471
TRANSIENT REFLECTIVITY RESPONSE OF LASER MIRRORS TO ELECTRON BEAM IRRADIATION by Kevin A. Stroh B.S.. Kansas State University, 1984 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Nuclear Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1987 Approved by: A% £Uu~ Major Professor

Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

TRANSIENT REFLECTIVITY RESPONSE OF LASER MIRRORSTO ELECTRON BEAM IRRADIATION

by

Kevin A. Stroh

B.S.. Kansas State University, 1984

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITYManhattan, Kansas

1987

Approved by:

A%£Uu~Major Professor

Page 2: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

LD

•T4TABLE OF CONTENTS A112D7 310116

1

.

INTRODUCTION 1

2. REVIEW OF LITERATURE 3

2.1 Transient Radiation Effects on OpticalFibers and Electronic Equipment 3

2.2 Transient Radiation Effects on Laser Mirrors... 5

3. Laser Mirrors 8

3.1 Laser Mirror Types and Construction 8

3.1.1 Dielectric-multilayer MirrorConstruction 9

3.1.2 Metal-coated Mirror Construction 10

3.2 Mirror Optical Characteristics 11

3.2.1 Dielectric Mirror Reflectivitiesand Transmissions 12

3.2.2 Metal-coated Mirror Reflectivitiesand Transmissions 14

4. Experiment Methods and Materials 23

4.

1

Determining the Pre-irradiation MirrorReflectivity 23

4.1.1 Operations of the CARY 2300Spectrophotometer 23

4.2 Mirror Irradiation 25

4.2.1 Preparing for Mirror Irradiation 26

4.2.2 Beam Shots with Block-in andBlock-out 29

4.2.3 Beam Characteristics 30

4.3 Data Recording 30

4.4 Time and Wavelength Calibrations 33

4.4.1 Time Calibration 33

Page 3: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

4.4.2 Wavelength Calibration 35

5. Theory of the Experiment and Data Analysis 43

5.

1

Theory of Experimental Optics Arrangement 43

5.1.1 Simplification of Theory 44

5.2 Data Analysis 46

5.2.1 Determining f(X,t) and f(X,t1->t). .. 49

5.2.2 Time Integration 53

5.2.3 Fast-Fourier Transform Analysis ofthe Signal Ratios 56

5.2.3.1 Determining the OptimumE-value for the FourierTransform 57

5.3 Error Analysis 59

5.3.1 Error from Pre-irradiationReflectivity Measurements 59

5.3.2 Error on Signal-Ratio Data 60

5.3.2.1 Mean-Square-ResidualTechnique 60

5.3.2.2 Moving-Mean-Square-ResidualTechnique 62

5.3.3 Error on the TransientReflectivities 66

6. Results 85

6.1 Results from the Signal Ratios 85

6.2 Transient Reflectivity Results 89

7

.

Conclusions and Recommendations 91

7.1 Conclusions on the Dielectric-multi layeredMirrors 91

Page 4: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

7.2 Conclusions on the CuAg-coated Mirrors 93

7.3 Conclusions on the Al-coated Mirrors 94

7.4 Recommendations for Future Work 95

ACKNOWLEDGEMENTS 97

REFERENCES 99

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

The Signal-ratio Plots Al

Programs used in Data Analysis Bl

Transient Reflectivity Plots CI

Pre-irradiation Reflectivity Curves for allMirrors listed in Table 3.1 Dl

APPENDIX E: Block-in and Block-out Shot Picture Data El

Page 5: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

LIST OF FIGURES

Figure Page

3.1 Theoretical and measured reflectances for atypical dielectric mirror. The theoreticalmodel results include variable angles ofincidence, and indiced of refraction 17

3.2 The spectral reflectance at 10 degrees incidencefor metal-coated mirror 6L 18

3.3 The spectral reflectance at 10 degrees incidencefor metal-coated mirror 2L 19

3.4 The spectral reflectance at normal incidence foran evaporated film of aluminum 20

3.5 The spectral reflectance at normal incidence foran evaporated film of silver 21

3.6 The spectral reflectance at normal incidence foran evaporated film of copper 22

4.

1

The optics plate used to hold the mirrors for thepre-irradiation reflectivity measurements. Themirror sat in the V-notch of the plate with thecoated side of the mirror in the plane of theright-side view 37

4.2 The experimental optics set-up. Note, the spotson the pellicle mirror, A and B, are outside thediverging electron beam. The coated side of thesample mirror faces the pellicle mirror .... 38

4.3 The pulsed xenon light source relative outputversus wavelength 39

4.4 Sample radiochromic dosimetry output for metal-coated mirror 6L. The radiochromic film was shot20 times with the beam used to irradiate mirror6L 40

4.5 Isometric view of a typical laser mirror used inthe experiments. The figure details mirrordimensions and location and size of the beam spotpositions A and B 41

Page 6: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

4.6 Sample color photograph of raw data (a) and beamprofile (b) for the electron irradiation ofdielectric mirror 14. The color levels identifythe light intensity level at the camera detector. 42

5.1 The signal ratio and Fourier curve, with E=2, fordielectric mirror 14. II is defined during 25 to41.3 ns 68

5.2 The signal ratio and Fourier curve, with E=3, fordielectric mirror 14. II is defined during 25 to41.3 ns 69

5.3 The signal ratio and Fourier curve, with E=4, fordielectric mirror 14. II is defined during 25 to41.3 ns 70

5.4 The signal ratio and Fourier curve, with E=5, fordielectric mirror 14. II is defined during 25 to41.3 ns 71

5.5 The signal ratio and Fourier curve, with E=6, fordielectric mirror 14. II is defined during 25 to41.3 ns 72

5.6 The signal ratio and Fourier curve, with E=7, fordielectric mirror 14. II is defined during 25 to41.3 ns 73

5.7 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 5.II is defined during 61.1 to 81.2 ns 74

5.8 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 25.II is defined during 61.1 to 81.2 ns 75

Page 7: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

5.9 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MHSRES errorestimate is based on a half-window size of 35.II is defined during 61.1 to 81.2 ns 76

5.10 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*{MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 50.II is defined during 61.1 to 81.2 ns 77

5.11 The signal ratio and Fourier curve (solid lines)5

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 75.II is defined during 61.1 to 81.2 ns 78

5.12 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 100.II is defined during 61.1 to 81.2 ns 79

5.13 The signal ratio and Fourier curve (solid lines)

and Fourier curve ± 2*(MMSRES) error estimate(dash-dot lines) for metal-coated mirror 2L,irradiated in position A. The MMSRES errorestimate is based on a half-window size of 150.II is defined during 61.1 to 81.2 ns 80

5.14 A comparison of the MSRES and MMSRES errorestimates for the metal-coated mirror 2L,irradiated in position A. The MMSRES estimateis based on the optimal half-window size, 50. . 81

5.15 The pre-irradiation reflectivity compared to thetransient reflectivity based on the signal ratioin Fig. la for dielectric mirror 14 82

Page 8: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

5.16 The pre-irradiation reflectivity compared to thetransient reflectivity based on the signal ratioin Fig. 7a for metal-coated mirror 1L 83

5.17 The pre-irradiation reflectivity compared to thetransient reflectivity based on the signal ratioin Fig. 10a for metal-coated mirror 6L 84

la Signal ratio for II defined in 0.0-5.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A3

lb Signal ratio for II defined in 5.0-10.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A4

lc Signal ratio for II defined in 10.0-15.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A5

Id Signal ratio for* II defined in 15.0-20.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A6

le Signal ratio for II defined in 20.0-25.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A7

If Signal ratio for II defined in 25.0-41.3 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 AS

lg Signal ratio for II defined in 41.3-57.5 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A9

lh Signal ratio for II defined in 57.5-73.8 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 A10

11 Signal ratio for II defined in 73.8-88.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 14 All

2a Signal ratio for II defined in 0-37 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12. irradiatedin position A A13

Page 9: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

2b Signal ratio for II defined in 37.0 - 70.5 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A14

2c Signal ratio for II defined in 70-5-104 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A15

2d Signal ratio for II defined in 104-138 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A16

2e Signal ratio for II defined in 138-171 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A17

2f Signal ratio for II defined in 171-205 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A18

2g Signal ratio for II defined in 205-238 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A19

2h Signal ratio for II defined in 283-272 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position A A20

2i Signal ratio for II defined in 272-313 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, Irradiatedin position A A21

3a Signal ratio for II defined in 250-284 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, Irradiatedin position B A23

Page 10: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

3b Signal ratio for II defined in 284-317 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A24

3c Signal ratio for II defined in 317-351 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A25

3d Signal ratio for II defined in 351-384 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A26

3e Signal ratio for II defined in 384-418 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A27

3f Signal ratio for II defined in 418-451 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A28

3g Signal ratio for II defined in 451-485 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A29

3h Signal ratio for II defined in 485-518 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A30

3i Signal ratio for II defined in 518-552 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A31

3j Signal ratio for II defined in 552-593 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 12, irradiatedin position B A32

Page 11: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

4a Signal ratio for II defined in 0.8-20.9 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A34

4b Signal ratio for II defined in 20.9-41.0 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A35

4c Signal ratio for II defined in 41.0-61.1 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A36

4d Signal ratio for II defined in 61.1-81.2 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A37

4e Signal ratio for II defined in 81.2-101 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A38

4f Signal ratio for II defined in 101-121 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A39

4g Signal ratio for II defined in 121-142 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A40

4h Signal ratio for II defined in 142-162 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A41

4i Signal ratio for II defined in 162-183 nstime region and 12 defined during -160-0.8 nsregion for dielectric mirror 13, irradiatedin position A A42

Page 12: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

5a Signal ratio for II defined in 0.25-33.8 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A44

5b Signal ratio for II defined in 33.8-67.3 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A45

5c Signal ratio for II defined in 67.3-101 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A46

5d Signal ratio for II defined in 101-134 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A47

5e Signal ratio for II defined in 134-168 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A48

5f Signal ratio for II defined in 168-201 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A49

5g Signal ratio for II defined in 201-235 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A50

5h Signal ratio for II defined in 235-268 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A51

5i Signal ratio for II defined in 268-293 nstime region and 12 defined during -50-0.25 nsregion for dielectric mirror 13, irradiatedin position B A52

6a Signal ratio for II defined in 0-37 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A54

Page 13: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

6b Signal ratio for II defined in 37-70.5 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A55

6c Signal ratio for II defined in 70.5-104 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A56

6d Signal ratio for II defined in 104-138 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A57

6e Signal ratio for II defined in 138-171 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A58

6f Signal ratio for II defined in 171-205 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A59

6g Signal ratio for II defined in 205-238 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A60

6h Signal ratio for II defined in 238-272 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A61

61 Signal ratio for II defined in 272-313 nstime region and 12 defined during -30-0 nsregion for dielectric mirror 26 A62

7a Signal ratio for II defined in 0.0-5.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A64

7b Signal ratio for II defined in 5.0-10.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A65

7c Signal ratio for II defined in 10.0-15.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A66

7d Signal ratio for II defined in 15.0-20.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A67

Page 14: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

7e Signal ratio for II defined in 20.0-25.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A68

7f Signal ratio for II defined in 25.0-41.3 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A69

7g Signal ratio for II defined in 41.3-57.5 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A70

7h Signal ratio for II defined in 57.5-73.8 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A71

71 Signal ratio for II defined in 73.8-88.0 nstime region and 12 defined during -40-0 nsregion for dielectric mirror 1L A72

8a Signal ratio for II defined in 0.8-20.9 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A74

8b Signal ratio for II defined in 20.9-41.0 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A75

8c Signal ratio for II defined in 41.0-61.1 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A76

8d Signal ratio for II defined in 61.1-81.2 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A77

8e Signal ratio for II defined in 81.2-101 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A78

Page 15: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

8f Signal ratio for II defined in 101-121 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A79

8g Signal ratio for II defined in 121-142 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A80

8h Signal ratio for II defined in 142-162 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L. irradiatedin Positon A A81

8i Signal ratio for II defined in 162-183 nstime region and 12 defined during -160-0.8 nsregion for metal-coated mirror 2L, irradiatedin Positon A A82

9a Signal ratio for II defined in 0.25-33.8 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A84

9b Signal ratio for II defined in 33.8-67.3 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A85

9c Signal ratio for II defined in 67.3-101 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A86

9d Signal ratio for II defined in 101-134 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A87

9e Signal ratio for II defined in 134-168 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A88

Page 16: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

9f Signal ratio for II defined in 168-201 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A89

9g Signal ratio for II defined in 201-235 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A90

9h Signal ratio for II defined in 235-268 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A91

91 Signal ratio for II defined in 268-293 nstime region and 12 defined during -50-0.25 nsregion for metal-coated mirror 2L, irradiatedin Positon B A92

10a Signal ratio for II defined in 0.0-5.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A94

10b Signal ratio for II defined in 5.0-10.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A95

10c Signal ratio for II defined in 10.0-15.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A96

lOd Signal ratio for II defined in 15.0-20.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A97

lOe Signal ratio for II defined in 20.0-25.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A98

lOf Signal ratio for II defined in 25.0-41.3 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A99

lOg Signal ratio for II defined in 41.3-57.5 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A100

Page 17: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

lOh Signal ratio for II defined in 57.5-73.8 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A101

101 Signal ratio for II defined in 73.8-88.0 nstime region and 12 defined during -40-0 nsregion for metal-coated mirror 6L A102

11a Signal ratio for II defined in 0-37 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A104

lib Signal ratio for II defined in 37-70.5 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A105

lie Signal ratio for II defined in 70.5-104 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A106

lid Signal ratio for II defined in 104-138 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A107

lie Signal ratio for II defined in 138-171 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A108

llf Signal ratio for II defined in 171-205 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A A109

llg Signal ratio for II defined in 205-238 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L. irradiatedin position A A110

llh Signal ratio for II defined in 238-272 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position A Alll

