transportation design manual

  • Upload
    opppps

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 transportation design manual

    1/19

    FLORIDA DEPARTMENT OF TRANSPORTATION

    FDOT MODIFICATIONS TO STANDARD

    SPECIFICATIONS FOR STRUCTURAL SUPPORTS

    FOR HIGHWAY SIGNS, LUMINAIRES

    AND TRAFFIC SIGNALS (LTS-6)

    FDOT STRUCTURES MANUAL

    VOLUME 9

    JANUARY 2013

  • 7/27/2019 transportation design manual

    2/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    i

    Structures Manual Home

    Table of Contents

    Table of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2 General Features of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1 Scope (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2.4 Functional Requirements (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2.4.2 Structural Supports for Signs and Traffic Signals . . . . . . . . . . . . . . . . . . . 1

    2.4.2.2 Size, Height and Location of Signs (Rev. 01/13) . . . . . . . . . . . . . . . . . 1

    Figure 1 Example: actual signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Figure 2 Example: signs used in design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.4.2.4 Variable Message Signs (Rev. 01/13). . . . . . . . . . . . . . . . . . . . . . . . . . 3

    2.4.2.5 Horizontal Span and Cantilever Limits . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33.8 Wind Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3.8.2 Basic Wind Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3.8.3 Wind Importance Factor Ir(Rev. 01/13). . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    FDOT Table 3-3 Minimum Design Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.8.6 Drag Coefficients Cd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    3.8.7 Lift Coefficient for Traffic Signals Cl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3.9 Design Wind Loads On Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3.9.1 Load Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3.9.3 Design Loads for Vertical Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5 Steel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.5 Material - Structural Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.13 Cables And Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.14 Details of Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.14.3 Transverse Plate Thickness (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.15 Welded Connections (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    5.15.1 Tube-to-Tube Splice Circumferential Welds (Rev. 01/13) . . . . . . . . . . . . 7

    5.15.3 Tube-to-Transverse Plate Connection Welds (Rev. 01/13) . . . . . . . . . . . 75.16 Bolted Connections (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    5.17 Anchor Bolt Connections (Rev. 01/13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    5.17.1 Anchor Bolt Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5.17.2 Anchor Bolt Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5.17.3 Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5.17.3.3 Use of Grout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    http://structuresmanualintroduction.pdf/http://-/?-http://structuresmanualintroduction.pdf/http://-/?-
  • 7/27/2019 transportation design manual

    3/19

  • 7/27/2019 transportation design manual

    4/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    1

    Structures Manual Home

    1 INTRODUCTION

    C 1.1Add the following:Structures Manual Introduc t ionI.6 is

    updated annually to reflect the specificspecifications editions and interimsadopted by the FDOT.

    1.1 Scope

    Add the following:

    Conform to the date specific AASHTOPublications listed in Structures ManualIntroduct ionI.6 References.

    2 GENERAL FEATURES OF DESIGN

    C 2.1Add the following:The FDOT Plans Preparation Manualcontains additional FDOT requirements forsign, signal and lighting structures. The

    FDOT Design Standardscontainsdrawings for all typical sign, signal andlighting structures.

    2.1 Scope (Rev. 01/13)

    Add the following:

    See Chapters 2, 7 and 29 of the FDOTPlans Preparation Manual, Volume 1

    regarding the use of FDOT DesignStandards and other plans preparationrequirements.

    2.4 Functional Requirements(Rev. 01/13)

    2.4.2 Structural Supports for Signsand Traffic Signals

    C 2.4.2.2Add the following:Minimum sign areas provide a reasonableallowance for future sign panelinstallations without the need for a newsupport structure.Minimum sign areas for overhead variablemessage sign supports are normally notrequired.

    See the FDOTPPM, Volume 1,Introduction for a link to the Urban AreaBoundary Maps. See PPM, Volume 1 forcantilever and span overhead sign supportlocation criteria.

