81
OE TUGAS RANCANG STRUKTUR LEPAS PANTAI STATIS SEMESTER GENAP 2013/2014 PRODUCTION PLATFORM GRUP KERJA @ 3 orang II PEMBIMBING Murdjito, MSc.Eng Rudi Walujo P, Dr SOFTWare GT STRUDL Kriteria Umum: 1 Recommended Practice API RP 2A-WSD, AISC ASD 2 Material Struktur ASTM 3 Tipe Platform Production 4 Jumlah kaki jacket 4 5 Kedalaman perairan (LWL) 99,5 ft 6 Orientasi Platform Kriteria Desain Deck: 1 Jumlah deck: 2 deck 2 Luasan Deck: Luasan Sub cellar deck - Luasan Cellar deck Luasan Main deck Luasan Cooler deck - 3 a. Beban Hidup Area Deck Kondisi Operasi Sub cellar deck - Cellar deck 135 psf Main deck 140 psf Cooler deck - b. Beban Hidup Area Deck Kondisi Badai Sub cellar deck - Cellar deck 90 psf Main deck 100 psf Cooler deck - 4 Jumlah crane 1 5 a. Beban Crane Kondisi Operasi Beban vertikal 135,0 kips Beban momen 19500,0 kips-in b. Beban Crane Kondisi Badai Beban vertikal 65,5 kips Beban momen 0,0 kips-in 6 Beban Angin Kondisi Operasi 45 mph Kondisi Badai 75 mph 7 Beban Perpipaan Main Deck 35 psf Cellar Deck 25 psf Mezanine deck - (+) 60,0 0 6750 ft 2 8000 ft 2

TRB 2 - Fixed Offshore Platform.xlsx

Embed Size (px)

DESCRIPTION

Offshore building platform

Citation preview

Page 1: TRB 2 - Fixed Offshore Platform.xlsx

OE TUGAS RANCANG STRUKTUR LEPAS PANTAI STATIS

SEMESTER GENAP 2013/2014

PRODUCTION PLATFORM

GRUP KERJA @ 3 orang IIPEMBIMBING Murdjito, MSc.Eng

Rudi Walujo P, Dr

SOFTWare GT STRUDLKriteria Umum:

1 Recommended Practice API RP 2A-WSD, AISC ASD

2 Material Struktur ASTM

3 Tipe Platform Production4 Jumlah kaki jacket 45 Kedalaman perairan (LWL) 99,5 ft6 Orientasi Platform

Kriteria Desain Deck:

1 Jumlah deck: 2 deck2 Luasan Deck:

Luasan Sub cellar deck -Luasan Cellar deck

Luasan Main deckLuasan Cooler deck -

3 a. Beban Hidup Area Deck Kondisi Operasi Sub cellar deck -Cellar deck 135 psfMain deck 140 psfCooler deck -b. Beban Hidup Area Deck Kondisi Badai Sub cellar deck -Cellar deck 90 psfMain deck 100 psfCooler deck -

4 Jumlah crane 15 a. Beban Crane Kondisi Operasi

Beban vertikal 135,0 kipsBeban momen 19500,0 kips-inb. Beban Crane Kondisi BadaiBeban vertikal 65,5 kipsBeban momen 0,0 kips-in

6 Beban AnginKondisi Operasi 45 mphKondisi Badai 75 mph 110

7 Beban PerpipaanMain Deck 35 psfCellar Deck 25 psfMezanine deck -

(+) 60,00

6750 ft2

8000 ft2

Page 2: TRB 2 - Fixed Offshore Platform.xlsx

Sub cellar deck8 Helideck 1

Type SikorskyRules API RP 2L

9 Work over rig (WOR)Dead load Normal cond. 0 kipsDead load Extreem cond. 0 kipsOperating Load Normal 0 kipsOperating Extreem Normal 0 kips

Kriteria Desain Jacket

1 a. Beban Gelombang & Arus Kondisi OperasiTinggi gelombang significant 18,7 ftPeriode gelombang 7,5 detTotal pasang surut 4,5 ftKecepatan arus (permukaan) 1,93 knotKecepatan arus (dasar laut) 0,54 knotb. Beban Gelombang & Arus Kondisi BadaiTinggi gelombang maksimum 30,5 ftPeriode gelombang 9,9 detTotal pasang surut 4,6 ftKecepatan arus (permukaan) 2,47 knot 4,169Kecepatan arus (dasar laut) 0,69 knot 1.16Storm surge 1 ft

2 Marine GrowthMenambah OD tubular member 3 inch 0.25

3 Corrotion Allowance API RP 2A-WSD4 Hydrodynamic Coefficient API RP 2A-WSD5 Shielding Effect Coefficient API RP 2A-WSD6 Blockage Factor API RP 2A-WSD7 Scouring Effect Tollerance 1 M8 Riser

Jumlah 6Diameter luar 18 1.500Ketebalan 0.75 0.0625

8 ConductorJumlahDiameter luarKetebalan

9 Data Tanah A10 Bater 1 : 8 XYZ11 Barge bumper 1

Page 3: TRB 2 - Fixed Offshore Platform.xlsx

GRUP KERJA @ 3 orang I S/D V

I. CELLAR DECKNo. Description Jumlah Berat (Kip) Ukuran

1 Gas Cooler 1 15.68 OD 38'' x 20'-0''2 Emergency generator 1 20.16 22'-0'' x 9'-0'' x 10'-11''3 Battery box 2 1.79 2'-3'' x 2'-3'' x 1'-9''4 Vertical separators 2 36.77 OD 54'' x 8'-4''5 Maintenance building 1 44.80 12'-3'' x 6'-4'' x 8'-0''6 Switch gear 1 7.84 5'-0'' x 2'-2'' x 8'-10''

8 Switch gear building 1 6.72 7'-0'' x 18'-0'' x 13'-6''9 Diesel fuel tank 1 58.24 10'-0'' x 10'-0'' x 10'-0''

10 Toilet 1 2.24 4'-0'' x 6'-0'' x 8'-0''11 Transformer-1 1 92.00 16'-6' x 12'-10'' x 12'-0''12 Transformer-2 1 12.00 9'-0'' x 5'-0'' x 6'-9''15 Vertical air receiver 1 1.20 OD 38'' x 6'-4''

II. MAIN DECKNo. Description Jumlah Berat (Kip) Ukuran

1 Battery box 2 1.79 2'-3'' x 2'-1' x 1'-9''2 Air compressor package 1 3.36 5'-8'' x 3'-6'' x 6'-0''3 Load break switch 1 1.19 4'-6'' x 2'-5'' x 6'-5''4 Container room-1 1 23.52 34'-0'' x 10'-0'' x 20'-0'5 Container room-2 1 23.52 34'-0'' x 10'-0'' x 20'-0'6 Process control room 1 9.24 16'-0'' x 14'-0'' x 12'-0''7 Transformer 3 19.23 12'-6'' x 8'-0'' x 8'-0''8 Instrument storage 1 5.60 8'-0'' x 6'-8'' x 6'-6''9 Fresh water tank 1 7.09 11'-6'' x 8'-0'' x 10'-0''

10 Air receiver 1 1.20 OD 36'' x 75''11 Ansul drum chemical skid 1 2.47 9'-3'' x 5'-2'' x 4'-5''12 Mechanical storage 1 7.84 8'-2'' x 8'-1'' x 8'-9''13 Life capsule 1 2.69 …14 Communication microwave 1 5.38 10'-4'' x 10'-0'' x 9'-10''15 Communication tower 1 17.92 10'-5'' x 10'-5'' x 100'-0''16 Fuel tank 1 13.44 5'-7'' x 4'-5'' x 4'-7''17 Power instrument storage 1 4.44 8'-2'' x 8'-2'' x 9'-0''18 Toilet 1 2.24 5'-0'' x 4'-0'' x 8'-0''19 Flare bridge 1 … …