Page 18: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

Hi Signal ratio for II defined in 272-313 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L. irradiatedin position A A112

12a Signal ratio for II defined in 250-284 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A114

12b Signal ratio for II defined in 284-317 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A115

12c Signal ratio for II defined in 317-351 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A116

12d Signal ratio for II defined in 351-384 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A117

12e Signal ratio for II defined in 384-418 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A118

12f Signal ratio for II defined in 418-451 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A119

12g Signal ratio for II defined in 451-485 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A120

12h Signal ratio for II defined in 485-518 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A121

Page 19: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

12i Signal ratio for II defined in 518-552 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L. irradiatedin position B A122

12j Signal ratio for II defined in 552-593 nstime region and 12 defined during -30-0 nsregion for metal-coated mirror 7L, irradiatedin position B A123

13a The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. la,

(0.0-5.0 ns), for dielectric mirror 14 C3

13b The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. lb,

(5.0-10.0 ns), for dielectric mirror 14 C4

13c The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. lc,(10.0-15.0 ns), for dielectric mirror 14 C5

13d The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. Id,(15.0-20.0 ns), for dielectric mirror 14 C6

13e The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. le,(20.0-25.0 ns). for dielectric mirror 14 C7

13f The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. If,(25.0-41.3 ns), for dielectric mirror 14 C8

13g The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. lg,(41.3-57.5 ns). for dielectric mirror 14 C9

13h The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. lh,(57.5-73.8 ns), for dielectric mirror 14 C10

131 The pre-irradiation reflectivity comparedto the transient reflectivity based on Fig. 11,(73.8-88.0 ns), for dielectric mirror 14 Cll

Page 20: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Plage

13j The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13a fordielectric mirror 14 C12

13k The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13b fordielectric mirror 14 C13

131 The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13c fordielectric mirror 14 C14

13m The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13d fordielectric mirror 14 C15

13n The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13e fordielectric mirror 14 C16

13o The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13f fordielectric mirror 14 C17

13p The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13g fordielectric mirror 14 C18

13q The expanded view of the pre-irradiation andtransient reflectivities of Fig. 13h fordielectric mirror 14 C19

13r The expanded view of the pre-irradiation andtransient reflectivities of Fig. 131 fordielectric mirror 14 C20

14a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2a. (0.0-37.0 ns), for dielectricmirror 12 in position A C22

14b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2b. (37.0-70.5 ns), for dielectricmirror 12 in position A C23

Page 21: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

14c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2c. (70.5-104 ns). for dielectricmirror 12 in position A C24

14d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2d. (104-138 ns). for dielectricmirror 12 in position A C25

14e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2e. (138-171 ns). for dielectricmirror 12 in position A C26

14f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2f. (171-205 ns), for dielectricmirror 12 in position A C27

14g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2g. (205-238 ns), for dielectricmirror 12 in position A C28

14h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 2h. (238-272 ns), for dielectricmirror 12 in position A C29

141 The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 21. (272-313 ns), for dielectricmirror 12 In position A C30

14j The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14a fordielectric mirror 12 in position A C31

14k The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14b fordielectric mirror 12 in position A C32

141 The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14c fordielectric mirror 12 in position A C33

Page 22: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

14m The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14d fordielectric mirror 12 in position A C34

14n The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14e fordielectric mirror 12 in position A C35

14o The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14f fordielectric mirror 12 in position A C36

14p The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14g fordielectric mirror 12 in position A C37

14q The expanded view of the pre-irradiation andtransient reflectivity of Fig. 14h fordielectric mirror 12 in position A C38

14r The expanded view of the pre-irradiation andtransient reflectivity of Fig. 141 fordielectric mirror 12 in position A C39

15a The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3a,(250-284 ns), for dielectric mirror 12 inposition B C41

15b The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3b,(284-317 ns), for dielectric mirror 12 inposition B C42

15c The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3c,(317-351 ns). for dielectric mirror 12 inposition B C43

15d The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3d,(351-384 ns). for dielectric mirror 12 inposition B C44

15e The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3e,(384-418 ns), for dielectric mirror 12 inposition B C45

Page 23: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

15f The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3f,(418-451 ns), for dielectric mirror 12 inposition B C46

15g The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3g,(451-485 ns), for dielectric mirror 12 inposition B C47

15h The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3h,(485-518 ns). for dielectric mirror 12 inposition B C48

151 The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 31.(518-552 ns), for dielectric mirror 12 inposition B C49

15j The pre-irradiation reflectivity compared tothe transient reflectivity based on Fig. 3J,(552-593 ns) , for dielectric mirror 12 inposition B C50

15k The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15a fordielectric mirror 12 in position B C51

151 The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15b fordielectric mirror 12 in position B C52

15m The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15c fordielectric mirror 12 in position B C53

15n The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15d fordielectric mirror 12 in position B C54

15o The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15e fordielectric mirror 12 in position B C55

15p The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15f fordielectric mirror 12 in position B C56

Page 24: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

15q The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15g fordielectric mirror 12 in position B C57

15r The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15h fordielectric mirror 12 in position B C58

15s The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15i fordielectric mirror 12 in position B C59

15t The expanded view of the pre-irradiation andtransient reflectivities of Fig. 15J fordielectric mirror 12 in position B C60

16a The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4a,(0.8-20.9 ns), for dielectric mirror 13 inposition A C62

16b The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4b,(20.9-41.0 ns), for dielectric mirror 13 inposition A C63

16c The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4c,(41.0-61.1 ns), for dielectric mirror 13 inposition A C64

16d The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4d,(61.1-81.2 ns), for dielectric mirror 13 inposition A C65

16e The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4e,(81.2-101 ns). for dielectric mirror 13 inposition A C66

16f The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4f,(101-121 ns), for dielectric mirror 13 inposition A C67

Page 25: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

16g The pre-irradiatlon ref lecitivity compared to

the transient reflectivity based on Fig. 4g,(121-142 ns), for dielectric mirror 13 inposition A 068

16h The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4h,(142-162 ns). for dielectric mirror 13 inposition A C69

16i The pre-irradiation ref lecitivity compared tothe transient reflectivity based on Fig. 4i,(162-183 ns), for dielectric mirror 13 inposition A C70

16j The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16a fordielectric mirror 13 in position A C71

16k The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16b fordielectric mirror 13 in position A C72

161 The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16c fordielectric mirror 13 in position A C73

16m The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16d fordielectric mirror 13 in position A C74

16n The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16e fordielectric mirror 13 in position A C75

16o The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16f fordielectric mirror 13 in position A C76

16p The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16g fordielectric mirror 13 in position A C77

16q The expanded view of the pre-irradiation andtransient reflectivities of Fig. 16h fordielectric mirror 13 in position A C78

Page 26: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

16r The expanded view of the pre-irradiation andtransient reflectivities of Fig. 161 fordielectric mirror 13 in position A CT9

17a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5a (0.25-33.8 ns) for dielectricmirror 13 in position B C81

17b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5b (33.8-67.3 ns) for dielectricmirror 13 in position B C82

17c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5c (67.3-101 ns) for dielectricmirror 13 in position B C83

17d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5d (101-134 ns) for dielectricmirror 13 in position B C84

17e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5e (134-168 ns) for dielectricmirror 13 in position B C85

17f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5f (168-201 ns) for dielectricmirror 13 in position B C86

17g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5g (201-235 ns) for dielectricmirror 13 in position B C87

17h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 5h (235-268 ns) for dielectricmirror 13 in position B C88

17i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 51 (268-293 ns) for dielectricmirror 13 in position B C89

Page 27: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

17j The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17a fordielectric mirror 13 in position B C90

17k The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17b fordielectric mirror 13 in position B C91

171 The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17c fordielectric mirror 13 in position B C92

17m The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17d fordielectric mirror 13 in position B C93

17n The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17e fordielectric mirror 13 in position B C94

17o The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17f fordielectric mirror 13 in position B C95

17p The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17g fordielectric mirror 13 in position B C96

17q The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17h fordielectric mirror 13 in position B C97

17r The expanded view of the pre-irradiation andtransient reflectivities of Fig. 17i fordielectric mirror 13 in position B C98

18a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6a (0.0-37 ns) for dielectricmirror 26 C100

18b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6b (37.0-70.5 ns) for dielectricmirror 26 C101

Page 28: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

18c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6c (70.5-104 ns) for dielectricmirror 26 C102

18d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6d (104-138 ns) for dielectricmirror 26 C103

18e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6e (138-171 ns) for dielectricmirror 26 C104

18f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6f (171-205 ns) for dielectricmirror 26 C105

18g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6g (205-238 ns) for dielectricmirror 26 C106

18h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6h (238-272 ns) for dielectricmirror 26 C107

18i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 6i (272-313 ns) for dielectricmirror 26 C108

18j The expanded view of the pre-irradiationand transient reflectivities of Fig. 18afor dielectric mirror 26 C109

18k The expanded view of the pre-irradiationand transient reflectivities of Fig. 18bfor dielectric mirror 26 C110

181 The expanded view of the pre-irradiationand transient reflectivities of Fig. 18cfor dielectric mirror 26 Clll

Page 29: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

18m The expanded view of the pre-irradiationand transient reflectivities of Fig. 18dfor dielectric mirror 26 C112

18n The expanded view of the pre-irradiationand transient reflectivities of Fig. 18efor dielectric mirror 26 C113

18o The expanded view of the pre-irradiationand transient reflectivities of Fig. 18ffor dielectric mirror 26 C114

18p The expanded view of the pre-irradiationand transient reflectivities of Fig. 18gfor dielectric mirror 26 C115

18q The expanded view of the pre-irradiationand transient reflectivities of Fig. 18hfor dielectric mirror 26 C116

18r The expanded view of the pre-irradiationand transient reflectivities of Fig. 181for dielectric mirror 26 CI 17

19a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7a (0.0-5.0 ns), for metal-coatedmirror 1L C119

19b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7b (5.0-10.0 ns) . for metal-coatedmirror 1L C120

19c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7c (10.0-15.0 ns), for metal-coatedmirror 1L C121

19d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7d (15.0-20.0 ns), for metal-coatedmirror 1L C122

19e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7e (20.0-25.0 ns), for metal-coatedmirror 1L C123

Page 30: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

19f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7f (25.0-41.3 ns), for metal-coatedmirror 1L C124

19g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7g (41.3-57.5 ns), for metal-coatedmirror 1L C125

19h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 7h (57.5-73.8 ns), for metal-coatedmirror 1L C126

19i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 71 (73.8-88.0 ns), for metal-coatedmirror lL C127

20a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8a (0.8-20. 9ns), for metal-coatedmirror 2L, in position A C129

20b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8b (20.9-41.0 ns), for metal-coatedmirror 2L. in position A C130

20c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8c (41.0-61.1 ns). for metal-coatedmirror 2L, in position A C131

20d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8d (61.1-81.2 ns). for metal-coatedmirror 2L, in position A C132

20e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8e (81.2-101 ns), for metal-coatedmirror 2L, in position A C133

Page 31: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

20f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8f (101-121 ns), for metal-coatedmirror 2L, in position A C134

20g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8g (121-142 ns), for metal-coatedmirror 2L, in position A C135

20h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 8h (142-162 ns), for metal-coatedmirror 2L, in position A C136

20i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 81 (162-183 ns), for metal-coatedmirror 2L, In position A C137

21a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9a (0.25-33.8 ns) . for metal-coatedmirror 2L, in position B C139

21b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9b (33.8-67.3 ns), for metal-coatedmirror 2L, in position B C140

21c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9c (67.3-101 ns), for metal-coatedmirror 2L, in position B C141

21d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9d (101-134 ns). for metal-coatedmirror 2L, in position B C142

21e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9e (134-168 ns). for metal-coatedmirror 2L, in position B C143

Page 32: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

21f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9f (168-201 ns), for metal-coatedmirror 2L, in position B CI44

21g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9g (201-235 ns). for metal-coatedmirror 2L, in position B C145

21h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9h (235-268 ns), for metal-coatedmirror 2L. in position B C146

21i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 9i (268-293 ns) . for metal-coatedmirror 2L, in position B C147

22a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 10a (0.0-5.0 ns), for metal-coatedmirror 6L C149

22b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 10b (5.0-10.0 ns), for metal-coatedmirror 6L C150

22c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 10c (10.0-15.0 ns). for metal-coatedmirror 6L C151

22d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lOd (15.0-20.0 ns), for metal-coatedmirror 6L C152

22e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lOe (20.0-25.0 ns), for metal-coatedmirror 6L C153

Page 33: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure

22f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lOf (25.0-41.3 ns), for metal-coatedmirror 6L C154

22g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lOg (41.3-57.5 ns). for metal-coatedmirror 6L C155

22h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lOh (57.5-73.8 ns), for metal-coatedmirror 6L C156

22i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 101 (73.8-88.0 ns), for metal-coatedmirror 6L C157

23a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 11a (0.0-37.0 ns) , for metal-coatedmirror 7L in position A C159

23b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lib (37.0-70.5 ns). for metal-coatedmirror 7L in position A C160

23c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lie (70.5-104 ns). for metal-coatedmirror 7L in position A C161

23d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lid (104-138 ns) , for metal-coatedmirror 7L in position A C162

23e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. lie (138-171 ns). for metal-coatedmirror 7L in position A C163

Page 34: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure Page

23f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. llf (171-205 ns), for metal-coatedmirror 7L in position A C164

23g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. llg (205-238 ns). for metal-coatedmirror 7L in position A C165

23h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. llh (283-272 ns) . for metal-coatedmirror 7L in position A C166

23i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. Ill (272-313 ns). for metal-coatedmirror 7L in position A C167

24a The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12a (250-284 ns), for metal-coatedmirror 7L in position B C169

24b The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12b (284-317 ns). for metal-coatedmirror 7L in position B C170

24c The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12c (317-351 ns), for metal-coatedmirror 7L in position B C171

24d The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12d (351-384 ns), for metal-coatedmirror 7L in position B C172

24e The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12e (394-418 ns), for metal-coatedmirror 7L in position B C173

Page 35: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Figure j^ge

24f The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12f (418-451 ns), for metal-coatedmirror 7L in position B C174

24g The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12g (451-485 ns), for metal-coatedmirror 7L in position B C175

24h The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12h (485-518 ns) , for metal-coatedmirror 7L in position B C176

24i The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12i (518-552 ns). for metal-coatedmirror 7L in position B C177

24j The pre-irradiation reflectivity comparedto the transient reflectivity based onFig. 12j (552-593 ns), for metal-coatedmirror 7L in position B C178

1 Pre-irradiation reflectivity for dielectricmirror number 14 D2

2 Pre-irradiation reflectivity for dielectricmirror number 12 D3

3 Pre-irradiation reflectivity for dielectricmirror number 13 D4

4 Pre-irradiation reflectivity for dielectricmirror number 26 D5

5 Pre-irradiation reflectivity for dielectricmirror number 1L D6

6 Pre-irradiation reflectivity for metal-coated mirror number 2L 07

7 Pre-irradiation reflectivity for metal-coated mirror number 6L D8

8 Pre-irradiation reflectivity for metal-coated mirror number 7L D9

Page 36: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

1. Introduction

Since the advent of the Strategic Defense Initiative (SDI),

questions have appeared on reliability of key components exposed to

radiation fields. Regardless whether the radiation fields originate

from cosmic-ray background, enemy attack, or from nuclear reactions

in the system, the SDI system components and laser mirrors must

retain integrity and reliability In order to function within design

parameters. In addition, mirror radiation damage could be an

important problem in nuclear-pumped lasers, free-electron lasers and

inertlal-conf inement fusion laser systems. The goal of the work was

to assess the radiation effects on the mirrors as a function of dose

and dose rate.