    2.4.2.2 Size, Height and Location ofSigns (Rev. 01/13)

    Add the following:

    Span type overhead sign structures inurban locations shall be designed eitherfor the actual signs shown on the signingplans or for a minimum sign area of 120sq. ft. (12 ft. W x 10 ft. H) per lane,whichever is the greater. If the signingplans require signs for only one trafficdirection, the minimum sign area per lanerequirement applies to the traffic lanes in

    this direction only.

    Cantilever type overhead sign structuresin urban locations shall be designed eitherfor the actual signs shown on the signingplans or for a minimum sign area of 80 sq.ft. (8 ft. W x 10 ft. H) located at the end ofthe cantilever, whichever provides the

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtm
  • 7/27/2019 transportation design manual

    5/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    2

    Structures Manual Home

    more stringent load or stress at thelocation under consideration.

    Figures 1 and 2 show how to apply theabove minimum sign areas for span typeoverhead sign structures in urban

    locations.Overhead signs in rural locations shouldbe designed for the actual sign shown onthe signing plans.

    Figure 1 Example: actual signs

    Figure 2 Example: signs used in design

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    6/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    3

    Structures Manual Home

    C 2.4.2.4Add the following:The minimum requirements given provideadditional measures to limit the possibilityof galloping.

    Since cantilever overhead VariableMessage Sign (VMS) structures are moresusceptible to fatigue than span overheadVMS structures, span structures should beused whenever possible.

    In Florida, overhead VMS structures aretypically referred to as Dynamic MessageSign (DMS) structures.

    2.4.2.4 Variable Message Signs(Rev. 01/13)

    Add the following:

    For all overhead Variable Message Sign(VMS) structures, the horizontal membershall consist of a truss with a minimum oftwo chords with a minimum center-to-center distance between the chords of 3'-0". See FDOT section 11.8 for VMSmaximum span-to-depth ratios.

    FDOT vertical clearance requirements forVMS structures are found in PPM, Volume1, Chapter 2.

    C 2.4.2.5

    Add the following:These limits were chosen based on pastpractice and practical experience.

    A FDOT Design Variation is required whensign or signal structure limits areexceeded. The design variationdocumentation shall include the type ofstructure, height, length, discussion ofalternatives, and costs.

    2.4.2.5 Horizontal Span and CantileverLimits

    New Section, add the following:

    Sign and signal structures shall be limited tothe following maximum horizontal lengths:

    Structure Type Max Length

    Span Overhead Sign 250 feet

    Cantilever Overhead Sign 50 feet

    Mast Arm 78 feet

    Span Wire Assembly 250 feet

    3 LOADS

    C 3.8FDOTPPM, Volume 1, Section 25.4.27defines the structures where evaluation isnecessary.

    3.8 Wind Load

    Delete the last paragraph and add thefollowing:

    The use of Appendix C is only permittedfor the evaluation of existing structures.

    C 3.8.2Add the following:FDOT SDGTable 2.4.1-2was derivedfrom the ASCE 7-05 wind speed map.

    To simplify the design process, FDOT hasdesignated one wind speed per county.

    3.8.2 Basic Wind Speed

    Delete the entire paragraph includingFigure 3-2, and add the following:

    The wind loads shall be based on the windspeeds (mph) shown in FDOT SDGTable2.4.1-2

    http://structuresmanualintroduction.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://vol1_sdg.pdf/http://vol1_sdg.pdf/http://vol1_sdg.pdf/http://vol1_sdg.pdf/http://vol1_sdg.pdf/http://structuresmanualintroduction.pdf/http://vol1_sdg.pdf/http://vol1_sdg.pdf/http://vol1_sdg.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtm
  • 7/27/2019 transportation design manual

    7/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    4

    Structures Manual Home

    C 3.8.3Add the following:A 1.5-year design life has been added fortemporary construction signs. Theimportance factor is calculated based on"Wind Speed for Design of TemporaryStructures" by D.W. Boggs and J.A.Peterka, Structures Congress, 1992,Compact Papers, ASCE, 1992.