Page 4: TRB 2 - Fixed Offshore Platform.xlsx

No Desc Fuel/Ign

Gas Cooler FuelEmergency generator IgnBattery box IgnVertical separators FuelMaintenance building IgnSwitch gear IgnSwitch gear building IgnSwitch gear building IgnDiesel fuel tank FuelToilet naTransformer-1 IgnTransformer-2 IgnVertical air receiver Ign

Battery box IgnAir compressor package Ign Load break switch IgnContainer room-1 IgnContainer room-2 IgnProcess control room IgnTransformer IgnInstrument storage IgnFresh water tank naAir receiver naAnsul drum chemical skid FuelMechanical storage IgnLife capsule naCommunication microwav IgnCommunication tower IgnFuel tank FuelPower instrument storage IgnToilet naFlare bridge Ign

Page 5: TRB 2 - Fixed Offshore Platform.xlsx

Data Crane

Daya angkat crane kondisi operasi = 67.5 ton

Page 6: TRB 2 - Fixed Offshore Platform.xlsx
Page 7: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY Jarak dari Cellar ke Main = 20.4 feet / 244.8 inch

CELLAR DECK

NO EQUIPMENT UKURAN W X Y Height ZX * W Y * W Z * W

( kip ) ( inch ) ( inch ) ( ft ) ( inch )

1 Gas Cooler OD 38'' x 20'-0'' 15.68 -47.21 362.24 10.00 60 -740.25 5679.92 940.80

2 Load break switch 4'-6'' x 2'-5'' x 6'-5'' 1.19 174.55 164.72 6.42 38.52 207.71 196.02 45.84

3 Emergency generator 22'-0'' x 9'-0'' x 10'-11'' 20.16 30.74 -293.97 10.11 60.66 619.72 -5926.44 1222.91

4 Vertical separators 1 OD 54'' x 8'-4'' 36.77 -125.00 366.37 8.33 49.98 -4596.25 13471.42 1837.76

5 Vertical separators 2 OD 54'' x 8'-4'' 36.77 -225.00 366.37 8.33 49.98 -8273.25 13471.42 1837.766 Maintenance building 12'-3'' x 6'-4'' x 8'-0'' 44.80 333.52 -158.50 8.00 48 14941.70 -7100.80 2150.407 Switch gear 5'-0'' x 2'-2'' x 8'-10'' 7.84 368.55 -28.99 8.10 48.6 2889.43 -227.28 381.02

8 Battery box 1 2'-3'' x 2'-3'' x 1'-9'' 1.79 353.50 209.69 1.90 11.4 632.77 375.34 20.41

9 Battery box 2 2'-3'' x 2'-3'' x 1'-9'' 1.79 380.50 209.69 1.90 11.4 681.10 375.34 20.41

10 Switch gear building 7'-0'' x 18'-0'' x 13'-6'' 6.72 290.55 -0.23 13.60 81.6 1952.50 -1.55 548.35

11 Diesel fuel tank 10'-0'' x 10'-0'' x 10'-0'' 58.24 -200.63 -300.00 10.00 60 -11684.69 -17472.00 3494.40

12 Toilet 4'-0'' x 6'-0'' x 8'-0'' 2.24 236.00 -155.87 8.00 48 528.64 -349.15 107.52

13 Transformer-1 16'-6' x 12'-10'' x 12'-0'' 92.00 300.05 119.21 12.00 72 27604.60 10967.04 6624.00

14 Transformer-2 9'-0'' x 5'-0'' x 6'-9'' 12.00 171.55 96.22 6.90 41.4 2058.60 1154.64 496.80

15 Vertical air receiver OD 38'' x 6'-4'' 1.20 -200.40 415.29 6.33 37.98 -240.48 498.35 45.58

TOTAL 339.19 26581.83 15112.29 19773.96

CENTER OF GRAVITY X Y Z-124.057 Inch 78.37 44.55 58.30

Meter 1.9905615 1.131673 1.4807586

Hequipment tertinggi + 1/2 Hequipment tertinggi =

Page 8: TRB 2 - Fixed Offshore Platform.xlsx

MAIN DECK

NO EQUIPMENT UKURANW X Y Height Z

X * W Y * W Z * W( kip ) ( inch) (inch) ( inch) (inch)

1Air compressor package 5'-8'' x 3'-6'' x 6'-0'' 3.36

-170.93 -334.00 72.00 36.00 -574.32 -1122.24 120.96

2Container room-1 34'-0'' x 10'-0'' x 20'-0' 23.52

288.00 60.00 240.00 120.00 6773.76 1411.20 2822.40

3 Container room-2 34'-0'' x 10'-0'' x 20'-0' 23.52 288.00 -60.00 240.00 120.00 6773.47 -1411.14 2822.28

4 Process control room 16'-0'' x 14'-0'' x 12'-0'' 9.24 -287.92 383.96 144.00 72.00 -2660.38 3547.79 665.28

5 Instrument storage 8'-0'' x 6'-8'' x 6'-6'' 5.60 -347.97 220.64 78.00 39.00 -1948.63 1235.58 218.406 Fresh water tank 11'-6'' x 8'-0'' x 10'-0'' 7.09 329.03 -167.87 120.00 60.00 2333.81 -1190.70 425.58

7 Air receiver OD 36'' x 75'' 1.20 -170.93 388.98 75.00 37.50 -205.12 466.78 45.00

8 Ansul drum chemical skid 9'-3'' x 5'-2'' x 4'-5'' 2.47 187.80 -380.65 53.00 26.50 464.24 -940.97 65.51

9 Mechanical storage 8'-2'' x 8'-1'' x 8'-9'' 7.84 -117.63 -363.18 105.00 52.50 -922.22 -2847.33 411.60

10 Communication tower 10'-5'' x 10'-5'' x 100'-0'' 17.92 44.16 396.00 1200.00 600.00 791.35 7096.32 10752.00

11 Power instrument storage 8'-2'' x 8'-2'' x 9'-0'' 4.44 -19.63 -362.65 108.00 54.00 -87.22 -1611.25 239.92

12 Crane 106.00 -300.00 -300.00 449.00 224.50 -31800.00 -31800.00 23797.00

13 Toilet 5'-0'' x 4'-0'' x 8'-0'' 2.24 236.00 -155.87 96.00 48.00 528.64 -349.15 107.52

TOTAL 214.45 -20532.62 -27515.11 42493.45

CENTER OF GRAVITY X Y Z

3.669 Inch -95.75 -128.31 198.15

Meter -2.4319692 -3.259005 5.033102

-124.0571 -14.8287

89.124 300.02846

Page 9: TRB 2 - Fixed Offshore Platform.xlsx

57.4525 24.46154COG Gabungan

Item X (inch) Y (inch) Z (inch) X.W Y.W Z.W

Main Deck -95.75 -128.31 442.95 -20,532.62 -27,515.11 94,990.08Cellar Deck 78.37 44.55 58.30 26,581.83 15,112.29 19,773.96

Total 6,049.21 -12,402.82 114,764.03

Titik Berat10.93 -22.40 207.29 inch

0.277528508 -0.5690221 5.26519442 m

X Y Z

Kordinat Z dihitung dari cellar deck

Page 10: TRB 2 - Fixed Offshore Platform.xlsx

-3.92 30.07 5.00 -117.811

14.49 13.67 3.21 198.0717

2.55 -24.40 5.06 -62.2534

-10.38 30.41 4.17 -315.49-18.68 30.41 4.17 -567.88327.68 -13.16 4.00 -364.17330.59 -2.41 4.05 -73.603929.34 17.40 0.95 510.642731.58 17.40 0.95 549.645124.12 -0.02 6.80 -0.46037-16.65 -24.90 5.00 414.64219.59 -12.94 4.00 -253.41424.90 9.89 6.00 246.406214.24 7.99 3.45 113.7136