Another purpose of the research was to determine the transient

reflectivity response of laser mirrors when the mirrors were exposed

to a variety of currents and charges. The researchers looked for

statistically significant deviations from the pre-irradlation mirror

reflectivity.

The scope of the work is limited to high energy and

flux-density electrons to simulate both an electron field and the

secondary effects from a gamma-ray field. The high energy and

flux-density electron fields were generated using an electron linear

accelerator (LINAC)

.

Three different types of laser mirrors were used in the

experiments. All of the mirrors were produced by coating a

fused-slllca substrate ( 5 cm diameter, 1 cm thick circular

Page 37: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

2

cylinder). Coatings over the substrate were either a thin layer of

aluminum, a thicker layer of silver on top of a copper layer, or

multiple layers of Al„03+Si0

2dielectric material.

Previous work on radiation damage to laser mirrors has

addressed long-term and transient damage and damage mechanisms.

Although the ultimate question on radiation damage may be answered

for the steady-state case, knowledge of mirror transient behavior

and annealing processes is not completely researched (17).

Transient radiation damage studies of various materials have

been conducted by several authors. However, the specific questions

regarding radiation damage to laser mirrors, their coatings and

substrates is poorly understood. Although some comparisons to

previous work are outlined in the review of literature chapter, no

other papers directly cover the type of work summarized in this

thesis.

Page 38: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

3

2. Review of Literature

Transient radiation damage has been investigated for many

materials and forms of radiation. Of the available papers, the most

useful include transient studies on fiber optics, dielectric

electronics, and laser mirrors with a silicon-dioxide substrate.

Unfortunately, the number of papers discussing the transient effects

for the materials of interest represent a small fraction of the

works covering transient radiation damage. The number of useful

papers is further reduced when the time interval of the observed

transient, type of radiation and irradiated material are considered.

Papers cited in the review section were found through an

extensive search of DOE and DOD unclassified documents and the

INSPEC data base. The reports used in section 2.1 are a subset of

the wealth of material available from studying transient effects on

optical fibers and electronic equipment. Conversely, the material

in section 2.2 represents the bulk of information available on

transient properties of mirrors. In all papers reporting transient

behavior, the transient absorption was based on changes in

transmit tance, not reflectance.

2.1 Transient Radiation Effects on Optical Fibers and ElectronicEquipment

Because relatively few papers address transient radiation

damage to laser mirrors, the review of literature was expanded to

cover transients in fiber-optic cables and electronics. Most of the

papers dealing with transient effects of radiation on ceramic

Page 39: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

4

electronics resulted from underground nuclear-weapons testing. The

papers covering transient effects on electronics provide good

theoretical bases for understanding the effects of nuclear-weapon

radiation on ceramic or glass optical components (18) (19) (21).

The information from weapons tests is useful for the research

described in this thesis because the radiation fluences incident on

the mirror during operation would be of the same magnitude of those

present in a weapons test (4).

The goal of the fiber-optic research was to determine the

effects of wavelength, fluence, and fiber history on the

transmission of the fiber. The same effects are important in the

study of laser mirror transients. A study on the effects of

ultraviolet radiation on fused-silica optical fibers showed a

"...sharp, quasiexponential transmission decay immediately upon

exposure to 248 nm excimer pulses." The transmission was observed

to drop in the fused-silica fibers as a result of irradiation with a

KrF excimer beam at 248 nm. Furthermore, the fibers took between

two to three weeks to return to 10% of their original

pre-irradiation transmissions after irradiation at 1 Hz to 25 Hz

with 15 ns pulses of laser light having a fluence of a few mj/cm .

The transient effects of the ultraviolet radiation on the

fused-silica fiber-optic cable became more apparent as the KrF

excimer laser pulse repetition rate was reduced (20). Host

importantly, transient absorption was observed in the

silicon-dioxide cable at 248 nm.

Page 40: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

5

A study by Hopkins et. al. detected transient behavior in

several fibers of various construction when the fibers were exposed

to 22 HeV electrons in 40 ns to 50 ns pulses from the EG&G electron

linear accelerator (LINAC) . Although the total charge in each pulse

was around 9 nC, enough electrons were present to cause a

significant transient radiation effect in the nanosecond time

region.

Hopkins also stated the energies required to displace a silicon

or oxygen atom creating a color center are 260 keV and 160 keV,

respectively. However, the number of silicon and oxygen

displacements were small in comparison to the number of free

electrons present from irradiation. Hopkins stated both free

electrons and color centers were responsible for most of the reduced

transmission (15). Although the fibers were not constructed of

silicon dioxide exclusively, similar transient effects would be

expected for silicon dioxide fibers exposed to electron pulses.

The effects of intense radiation on optical fibers In short

times, less than 100 ns, were studied by Lyons, et. al. (16). Lyons

reported some success in describing the transient light attenuation

of optical fibers given doses on the order of 1 Mrad, using a

recombination model.

2.2 Transient Radiation Effects on Laser Mirrors

A paper by Brannon et. al. is one of very few sources of

information on the effects of reactor radiation on the optical

Page 41: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

6

properties of laser mirrors. According to Brannon, Induced

absorption from radiation can be removed by annealing. Furthermore,

the induced absorption depends on the total ionization dose instead

of displacements from neutron Irradiation. The results of Brannon

verified earlier work by Compton and Arnold confirming the ionizing

radiation plays a significant role in radiation damage to fused

silica for most situations. However, the utility of the results of

Brannon are limited because the transients effects were sought on

the microsecond time scale, not the nanosecond scale, and the

radiation Included gamma-rays and neutrons (17) (22).

In other closely related work. Mace and Gill observed transient

visible absorption In fused silica at 514 nm when irradiated with

200 ns pulses of electrons. Mace and Gill observed no visible

transient effect on aluminum-coated or dielectric mirrors at 514 nm

(23).

In another study using 7940 fused silica, Siegel and Grissom

observed transient absorption at 210 nm when irradiating samples

with 50 ns pulses of electrons. No absorption was seen at

wavelengths above 300 nm (24) (25).

Finally, Brannon notes the transient absorption coefficient at

257 nm for 7940 fused silica exposed to reactor radiation is smaller

than the coefficients for MgF„, BaF„, or sapphire. The latter

materials were all considered possible substrate materials. "This

implies that 7940 fused silica Is the best choice of materials for

Page 42: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

reactor-pumped lasers that operate at a wavelength near 257 nm"

(17). In the case of the KrF laser operating at 248 nm, the

fused-slllca substrate Is expected to exhibit a measurable transient

response to electron irradiation. However, the expected transient

response would be less than transients observed for the other

substrate materials mentioned above.

Page 43: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

8

3. Laser Mirrors

3.1 Laser Mirror Types and Construction

Three mirror types were used in the experiments, all having a

fused-silica substrate. Coatings were either a thin layer of

aluminum, a layer of silver on top of a layer of copper or

dielectric multilayers of Al-O, and SiO„. All mirrors were right

circular cylinders 5.0 cm in diameter and 1.0 cm thick. The mirrors

used in the experiments, their coatings and identification numbers

are listed in Table 3.1.

Table 3.1 The construction of the metal-coated mirrors (MCM) anddielectric-multilayered mirrors (DMM) used in the transient radiationeffects study.

MirrorIdentification MCM or DMM

Coating Thickness

Aluminum Copper

(nm)

Silver

1L MCM 100 190

2L MCM 100 200

6L MCM 200

7L MCM 200

12 DMM

13 DMM

14 DMM

26 DMM

Page 44: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

3.1.1 Dielectric-multilayer Mirror Construction

The dielectric-multilayer mirrors were designed for a KrF

eximer laser operating at 248 nm. The mirror coatings from the

fused-silica substrate to the atmosphere are given by:

S[(HL)24

H(L)2]AIR (3.1)

where

and

S = Fused-silica substrate.

H = High refractive-index material. (Al-O,) .

L = Low refractive-index material, (Si0„) ,

AIR = Surrounding air medium.

That is. the fused-silica substrate is followed by twenty-four

layers of (HL) , one layer of H and finally a double layer of L. The

quarter-wavelength design thicknesses and refractive indices for the

dielectric mirror layers and substrate are givien in Table 3.2.

Table 3.2 The refractive indices and design thicknesses for thequarter-wavelength coatings and substrate of the dielectric-multilayer mirrors for the KrF eximer laser.

Layer orSubstrate

RefractiveIndex

DesignThickness (nm)

Fused Silica

H (A12 3)

1.50

1.66

1.0 E+07

37.3

Page 45: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

L (Si02 )

,2 1

10

1.46

1.46

42.5

84.9

3.1.2 Metal-coated Mirror Construction

The mirror coatings from the fused-silica substrate to the

atmosphere for the aluminum-coated mirrors are given by:

S[A1]AIR

where S = Fused-silica substrate,

and Al = Aluminum coating.

Similarly, for the copper-and-silver-coated mirrors, the

following formula applies:

(3.2)

where

and

S[CuAg]AIR

S Fused-silica substrate,

Cu Copper coating,

Ag = Silver coating.

(3.3)

1 oThe final half-wave length layer L serves to protect the mirrorfrom environmental threats, e.g., corrosive excimer-laser gases.

Page 46: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

11

As a short-hand notation the copper-and-silver-coated mirrors

are called CuAg mirrors. The short-hand notation does not imply the

copper and silver are bound chemically. The design thicknesses and

refractive indices for the substrate and coatings for the

metal-coated mirrors are given in Table 3.3.

Table 3.3 The design thicknesses and refractive indices for thesubstrate and coatings of the metal-coated mirrors. The optical propertiesfor the evaporated metal coatings are taken from Ref. 26.

Layer orSubstrate

Wavelength(nm)

RefractiveIndex

ExtinctionCoefficient

DesignThickness

(nm)

Fused Silica 248 1.50 1.0 E+07

Aluminum 260 0.19 2.85 200

Copper 200 0.94 1.51 100

Silver 260 1.45 1.35 200

3.2 Mirror Optical Characteristics

Optical properties of interest in the experiment were limited

to pre-irradiation reflectivities and transient reflectivities at

near-normal incidence. As the reader may verify by checking the

Page 47: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

12

experiment geometry in Fig. 4.2, the transient transmission could

2not be obtained. The pre-irradiation reflectivity for the

metal-coated and dielectric mirrors was measured using a CARY 2300

spectrophotometer at the Air Force Weapons Laboratory, Kirtland Air

Force Base. The complete set of pre-irradiation mirror

reflectivities is found in Appendix D. Except when stated

elsewhere, all reflectivities were measured with the incident light

source ten degrees off normal.

A companion work on the permanent effects of electron beam

irradiation of laser mirrors was carried out by Scronce (1). The

mirrors used by Scronce were of the same design as the mirrors used

in the transient study, summarized here.

3.2.1 Dielectric Mirror Reflectivities and Transmissions

A theoretical model, developed by Scronce, for the dielectric-

multilayer mirrors, produced analytical reflectivities comparable to

the experimentally obtained reflectivities. By accounting for

variable indices of refraction and source light angle of incidence,

Scronce was able to to match the thoeretical and experimentally

m> transient transmission measurements were made because themirrors were placed immediately in front of the LINAC beam portwindow. The mirror placement immediately in front of the beamwindow was necessary to insure the mirrors were exposed to themaximum dose and dose rate. Placing the mirrors further from thebeam port window would have reduced the dose and dose rate at theirradiation spot because of beam divergence.

Page 48: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

13

determined peak reflectivities for the dielectric-multilayer mirrors

to within 1.6% at half maximum. However, the off-peak interference

patterns did not match at the relative maxima and minima, suggesting

the need for further refinements in the theoretical model (1).

Pre-irradiation theoretical reflectivities for various angles

of spectrophotometer light source incidence and the experimentally

measured reflectivity for a typical dielectric-multilayer mirror are

shown in Fig. 3.1. Although the reader may be able to identify

slight variations between the experimentally measured reflectivity

in Fig. 3.1 and the reflectivity curve for other dielectric mirrors,

the variations are believed to be insignificant with respect to the

theoretical model from Scronce (1).

