring, predictive maintenance Frequency in Hz

Frequency in Hz

| Z

(jw

)|

in d

BO

hm

arg(Z

(jw

)) in

deg

ree

Reference measurement

PRBS injection method

Reference measurement

PRBS injection method

Low-cost Impedance Monitoring

Bild

quelle

: M

aste

rarb

eit F

abia

n B

odenste

iner

Cloud

Storage

Zgrid(s) Zload(s)

© Prof. Dr.-Ing. Martin März

12www.lee.tf.fau.de

Power Electronics Tomorrow

Digital

Twins

Data

AnalyticsService

Apps

Cloud

Storage

Power quality

Grid stability monitoring

ProtectionArc fault detection

Smart metering

Predictive maintenance

Process monitoring

Aggregated Information to be used for e.g.

Active, reactive power • smart metering

Total harmonic distortion • grid a/o load monitoring

Abnormalities in the (EMI)

noise spectrum

• arc fault detection

• service request

• predictive maintenance

Impedance characteristics • grid a/o load monitoring

• self-adjusting controllers

• fault detection

Coulomb counting • battery management

Mission profile • life estimation

Power-as-a-Monitor

© Prof. Dr.-Ing. Martin März

13www.lee.tf.fau.de

Power Electronics Tomorrow

Internet-of-Things

Enernet-of-Power

Electrical Energy Electrical Energy

IT ElectronicsData & Information

Power Electronics

Electrical Energy Processing

Data Processing

Data & Information

© Prof. Dr.-Ing. Martin März

14www.lee.tf.fau.de

Power Electronics Tomorrow

“A vast electrical power network linking smaller grids in successive layers worldwide.

The Enernet includes commercial, educational, governmental, and other micro and macro grids, all of which use a common

set of electrical and communications standards.”

Enernet-of-Powerdoing for electricity what the Internet did for information

Brian Patterson - President, Emerge Alliance(IEEE ICDCM Conference, Nuremberg, 2017)

Picture: www.emergealliance.org

© Prof. Dr.-Ing. Martin März

15www.lee.tf.fau.de

Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020

■ Power electronics in a digital world

■ Technological challenges in power electronics

Content

© Prof. Dr.-Ing. Martin März

16www.lee.tf.fau.de

Power Electronics TomorrowP

ow

er

den

sit

yin

kW

/dm

3

1

10

100

1000

2000 2005 2010 2015

Year

Si/SiC limit

2020

Research benchmarks

Industrial benchmarks

Si limit

HV Buck/Boost Converter Roadmap

Passives limit

»Moore's Law« in Power Electronics

Continuous Progress in Power Density

Progress is needed in

■ passive devices

■ integration of logic and power

■ packaging technologies

■ manufacturing and assembly technologies

■ thermal management

■ EMI management

Limitations today are not power semiconductors!

© Prof. Dr.-Ing. Martin März

17www.lee.tf.fau.de

Power Electronics Tomorrow

Picture: NASA

Picture: Airbus

Continuous operation for 20 to 40 years

Maximum availability (fail operational)

High ambient temperatures

High operating altitudes

Reduced air pressure

Cosmic ray

New technological challenges arise from extreme application requirements

Picture: Siemens

Picture: Fraunhofer-IISB

© Prof. Dr.-Ing. Martin März

18www.lee.tf.fau.de

Power Electronics Tomorrow

A much higher degree of integration is necessary!

■ Chip Level Integration (monolithic or multi-chip)

power + driver + logic

indispensable with GaN

up to multi-kW

■ 3D Heterointegration

additive manufacturing technologies (metal, ceramic, polymers) for functional integration of

active and passive devices, interconnects, housing and cooling functionalities

laser-based fine structuring

new joining processes

new insulation and coating systems

up to multi-MW

20 MW MV-MMC

© Prof. Dr.-Ing. Martin März

19www.lee.tf.fau.de

Power Electronics Tomorrow

Challenges for Packaging Technologies

Harness the high possible chip temperatures of WBG power semiconductors

Improve reliability and thermal management

Increase transient overload capability

Cut costs

Minimize circuit parasitics

Organic substrates will not meet harsh application requirements (automotive, aviation)

Key Technologies

Laser (fs) structuring of DCB substrates

Sinter bonding

Advantages

Hermetic sealed

No organic materials

Chip operating temperature > 250(300)°C

Negligible circuit parasites

True double-sided cooling

Power semiconductors embedded in DCB substrates

HV SiC diode stack

Pictures: Fraunhofer-IISB

HV SiC diode stack

DCB embeddedIGBT

© Prof. Dr.-Ing. Martin März

20www.lee.tf.fau.de

Power Electronics Tomorrow

Computer

science

Manufacturing

engineering

HF and

Communications

Technology

Material

science

Power Electronics

Innovations will increasingly arise at the interfaces to other disciplines

© Prof. Dr.-Ing. Martin März

21www.lee.tf.fau.de

Power Electronics Tomorrow

Power Electronics

Key technology for a modern all-electric and all-digital society

© Prof. Dr.-Ing. Martin März

22www.lee.tf.fau.de

Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020

Thank you for your Attention

looking forward to an inspiring discussion

© Prof. Dr.-Ing. Martin März

23www.lee.tf.fau.de

Workshop on »Future Role of Power Electronics and Drive Systems« 29.01.2020

Materials Technology

Devices

Packaging

Reliability

Vehicle

Electronics

Intelligent

Energy

Systems

FahrzeugelektronikBusiness Area

Power Electronic SystemsBusiness Area

Semiconductor Technologies

Power Electronics

Power Electronics at Fraunhofer-IISB

© Prof. Dr.-Ing. Martin März

24www.lee.tf.fau.de

Fraunhofer Institute of Integrated Systems and Device Technology

Mobile

Batteriespeicher

PV-Anlage (150 kW)

Stationäre Batterie

Application Center for Decentralized Energy Systems