-16.63 34.47 3.17 -573.331

Page 11: TRB 2 - Fixed Offshore Platform.xlsx

-14.18719 -27.722

23.904 4.980

23.904 -4.980

-23.89736 31.869

-28.88151 18.31327.30949 -13.933

-14.18719 32.285

15.5874 -31.594

-9.76329 -30.144

3.66528 32.868

-1.62929 -30.100

19.588 -12.937

19.58819.588

2.24

3.36

27.55.6

6.727.84

Page 12: TRB 2 - Fixed Offshore Platform.xlsx

8.9610.0811.2

12.32

13.4414.56

15.68

16.8

2.24

00

Page 13: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY Jarak dari Cellar ke Main = 20.4 feet / 244.8

CELLAR DECK

NO EQUIPMENT UKURAN W X Y Height ZX * W Y * W

( kip ) ( inch ) ( inch ) ( ft ) ( inch )

1 Gas Cooler OD 38'' x 20'-0'' 15.68 -47.2 366.40 -740.10 5745.15

2 Load break switch 4'-6'' x 2'-5'' x 6'-5'' 1.19 223.5 223.20 265.97 265.61

3 Emergency generator 22'-0'' x 9'-0'' x 10'-11'' 20.16 300 -133.40 6048.00 -2689.34

4 Vertical separators 1 OD 54'' x 8'-4'' 36.77 -233.60 366.40 -8589.47 13472.53

5 Vertical separators 2 OD 54'' x 8'-4'' 36.77 -140.30 366.40 -5158.83 13472.536 Maintenance building 12'-3'' x 6'-4'' x 8'-0'' 44.80 53.30 -300.00 2387.84 -13440.007 Switch gear 5'-0'' x 2'-2'' x 8'-10'' 7.84 300.00 -54.50 2352.00 -427.28

8 Battery box 1 2'-3'' x 2'-3'' x 1'-9'' 1.79 286.50 236.70 512.84 423.69

9 Battery box 2 2'-3'' x 2'-3'' x 1'-9'' 1.79 286.50 209.70 512.84 375.36

10 Switch gear building 7'-0'' x 18'-0'' x 13'-6'' 6.72 300.00 0.00 2016.00 0.00

11 Diesel fuel tank 10'-0'' x 10'-0'' x 10'-0'' 58.24 -163.50 -300.00 -9522.24 -17472.00

12 Toilet 4'-0'' x 6'-0'' x 8'-0'' 2.24 150.80 -300.00 337.79 -672.00

13 Transformer-1 16'-6' x 12'-10'' x 12'-0'' 92.00 300.00 119.00 27600.00 10948.00

14 Transformer-2 9'-0'' x 5'-0'' x 6'-9'' 12.00 355.00 226.20 4260.00 2714.40

15 Vertical air receiver OD 38'' x 6'-4'' 1.20 222.60 377.50 267.12 453.00

TOTAL 339.19 22549.75 13169.65

CENTER OF GRAVITY X Y-124.057 Inch 66.48 38.83

Meter 1.68862171 0.9861996

Hequipment tertinggi + 1/2 Hequipment tertinggi =

Page 14: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY MAIN DECK

NO EQUIPMENT UKURANW X Y Height Z

X * W Y * W( kip ) ( inch) (inch) ( inch) (inch)

1Air compressor package 5'-8'' x 3'-6'' x 6'-0'' 3.36

299.90 156.90 1007.66 527.18

2Container room-1 34'-0'' x 10'-0'' x 20'-0' 23.52

204.00 71.50 4798.08 1681.68

3 Container room-2 34'-0'' x 10'-0'' x 20'-0' 23.52 204.00 48.50 4797.88 1140.67

4 Process control room 16'-0'' x 14'-0'' x 12'-0'' 9.24 -120.20 -300.10 -1110.65 -2772.92

5 Instrument storage 8'-0'' x 6'-8'' x 6'-6'' 5.60 -78.80 300.00 -441.28 1680.006 Fresh water tank 11'-6'' x 8'-0'' x 10'-0'' 7.09 207.00 -156.50 1468.25 -1110.05

7 Air receiver OD 36'' x 75'' 1.20 355.40 156.80 426.48 188.16

8 Ansul drum chemical skid 9'-3'' x 5'-2'' x 4'-5'' 2.47 94.50 300.00 233.60 741.60

9 Mechanical storage 8'-2'' x 8'-1'' x 8'-9'' 7.84 -191.20 300.00 -1499.01 2352.00

10 Communication tower 10'-5'' x 10'-5'' x 100'-0'' 17.92 101.60 -300.00 1820.67 -5376.00

11 Power instrument storage 8'-2'' x 8'-2'' x 9'-0'' 4.44 -300.00 141.60 -1332.90 629.13

12 Load Break Switch 4'-6'' x 2'-5'' x 6'-5'' 1.19 -300.00 -137.20 -357.00 -163.27

13 Transformer 9'-0'' x 5'-0'' x 6'-9'' 12.00 -300.00 -11.00 -3600.00 -132.00

14 Battery Box 2'-3'' x 2'-3'' x 1'-9'' 1.79 -300.00 66.50 -537.00 119.04

15 Crane 106.00 0.00 0.00

16 Toilet 5'-0'' x 4'-0'' x 8'-0'' 2.24 113.90 -138.50 255.14 -310.24

TOTAL 229.43 5929.93 -805.03

CENTER OF GRAVITY X Y

3.669 Inch 25.85 -3.51

Meter 0.65650575 -0.089125

Page 15: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY COG Gabungan

Item X (inch) Y (inch) Z (inch) X.W Y.W Z.W

Main Deck 25.85 -3.51 244.80 5,929.93 -805.03 56,163.73Cellar Deck 66.48 38.83 0.00 22,549.75 13,169.65 0.00

Total 28,479.67 12,364.62 56,163.73

Titik Berat50.09 21.75 98.77 inch

1.272181002 0.55232497 2.50882181 m

X Y Z

Page 16: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY inch

Z * W

0.00

0.00

0.00

0.00

0.000.000.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Z0.00

0

Page 17: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY

Z * W

0.00

0.00

0.00

0.00

0.000.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Z

0.00

0

Page 18: TRB 2 - Fixed Offshore Platform.xlsx

CENTER OF GRAFITY

Page 19: TRB 2 - Fixed Offshore Platform.xlsx

ELEVASI

Storm surge = 1 ft= 30.5 ft

Pasut = 4.6 ftAir gap = 5 ftLWL = 99.5 ftScouring = 3.28 ft 39.36

Penyelesaian

MSL (water depth) = LWL + 1/2 Pasut

= 101.8 ft 105.08

Jarak MSL dengan cellar deck =

= 38.8 ft

Jarak cellar deck dengan main deck =

= 20.4 ft 1.5

Jarak antara main deck dengan helideck =

= 26 ft

Tinggi Jacket dari MSL = 15 ft

Tinggi Jacket dari mudline = 116.8 ft

Hmax badai

Air gap + Hmax badai + storm surge + 1/2 pasut

Hequipment tertinggi + 1/2 Hequipment tertinggi

Hequipment tertinggi + 6 ft

Page 20: TRB 2 - Fixed Offshore Platform.xlsx

ELEVASI

Page 21: TRB 2 - Fixed Offshore Platform.xlsx

Properti Helideck

Jenis Helicopter : S-76CDetail Helicopter terbesar:

Gross Weight 10300 lbs 103 kipsRotor Diameter 44 ftOverall Lenght 52.5 ft

Penentuan dimensi helideck menurut API RP 2L

Lebar diagonal helideck = Rotor diameter= 44 ft

Lebar safety net = 5 ft

Page 22: TRB 2 - Fixed Offshore Platform.xlsx

Properti Helideck

PERHITUNGAN HELI DECK

Beban ::gross weight = 52.91 psf = 0.000367 ksilive loads = 40 psf = 0.000278 ksibeban total = 92.91 psf = 0.000645 ksibeban per 1 inch lebar plat = 0.000645 k/in/in

Mmax = beban per 1 inch panjang plat x12

= 0.18 kip.in/inbaja yang digunakan A36tegangan ijin sesuai AISC ASDFB = 0,6 x 36

= 21.6 ksijikaS = (Planning and Design of Offshore Platform, Bramlette McClelland)

= M/Stmin =tmin = 0.22 insesuai dengan AISC tebal yang sesuai dengan min t dari perhitungan diatas maka t sebesar 5/16 inbeban teoritis = 13.8 psf

SECONDARY GIRDERBeban ::gross weight = 52.91 psf = 0.000367 ksilive loads = 40 psf = 0.000278 ksiBeban plat = 13.8 psf = 0.00010 ksibeban total = 106.71 psf = 0.000741 ksi

Jika Jarak antar girder adalah 5 ft maka106.71 x 5 ft = 533.55 lb/ft

= 0.53355 kips/ft

Mmax terjadi pada Ma dan Mb dengan sistem hanging pada segmen 1 dan 2Menggunakan "Beam Fixed At Both End-Uniformly Distributed Loads" sesuai AISC

Mmax.(at fixed end ) = 17.785 kips-ft

(58)2

t2/6

(6M/FB)1/2

Page 23: TRB 2 - Fixed Offshore Platform.xlsx

Properti Helideck

Mengunakan AISC ASD Part 5Untuk bending stress Sehingga untuk material A36 maka,Fy = 36 ksiFb = 0,6 Fy

= 21.6 ksididapatkanSreq. = 9.9

Didapatkan Profil baja W5x19Sxx = 10.2 > 9,9 memenuhi

Nominal weight per ft = 19 lb/ft= 0.019 kips/ft

Rmax pada Ra dan Rb = (w total + w prop)(20/2)*5= 27.6 kips

beban merata untuk main beam main deck = w1w1 = Rmax girder per satuan panjang

= 0.69 kips/ftMmax = 92.091667S = 51.16sehingga didapatkan profil baja W 8 X 58

Sxx = 52 > 51,16 memenuhi

in3

Page 24: TRB 2 - Fixed Offshore Platform.xlsx

Properti Helideck

(Planning and Design of Offshore Platform, Bramlette McClelland)

Page 25: TRB 2 - Fixed Offshore Platform.xlsx

DECK FLOORING MAIN DECK

1. MENGHITUNG TEBAL PLAT LANTAI

a. Menghitung beban totalmenghitung beban total yang bekerja pada span per in beban total (qtotal)/ = 140 psf = 0.000972222 ksi (dari beban hidup) = 0.000972222

beban per 1 inch lebar plat q = 0.000972222 kip/in

b. Menghitung Momen Max

L = 4.17 ft = 50 in

Mmax = qtotal = 0.000972222 25008 8

= 0.30382 kip.in

c. Menghitung Tegangan Izinbaja yang digunakan A36tegangan izin sesuai AISC ASDtegangan izin baja = 36 ksi

tegangan izin sesuai AISC ASD = ksi= 21.6 ksi

kip/in2

(L)2

σy

σa σy x 0.6

qtotal = 0,000972 kip /in

L = 50 in

Page 26: TRB 2 - Fixed Offshore Platform.xlsx

d. Menghitung Modulus Penampang (S)

=M max

=0.30382

21.6= 0.014065714

e. Menghitung Tebal pelat Iyy

h

b

= =C h/2

=

=

Dimana, = = 0.084394285b 1

tebal plat, t = 0.290506944 inDari AISC bab 2, nilai t yang mendekati adalah

t ≈ 0.3125 in≈ 5/16 in 0.0260 feet

W = 13.8 psf 0.0138 kip/ft2beban plat per 1 feet q = 0.013800 kip / feet

Check t = 5/16 inb = 1 in

Modulus penampang =

=

Sxxσa

in3

Sxx Ixx b h3 /12

b h2 /6 in3

b t2 /6 in3

t2 6 Sxx

Sxx b t2 /6

1 x 0,31252 / 6

CIxx

Page 27: TRB 2 - Fixed Offshore Platform.xlsx

= 0.01627604167

σ = M max = 0.30382S 0.016276042

= 18.666665472 ksi

Dari perhitungan didapat<

18.666665472 < 21.6 <-- Memenuhi

2. MENGHITUNG PROPERTIES SECONDARY GIRDER MAIN DECK

in3

Sehingga tegangan izin yang diperoleh,

σperhitungan σijin

Page 28: TRB 2 - Fixed Offshore Platform.xlsx

Untuk menentukan properties beam pada secondary girder, kita akan menentukan luasanspan pada girder yang menerima beban terbesar pada konfigurasi di MAIN deck (4):Luasan span (diambil dari luasan di beam yang ditentukan (4)) = = 100.4357639Panjang total girder = 50Sedangkan beban peralatan adalah total jumlah beban yang bekerja pada span:Beban peralatan = 8.24 kip = 8240 lba. Menghitung beban total

Beban Hidup = 140 psf x Area span = 14061.01 lbBeban Plat = 13.8 psf x Area span = 1386.01 lbBeban peralatan = 8240.00 lb +

= 23687.0 lb

Beban total adalah beban yang bekerja sepanjang secondary girder pada span:Beban total (qtotal) = 23687.02

=23687.02

= 473.74041 lb/ftpanjang total girder 50

= 0.03947837 kip/inb. Menghitung Momen MaxL beam = 50ft = 600 in

Mmax = = = 1184.35102 kip.in12 12

c. Menghitung Tegangan Izin

Mengunakan AISC ASD Part 5Untuk bending stress baja yang digunakan A36Fy = 36 ksiFa = 0,6 Fy

= 21.6 ksididapatkan

ft²ft

qL² 0,0395x(600)2

Page 29: TRB 2 - Fixed Offshore Platform.xlsx

= Mmax = 1184.35 = 54.8310659Fa 21.6

d. Menentukan Properties Bahan

Dari AISC ASD Tabel W shape halaman 1-10 sd 1-32, didapatkan baja dengan Sxx min:

W 16 X 36 = 56.5W = 36 lb/ft = 0.036 kip/ftq = 0.036 kip / feet

Check propertiesσ = M max = 1184.35

S 56.5= 20.961965032 ksi

Dari perhitungan didapat<

20.9619650319567 < 21.6 <-- Memenuhi

Sxx in³

dengan Sxx in³

σperhitungan σijin

Page 30: TRB 2 - Fixed Offshore Platform.xlsx

3. MENGHITUNG PROPERTIES MAIN GIRDER MAIN DECKa. Menghitung beban totalUntuk menentukan properties beam pada main girder, kita akan menentukan luasanspan pada beam yang menerima beban terbesar :Luasan span (diambil dari luasan di beam yang ditentukan (1)) = = 1471.520833Panjang total main girder = 50total panjang second girder yang ditumpu beam D = 275 ftPerhitungan berat secondary girder = Berat bahan per ft x total panjang girder dalam luasan Z

= 0.166 x 275 = 45.65 lbSedangkan beban peralatan adalah total jumlah beban yang bekerja pada span:Beban peralatan dalam Z = 29.59 kip = 29590 lba. Menghitung beban totalDari Perhitungan Pembebanan Main Deck didapatkanBeban Hidup = 140 psf x Area span = 206013 lb