The general expression describing conservation of energy for

light incident upon a surface is given by Eq. (3.4),

1 = R + (T + A) (3.4)

where T Transmission,

R Reflectivity,

and A = Absorption.

Because the experimental design allows for measurement of mirror

reflectivity only, the transmission and absorption terms are shown

as the combined term (T + A)

.

The dielectric mirror transmission can be estimated by solving

Eq. (3.4) for (T + A) given the reflectivity, or found by

Page 49: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

14

experimentally measuring the transmission in a spectrophotometer.

No significant differences were noticed in comparing the measured

transmission to the transmission found using Eq. 3.4 for the

dielectric mirrors used in the steady-state study. Thus,

pre-irradiation transmissions of the mirrors in Table 3.1 can be

found by using Eq. 3.4. The transmissions found using Eq. 3.4 are

accurate to within a few percent of the experimentally-measured

transmissions for the dielectric mirrors.

3.2.2 Metal-coated Mirror Reflectivities and Transmissions

Typical pre-irradiation reflectivities for the two types of

metal-coated mirrors are shown in Fig. 3.2 and 3.3. The mirror

reflectivities were determined spectrophotometrically using the CARY

2300' s double-bounce technique described in section 4.1.1.

Theoretical reflectivities for the metal-coated mirrors can be

derived given the refractive indices for the coatings as a function

of wavelength. Hecht and Zajac state the reflectance of a metal

plate is given by Eq. (3.5):

R(M={(ne(X)-l)/(n,(X)+ l)}*{(n.(X)-l)/(n

c(X) + l)}* (3.5)

where R = Reflectivity of the metal mirror,

ncH Complex index of refraction = n^-in

nj and nj = Real numbers,

and

X = Wavelength.

i = Square root of -1.

Page 50: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

15

Equation (3.5) is constrained to the simplest case of normal

incidence and an index of refraction of unity for the medium of

incident light. Although empirical relations for the complex index

of refraction are available, comparisons of the metal-coated mirror

reflectivities will be based on Fig 3.4. 3.5 and 3.6 taken from

Hecht and Zajac (2) (3).

Figures 3.4, 3.5 and 3.6 show the spectral reflectance at

normal incidence for metal film coatings of silver, aluminum and

copper (2). The reader will notice many similarities in comparing

the typical aluminum-coated mirror of Fig. 3.2 to the

aluminum-coated mirror of Fig. 3.4.

Also, by comparing Fig. 3.3 to Fig. 3.5 and 3.6, the reader

will notice the thickness of the silver on the copper- and

silver-coated mirrors accounts for most of the reflectivity. The

silver is the dominant reflecting medium while the copper acts as an

adhesive between the fused-silica substrate and silver layer.

According to H.J. Donnert, the mirror manufacturers found the silver

layer would not adhere to the fused-silica substrate without an

interface material, like copper, to join both materials (4).

Because the silver layer dominates, the copper and silver-coated

mirrors can be approximated by a single-layered silver mirror,

without concern for the optical properties of the copper underlayer.

Although the technique used in section 3.2.1 can accurately

predict the pre-irradiation transmission for the dielectric mirrors.

Page 51: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

16

no similar technique is available to predict the the transmission

for the metal-coated mirrors because the metal coatings have

non-zero absorption.

Page 52: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

17

_1 1 1 " T '

_ +J J>

frill" " 9 S- e - 5

z1

*? V VI

3E <c? <i> <6*

-

11 !

i ] |

1

i

i 1 .'

_ *-5-**iv^O--t*"*

-

X»tAI»3B[JOa

au-

Page 53: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

18

M

/^TAT^aet^oy

i

Page 54: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

19

^TAt^oax^«»d

Page 55: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

20

XlIAJ^== ti !>y

Page 56: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

21

">1

r 5 5m *1

:

:

-j 1 i L

** f*i*=>" i j»a

i

Page 57: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

22

A^rAf^atjf j,ey

Page 58: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

23

4. Experimental Methods and Materials

Before any mirrors could be irradiated, pre-irradlation mirror

reflectivity had to be measured. Then the mirrors could be exposed

to radiation from the electron linear accelerator, LINAC, and tested

for transient radiation damage or statistically significant

deviations from the pre-irradiation

reflectivity.

4.1 Determining the Pre-irradiation Mirror Reflectivity

For each mirror the square of the reflectivity was measured

using a CARY 2300 spectrophotometer at the Air Force Weapons

Laboratory, Kirtland Air Force Base. The CARY 2300 can perform

three basic measurements: reflectivity squared, transmission, and

optical density. The CARY 2300 is incapable of measuring the

reflectivity of a sample directly because the spectrophotometer

source light bounces off the sample twice before being measured in a

photo-multiplier tube (PMT).

4.1.1 Operations of the CARY 2300 Spectrophotometer

Before measuring the reflectivity of a sample mirror, the

mirror is placed in the spectrophotometer sample chamber and on the

optics plate shown in Fig. 4.1. Once the mirror face is aligned on

the optics plate in the chamber, the CARY 2300 spectrophotometer

uses one of to three lamps to generate the light incident on the

sample mirror. The lamps cover the infrared and near-infrared

Page 59: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

24

(tungsten), visible (quartz-Iodide), and ultraviolet (hydrogen)

wavelength regions with the quartz-iodide lamp overlapping

wavelengths in the infrared and ultraviolet regions. The CARY 2300

varies the size of an aperture depending on the lamp intensity so

the light intensity incident on the sample mirror remains roughly

constant for a given wavelength.

In measuring the square of the mirror reflectivity, the CARY

2300 uses a double-bounce technique. In the double-bounce technique

the source light hits one mirror location approximately 10 degrees

off the mirror normal. Then, the reflected light coming from the

sample mirror is reflected back to the sample mirror to a second

location but still at 10 degrees off normal. Finally, the light

coming from the second reflection off the sample mirror is collected

in the photomultiplier tube of the CARY 2300.

Mirror reflectivity could be found by taking the square root of

the PMT signal before the signal is recorded on the

spectrophotometer strip-chart. But, because the strip-chart curves

needed to be digitized for input to a personal computer regardless

of original data form, no circuit to take the square root of the PMT

signal was installed. Instead, each reflectivity-squared curve, i.e.

the unaltered PMT signal recorded on the strip-chart, was digitized

by eye and converted to a reflectivity curve using the HP 9816

personal computer.

Initial reflectivity measurements on all mirrors were conducted

between 200 and 900 nm at the slowest strip-chart speed. The

Page 60: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

25

Initial measurements showed no absorption centers, so chart speed

was increased for subsequent measurements. After determining the

mirrors had no absorption centers, the reflectivity spectrum was

recorded only in the region of interest between 200 run and 371 nm

for both the dielectric mirrors and for the metal-coated mirrors.

The complete set of pre-irradiation reflectivities for all mirrors

is found in Appendix D.

4.2 Mirror Irradiation

All mirrors were irradiated using an electron linear

accelerator at the EG&G Irradiator Facility, Goleta, California.

Due to the complexity of performing a single irradiation and the

details behind preparing the LINAC for an irradiation, only the

basic steps in irradiating a mirror will be covered. Thus, the

specific accelerator settings required for each electron beam pulse

will not be discussed because the accelerator settings were solely

under the control of the EG&G employees.3

However, the beam

alignment and energy, mirror placement and optics arrangement were

controlled by the researchers and will be discussed.

Tfote, additional preparation was needed for installation of a watercooling system for the LINAC beam port on the longer pulses andhigher current irradiations. The water cooling system was installedto prevent the beam port window from melting during the long pulseand high current irradiations.

Page 61: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

26

All mirrors, except dielectric mirror 26. were irradiated with

one single pulse of electrons from the LINAC. Mirror 26 was exposed

to multiple irradiations because of its use in optics alignment.

4.2.1 Preparing for Mirror Irradiation

Before any mirrors could be irradiated, the experiment's

optical components needed to be set up and properly aligned. The

aligned optical components and the supporting electronic equipment,

shown in Fig. 4.2. are identified in Table 4.1:

Table 4.1 A list of the optical components of Fig. 4.2. theirmanufacturers and serial numbers.

Equipment Name

Video Cameramodel C1000 type 18

Temporal Dispersermodel C1370-01

High Voltage PowerSupply model C1307

Monochromatorcat. no. 82-498

U.V. Flash Lamp

Trigger Input toFlash Lamp

Camera Power SupplyCI000

Polyprocessor FrameImage Analysis System

Manufacturer ID/Serial Number

Hamamatsu Tu Co. Ltd. 38027479

Hamamatsu Tu Co. Ltd. 83038034

Hamamatsu Tu Co. Ltd. 83038034

Jarrell Ash, Div. of 728427Fisher Scientific Co.

Chelsea Instruments Ltd. L59109

Chelsea Instruments Ltd. 127

Hamamatsu Tu Co. Ltd. 83027479

Hamamatsu Tu Co. Ltd. 8303003

Page 62: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

27

2 Inch CylindricalOptics Holder

Quartz Condensing Lensf= 0.2 mPulsed Xenon LightSource Model 3021

Keyboard & Monitor

Ealing

Ealing

Chelsea Instruments Ltd. FX108AU

Hamamatsu Tu Co. Ltd. 8303003

The equipment on the optical table (see Fig. 4.2) was aligned

in two steps. First, with a sample mirror mounted in the optics

holder, the xenon flash lamp was fired manually until the flash

passed through a condensing lens, off a pellicle mirror and formed a

spot on the sample mirror roughly 1.6 cm in diameter. Next, the

xenon flash lamp was fired manually until the streak camera

detector, i.e. the video camera, output was maximized. The light

signal received at the streak camera originated at the xenon lamp,

had passed through two condensing lenses and an aperture and

reflected once off the sample mirror and twice off the pellicle

mirror. The relative output for the pulsed xenon light source is

shown in Fig. 4.3.

After aligning the equipment on the optical table, the spot the

xenon flash lamp hit the sample mirror had to be aligned with the

LINAC electron beam spot, also about 1.6 cm in diameter. The

electron beam alignment was accomplished using a HeNe laser and a

piece of aluminum foil covered with a phosphor.

Page 63: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

28

In a previous set of experiments, dielectric mirror 26 was used

as a target for beam alignment. Thus, dielectric mirror 26 was

chosen again for alignment of the beam for the transient

experiments. With mirror 26 in the optics holder, the xenon lamp

was fired until the light from the xenon lamp was centered on the

HeNe laser beam. Next a phosphor-coated aluminum sheet was placed

over the beam port window of the LINAC. By firing the LINAC and

adjusting the beam with a series of electromagnets, the LINAC beam

and the laser beam were aligned based on the location of the glowing

beam spot on the phosphor-coated aluminum sheet. After turning the

accelerator off. mirror 26 was removed and replaced with a pristine

sample mirror, coated side facing the pellicle mirror. Finally,

before the pristine mirror could be Irradiated, an edge of the

mirror was marked with a pencil or pen to align the mirror with a

similar line on the optics holder. Alignment of the mirror in the

optics holder was necessary for post-irradiation steady-state

studies for Scronce (1).

Periodically after beam alignment and just prior to the

irradiation of a mirror at a unique dose and dose rate, radiochromic

film was attached to the surface of mirror 26 to check beam shape,

intensity, and strength. With mirror 26 in the optics holder, the

mirror and the radiochromic film were exposed to a series of beam

pulses. Then, the radiochromic film was developed by the EG&G

personnel, yielding an average pulse shape, strength, and intensity.

If the pulse shape strength or Intensity did not check with their

Page 64: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

29

expected shape or values, appropriate adjustments were made to the

LINAC by the controller. A sample output of the radiochromlc

dosimetry is shown in Fig. 4.4.

4.2.2 Beam Shots with Block-in and Block-out

With the mirror alignment completed and beam shape, strength

and intensity confirmed, the pristine mirror in the optics holder of

Fig. 4.2 was irradiated with a beam of electrons. Mirror

irradiation consisted of two LINAC shots, one with a large copper

block in the path of the electron beam (block-in) and the other shot

with the copper block out of the path of the electron beam

(block-out).

The block-in shots allowed the researchers to estimate the

amount of noise associated with each electron pulse. With the

block-in, none of the electron beam made its way through the copper

block to the mirror. Thus, the signal received at the detector and

recorded on magnetic tape was a combination of noise, xenon

spectrum, condensing lens transmissions and mirror reflectivities.

The block-out pulse did the actual irradiation of the mirror

i.e. with no copper block to absorb the electron beam, the beam hit

the mirror. For mirrors irradiated once, the beam hit the mirror in

position A (see Fig. 4.5). However, mirrors irradiated twice were

shot in position A, then rotated in the optics holder to irradiate

position B. The signal received at the detector for the block-out

shots was a combination of noise, xenon spectrum, mirror

Page 65: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

30

reflectivities, lens transmissions and the transient reflectivity

effects of the electron beam pulse.

4.2.3 Beam Characteristics

The mean energy of the electrons leaving the LINAC beam port

window was 16.5 MeV. The electron beam was focused to irradiate a

circular area about 1.6 cm in diameter. The beam was Gaussian in

shape and could be approximated by a square wave in pulse length.

For confirmation of the beam shape profile, see Fig. 4.4. A sample

black-and-white photograph showing a typical beam pulse shape, pulse

length, and net current for the block-out irradiation of dielectric

mirror 14 is shown in Fig. 4.6.