    Florida has traditionally designedLuminaire support structures, 50 feet inheight and less, and strain poles for a 25year design life.

    Concrete strain poles are designed for

    zero tension stress, therefore a twenty-fiveyear design life is appropriate.

    3.8.3 Wind Importance FactorIr(Rev. 01/13)

    Add the following Wind Importance Factor

    to Table 3-2:

    RecurrenceInterval

    Years

    V =85-100

    mph

    V > 100

    mphAlaska

    1.5 0.45 0.2 ---

    Delete Table 3-3 and add the followingFDOT Table 3-3:

    FDOT Table 3-3 Minimum Design Life

    Design Life Structure Type

    50-year

    Overhead sign structures

    Luminaire support structures>50' in height.

    Mast Arms

    Monotubes

    Steel Strain Poles

    ITS Camera Poles >50 in

    height

    25-year

    Luminaire supports and other

    structures 50' in height.

    Concrete Strain Poles

    10-year Roadside sign structures

    1.5-year Temporary construction signsA 1.5-year design life (Ir= 0.2) for

    temporary construction signs shall only beused with a 150 mph design wind speed.

    C 3.8.6Add the following to note 2 at the bottomof Table 3-6:

    A drag coefficient for traffic signal installedwith the ability to swing has beenestablished through research (Cook

    2007). On span wire systems where signaland signs are allowed to swing, varying Cd

    as a function of swing angle is allowed(Hoit and Cook 1997).

    3.8.6 Drag Coefficients Cd

    Replace the coefficient of drag for TrafficSignals in Table 3-6 with the following:

    Traffic Signals - no ability to swing - 1.2

    Traffic Signals - installed with the ability toswing on span wire systems under fullwind load - 0.7

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    8/19

  • 7/27/2019 transportation design manual

    9/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    6

    Structures Manual Home

    3.10 References

    Add the following:

    Cook, R.A. (2007). Development ofHurr icane Resistant Cable Supp orted

    Traff ic Sign als(FDOT Report# BD545RPWO #57). Gainesville, Florida:University of Florida.

    Hoit, M.I., Cook, R.A. (1997). ComputerAided Design Program fo r Signal Pole

    and Span Wire Assemb l ies With Two

    Point Connect ion System(FDOTReport# 0510653). Gainesville, Florida:University of Florida.

    5 STEEL DESIGN

    C 5.4Add the following:In some environmental conditions inFlorida, A588 steel has deterioratedsignificantly faster than expected.

    5.5 Material - Structural Steel

    Add the following:

    Do not specify ASTM A588 (rustic, Corten,self-oxidizing", or "self-weathering") steelin sign, signal, or lighting structures.

    C 5.13Add the followingCables used in the construction of span-

    wire pole structures are listed in FDOTSpecification 634.

    5.13Cables And Connections

    Add the following:

    Use the cable breaking strength valuesspecified in FDOT Specification 634.

    5.14 Details of Design

    C 5.14.3Add the following:Research has proven full-penetrationgroove welds combined with thicker baseplates increases the pole-to-base-plateconnection fatigue strength.

    5.14.3 Transverse Plate Thickness(Rev. 01/13)

    Add the following:

    For base plate connections withoutstiffeners on 50 year recurrence interval

    structures, the minimum base platethickness shall be 2 inches.

    C 5.15Add the following:Section 5.15 is referenced as a requirementin FDOT Specification 460-6.4.

    5.15 Welded Connections (Rev. 01/13)

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    10/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    7

    Structures Manual Home

    C 5.15.1Add the following:The Departments intent is to avoid anyunnecessary welds on sign, signal orlighting structures.

    5.15.1 Tube-to-Tube SpliceCircumferential Welds(Rev. 01/13)

    Add the following:

    On steel sign and signal structures, nocircumferential welds are permitted on theuprights, arms or chords with theexceptions of the base plate weld, theflange plate connections on tubular trussmembers, mitered arm-to-upright angleweld on monotubes. and uprights greaterthan 40 feet in height.