Beban Plat = 13.8 psf x Area span = 20307 lb +Total1 = 153.8 psf x Area span = 226320 lbBeban peralatan = = 29590 lbP total = = 255910 lbBeban total adalah beban yang bekerja sepanjang secondary girder pada span:Beban total (qtotal) = 255910

=255910

= 5118.19808 lb/ftpanjang total gird 50

= 0.42651651 kip/in

b. Menghitung momen max

MMax pada ujung dgn L beam = 50 ft = 600 in

Mmax = = = 12795.4952 kip.in12 12

ft²ft

qL² 0,291801 x (600)2

Page 31: TRB 2 - Fixed Offshore Platform.xlsx

c. Menghitung Tegangan Izin

Mengunakan AISC ASD Part 5Untuk bending stress baja yang digunakan A36Fy = 36 ksiFa = 0,6 Fy

= 21.6 ksididapatkan

= Mmax = 12795.495208333 = 592.38Fa 21.6

d. Menentukan Properties Bahan

Dari AISC ASD Tabel W shape halaman 1-10 sd 1-32, didapatkan baja dengan Sxx min:

W 30 X 191 = 598

W = 191 lb/ft = 0.191 kip/ftq = 0.191 kip / feet

Check propertiesσ = M max = 12795.50

S 598= 21.3971491778 ksi

Dari perhitungan didapat<

21.3971491778149 < 21.6 <-- Memenuhi

Sxx in³

dengan Sxx in³

σperhitungan σijin

Page 32: TRB 2 - Fixed Offshore Platform.xlsx

DECK FLOORING CELLAR DECK

1. MENGHITUNG TEBAL PLAT LANTAI

a. Menghitung beban totalmenghitung beban total yang bekerja pada span per in beban total (qtotal) = 135 psf = 0.0009375 ksi(dari beban hidup) = 0.0009375

beban per 1 inch lebar plat = q = 0.0009375 kip/in

b. Menghitung Momen Max

L = 4.17 ft = 50 in

Mmax = (qtotal) = 0.0009375 25008 8

= 0.29297 kip.in

c. Menghitung Tegangan Izinbaja yang digunakan A36tegangan ijin sesuai AISC ASDtegangan izin baja σy = 36 ksi

tegangan izin sesuai AISC ASD σa = σy x 0.6 ksi= 21.6 ksi

kip/in2

(L)2

qtotal = 0,000937 kip /in

L = 50 in

Page 33: TRB 2 - Fixed Offshore Platform.xlsx

d. Menghitung Modulus Penampang (S)

=M max

=0.29297

σa 21.6

= 0.01356337e. Menghitung Tebal pelat Iyy

h

b

= =C h/2

=

=

Dimana, = = 0.0813802b 1

t = 0.28527216 inDari AISC bab 2, nilai t yang mendekati adalah

t ≈ 0.3125 int ≈ 5/16 in = 0.0260 feet

W = 13.8 psf = 0.0138beban plat per 1 feet q = 0.013800 kip / feet

Check t = 5/16 inb = 1 in

=

=

Sxx

in3

Sxx Ixx b h3 /12

b h2 /6 in3

b t2 /6 in3

t2 6 Sxx

kip/ft2

Sxx b t2 /6

1 x 0,31252 / 6

CIxx

Page 34: TRB 2 - Fixed Offshore Platform.xlsx

= 0.016276041667

σ = M max = 0.29297S 0.01627604

= 17.999998848 ksi

Dari perhitungan didapatσperhitungan < σijin

17.999998848 < 21.6 <-- Memenuhi

2. MENGHITUNG PROPERTIES SECONDARY GIRDER CELLAR DECK

in3

Sehingga tegangan izin yang diperoleh,

Page 35: TRB 2 - Fixed Offshore Platform.xlsx

Untuk menentukan properties beam pada secondary girder, kita akan menentukan luasanspan pada girder yang menerima beban terbesar pada konfigurasi di cellar deck (3):Luasan span (diambil dari luasan di beam yang ditentukan(3)) = = 94.2708333 ft²Panjang total girder = 50 ftSedangkan beban peralatan adalah total jumlah beban yang bekerja pada span:Beban peralatan = 46.77 kip = 46770 lba. Menghitung beban totalDari Perhitungan Pembebanan Cellar Deck didapatkanBeban Hidup = 135 psf x Area span = 12726.56 lbBeban Plat = 13.8 psf x Area span = 1300.94 lbBeban peralatan = = 46770 lb +

= 46770.00 lb+

Beban total adalah beban yang bekerja sepanjang secondary girder pada span:Beban total (qtotal) = 46770.00

=46770.00

= 935.4 lb/ftpanjang total girder 50

= 0.07795 kip/inb. Menghitung Momen MaxMomen Max pada ujung dgn L beam = 50 ft = 600 in

Mmax = qL² = 2338.5 kip.in12 12

c. Menghitung Tegangan Izin

Mengunakan AISC ASD Part 5Untuk bending stress Sehingga untuk material A36 maka,Fy = 36 ksiFa = 0,6 . Fy

= 21.6 ksididapatkan

= 0,056x(600)2

Page 36: TRB 2 - Fixed Offshore Platform.xlsx

= Mmax = 2338.50 = 108.2639 in³Fa 21.6

d. Menentukan Properties Bahan

Dari AISC ASD Tabel W shape halaman 1-10 sd 1-32, didapatkan baja dengan Sxx min:

W 16 X 67 = 117 in³W = 67 lb/ft = 0.067 kip/feetq = 0.067 kip / feet

Check propertiesσ = M max = 2338.50 ksi

S 117= 19.987 ksi

Dari perhitungan didapatσperhitungan < σijin

19.9871794871795 < 21.6 <-- Memenuhi

Sxx

dengan Sxx

Page 37: TRB 2 - Fixed Offshore Platform.xlsx

3. MENGHITUNG PROPERTIES MAIN GIRDER CELLAR DECKa. Menghitung beban totalUntuk menentukan properties beam pada main girder, kita akan menentukan luasanspan pada beam yang menerima beban terbesar :Luasan span (diambil dari luasan di beam yang ditentukan (1)) = = 1646.18056 ft²Panjang total main girder = 50 fttotal panjang second girder yang ditumpu beam C = 275 ftPerhitungan berat secondary girder = Berat bahan per ft x total panjang girder dalam luasan Z

= 67 x 275 = 18425 lbSedangkan beban peralatan adalah total jumlah beban yang bekerja pada span:Beban peralatan dalam Z = 131.02 kip = 131018.717 lba. Menghitung beban totalDari Perhitungan Pembebanan Cellar Deck didapatkanBeban Hidup = 135 psf x Area span = 222234.375 lb

Beban Plat = 13.8 psf x Area span = 22717.2917 lb +Total1 = 148.8 psf x Area span = 244951.667 lbBeban peralatan = = 131019 lbBerat secondary girder = = 18425 lb +P total = = 394395 lbBeban total adalah beban yang bekerja sepanjang secondary girder pada span:Beban total (qtotal) = 394395.383915108

=394395.384

= 7887.908lb/ft

panjang total girder 50= 0.657326

b. Menghitung momen max

L Beam = 50 ft = 600 in

Mmax = = = 19719.77 kip.in12 12qL² 0,4 x (540)2

Page 38: TRB 2 - Fixed Offshore Platform.xlsx

c. Menghitung Tegangan Izin

Mengunakan AISC ASD Part 5Untuk bending stress baja yang digunakan A36Fy = 36 ksiFa = 0,6 Fy