4.3 Data Recording

For each block-out and block-in shot, the monochromator

repeatedly scanned through a preset window of wavelengths while the

video camera recorded during a preset time interval determined by

the temporal disperser. In most cases, the time window began before

the electron pulse initiated. For example, for dielectric mirror 13

irradiated in position A, the time window included data values

recorded 30 ns before the beam hit the mirror to 313 ns after beam

initiation. In the figures of Appendix A, all times are reported

with respect to the pulse initiation. Thus, for dielectric mirror

13 irradiated in position A. the time intervals reported begin at

-30 ns and end at 313 ns.

Page 66: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

31

The data collected at the streak camera detector were made of

471 scanllnes each with 512 channel values. Each channel value

corresponds to a specific time while each scanllne corresponds to a

wavelength. Time and wavelength calibrations will be taken up In

the following section. A sample of data from the block-out file of

dielectric mirror 14 Irradiated in position A is shown in Table 4.2.

The light Intensity versus wavelength and time data were

collected at the streak camera detector and sent to EG&G's VAX-11

Computer for analysis. Once in the computer memory, the data were

analyzed on the Hamamatsu monitor and dumped to magnetic tape. For

the studies mentioned in the thesis, the data were recorded in

binary format on the VAX tape, read from the VAX tape at Kansas

State University and restored on a tape compatible with the KSU

computer system. The program used to strip the binary data from

EG&G's VAX tape is listed in Appendix B.

In addition to the data on magnetic tape, color pictures

representing the data stored on magnetic tape were taken by the EG&G

personnel. The color levels on the pictures represent the varying

light intensities seen at the streak camera detector versus time and

wavelength. A sample color photograph for the block-out Irradiation

of dielectric mirror 14 is shown in Fig. 4.6. A complete set of

color photographs can be found in Appendix E.

Page 67: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

32

Table 4.2 Sample data from scanllne number 10 for theblock out irradiation of mirror 14.

icanl i no Number 1082 90 103 99 78 0779 06 or. 84 110 10193 SO 03 07 88 C3

101 87 03 04 7 7 89_cr, 70 79 80 71 77

131 0-1 79 77 61 07

69 76 09 98

Ofl LOS 104 100 96 84 7666 79 75 07 90 77 9307 102 84 92 90 82 9077 83 82 03 79 87 7572 76 72 99 93 06 8200 60 95 111 06 78 7505 65 03 00 78 70 6300 01 83 75 03 66 7074 73

7177C6

G676

8283

5673

6264

79 60 67 60

«l 61 70 62 G2 73SO 68 68 61 G2 53 65 57 66 61 71 59 69

63 68 51 69 60 53 5661 57 60 59 64 60 6037 51 " « S7 62 68 04 71 46 in r,l al r," S " « g M CI 60 60 60 S

"S 606 ' SI 42 66 59 67 G6 71 41 ti it I, i. .,

7007

62 46 67 07 70 03

72 04 07 70 6363 Gl 54 72 60

,00 92 03 90 98102 86 99 98 |]6117 139 125 ion 93127 in 110 128 106

66 73 72 77 63 60 72 91 104 9395 75 77 86 90 65 05 75 02 8409 102 127 116 91 03 05 00 02 9305 or, 106 121 97 100 05 04 92 116119 no 114 170 107 137 144 135 131 MO122 132 130 126 125 113 104 105 91 11 7122 107 117 115 113 M 112 116 115 100

Page 68: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

33

4.4 Time and Wavelength Calibrations

4.4.1 Time Calibration

Time calibration of the block-out and block-in data files was

based on the time interval settings of each irradiation. Table 4.3

lists the time interval data were recorded for each block-out and

block-in shot for the mirrors in Table 3.1.

Table 4.3 The block-out and block-in time intervals for eachmirror of Table 3.1 and the block-out pulse length and mean current. Thetime interval defines the start and end of data recording.

MirrorNumber

IrradiationPosition

Time Interval(ns)

Start End

Block-

Pulse Length(ns)

-out

Mean Current(A)

1L A -40.0 to 88.0 20.0 5.0

2L A -160 to 183 200 0.225

2L B -50.0 to 293 200 0.225

6L A -40.0 to 88.0 20.0 5.0

7L A -30.0 to 313 500 0.225

7L B 250 to 593 500 0.225

12 A -30.0 to 313 500 0.225

12 B 250 to 593 500 0.225

13 A -160 to 183 200 0.225

13 B -50.0 to 293 200 0.225

Page 69: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

34

W A -40.0 to 88.0 20.0 5.0

26 A -30.0 to 313 500 0.225

To find the time, in ns, corresponding to a channel for any of

the 512 channels in a block-in or block-out data file, Eq. 4.1 was

used.

t(CH) = tw* (CH - 1) / 511 + t (4.1)

where t B The time from the initiation of the electron beam pulse(ns),

lw- The time interval of Table 4.3, (ns).

CH Channel number (integer from 1 to 512).

and tQm The starting time in the time interval of Table 4.3,

(ns).

For example, for mirror 1L, the time corresponding to channel

40 is found by using Eq. 4.1:

Given: tw

from Table 4.3 is 88.0-(40.0) or 128 ns. the time

interval for the irradiation,

and * fr°m Table 4.3 is -40.0 ns, the starting time in

the time interval

.

Substituting values,

t(40) = 128 ns * (40-l)/511 + (-40.0 ns)

Page 70: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

35

yields t(40) = -30.2 ns, i.e. 30.2 ns before the electron pulse hit

the sample mirror. Similarly, at channel 161, t(161) equals

0.33 ns, roughly the start of the electron beam hitting the mirror.

Channel 241 corresponds to 20.1 ns after the beam initiated firing

on the mirror and also marks the end of the electron beam pulse for

mirror 1L. Finally, channel 512 marks the end of data recording,

88.0 ns after the initiation of the electron beam.

4.4.2 Wavelength Calibration

The wavelength calibration found using a mercury lamp spectrum

and a least-squares fit is given in Eq. 4.2 =

X(SC) = -0.361 nm * SC + 375.1 nm (4.2)

where X = Wavelength, (nm)

,

and SC = Scanline number (integer from 10 to 480).

For the 480 scanlines per data file, the wavelength range spans from

201 nm to 371 nm. Equation 4.2 is a linear least-squares fit based

on the known wavelengths of the mercury lamp spectrum and

corresponding scanline numbers read off the Hamamatsu monitor.

Unfortunately, a check of the wavelength calibration given by

Eq. 4.2 was impossible due to a recording error on the VAX magnetic

tape. The researchers hoped to check the initial calibration based

on the values read from the monitor by using the mercury lamp

spectrum recorded in the same format as the irradiation data.

However, an error in recording occurred, thus leaving the

Page 71: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

36

researchers with the calibration In Eq. 4.2. The loss of the mercury

spectrum was not catastrophic because the researchers recorded the

necessary information to perform the calibration in a separate log.

The difference between the two calibrations was expected to be

insignificant.

Page 72: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

37

v s3

o t:

et

3 c

en

u oE

=) x-C i.

i

7>

o -0t e- C

IT> O

a. Oto s U) a

rJ,®

J CO

J

-J \J

u > js

H CU -Ha j= m

8 Em3 <u

h E4-> a)

a mo a

,

CO

_C 01 i

H E

Page 73: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

38

<«f-

4>

c cj to mv • 00 rHa. u y3 © -ri

t > r-iUHrlCJ -o <u

u -I sCO —

a. -o 0)O -H -;>

wi-H 4J ffi

CO 3 IM

Uoj o QE h (4

•H nj hN —iV •>

a. cqX a)a) -a H

3 a,aj to B

Page 74: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

39

^nd-^ng e/»TiD[oy

£

Page 75: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

40

20 ns pulse, 5 A, 20 pulses, 601 x 11 nm filter

Lamp set to 3.60 V, Peak dose = 2.102Total Integrated dose 0.56 MRad cm

F..HM =4.1 mm, Centered at X = -37.5

i» m 3m

Flg. 4.4 Sample radlochromlc dosimetry output for metal-coated mirror 6L. The radiochromic film was shot20 times with the beam used to irradiate mirror6L.

Page 76: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

41

Page 77: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

(a)

SHHKAll £ ii

MM**Mlllil 1! iimi'S*

BB ggjggg

(b)

Fig. 4.6 Sample color photographs of raw data (a)

and beam profile (b) for the electronirradiation of dielectric mirror 14. Thecolor levels identify the light intensitylevel at the camera detector.

Page 78: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

43

5. Theory of the Experiment and Data Analysis

The purpose of this section is to detail the theory and data

analysis directly related to the design of the experiment. The

optical theory is used in interpreting the light intensity seen at

the streak camera detector, while the theory on data analysis is

developed to provide transient mirror reflectivity.

5.1 Theory of Experimental Optics Arrangement

The theory of the experiment is based on the optics design

shown in Fig. 4.2. From Fig. 4.2. the signal light intensity versus

wavelength and time seen at the streak camera for a block-in pulse,

i.e. a beam shot where the electron beam does not irradiate the

mirror but is stopped in a copper block, is given by Eq. 5.1.

I(X.t) = I(X.t) * T(X.t) * T(X,t) * R(X.t) * R(X,t)2 * L(X. t) (5.1)

SCDi FL LI L2 PM P

where IsCDi

= slSnal light intensity seen at the streak camera

detector for the block-in irradiation.

IFL ~ Xenon light intensity leaving the xenon flash lamp,

T^j Transmission for the condensing lens in line with

the xenon flash lamp and pellicle mirror,

T, 9 = Transmission for the condensing lens in line with

the pellicle mirror and streak camera detector,

Rp„ The pristine sample mirror reflectivity.

Page 79: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

44

Rp * The pellicle mirror reflectivity,

L = A factor estimating the fractional loss of lightfrom the xenon flash lamp due to geometry and othermechanisms, £ L £ 1,

t = Time,

and X Wavelength.

Similarly, for a block-out irradiation, i.e. an irradiation where

the electron beam is incident on the mirror, the signal light

intensity seen at the streak camera detector is given by Eq. 5.2.

2I(X,t) = I(X,t) * T(X,t) * T(X,t) * R{X,t) * R(X,t) * L(X. t) (5.2)SCDo FL LI L2 IM P

Where ISCDo

= SiSna l light intensity seen at the streak camera

detector for the block-out irradiation,

Ryu The sample mirror reflectivity under irradiation

from the electron beam.

and all previous definitions for the other variables hold. Color

photographs, representing the digitized data of the block-in and

block-out shots, are presented In Appendix E.

5.1.1 Simplification of Theory

Although Eq. 5.1 and 5.2 are exact, their utility is

questionable because the functional form of many of the variables is

Page 80: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

45

unknown, e.g. the analytical form of T(X.t). To utilize theLI

equations to their full potential, several simplifications are used

to obtain the signal ratio. (See Section 5.2 for the definition of

the signal ratio.)

First, the optical properties of the critical spots on the

pellicle mirror and the condensing lenses did not change as a result

of the block-in or block-out shots because neither were exposed to

the LINAC electron beam. The pellicle mirror and condensing lens

placement were partly based on electron beam divergence. The EG&G

personnel determined the electron beam divergence using an electron

transport code. Based on the transport code results, the condensing

lenses and critical reflecting spots on the pellicle mirror were

placed out of the diverging electron beam path. The critical

reflecting spots on the pellicle mirror are labled A and B in

Fig. 4.2. Because the condensing lenses and critical spots on the

pellicle mirror are not affected by the electron beam, their optical

properties were not altered from the irradiation.

"Tfote, the pellicle mirror was exposed to the electron beam duringblock-out irradiation but not at the critical points shown in Fig.4.2. Using the electron range techniques described in Faw et. al.,the residual range of the 15 MeV electrons used in the experimentsis easily calculated (7). For 15 MeV electrons, an approximatevalue of electron range in the mirror's fused-silica substrate is7.5 g/cm (8) (9). Assuming negligible effects from mirror coatingsand using tabulated densities of dry air and fused silica of0.0012 g/cm and 2.16 g/cm3 respectively, the residual range of a15 MeV electron incident on a 1 cm thick fused-silica substrate iscalculated to be 5.34 g/cm2 (10). That is, the 15 MeV electronsincident on the mirrors have enough energy remaining after leavingthe mirror to travel about 4500 cm in dry air. Thus, the electron

Page 81: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

46

Secondly, the xenon lamp intensity did vary, but not

dramatically, from block-in to block-out shots. According to the

bulb manufacturer, Chelsea, "...there is a shot-to-shot fluctuation

on lamp output of up to some 1% peak to peak", resulting from arc

discharging starting at a slightly different place on the end

electrodes (5). According to Moore, Davis and Coplan the spectral

output of the xenon bulb varies slightly during the flash and

exhibits the spectral features of the fill gas. xenon, for the flash

energy used in the experiment (6). By designing the experiment to

measure the relative change in reflectivity, the ratio of data

values represented by the signal ratios is devoid of any dependence

possible light intensity fluctuations of the xenon lamp. Even if

the shot-to-shot fluctuations were significant, the signal ratios

described in Section 5.2 would account for the variation with the

normalization function A(X)

.

5.2 Data Analysis

The transient reflectivity for the mirror was assumed to be of

the form of Eq. 5.3:

R(X.t) = R(X) * f(X,t) (5.3)T SS

beam hit and possibly interacted with the pellicle mirror. Theelectron range technique was confirmed at the EG&G IrradiatorFacility by the LINAC operators using an electron transport code.

Page 82: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

47

where R_ = Transient mirror reflectivity.

and t = Function describing the relation between thepre-irradiation and transient reflectivities alsocalled the transient signal response function.f(X.t) is calculated from the block-in andblock-out data files as shown in section 5.2.1.

If the transient response of the laser mirrors was desired for

a specific time and wavelength inclusive in the data files, the

block-in and block-out data files could have been consulted.

Alternatively, the color pictures showing the streak camera signal

light intensity versus time and wavelength could have been used.

However, neither analysis technique is very useful. The error from

using individual observations at a given time and wavelength is

largely due to the presence of auto-correlated error. Secondly,

the photograph technique is too crude to produce quantitative

results.