    C 5.15.3Add the following:Research has proven full-penetrationgroove welds combined with thicker baseplates increases the pole-to-base-plateconnection fatigue strength.

    5.15.3 Tube-to-Transverse PlateConnection Welds (Rev. 01/13)

    Add the following:

    For base plate connections withoutstiffeners on 50 year recurrence intervalstructures, only use full-penetrationgroove welds.

    C 5.16Add the following:Through bolted connections provide fullytensioned A325 bolts.

    5.16 Bolted Connections (Rev. 01/13)

    Add the following:

    Design all pole to arm connections onMast Arm structures as "through bolted".Tapped connections are not permitted. Donot use hardened steel washers betweenthe end plate of a Mast Arm and themounting plate of the pole.

    C 5.17Add the following:A minimum of eight anchor bolts providesredundancy and better distribution offorces through the base plate.

    5.17 Anchor Bolt Connections(Rev. 01/13)

    Add the following:

    All sign, signal, and lighting structuresdesigned for a minimum service life of 50years (wind speed based on a 50-yearmean recurrence interval) shall use aminimum of eight, Grade 55, ASTM F1554anchor bolts at the pole to foundationconnection, with the exception of Mast

    Arm signal structures where the minimumis six anchor bolts.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    11/19

  • 7/27/2019 transportation design manual

    12/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    9

    Structures Manual Home

    6 ALUMINUM DESIGN

    C 6.1Add the following:Aluminum overhead sign structures have

    been prone to unacceptable levels ofvibration and fatigue cracking.

    6.1 Scope

    Add the following:

    Do not specify aluminum overhead signstructure supports with the exception ofthe vertical sign panel hangers, which maybe aluminum or steel.

    7 PRESTRESSED CONCRETE

    DESIGN

    7.5 Design

    C 7.5.1Add the following:

    FDOT uses Standard Prestressed ConcretePoles in accordance with Index 17725 andSpecification 641. After analysis of the

    proposed span-wire pole structure, theDesigner selects the appropriate pole usingthe design moment values given in theInstructions for Design Standards for Index17725.

    7.5.1 Method of Design

    Add the following:

    For Standard Prestressed Concrete PoleDesign, see Instructions for DesignStandard Index 17725, for the ServiceMoment Capacity and Ultimate Moment

    Capacity. An increased percentage ofAllowable Stress for Group II loading (LTSTable 3-1) is not applicable for PrestressedConcrete Poles, since Group II loading is anultimate moment capacity calculation.

    C 7.5.2Add the following:FDOT uses Class V Special, 6 ksi or ClassVI 8.5 ksi concrete in accordance withSpecification 346.

    7.5.2 Concrete Strength

    Replace this section with the following:

    The minimum compressive concretestrength shall be 6 ksi.

    7.10 Durability

    C 7.10.2Add the following:FDOT requires a minimum 1 inch cover onall concrete poles in all environments.

    7.10.2 Concrete Cover

    Replace this section with the following:

    The minimum clear concrete cover for allprestressed and non-prestressed poles is1 inch.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    13/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    10

    Structures Manual Home

    10 SERVICEABILITY

    REQUIREMENTS

    C 10.5Add the following:Permanent camber equal to 1.5 times thedead load deflection provides for a better

    appearance than the relatively small L/1000given in AASHTO. For mast arms, a twodegree upward angle at the arm/uprightconnection is standard industry practice.

    10.5Camber

    Replace this section with the following:

    Provide permanent camber equal to 1.5times the dead load deflection for overheadsign structures. For span overhead signstructures, arch the horizontal memberupwards and for cantilever overhead signstructures rake the vertical supportbackwards. For mast arm signal structures,provide a two degree upward angle at thearm/upright connection.

    11 FATIGUE DESIGN (Rev. 01/13)

    C 11.6Add the following:Research performed at the University ofTexas (Report 0-4178) concludedincreasing "the end plate thickness for a10-inch mast arm from 1.5 inches to 2inches increased the fatigue life fromcategory E' to category D."