= 21.6 ksididapatkan

= Mmax = 19719.7692 = 912.95Fa 21.6

d. Menentukan Properties Bahan

Dari AISC ASD Tabel W shape halaman 1-10 sd 1-32, didapatkan baja dengan Sxx min:

W 30 X 292 = 928

W = 292 lb/ft = 0.292q = 0.292 kip / feet

Check propertiesσ = M max = 19719.77

S 928= 21.24975128853 ksi

Dari perhitungan didapat<

21.2497512885295 < 21.6 <-- Memenuhi

Sxx in³

dengan Sxx in³

kip/ft2

σperhitungan σijin

Page 39: TRB 2 - Fixed Offshore Platform.xlsx

AISC I-107

Page 40: TRB 2 - Fixed Offshore Platform.xlsx
Page 41: TRB 2 - Fixed Offshore Platform.xlsx

IV. MATERIAL TAKE OFF GABUNGAN

NO ITEM W (Kip)COG

WX WY WZx (ft) y (ft) z (ft)

1 MAIN DECK 707.59 -2.49 -3.25 7.63 -1761.92 -2299 5397.722 CELLAR DECK 859.30 2.56 1.31 1.45 2200.26 1128.08 1247.323 HELIDECK 18.99 12.95 11.59 23.73 245.943 220.155 450.691

JUMLAH 1585.89 684.281 -950.39 7095.73

Titik Berat dari alas cellar deck X = ΣX / W X = 0.43148 ftY = ΣY / W Y = -0.59928 ftZ = ΣZ / W Z = 4.4743 ft

Page 42: TRB 2 - Fixed Offshore Platform.xlsx

DESIGN DECK LEG DIBAWAH CELLAR DECK

Dari data MTO gabungan di dapat koordinat x = 0.4 ft 5.178 iny = -0.6 ft -7.191 in

Panjang garis dari pusat MTO gabungan ke setiap deck leg :a = 35.4 ft 424.24 inb = 34.6 ft 415.36 inc = 35.4 ft 424.46 ind = 36.1 ft 433.16 in

Jarak terpanjang dari pusat MTO gabungan ke arah deck leg yang terpanjang yaituterletak pada d = 36.09667 ft

maka perbandingan jarak deck leg terpanjang dibagi dengan jarak masing-masing deck leg adalah :d/a = 1.0210d/b = 1.0429d/c = 1.0205d/d = 1.0000

Perhitungan beban hidup

Beban hidup main deck = 140 psf x Area span = 755 kipsBeban hidup cellar deck = 135 psf x Area span = 657 kipsBeban hidup helideck = 40 psf x Area span = 26 kips

Perhitungan beban total

main deck cellar deck helideckbeban hidup (kips) 754.942 656.673 25.825beban material (kips) 707.592 859.301 18.993 +beban total (kips) 1462.533 1515.974 44.817

w cellar deck + w main deck + w heli deck3023.32 kips

∑L (d/a + d/b + d/c + d/d) x L4

3023.32 = (1,021 + 1,043 + 1,020 + 1) * L4L4 = 740.217 kips

L1 = L4 x d/c= 755.389 kips

L2 = L4 x d/a= 755.781 kips

L3 = L4 x d/b= 771.938 kips

Jadi beban terberat ada pada deck leg ke 3 yaitu 773,341 kips

∑w =∑w =

∑w =∑w =

Page 43: TRB 2 - Fixed Offshore Platform.xlsx

Asumsi bahwa D/t = 40

σ = PA

Dimana,σ adalah σijin compressionP adalah beban pada deck legA adalah luasan deck leg

= 36 ksi menggunakan Baja A36

= ksi= 21.6 ksi

A = π D tt = D/40

π D t =q

π D D=

q40

=q 40

=30877.53967.858401

D = 21.33141 in≈ 40 in 3.3 ft

t = 1.000 in≈ 1.00 in API 5 L

Panjang deck leg 0.083

Main deck Cellar Deck Helideck

plat 0.026 0.026 0.016main girder 2.500 2.500 0.833total 2.526 2.526 0.849 ft

dari pile head ke cellar deck = 23.800 ft 285.600 inchdari cellar deck ke main deck = 20.400 ft 244.800 inchdari main deck ke helideck = 26 ft 312.000 inch

Panjang total deck leg = 76.101 ft 913.2125 inch

Check column buckling

Radius girasi

= 28.566 in

Menghitung σijin compression, yaitu:σy

σijin σy x 0.6

σijin

σijin

D2 σijin π

tA

Page 44: TRB 2 - Fixed Offshore Platform.xlsx

Slenderness ratio

= 9.998 k = 1 (API RP 2A - 42)

Ebaja= 2100000 4301128.12446 29868.95

= 313.472

= 21.424 ksi

= 6.30040114 ksi

P = beban pada leg terberat

UC = Beban aktual / Fa = 18,2028 / 20,784 = 0.294077 ≤ 1 memenuhi

kg/cm2 kip/ft2 kip/in2

Dikarenakan nilai kL/r < CC, maka rumus untuk mencari tegangan adalah :

A

Page 45: TRB 2 - Fixed Offshore Platform.xlsx

DESIGN DECK LEG DIBAWAH MAIN DECK

Dari data MTO Main Deck di dapat koordinat x = -2.5 ft -29.880 iny = -3.2 ft -38.982 in

Panjang garis dari pusat MTO Main Deck ke setiap deck leg :a = 31.9 ft 382.68 inb = 35.6 ft 426.91 inc = 38.8 ft 465.88 ind = 35.5 ft 425.69 in

Jarak terpanjang dari pusat MTO gabungan ke arah deck leg yang terpanjang yaituterletak pada c = 38.8 ft

maka perbandingan jarak deck leg terpanjang dibagi dengan jarak masing-masing deck leg adalah :c/a = 1.2174c/b = 1.0913c/c = 1.0000c/d = 1.0944

Perhitungan beban hidup

Beban hidup main deck = 140 psf x Area span = 755 kipsBeban hidup helideck = 40 psf x Area span = 26 kips

Perhitungan beban total

main deck helideckbeban hidup (kips) 754.942 25.825beban material (kips) 707.592 18.993 +beban total (kips) 1462.533 44.817

w main deck + w heli deck1507.35 kips

∑L (c/a + c/b + c/c + c/d) x L1

1507.35 = (1,217 + 1,091 + 1 + 1,094) * L1L1 = 342.338 kips

L4 = L1 x c/d= 374.658 kips

L2 = L1 x c/a= 416.767 kips

L3 = L1 x c/b= 373.588 kips

Jadi beban terberat ada pada deck leg ke 2 yaitu 418,286 kips

∑w =∑w =

∑w =∑w =

Page 46: TRB 2 - Fixed Offshore Platform.xlsx

Asumsi bahwa D/t = 40

σ = PA

Dimana,σ adalah σijin compressionP adalah beban pada deck legA adalah luasan deck leg

= 36 ksi menggunakan Baja A36

= ksi= 21.6 ksi

A = π D tt = D/40

π D t =q

π D D=

q40

=q 40

=16670.67367.858401

D = 15.67382 in≈ 16 in 1.3333 ft

t = 0.400 in≈ 0.44 in API 5L

Panjang deck leg 0.036 0.036

Main deck Cellar Deck Helideck

plat 0.026 0.026 0.016main girder 2.500 2.500 0.833total 2.526 2.526 0.849 ft

dari pile head ke cellar deck = 23.800 ft 285.600 inchdari cellar deck ke main deck = 20.400 ft 244.800 inchdari main deck ke helideck = 26 ft 312.000 inch