See Fig. 4.6 for a sample color photograph detailing the time andwavelength dependence of the block-out signal light intensity fordielectric mirror 14.

7The error for a given data point is called auto-correlated ifdependent on the error or value of previous data. Almost everysignal-ratio plot in Appendix A demonstrates auto-correlation withrespect to the Fourier transform curve, the model of thesignal-ratio data. If the error were random, one would expectnearly the same number of signal-ratio data points randomlydistributed above and below the Fourier curve. However, thesignal-ratio data do not fall randomly above or below the Fouriercurve, thus suggesting auto-correlation.

Page 83: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

48

Bearing in mind the statistical problems associated with

analyzing signal light intensities for single data points, the

researcher's main concerns became the general trends of the

transient signal response function over discrete pre-determined time

intervals. The block-out and block-in data files were integrated

over pre-determined time intervals and used to calculate the average

behavior of the transient signal response function. Then, the

average transient mirror reflectivity was calculated based on the

behavior of the transient signal response function for the same time

interval

.

The time integration of Eq. 5.3 was warranted for a second

reason, error analysis. Although the transient reflectivity is

hidden in the noise of the block-in and block-out data files, too

much auto-correlated noise is present to confidently predict

transient reflectivity behavior. By integrating over pre-determined

time intervals, the transient signal response function for a single

wavelength and time is lost, but the average behavior of f(X,t) in

the time region is now known. In addition, the error for the time

integrated region is usually smaller than the error associated with

a single time and wavelength observation. See section 5.3 for

details on error analysis.

To obtain the estimate for the transient reflectivity, during a

defined time interval, the steady-state reflectivity was multiplied

by the averaged value of the transient signal response function also

integrated over the same time interval, as stated in Eq. 5.4:

Page 84: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

49

R(X.t1-> t

2) = R(X) * f(X,tr> t

2 )

ss(5.4)

where R(X,tj -> t_) = The average transient reflectivity for time

region tj -> t

f(X.tj -> tg) = The average transient signal response

function for time region t1

-> t„, also

called the signal ratio for the time region,

and tj & t2

= Time limits of the pre-determined time

regions defined in Table 5.1. (t1

< t„).

5.2.1 Determining f(X,t) and ffX.tj -> t„)

Notice f(X,t) could be found by taking the ratio of block-in

and block-out signal data as stated in Eq. 5.5.

f(X,t) = I(X,t) / I(X.t) / A(X)SCDo SCDi

(5.5)

where A(X) is defined as

t=t

A(X) = I(X).t) dt /SCDo

I(X).t) dt (5.6)SCDi

where tg

= The starting time, t., in region number one of

Table 5.1.

'e

The ending time. t„ , in region number one of

Table 5.1.

Page 85: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

50

and all other variables are defined from previous equations. For

example, for dielectric mirror 14. t and t are -40.0 ns ands e

0.0 ns, respectively.

Now Eqs. 5.5 and 5.6 can be simplified.

f(X,t) = C2(X) * R(X.t) / (C1(X) * R(X,t) * A(X)) (5.7)IM PM

t=t

A(X,t) = R(X,t) dt /PM

t=t t=t

R(X,t) dt * C3(X) (5.8)IM

respectively, where C1(X). C2(X) , and C3(X) are constants with

respect to time resulting from applying simplifications of section

5.1.1 to Eq. 5.5 and 5.6. Furthermore, C3(X) = C2(X)/C1(X). Note,

C1(X), C2(X) and C3(X) cancel after substitution of Eq. 5.8 into

Eq. 5.7 leaving a ratio of transient and pre-irradiation mirror

reflectivity integrals.

For a given wavelength. A(X) is the ratio of the integrals of

block-out and block-in reflectivities before the electron beam has

hit the mirror. The need for the function A(X) is twofold: First,

without A(X), Eq. 5.5 could yield artificially high or low values of

f(X,t) depending on the measured signal light intensities.

Secondly, no difference in mirror reflectivities is expected before

the electron beam hits the mirror. That is, the signal light

intensity, measured at the streak camera detector, before the beam

hits the mirror should be the same for block-out and block-in

Page 86: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

51

irradiations. A(\) affects f(X,t) by accounting for any differences

in the measured signal light intensities from a block-out to a

block-in irradiation occuring before the beam has hit the mirror.

Also. A(X) accounts for any differences in the xenon lamp

intensity between block-out and block-in shots. Although the second

simplification of section 5.1.1 is reasonable, the light emitted

from the xenon flash lamp could unexplainably vary between block-in

and block-out shots. A(X) is a normalizing factor used to match the

pre-irradiation and transient signals, contained in the block-in and

block-out files, respectively, in the time region prior to the time

the beam hits the mirror.

To find ffX.tj -> tg ) from f(X,t). integrate Eq. 5.7 over the

time region tj -> t„. Namely,

f(X.tj -> t2) =

f(X,t) dt tj i t £ tj

otherwise.

(5.9)

Now, substituting Eq. 5.7 and 5.8 into 5.9 yields the signal ratio

for tjit$ t2 .

Page 87: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

52

f(X,tj -> t2 ) R(X.t) dt /

IMR(X,t) dtPM

R(X,t) dt /IM

R(X,t) dtPM

(5.10)

A complete set of signal ratios is contained in Appendix A.

Note, the ordinate axis label identifies the signal ratio as

Il(out)*I2(in)/(Il(in)*I2(out)). The II and 12 labels are

short-hand notation for the integrals of the signal light intensity

terms in Eq. 5.10. In the expression, II and 12 cover the different

time regions defined in Table 5.1. with 12 always defined as region

one. The (out) and (in) designations differentiate between the

block-out and block-in beam shots. From left to right, the

integrals in Eq. 5.10 are Il(out), Il(in), I2(out) and I2(in).

In addition to the signal ratios, two sets of error bars and

the inverse of a fast-Fourier transform of the signal-ratio data are

plotted. The significance of the error bars is outlined in the

error analysis section, section 5.3, while the necessity of the

fast-Fourier transform analysis is covered in section 5.2.3.

Page 88: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

53

5.2.2 Time Integration

To calculate the signal ratio, ffX.t, -> t ), the block-in and

block-out data files were integrated with respect to time over

defined time regions. In the preliminary analysis of the block-out

and block-in data, the effects of noise on the data were obvious and

pronounced. To reduce the effects of noise on the transient data.

Eq. 5.3 was integrated over the time regions listed in Table 5.1.

Three numerical integration techniques were tried for

integrating the block-in and block-out data until the best technique

was determined. The three methods used for numerical integration

were the Romberg, trapezoidal and simple-summation techniques.

After finding the optimal integration technique, trapezoidal

integration, all subsequent integrations were carried out using the

optimal technique. A discussion on the integration techniques and

their accuracies is found in reference 12. A listing of the

computer programs used to perform the numerical integrations is

ofound in Appendix B.

gAlthough the Romberg integration technique promises to yield thebest estimate for the tightly-packed spiked data, the additionalcomputer effort and cost did not warrant the added accuracy. Infact, the maximum relative error, in comparing the simple-summationtechnique with the Romberg technique, computed using

Error = - ^0InberS Estimate - Simple-Summation Estimate /Romberg Estimate

was 0.005. Thus, even the crudest estimator of the integral, thesimple-summation technique, gave nearly identical results comparedwith the Romberg estimate. The differences between the Romberg andtrapezoidal estimates were negligible.

Page 89: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

54

All three techniques provided nearly identical estimates for

the total integral over all times for the block-in and block-out

data. Thus, because the techniques were nearly Identical and the

trapezoid technique differs from the simple-summation technique only

at endpoint evaluation, the trapezoidal technique was chosen the

best integral estimator.

Table 5.1 Time regions used for the time integration of the block-outand block-in shots. The times t^ and t„ represent the start and

end of the time region, respectively. Also listed in the table are themirrors numbers, with corresponding irradiation positions, having thattime region division type.

Mirror Irradiation Time Region Region Time RegionNumber Position Division Type Number

(ns)

«2

(ns)

14 A I 1 -40.0 to 0.01L A 2 0.0 to 5.06L A 3 5.0 to 10.0

4 10.0 to 15.05 15.0 to 20.06 20.0 to 25.07 25.0 to 41.38 41.3 to 57.59 57.5 to 73.810 73.8 to 88.0

12 A II 1 -30.0 to 0.026 A 2 0.0 to 37.07L A 3 37.0 to 70.5

4 70.5 to 1045 104 to 1386 138 to 1717 171 to 2058 205 to 2389 238 to 27210 272 to 313

Page 90: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

55

12 B III9

1 -30.0 to 0.07L B 2 250 to 284

3 284 to 3174 317 to 3515 351 to 3846 384 to 4187 418 to 4518 451 to 4859 485 to 51810 518 to 55211 552 to 593

13 A IV 1 -160 to 0.82L A 2 0.8 to 20.9

3 20.9 to 41.04 41.0 to 61.15 61.1 to 81.26 81.2 to 1017 101 to 1218 121 to 1429 142 to 16210 162 to 183

I3 B V 1 -50.0 to 0.252L B 2 0.25 to 33.8

3 33.8 to 67.34 67.3 to 1015 101 to 1346 134 to 1687 168 to 2018 201 to 2359 235 to 26810 268 to 293

9For time region III, the region number one files are the same asregion one files for the position A shots of the same mirror. Forexample, for mirror 7L, position B. the region one files used in Eq.5.10 are the same files used for mirror 7L, position A.

Page 91: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

56

5.2.3 Fast-Fourier Transform Analysis of the Signal Ratios

Before Eq. 5.4 could be used to predict the transient behavior

of the laser mirrors, the noise in the signal ratios needed to be

lessened or removed. According to Aubanel and Oldham the signal-

ratio data could be smoothed using moving-average, least-squares or

Fourier-transform techniques (11). Both the least-squares and

Fourier methods were tried for noise reduction. This researcher

found the least-squares method was ineffective in predicting a

statistically significant fit to the signal-ratio data, even up to

tenth degree polynomials. Instead, the smoothed signal-ratio

curves from the Fourier transform provided a better prediction of

the transient signal ratios of Eq. 5.4.

The Fourier-transform technique used the filter function, f, ,

suggested by Reference 11, to remove high frequency noise. Namely,

fk

1 - (WE)2 k = 1,2,3, ...E-l

k = E.E+1 N-l(5.11)

Because the least-squares method was ineffective, the details ofthe technique are not included. The least-squares method used toanalyze the signal-ratio data sought polynomial fits up to the tenthdegree. In order for a given polynomial model to be judged the bestfit for a given model, the t-test statistics for highest orderparameter in the next two polynomial models needed to beinsignificant at the 95% confidence level. Polynomial models wereused exclusively in the least-squares analyses.

Page 92: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

57

where

(N-l)/2 when N Is oddE =

N/2 when N is even

and k ranges from zero to the number of data values, N, minus one.

f^ is a commonly used digital filter function used to remove high

frequency noise found in the recording of electronic data.

The smaller the value chosen for E, the more denuded of high

frequencies the signal-ratio data became. Figures 5.1 to 5.6

illustrate the effects of varying E on the signal-ratio data of

dielectric mirror 14, irradiated in position A, during time region

seven.

5.2.3.1 Determining the Optimum E-value for the Fourier Transform

In choosing the best value of E for a particular Fourier

transform of a signal ratio, an F-test was performed comparing the

variances about the transform curve for E = 2 and E = 3. If the

F-ratio was greater than 1.164, the critical F-statistic for 470

degrees of freedom in the numerator and denominator, the E = 2 model

was rejected. If E = 2 was rejected, the F-ratio would be

The critical F statistic for 470 degrees of freedom in thenumerator and denominator was calculated using SAS, a statisticalprogramming language, and confirmed using an International Math andScience Library routine named MDGAM. All statistics, unlessotherwise stated are at the 95% confidence level.

Page 93: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

58

re-calculated for the E = 3 model. Then, if the F-ratio Is less

than the critical F-statistic, the E = 3 model would be accepted.

For example, in Fig. 5.1. the original signal-ratio data and

Fourier transform with E=2 are plotted. Similarly, in Fig. 5.2, the

original signal-ratio data and the Fourier transform with E=3 are

plotted. The variances of the original signal data about the E=2

and E=3 Fourier transforms are 89.1 and 76.8 respectively. The

variances correspond to an F-statistic of 1.159, i.e. insignificant

with respect to the critical statistic of 1.164. Thus, the E=3

model is not significantly different than the E=2 model and the E=2

model is accepted.

The variance about the Fourier transform curves are calculated inthe same manner as the mean square of residuals is found inleast-squares analysis. That is.

I(fjtx.tj -> t

2 ) -^(x.tj -> t2 ))

5

1=1

N - 1

where f^X.tj -> t2 ) is the signal ratio at X ,

Hj(X,tj -> tg) is the Fourier estimate of the signal ratio

at X ,

2a is the estimate for the population variance,

and i=l to N data values. (N = 471 for the signal-ratiofiles.)

Page 94: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

59

For all but one signal ratio, the E=2 Fourier transform was

accepted. Finally, the Fourier transform curves were substituted

for the signal-ratio term in Eq. 5.4 and used to calculate the

transient reflectivity for the laser mirrors. The transient mirror

reflectivities are found in Appendix C. Sample transient

reflectivity curves for each mirror type are found in Fig. 5.15 to

Fig. 5.17.

5.3 Error Analysis

Error analysis will be broken into three sections: error on

pre-irradiation reflectivity measurements, error on the signal

ratios and error on the transient reflectivities.

5.3.1 Error from Pre-irradiation Reflectivity Measurements

A source of error, not taken into account in the final

transient reflectivity curves, partly resulted from the digitizing

of the CARY 2300 strip-chart output. When the data from the

strip-chart needed analysis and digitization, no mechanical or

computer digitizer was available for use. Thus, the strip chart

curves were digitized by hand, i.e. numerical values were assigned

to points on the strip-chart curve using the naked eye. Next, the

digitized points were fed into the HP 9816 computer before being

plotted.