    Since FDOT Design Standards andprograms for Mast Arm signal structures,overhead tri-chord sign trusses, and High-mast light poles use relatively thick baseplates, Fatigue Category II is appropriate.In addition, there have been no reports offatigue damage to sign, signal and lightingstructure designed using FDOT programsand built using FDOT Design Standards.

    11.6 Fatigue Importance Factors(Rev. 01/13)

    Add the following:

    Use Fatigue Category II for all flat panelsign, traffic signal, and lighting supportstructures meeting the limits in 2.4.2.5 anddesigned using FDOT Design Standardsand Programs or designed in accordancewith Chapter 4 of NCHRP W176, "Cost-Effective Connection Details for HighwaySign, Luminaire, and Traffic SignalStructures". Use Fatigue Category I for allother sign, traffic signal, and lightingsupport structure designs including allVMS support structures.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    14/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    11

    Structures Manual Home

    11.7 Fatigue Design Loads

    C 11.7.1Add the following:Vibration mitigation devices are seldomnecessary and installed only afterexcessive vibration has been observed andthe device is approved by the Department.Cantilevered sign support structures withhorizontal three or four chord trusses havenever been reported to vibrate from vortexshedding or galloping. (ref. FHWAGuidelines for the Installation, Inspection,Maintenance and Repair of StructuralSupports for Highway Signs, Luminaries,

    and Traffic Signals)

    11.7.1 Galloping

    Replace the 2nd, 3rd and 4th paragraphswith the following:

    Vibration Mitigation devices are notallowed in lieu of designing for galloping.

    Exclude galloping loads for the fatiguedesign of overhead cantilevered sign andVMS support structures with three or fourchord horizontal trusses with bolted web tochord connections.

    C 11.8Add the following:The minimum requirements given provideadditional measures to limit the possibilityof galloping

    11.8 Deflection

    Add the following:

    In addition, VMS structures shall also meetthe following maximum span-to-depthratios:

    VMS Structure TypeMax.

    Span-to-DepthRatio

    Overhead SpanStructure

    25

    Overhead CantileverStructure

    9

    13 FOUNDATION DESIGN

    C 13.6Add the following:For standard drilled shaft details, seeDesign Standard Indexes 11320, 17502,17723 and 17745 for span overhead signstructures, high mast light poles, steelstrain poles, and mast arms respectively.

    13.6 Drilled Shafts (Rev. 01/13)

    Add the following:

    Drilled shafts are the standard foundationtype on high mast light poles, overheadsigns, mast arms and steel strain poles.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    15/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    12

    Structures Manual Home

    13.6.1 Geotechnical Design

    C 13.6.1.1Add the following:FDOT experience has established a safetyfactor of 2 produces conservative designs.

    The torsion resistance equation is basedon the theory for the Beta Method (O'Neill

    and Reese, 1999). A single fdot factorof 1.5 is used to adjust for the concurrentoverturning and torsional forces and tocompare with past FDOT practice. Sincethe consequence of a torsion soil-structurefailure is usually small, some rotation istypically allowable from the design wind.

    Since cantilever overhead sign structurescan have significantly more torsion than aMast Arm, a higher safety factor of 1.3 isappropriate.

    For soils with SPT N-values less than 5,consult the Geotechnical Engineer foradditional recommendations.

    13.6.1.1 Embedment (Rev. 01/13)

    Add the following:

    Use a safety factor against overturning of

    2 when using the Broms method.For torsion resistance in drilled shaftssupporting Mast Arm signal and cantileveroverhead sign structures, use thefollowing equations:

    TuTn

    SF tor--------------

    Where

    Tn DLFsD

    2----

    D

    2----

    2

    LconcD

    3----

    +=

    Fs vfdot=

    v soilL

    2---

    =

    soil( )tan=

    Tu = Torsion force on the drilled shaft

    Tn = Nominal torsion resistance of the

    drilled shaft

    SFtor = Safety Factor against torsion

    = 1.0 for Mast Arm signal structures= 1.3 for overhead cantilever sign

    structures

    D = diameter of the drilled shaft

    L = length of the drilled shaft

    Fs = unit skin friction

    v = effective vertical stress at mid-layer

    fdot = load transfer ratio where theallowable shaft rotation may exceed 10

    degrees= 1.5 for granular soils where SPT N-

    values are 15 or greater

    = 1.5N value

    15---------------------------

    for N-values

    greater than or equal to 5 and lessthan 15.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    16/19

    conc

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    13

    Structures Manual Home

    = unit weight of concrete

    soil = unit weight of soil = Coefficient of friction between the

    shaft and soil

    soil =soil friction angleC 13.6.2

    Add the following:Using 1% steel is conservative for flexuraldesign in most cases. Additional stirrups inthe top of the shaft provides resistanceagainst shear failure in the top of the shaft.Due to torsion, additional stirrups may berequired in cantilever structures.

    13.6.2 Structural Design

    Add the following:

    Longitudinally reinforce drilled shaftfoundations with a minimum of 1% steel.

    At a minimum, place #5 stirrups at 4 inchspacing in the top two feet of shaft. Incantilever structures, design for shearresulting from the torsion loading on theanchor bolt group.

    C 13.6.2.1Add the following:FDOT requires six inches of cover toensure durability in drilled shafts.

    Concrete consolidation below the anchorbolts becomes more difficult withreinforcement clear spacing less than sixinches.

    13.6.2.1 Details (Rev. 01/13)

    Replace the second sentence with thefollowing:

    A minimum concrete cover of six inchesover steel reinforcement is required.

    Add the following:

    The minimum diameter for drilled shafts is36 inches. A minimum main reinforcement

    clear spacing of six inches is required forproper concrete consolidation. Stirrups in

    drilled shafts for sign, signal and lightingstructures are exempt from this spacingrequirement.

    13.10 Embedment of Lightly LoadedSmall Poles and Posts

    Add the following:

    When using the Broms method for groundsign foundation design, use a safety factor

    against overturning of 1.3. When using theBroms method for direct burial concretepole foundation design, use a safety factoragainst overturning of 1.5.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    17/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    14

    Structures Manual Home

    13.11 References

    Add the following:

    Cook, R.A. (2007). Anchor EmbedmentRequirements for Signal /Sign

    Structures(FDOT Report# BD545 RPWO#54). Gainesville, Florida: University ofFlorida.

    APPENDIX C

    C C.1Add the following:By allowing an overstress factor of 1.4,consistent with previous editions of LTS,properly designed existing structures willbe allowed to remain in place in

    accordance with thePPM.

    C.1 Alternate Method (Rev. 01/13)

    Add the following:

    When evaluating existing structures inaccordance with PPM25.4.26, the followingdesign assumptions are permitted:

    a. an allowable overstress of 1.4 isallowed for Group II loading.

    b. allowances for future loads, FDOT2.4.2.2, is not required.

    c. evaluation using Section 11, FatigueDesign, is not required (withoutplanned additional loading only).

    d. evaluation of the foundation capacity isnot required (without plannedadditional loading only).

    C C.2Add the following:To simplify the design process, FDOT hasdesignated one wind speed per county.

    C.2 Wind Load

    Delete the 2nd and 3rd sentence and addthe following:

    The design wind pressures shall becomputed using the wind pressureformula, Eq. C-1, with the appropriatewind speed shown in FDOT Table C.2-1,Wind Speed by County.

    http://structuresmanualintroduction.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://structuresmanualintroduction.pdf/http://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtmhttp://www.dot.state.fl.us/rddesign/PPMManual/PPM.shtm
  • 7/27/2019 transportation design manual

    18/19

    FDOT Table C.2-1 Wind Speed by County

    County (Dist)10

    year25

    year50

    yearCounty (Dist)