Panjang total deck leg = 76.101 ft 913.2125 inch

Check column buckling

Radius girasi

= 11.629 in

Slenderness ratio

Menghitung σijin compression, yaitu:σy

σijin σy x 0.6

σijin

σijin

D2 σijin π

tA

Page 47: TRB 2 - Fixed Offshore Platform.xlsx

= 21.051 k = 1 (API RP 2A - 42)

Ebaja= 2100000 4301128.12446 29868.95

= 313.472

= 21.183 ksi

= 19.4843467 ksi

P = beban pada leg terberat

UC = Beban aktual / Fa = 18,2028 / 20,784 = 0.91981 ≤ 1 memenuhi

kg/cm2 kip/ft2 kip/in2

Dikarenakan nilai kL/r < CC, maka rumus untuk mencari tegangan adalah :

A

Page 48: TRB 2 - Fixed Offshore Platform.xlsx

DESIGN HELIDECK LEG

Dari data MTO helideck di dapat koordinat x = 0.0 ft 0.000 iny = 0.0 ft 0.000 in

Panjang garis dari pusat MTO gabungan ke setiap deck leg :a = 20.2 ft 241.96 inb = 21.9 ft 262.93 inc = 21.9 ft 262.93 ind = 20.2 ft 241.96 in

Jarak terpanjang dari pusat MTO gabungan ke arah deck leg yang terpanjang yaituterletak pada c = 21.9 ft

maka perbandingan jarak deck leg terpanjang dibagi dengan jarak masing-masing deck leg adalah :c/a = 1.0867c/b = 1.0000c/c = 1.0000c/d = 1.0867

Perhitungan beban hidup

Beban hidup helideck = 40 psf x Area span = 26 kips

Perhitungan beban totalhelideck

beban helicopter 103beban hidup (kips) 25.825beban material (kips) 18.993 +beban total (kips) 147.817

147.82 kips

∑L (c/a + c/b + c/c + c/d) x L1

147.82 = (1,087 + 1 + 1 + 1,087) * L1L1 = 47.889 kips

L4 = L1 x c/d= 52.039 kips

L2 = L1 x c/a= 52.039 kips

L3 = L1 x c/b= 47.889 kips

Jadi beban terberat ada pada deck leg ke 2 yaitu 53,973 kips

Asumsi bahwa D/t = 40

∑w =

∑w =∑w =

Page 49: TRB 2 - Fixed Offshore Platform.xlsx

σ = PA

Dimana,σ adalah σijin compressionP adalah beban pada deck legA adalah luasan deck leg

= 36 ksi menggunakan Baja A36

= ksi= 21.6 ksi

A = π D tt = D/40

π D t =q

π D D=

q40

=q 40

=2081.574867.858401

D = 5.538526 in≈ 6.625 in 0.5521 ft

t = 0.166 in≈ 0.172 in AISC - Bars and Plates

Panjang deck leg 0.014

Main deck Cellar Deck Helideck

plat 0.026 0.026 0.016main girder 2.500 2.500 0.833total 2.526 2.526 0.849 ft

dari pile head ke cellar deck = 23.800 ft 285.600 inchdari cellar deck ke main deck = 20.400 ft 244.800 inchdari main deck ke helideck = 26 ft 312.000 inch

Panjang total deck leg = 76.101 ft 913.2125 inch

Check column buckling

Radius girasi

= 5.014 in

Slenderness ratio

Menghitung σijin compression, yaitu:σy

σijin σy x 0.6

σijin

σijin

D2 σijin π

tA

Page 50: TRB 2 - Fixed Offshore Platform.xlsx

= 62.227 k = 1 (API RP 2A - 42)

Ebaja= 2100000 4301128.12446 29868.95

= 313.472

= 19.873 ksi

= 14.9242339 ksi

P = beban pada leg terberat

UC = Beban aktual / Fa = 18,2028 / 20,784 = 0.750984 ≤ 1 memenuhi

kg/cm2 kip/ft2 kip/in2

Dikarenakan nilai kL/r < CC, maka rumus untuk mencari tegangan adalah :

A

Page 51: TRB 2 - Fixed Offshore Platform.xlsx

PERHITUNGAN JACKET LEGDari perhitungan diameter tiang pancang (tp), didapatkan:

=

= 40 in

= 40 in

t (tebal) = =22

40 40= 1.00 in

=Dengan :

t (tebal) =40

ξ (clearance) = 1 inMaka,

= 40 + + 240

= 4240

= 44.210526 in≈ 45 in 3.75 ft

43.000 3.58333333 3.3333333Tebal Jacket Leg

t = D40

t = 45

40t = 1.125 in 1.0000

= 0.688 in > AISC bars & platesDiameter akibat Marine GrowthOD MG = 3 inch

= = 30 + 3 = 48 in= 4.000 ft

Dtp Ddeck leg

D tp

D jacket D tp + 2T + 2ξ

D jacket

D jacket2D jacket

38 D jacket

D jacket

Inner D jacket

D jacket (MG) (D jacket + MG)

Page 52: TRB 2 - Fixed Offshore Platform.xlsx

PERHITUNGAN JACKET BRACE

Jacket Jacket BraceD = 45 in for K brace configurationt = 0.6875 in

A Jacket = 95.71 kL/r = 80.00k = 0.8r = 0,35 D

D/t = 19 sd 90Ab/Aj = 0,2 sd 0,4

β (Db/Dj) >= 0.3

L r D D typβ

tD/t

D in Ab hwAb/Aj

in in in in in in ftDiagonal Brace

DB 1 738.66 7.39 21.10 28.00 0.62 0.56 49.78 26.88 48.49 15.00 101.37003326 0.5066034DB 2 818.42 8.18 23.38 28.00 0.62 0.56 49.78 26.88 48.49 45.00 70.2860554418 0.5066034DB 3 900.12 9.00 25.72 28.00 0.62 0.56 49.78 26.88 48.49 75.00 59.2815550748 0.5066034DB 4 965.34 9.65 27.58 28.00 0.62 0.56 49.78 26.88 48.49 101.80 53.5415265399 0.5066034

Horizontal Brace

HB 1 600.00 6.00 17.14 28.00 0.62 0.56 49.78 26.88 48.49 0.5066034

HB 2 690.00 6.90 19.71 28.00 0.62 0.56 49.78 26.88 48.49 15.00 101.37003326 0.5066034

HB 3 780.13 7.80 22.29 28.00 0.62 0.56 49.78 26.88 48.49 45.00 70.2860554418 0.5066034

HB 4 870.13 8.70 24.86 28.00 0.62 0.56 49.78 26.88 48.49 75.00 59.2815550748 0.5066034

HB 5 950.40 9.50 27.15 28.00 0.62 0.56 49.78 26.88 48.49 101.80 53.5415265399 0.5066034

inch2

Hidrostatic bucklingin2

Page 53: TRB 2 - Fixed Offshore Platform.xlsx

Ultimate Bearing Capacity (Qd)Luas alas pipa, Ap = A

= 5.80470703125Selimut pipa, As = π D L

= 3,14 x 2,1667 x 123,1 = 1289.10Dipilih tipe tanah A dari datasehingga didapat,

f = 2.4

q = 250

Qp = Ap q= 4,955 x 250 = 1451.18 kip

Qf = As f= 837,92 x 2,4 = 3093.84 kip

Jadi,Qd = Qp + Qf

= 1238,83 + 2011 = 4545.02 kip

Beban pile maksimum kondisi operasi = #REF! kip

Check Capacity Kondisi OperasiBeban pile maksimum kondisi operasi < 0.7 Qd

#REF! < 0,7 x 3249,82#REF! < 3181.512 kip OK

ft2

ft2

kip/ft2

kip/ft2

Page 54: TRB 2 - Fixed Offshore Platform.xlsx

Data Joinx y z

101 -39.6 -101.8 39.6 -42.48753 -124.9002 42.48753121 39.6 -101.8 39.6102 -39.6 -101.8 -39.6122 39.6 -101.8 -39.6201 -36.25 -75 36.25221 36.25 -75 36.25202 -15 -75 -36.25222 36.25 -75 -36.25301 -32.5 -45 32.5321 32.5 -45 32.5302 -32.5 -45 -32.5322 32.5 -45 -32.5401 -28.75 -15 28.75421 28.75 -15 28.75402 -28.75 -15 -28.75422 28.75 -15 -28.75501 -25 15 25521 25 15 25502 -25 15 -25522 25 15 -25