An estimate of 4% relative error was made for the error

resulting from using the plotting program, manual digitization of

Page 95: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

60

the strip-chart data, and the CARY 2300. The error estimate is

based on the thickness of the line plotted on the strip-chart, the

effects of the natural cubic spline routine in the HP plotting

program, and the performance of the CARY 2300 spectrophotometer.

Once plotted, the pre-irradiation reflectivity curves were

assumed invariable, i.e., no error bars were assigned to the

pre-irradiation reflectivity curves. Instead, the reflectivity

curves were treated as constants in the propagation of error from

the signal-ratio files. Treatment of the curves as constants is

allowable considering the magnitude of the error resulting from the

signal-ratio data.

5.3.2 Error on Signal Ratio Data

5.3.2.1 Mean-Square-Residual Technique

Two techniques were used to assign error to the signal-ratio

data. In the first technique, the population mean square residual,

MSRES, is calculated using Eq. 5.12:

HSRES = SSRES / (N - df) (5.12)

N

where SSRES =J

(f.^.tj -> t2 ) - ^ (X.tj -> t

2))2

.

i=l

the sum of squares due to residual,

N = The number of data points in thesignal-ratio file (=471).

Page 96: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

61

df = The degrees of freedom associated with thefast-Fourier transform,

fj(X.tj -> t_) = The signal ratio at X ,

and p.fAj.t -> t_) = The fast-Fourier transform estimate at X .

The definition for the HSRES is taken from least-squares theory and

poses a problem for evaluation using the Fourier analysis. In

least-squares analyses u would be defined as the predicted value

at Xj during tj -> tg. However, because the least-squares technique

failed to supply fits to the signal-ratio data, fl, was re-deflned as

stated above. The difficulty in evaluating Eq. 5.12 arises in

assigning the proper degrees of freedom, df , in the denominator. In

the least-squares method, the form of the regression function and

Its associated degrees of freedom are known, while for the Fourier

technique neither are known.

A general rule-of-thumb allows for the estimation of the

degrees of freedom associated with a given curve. Stated in

equation form,

df rs L + 1

where L is defined as the number of times the second derivative of

the curve changes sign when evaluated in the defined range of data.

Furthermore, the number of sign changes can be approximated by the

number of bends in the curve. Of course the use of the rule should

be limited to estimating the degrees of freedom (14).

Page 97: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

62

For most of the signal-ratio Fourier curves, the number of

bends do not exceed six. Thus, the denominator of Eq. 5.12 would

vary from 465 to 470 depending on the individual Fourier-transform

curves. To standardize the error computation, Eq. 5.12 was

simplified to

MSRES ^ SSRES / 470 (5.13)

because the effect of varying the degrees of freedom was minimal in

comparison to the size of the SSRES and N.

The population estimate of the standard deviation, the square

root of the mean square residual, was calculated and used to form

one set of error bars on the signal-ratio plots. Because no

repeated measurements were made, the standard deviation, based on

the total population of data, is an acceptable standard deviation

for each signal-ratio data value. For the signal-ratio plots in

Appendix A, an approximate 95% confidence interval about the

Fourier-transform line, based on the MSRES error estimate, is

represented by the dash-dot lines. The dash-dot lines are

plus-or-minus two times the square root of the mean-square-residual

error estimate.

5.3.2.2 Moving-Mean-Square-Residual Technique

The other set of error bars on the signal-ratio plots resulted

from developing a moving-mean-square-residual technique, MMSRES.

Page 98: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

63

The MMSRES defines a MSRES for a data point Inside a window of data

points, instead of the whole population (13).

To calculate the MMSRES for a data point in the signal-ratio

file. MMSRES, begin by numbering the 470 signal-ratio data points

from 1 to 470, e.g.

:

12 3 i-1 i i+1 468 469 470

Next, define a half-window size, NN, about the data point i and look

at the window defined by i and NN.

i-NN i-NN+2 i-1 i i+1 i+NN-2 i+NN

i-NN-1 i+NN-1

In the window defined by NN and i, there are 2(NN) + 1 data points.

The moving mean square residual for data point i is defined in Eq.

5.14:

I(f^tj -> tj) - MjCX.^ -> t

2 ))2

MMSRES. = — — (5 i 4 \I 2 * NN l *"

where the summation is taken over the full-window region, 2(NN) + 1

data points.

In evaluating the moving mean square residual for i-NN < 1 or

i+NN>N, the window size is adjusted to account for the loss of data

Page 99: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

64

values on the shortened side. For example, with NN=50 and i=l , the

summation over nearest neighbors covers data points 1 to 51 . For

i=2, the summation covers data points 1 to 52 and so on until the

window reaches its full size at i=51 . Similarly, when calculating

the MMSRES for 1=425, the summation over nearest neighbors covers

points 375 to 470. Written another way.

i+NN

MMSRES1JSL

} (fjCX.tj -> t2 ) -HjCX.tj -> t

2 ))2

and

MHSRESj = J^ 1"™

i + NN - 1

for KNN (5.15)

N(=470)

I (fjCX.tj-^) - Uj (X,tr>t2))

2

i + NN - 1

for i > 470-NN (5.16)

Finally, to obtain the estimate of one standard deviation about data

point i, the square root of the MMSRES is taken.

The advantage of using the MMSRES technique lies in the shape

of the signal-ratio plots. The reader should notice from the

signal-ratio plot in Fig. 5. 14 the MSRES technique was very crude in

estimating error in the upper wavelength region of the plot. The

crudeness stems from accounting for the whole population variation

Page 100: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

65

even though the variation about the Fourier-transform line for a

window of data points could be smaller. That is, the variance is

not constant within the signal-ratio data from low to high

wavelengths.

To understand the effects of window size on the value of the

error assigned to each signal-ratio data value, one must compare

various window sizes. For example. Fig. 5.7 shows the signal-ratio

data and Fourier-transform line for metal-coated mirror 2L,

irradiated in position A. with the block-out. Also shown on the

graph is a plot of the Fourier-transform line plus or minus two

times the square root of the MMSRES with a half-window size, NN, of

5. Although, with NN=5, the MMSRES technique seems to adequately

describe the error in the upper wavelength region, the first

derivative of the error associated with the lower wavelengths is

13discontinuous. Conversely, in Fig. 5.13 with NN=150, the MMSRES

technique adequately describes the lower wavelength error, while the

error for the upper wavelength signal ratios is overestimated.

Thus, an intermediate half-window size of fifty was found to be the

optimum size. The MMSRES technique adequately described the error

throughout all wavelengths with NN=50. The effect on the MMSRES for

various NN is seen in Fig. 5.7 to 5.13.

The first derivative of the error is expected to be continuousbecause it describes a real system.

Page 101: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

66

In comparing the error estimates from the two techniques.

MMSRES and MSRES. the MMSRES technique tends to give smaller error

bands when the magnitude of the signal ratio dampens out. The

researcher believes the MMSRES describes the error for the signal

ratio of Fig. 5.14 better than the MSRES. Although, the MMSRES

technique yields larger error bars in the lower wavelengths than the

MSRES. the increase is not significantly different.

Finally, an approximate 95% confidence interval about the

Fourier-transform curve, based on the MMSRES variance estimate, is

plotted with a triple-dash on the signal-ratio plots of Appendix A.

The triple-dash curves are the Fourier curve estimate at data point

Aj plus-or-minus two times the square root of the MMSRES variance at

point Xj. The MMSRES technique for estimating error was used in the

propagation of error to find the transient reflectivities. All

errors assigned to the transient reflectivities result from the

MMSRES technique.

5.3.3 Error on the Transient Reflectivities

As stated earlier in section 5.3.1, the pre-irradiation,

reflectivity is assumed constant and error free with respect to

error propagation. Using standard error propagation techniques, the

error associated with the transient reflectivity equals the product

of the transient reflectivity and two times the square root of the

moving mean square residual at a given wavelength. That is, the

Page 102: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

67

error bars around any transient reflectivity are found using

Eq. 5.17,

RpCX.tj -> t2) ± RggCX) * 2(MMSRES (X. t, -> t

2 ))0.5

(5.17)

Because the MMSRES values for a signal-ratio file are not

continuous, a natural cubic spline program was used to evaluate the

pre-irradiation reflectivity at the same wavelengths as the MMSRES.

The transient reflectivity plots in Appendix C show the transient

reflectivity curves and the associated error based on the MMSRES

technique, and Eq. 5.4 and 5.17. In addition, the pre-irradiation

reflectivity is also shown on each plot of Appendix C. The MMSRES

technique error bars represent an approximate 95% confidence

interval about the transient reflectivity.

Page 103: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

68

|I I I I

|I I I I

| I I I I | | | | || I I I I

-

: " I I I I I I I I M I I I

Cl) r-H

> •st

u-1 aU

M in0) <M

<Clno> ZI „ cui) tr>/(UI)Er.(»no) u

Page 104: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

69

CCV>°>EI«CLH> tI>/C"T>ZI»C»n°> tl

Page 105: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

70

; M I I| I I I I

| I I I I | I I I I | I I I I | I I I

cc^nojsroc"!) in/viizt»cv**} tr

9

Page 106: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

71

|I I I I | I I I I | I I I I | I I I I

|I | | |

-

I I I I I I I I I I I I I I I I i I I I i i i i

0) —

c t-3 OU 4J

>

<U CN•HU 003 C

8o cH £4J 14-1

& 8 sS2

<Cino)2r.(ui> I[)/(u[)j|.ono) ||

Page 107: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

72

I I I I |I I I I

I 'I I I

I

' I I 'I

' I I 'I

' i i i I t i i I

COno)ji.(ui) tI>/(ut)2io(VK>) tr

Page 108: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

73

:'

'I H ' ' ' '

I' ' '

'I

I I I I|

' ' i i|

i i i M °

:

i i i i I i i i I i i i I i i i I1

' I ' r-i 'i i m g £2

S "H c

m tn

t*

IS s

u -u

u m•Hki onP cO -H(JH J-l

3T3 T3Cnj -U

0)

o c•H *HM UjCTJ QJ

U T3

- a J

<C^no) 2I » CuT)i r)/fui) 2i« no) j[

Page 109: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

74

1

I ' I ' I

I

I

I

I'

I' |

i.i. Ljgjl]C 1,1,1

otom

a r.a +*

n en

s >

8 £

i I. 3

-

« « • • *

00 Qi Cfl U-,

0> w t, N

Page 110: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

75

H (0 ~-f

--> S CO

o (HueE

O i—l —

f

CO .

£enC

U W MO M vDT3 tO

U1 £ 00J 2 CW -rH

>n

u d d u0 X 3^H-O

^i -H

nJ « at (N

CC^no) 2r » Cu T ) tr>/C'JT)SI»C ,>no) tr

3

i

Page 111: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

76

COno)2r.cu f ) tn/CUT>2I.C»no> II

Page 112: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CO»"°)ZI«Cui) I[)/(Ui) 2 i, no) n

Page 113: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

78

C(V<a>Zt*(ui) m/cu i)2l"On°) II

Page 114: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

79

C«no) 2I „ (ut) H)/(U[) 2 i#0no) [[

I

Page 115: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

80

<<v">°>2r« t"t) ri>/c<Ji>zr»<i"0) tt

a

Page 116: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

81

COno) Sr „ cut) [r)/(ut)Zi.(»no) [[

s

Page 117: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

82

<<»! Ai^anjjoy

Page 118: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

83

^ItAI^aotJoy

Page 119: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

84

CD (0

Page 120: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

85

6. Results

The results of the experiment are broken into two categories:

the results based on the signal ratios, and the transient

reflectivity results. Note, for all irradiations, the energy of the

incident electrons in the beam was about 16.5 MeV.

6.1 Results from the Signal Ratios

As mentioned before, the complete set of signal-ratio plots for

the time intervals defined in Table 5.1 are listed in Appendix A.

The main results to be drawn from the plots of the signal-ratio

files are the regions where the signal ratio deviates significantly

from unity.

Significant deviation occurs when the Fourier transform curve

plus or minus two times the square root of the MMSRES error estimate

falls outside of a signal ratio equal to unity. Ideally, for no

transient effect, the signal ratio equals one. Listed in Table 6.1

are the wavelength regions the signal ratio has statistically

significantly deviated from unity for each mirror.

Page 121: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

86

Table 6.1 Time and wavelength regions of statistically significantdeviations from unity of the Fourier transform of the measuredsignal ratio plus or minus two times the square root of the MMSRESfhe time region numbers and division types corresponding to thestatistically significant time regions are defined in Tables 5 1 andb.2. respectively. The irradiation positions are defined inFig. 4.5. Also listed under the mirror number is the pulse length.

t and mean current, I of the electron beam in the block-outirradiation.