    10year

    25year

    50year

    Alachua (2) 60 80 90 Lee (1) 80 90 100

    Baker (2) 60 80 90 Leon (3) 60 70 80Bay (3) 70 80 90 Levy (2) 70 80 90

    Bradford (2) 60 80 90 Liberty (3) 60 80 90

    Brevard (5) 80 90 100 Madison (2) 60 70 80

    Broward (4) 90 100 110 Manatee (1) 80 90 100

    Calhoun (3) 60 80 90 Marion (5) 60 80 90

    Charlotte (1) 80 90 100 Martin (4) 80 90 100

    Citrus (7) 70 80 90 Miami-Dade (6) 90 100 110

    Clay (2) 60 80 90 Monroe (6) 90 100 110

    Collier (1) 80 90 100 Nassau (2) 70 80 90Columbia (2) 60 70 80 Okaloosa (3) 70 90 100

    DeSoto (1) 70 80 90 Okeechobee (1) 70 80 90

    Dixie (2) 70 80 90 Orange (5) 70 80 90

    Duval (2) 70 80 90 Osceola (5) 70 80 90

    Escambia (3) 70 90 100 Palm Beach (4) 80 100 110

    Flagler (5) 70 80 90 Pasco (7) 70 90 100

    Franklin (3) 70 90 100 Pinellas (7) 70 90 100

    Gadsden (3) 60 70 80 Polk (1) 70 80 90

    Gilchrist (2) 60 80 90 Putnam (2) 60 80 90Glades (1) 70 80 90 St. Johns (2) 70 80 90

    Gulf (3) 70 90 100 St. Lucie (4) 80 90 100

    Hamilton (2) 60 70 80 Santa Rosa (3) 70 90 100

    Hardee (1) 70 80 90 Sarasota (1) 80 90 100

    Hendry (1) 70 80 90 Seminole (5) 70 80 90

    Hernando (7) 70 90 100 Sumter (5) 60 80 90

    Highlands (1) 70 80 90 Suwannee (2) 60 70 80

    Hillsborough (7) 70 80 90 Taylor (2) 70 80 90

    Holmes (3) 60 70 80 Union (2) 60 80 90Indian River (4) 80 90 100 Volusia (5) 80 90 100

    Jackson (3) 60 70 80 Wakulla (3) 70 80 90

    Jefferson (3) 60 70 80 Walton (3) 70 80 90

    Lafayette (2) 60 80 90 Washington (3) 60 80 90

    Lake (5) 60 80 90

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    January 2013

    15

    Structures Manual Home

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/
  • 7/27/2019 transportation design manual

    19/19

    FDOT Modifications to LTS-6 Topic No. 625-020-018

    Volume 9 - Revision History January 2013

    R9-1

    Structures Manual Home

    VOLUME 9 - REVISION HISTORY

    2.1 ................Added PPM cross reference. Revised Commentary.

    2.4 ................Renumbered entire Section.

    2.4.2.2 ..........Revised Commentary.

    2.4.2.4 ..........Added cross reference for vertical clearance requirements.

    3.8.3 .............Revised Table 3-3.

    5.14.3 ...........Revised Section title.

    5.15 ..............Added Commentary

    5.15.1 ...........Revised Section title. Added provision for uprights > 40.

    5.15.3 ...........Revised Section title.

    5.16 ..............Added limitation for use of hardened steel washers.

    5.17 ..............Revised minimum number of anchor bolts.

    5.17.4.3 ........Revised Commentary.

    11 .................Deleted Sections 11.5 Design Criteria and 11.9 Fatigue Resistance.

    11.6 ..............Clarified requirements of Section 11.6.

    13.6 ..............Clarified the requirements of Section 13.6.

    13.6.1.1 ........Revised variable definition for load transfer ratio. Added fourth Paragraph toCommentary.

    13.6.2.1 ........Added clarification for spacing requirement.C.1 ...............Revised cross reference. Added clarification.

    http://structuresmanualintroduction.pdf/http://structuresmanualintroduction.pdf/