Cellar

6001 -41.00 36.5 41 6101 -41.00 36.5 256002 -36.83 36.5 41 6102 -36.83 36.5 256003 -32.67 36.5 41 6103 -32.67 36.5 256004 -28.50 36.5 41 6104 -28.50 36.5 256005 -25.00 36.5 41 6105 -25.00 36.5 256006 -20.83 36.5 41 6106 -20.83 36.5 256007 -16.67 36.5 41 6107 -16.67 36.5 256008 -12.50 36.5 41 6108 -12.50 36.5 256009 -8.33 36.5 41 6109 -8.33 36.5 256010 -4.17 36.5 41 6110 -4.17 36.5 256011 0.00 36.5 41 6111 0.00 36.5 256012 4.17 36.5 41 6112 4.17 36.5 256013 8.33 36.5 41 6113 8.33 36.5 256014 12.50 36.5 41 6114 12.50 36.5 256015 16.67 36.5 41 6115 16.67 36.5 256016 20.83 36.5 41 6116 20.83 36.5 256017 25.00 36.5 41 6117 25.00 36.5 256018 28.50 36.5 41 6118 28.50 36.5 256019 32.67 36.5 41 6119 32.67 36.5 256020 36.83 36.5 41 6120 36.83 36.5 256021 41.00 36.5 41 6121 41.00 36.5 25

Main deck

7001 -41.00 56.9 41 7101 -41.00 56.9 25

Page 55: TRB 2 - Fixed Offshore Platform.xlsx

7002 -36.83 56.9 41 7102 -36.83 56.9 257003 -32.67 56.9 41 7103 -32.67 56.9 257004 -28.50 56.9 41 7104 -28.50 56.9 257005 -25.00 56.9 41 7105 -25.00 56.9 257006 -20.83 56.9 41 7106 -20.83 56.9 257007 -16.67 56.9 41 7107 -16.67 56.9 257008 -12.50 56.9 41 7108 -12.50 56.9 257009 -8.33 56.9 41 7109 -8.33 56.9 257010 -4.17 56.9 41 7110 -4.17 56.9 257015 16.67 56.9 41 7115 16.67 56.9 257016 20.83 56.9 41 7116 20.83 56.9 257017 25.00 56.9 41 7117 25.00 56.9 257018 28.50 56.9 41 7118 28.50 56.9 257019 32.67 56.9 41 7119 32.67 56.9 257020 36.83 56.9 41 7120 36.83 56.9 257021 41.00 56.9 41 7121 41.00 56.9 25

Kordinat Helideckz x

15.425 12.50833

9.883333

Riser Pelindung riserx y z

-23.75 36.5 -6.25 -22.5 36.5 -7.5-3.75 -5-1.25 -2.51.25 03.756.25

Page 56: TRB 2 - Fixed Offshore Platform.xlsx

6201 -41.00 36.5 -25 6301 -41.00 36.5 -416202 -36.83 36.5 -25 6302 -36.83 36.5 -416203 -32.67 36.5 -25 6303 -32.67 36.5 -416204 -28.50 36.5 -25 6304 -28.50 36.5 -416205 -25.00 36.5 -25 6305 -25.00 36.5 -416206 -20.83 36.5 -25 6306 -20.83 36.5 -416207 -16.67 36.5 -25 6307 -16.67 36.5 -416208 -12.50 36.5 -25 6308 -12.50 36.5 -416209 -8.33 36.5 -25 6309 -8.33 36.5 -416210 -4.17 36.5 -25 6310 -4.17 36.5 -416211 0.00 36.5 -25 6311 0.00 36.5 -416212 4.17 36.5 -25 6312 4.17 36.5 -416213 8.33 36.5 -25 6313 8.33 36.5 -416214 12.50 36.5 -25 6314 12.50 36.5 -416215 16.67 36.5 -25 6315 16.67 36.5 -416216 20.83 36.5 -25 6316 20.83 36.5 -416217 25.00 36.5 -25 6317 25.00 36.5 -416218 28.50 36.5 -25 6318 28.50 36.5 -416219 32.67 36.5 -25 6319 32.67 36.5 -416220 36.83 36.5 -25 6320 36.83 36.5 -416221 41.00 36.5 -25 6321 41.00 36.5 -41

7201 -41.00 56.9 -25 7301 -41.00 56.9 -41

Page 57: TRB 2 - Fixed Offshore Platform.xlsx

7202 -36.83 56.9 -25 7302 -36.83 56.9 -417203 -32.67 56.9 -25 7303 -32.67 56.9 -417204 -28.50 56.9 -25 7304 -28.50 56.9 -417205 -25.00 56.9 -25 7305 -25.00 56.9 -417206 -20.83 56.9 -25 7306 -20.83 56.9 -417207 -16.67 56.9 -25 7307 -16.67 56.9 -417208 -12.50 56.9 -25 7308 -12.50 56.9 -417209 -8.33 56.9 -25 7309 -8.33 56.9 -417210 -4.17 56.9 -25 7310 -4.17 56.9 -417215 16.67 56.9 -25 7315 16.67 56.9 -417216 20.83 56.9 -25 7316 20.83 56.9 -417217 25.00 56.9 -25 7317 25.00 56.9 -417218 28.50 56.9 -25 7318 28.50 56.9 -417219 32.67 56.9 -25 7319 32.67 56.9 -417220 36.83 56.9 -25 7320 36.83 56.9 -417221 41.00 56.9 -25 7321 41.00 56.9 -41

Page 58: TRB 2 - Fixed Offshore Platform.xlsx

PERHITUNGAN BEBAN GELOMBANG KONDISI BADAI

Tinggi Gelombang Maksimum (H) = 30.5 ftPeriode Gelombang (T) = 9.9 sStorm Surge = 1 ftTotal Pasang Surut (tide) = 4.6 ftKecepatan Arus (Permukaan) = 2.47 knotKecepatan Arus (Dasar Laut) = 0.69 knotOrientasi Platform = (+)60Kedalaman Perairan (LWL) = 99.5 ftg = 9.81 m/s

= 32.7 ft/s

I. MENENTUKAN TEORI GELOMBANG

Perhitungan tinggi muka air (d) = LWL + Storm Surge + tide= 99,5 + 1 + 4,6 = 105.1 ft

Perhitungan kedalaman air (h) = LWL + 1/2 x tide= 99,5 + 1/2 4,6 101.8 ft

(figure 2.3.1.2)

V1 = 2.47 knot= 3.262 ft/s

V1 = 3.2617gT 323.73

= 0.010

d = 101.8gT2 3204.927

= 0.032

Dari Grafik Dappler shift, didapat := 1.0900

T= 10.7910 s

Agar dapat membaca grafik Regions of Applicability of stream Function,

d = 105.13807.7738

= 0.028

H = 30.53807.7738

= 0.008

Dari grafik disamping dapat dilihatTeori Gelombang yang digunakan adalah:

Stream Function

o

Berdasarkan API RP 2A-LRFD 1997, teori gelombang 2D Tapp diambil dari grafik Doppler Shift

Tapp

Tapp

gTapp2

gTapp2

Stokes orde 5 atau