Statistically Sifrnif irant-

MirrorNumber

Irradiation RegionPosition Number

Time Region

( ns)

Wavelength Region( nm )

1L

T = 20 ns

A 3

I = 5 A

5.0 to 10.0 343 to 371

2L

t = 200 ns

A

I = 225 mA

None None

2L

t = 200 ns

B

I = 225 mA

None None

6L

t = 20 ns

A

1= 5 A

None None

7L

T = 500 ns

A 234

5678

F= 225 mA

0.0 to 37.037.0 to 70.570.5 to 104104 to 138138 to 171171 to 205205 to 238

342 to 371332 to 371328 to 371330 to 362314 to 371

None346 to 371

Page 122: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

87

7L 3

4

56

7

8

910

11

500 ns I = 225 mA

12 4

5

6

7

8

910

t = 500 ns

12

I = 225 mA

2

3

A

56

7S

91011

500 ns I = 225 mA

13 5

6

789

10

284 to 317317 to 351351 to 384384 to 418418 to 451451 to 485485 to 518518 to 552552 to 593

70.5 to 104104 to 138138 to 171171 to 205205 to 238238 to 272272 to 313

250 to 284284 to 317317 to 351351 to 384384 to 418418 to 451451 to 485485 to 518518 to 552552 to 593

61.1 to 81.281.2 to 101101 to 121121 to 142142 to 162162 to 183

324 to 371316 to 371300 to 352278 to 350298 to 346288 to 350276 to 350280 to 371280 to 344

261 to 371279 to 371274 to 360264 to 371271 to 371263 to 371256 to 371

266 to 371254 to 371254 to 371248 to 371256 to 371248 to 371236 to 371246 to 371242 to 371259 to 371

291 to 359274 to 371278 to 371272 to 371270 to 371274 to 371

200 ns I = 225 mA

Page 123: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

88

13 B 4 67.3 to 101 286 to 3595 101 to 134 284 to 3716 134 to 168 286 to 3667 168 to 201 None

8 201 to 235 270 to 37113

9 235 to 268 276 to 371*10 268 to 293 276 to 371'

T = 200 ns I = 225 mA

14 A 6 20.0 to 25.0 282 to 3717 25.0 to 41.3 262 to 3718 41.3 to 57.5 250 to 371

T = 20 ns T = 5 A

26 A 8 205 to 238 280 to 3719 238 to 272 266 to 37110 272 to 313 257 to 371

T = 500 ns I = 225 mA

The statistically significant wavelength and time regions

define the times and wavelengths of significant transient response

from the mirror. With the exception of the noted time and

wavelength regions of dielectric mirror 13 irradiated in position B.

all of the significant regions mark increases in the signal ratio.

For example, the measured signal-ratio curve deviated significantly

13For dielectric mirror 13. irradiated in position B. the Fourier

curve plus or minus two times the square root of the MMSRES wasstatistically significant and less than unity. For all otherstatistically significant wavelength regions, the transient signalwas greater than unity.

Page 124: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

89

above unity during the time region 20 ns to 25 ns in wavelengths

282 nm to 371 nm for dielectric mirror 14. irradiated in position A.

The interpretation of the statistically significant deviations from

a unity signal ratio is taken up in the conclusions section.

6.2 Transient Reflectivity Results

In interpreting the transient reflectivity curves in

Appendix C. note the statistically significant deviation regions

listed in Table 6.1 are the same regions found by inspecting the

transient reflectivity curves. The regions of significant deviation

of transient reflectivity from the pre-irradiation reflectivity

match with the Table 6.1 regions because the pre-irradiation

reflectivity of Eq. 5.4 is assumed error free.

As stated earlier, by assuming the pre-irradiation reflectivity

in Eq. 5.4 is a function of wavelength without an assigned error

resulting from computer analyses, digitization, or spectrophotometer

performance, the reflectivity can be treated as a constant in the

propagation of error in the equation. Thus, the signal-ratio curves

could be viewed as transient reflectivities with pre-irradiation

reflectivities of unity for all wavelengths. The pre-irradiation

reflectivity, if lacking an error estimate, does not affect the

predicted transient reflectivity or associated error bars. Thus,

the regions of statistically significant deviation of transient

reflectivity from the pre-irradiation reflectivity match the regions

of Table 6.1.

Page 125: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

90

For example, for dielectric mirror 14, the signal ratio

deviated from unity significantly in time regions 6, 7. and 8. The

estimate of the transient reflectivity deviated in the same time

regions and corresponding wavelengths as the signal ratio. Thus,

the reader need only look at the signal-ratio plots to know the time

region and wavelengths of any statistically significant deviation.

However, if an estimate of the magnitude of the change in

reflectivity is desired, the reader should consult the transient

reflectivity curves.

Page 126: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

91

7. Conclusions and Recommendations

The effects of radiation on the mirrors will be discussed

according to mirror variety because each mirror type exhibltied

statistically significant transient response. The conclusions are

based on the available data and should not be treated as the

absolute answer to whether transient radiation damage occurs without

substantiating studies.

7.1 Conclusions on the Dlelectric-mul tilayered Mirrors

According to H.J. Donnert. the significant transient response

demonstrated by the dielectric mirrors could be due to the mirrors

taking on the properties of a metal-coated mirror (4). Prior to

Irradiation, the electrons present on the dielectric mirror

reflecting surface were primarily occupied in the covalent bonds of

the coating materials. The mirror behaved like a ceramic, meaning

the conduction band was sparsely populated. According to the

hypothesis, upon irradiation, the high-energy electrons from the

beam gave the dielectric material a populated conduction band

similar to a metal. For a short time, less than 400 ns to 500 ns.

the mirror would exhibit the reflecting properties of a metal-coated

mirror because of an Increase in electrons in the conduction band.

The hypothesis suggests the dielectric mirror behaves like a

metal-coated mirror by displaying a non-zero conductivity and a

complex index of refraction. Verification of the hypothesis might

Page 127: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

92

be found in using a complex index of refraction for the dielectric

mirrors in the theoretical model of Scronce (1).

The temporary metallic behavior explained the measured increase

in the intensity of the reflected light. At lower wavelengths,

where the reflectivity of the pristine dielectric mirror was close

to unity, the light intensity could have increased due to the

de-excitation of the electrons deposited on the mirror surface or

the secondary electrons created by electron bombardment. Note, no

statistically significant deviations resulted in a transient

reflectivity greater than unity.

The measured light intensity increased for the upper

wavelengths for two reasons. First, the light intensity probably

increased from the induced metallic properties. As the dielectric

mirror behaved like a metal mirror, the reflectivity for the upper

wavelengths was characterized by a metal more than the dielectric.

Because the reflectivity was small for the dielectric mirror the

induced metallic reflectivity represented an increase in the signal

light intensity. Also, the same process of electron de-excitation

probably contributed to the increase in measured signal light

intensity.

Statistically significant deviations from the pre-irradiation

reflectivity were observed for all of the dielectric-multi layered

mirrors. From a practical standpoint, the transient behavior

appeared as an increase in mirror reflectivity for all mirrors

except dielectric mirror 13. irradiated in position B. This

Page 128: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

93

researcher does not claim an actual Increase in reflectivity

occurred because the transient measurements are not absolute.

However, the researcher does claim the signal light intensity

increased under irradiation at the wavelengths listed in Table 6.1.

For dielectric mirror 13. irradiated in position B,

the statistically significant decrease in signal light intensity is

not completely understood. Because no other dielectric mirror

exhibited similar behavior, one is tempted to dismiss the

unsubstantiated observation. However, possibilities of defective

mirror construction, improper alignment, or rapid de-excitation of

the electrons emitting in the upper wavelengths could explain the

transient behavior.

7.2 Conclusions on the CuAg-coated Mirrors

The CuAg-coated mirrors exhibited the least amount of transient

response. In only one time region for mirror 1L. the transient

reflectivity deviated significantly from the pre-irradiation

reflectivity. This researcher views the CuAg-coated mirrors the

least likely to exhibit transient radiation damage.

Although the electron beam may have affected the CuAg mirrors,

the effects were masked by the beam strength with respect to the

number of conduction electrons on the mirror surface. The number of

electrons in the beam was on the order of 10E+11 to 10E+12. compared

to about 10E+19 present in the conduction band of the mirror

coatings. By accounting for beam electrons not interacting at the

Page 129: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

94

surface of the mirror or passing through the mirror, the magnitude

of the beam electrons interacting at the coating surface is further

reduced

.

Thus, the number of electrons interacting with the metal

coating was much less than the number of conduction electrons. The

increase in electron density would not change the reflecting surface

properties from the pre-irradiation metallic characteristics. That

is. the pre-irradiation reflectivity was based on the properties of

a metal reflector. The presence of more electrons resulting from

irradiation only enhances the pre-irradiation metallic reflectivity

behavior.

7.3 Conclusions on the Al -coated mirrors

At first, the same reasoning used in concluding the CuAg-coated

mirrors were unaffected by the electron beam would seem to apply for

the Al-coated mirrors. Aluminum-coated mirror 6L seemed to confirm

the 10E+12 electrons present in the beam did not significantly

affect the 10E+18 valence electrons in the irradiated beam spot or

the 10E+19 valence electrons on a pure aluminum mirror surface. The

lack of transient response indicated the electron beam did not

effect mirror 6L significantly.

However, aluminum-coated mirror 7L displayed significant

transient response in both position A and B. In comparing current,

beam pulse length and number of electrons incident on the mirror,

one would expect significant transient behavior to occur with mirror

Page 130: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

95

6L before mirror 7L, I.e. the dose-rate, and total dose of electrons

was greater for mirror 6L than mirror 7L.

One theory suggests the surrounding atmosphere played an

important role in determining the transient response of the mirrors.

By allowing exposure of the aluminum-coated mirrors to the

atmosphere, the aluminum metal was oxidized. Thus, instead of

having a pure aluminum reflecting surface, the reflecting surface of

the mirror became a composite of metallic aluminum and aluminum

oxide. Because some of the valence electrons of the pure aluminum

would be occupied in covalent bonds with oxygen, the number of

conduction band electrons would be reduced. As the density of

aluminum oxide molecules at the reflecting surface increased, the

mirror reflectivity would change from metallic to dielectric in

behavior. The theory suggests significant oxidization of the

aluminum mirror surface has occured and the mirror now behaves as a

dielectric mirror.

7.4 Recommendations for Future Work

In order to confirm the conclusions stated above and to improve

on the experimental results, the following are recommended:

1. Repeat the experiments using identically constructedmirrors and dose and dose rates to confirm, statisticallymirror transient behavior.

2. Perform periodic reflectivity measurements on pristinemirrors stored in either an oxidizing or inert atmospheresto detect changes in mirror reflectivity subject tostorage. Mirror degradation with exposure to various

Page 131: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

96

atmospheres contributed to reflectivity changes in arelated work by Ferrel (26).

3. Verify experimentally the normalization factor A(X) tobe time independent by studying the transient behavior ofthe xenon lamp output.

4' md

d?n

iT £" eXPerlment to ™™"™ transient transmissionand to confirm when the mirrors no longer statisticallydeviate from pre-irradlation behavior.

To measure transient transmission, modifications of the

existing LINAC facility would be necessary to compensate for

electron beam divergence. In order to insert the required detectors

behind the mirror to measure transient transmission, the mirror

would have to be moved farther away from the beam port window. To

maintain the same dose and dose rate of electrons, the electron beam

divergence would have to be controlled, possibly with another series

of electromagnets.

Page 132: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

97

ACKNOWLEDGEMENTS

The author thanks the Air Force Systems Command, the Air Force

Office of Scientific Research, and Universal Energy Systems. Inc.

for providing the opportunity to spend an enriching summer at the

Frank J. Seller Research Laboratory. USAF Academy. Colorado Springs,

CO. Additional thanks go to the members of the Lasers and Aerospace

Mechanics Directorate, in particular Majors Albert Alexander and

Terry Deaton. for aiding in the research. The author acknowledges

the support from Mr. Charles Bowles and Lt. Col. Jack Fannin for

their help in using the VAX-11 computer system.

The author thanks the employees of EG&G in Goeleta. CA. for

their assistance in using their electron LINAC facility: Paul A.

Zagarino. Stephen S. Lutz. Steven G. Iverson. Steven A. Jones. Ron

Sturges, and Paul E. Nash.

The author gratefully acknowledges the support and patience of

Mr. Roger Gurke of the Department of Physics. Dr. John Boyer of

Statistics and the entire staff of the Department of Nuclear

Engineering: Dr. N.D. Eckhoff. Dr. H.J. Donnert, Dr. R.E. Faw.

Dr. J.K. Shultis. Dr. J.F. Merklln and Dr. G.G. Simons. Without

their help and guidance, the study would have been exceedingly more

difficult.

My fellow graduate students. Mr. Mark A. Ferrel. Mr. Gary W.

Scronce and Mr. W. Gu are thanked for their support and efforts

instrumental to the completion of the study.

Page 133: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

98

Next, the author thanks Ms. Connie Schmidt for her help in

preparing the thesis.

A special thanks goes to Dr. Hermann Donnert for introducing

the area of research to the author and his guidance throughout the

graduate school program.

Finally, I thank my wife Stephanie and my parents for their

encouragement and support throughout my graduate studies.

Page 134: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

99

References

1. G. W. Scronce. "Effects of Nuclear Radiation on the OpticalProperties of Al

2 3+Si0

2Mirrors in the Ultraviolet Region",

M.S. Thesis, 1986 (unpublished).

2. E. Hect and A. Zajac, Optics . 4th ed. (Addison-Wesley, DonHills, Ontario, Canada), 1979, p. 88.

3. H. Anders, Thin Films in Optics , translated by J. N. Davidson,(Focal Press Limited, English Edition), 1967.

4. H. J. Donnert, Kansas State University, (privatecommunication)

.

5. "Pulsed Xenon Light Source Type 3021", Chelsea InstrumentsLimited, (London), (unpublished).

6. J. H. Moore, C. C. Davis and M. A. Coplan, Building ScientificApparatus, (Addison-Wesley. Reading, Massachusetts) 1983, pp191-194.

7. R. E. Faw, A. B. Chilton and J. K. Shultis, Principles ofRadiation Shielding. (Prentice-Hall, Englewood Cliffs. NewJersey), 1984. pp. 67-74.

8. L. Katz and A. S. Penfold. Rev. Mod. Phys. 24. 28 1952.

9. M. J. Berger and S. M. Seltzer, "Tables of Energy Losses andRanges of Electrons and Positrons". N.A.S.A. . 1964.

10. CRC Handbook of Chemistry and Physics. 58th ed. (CRC PressCleveland, Ohio), 1978. p. B-155.

11. E. E. Aubanel and K. B. Oldham. "Fourier Smoothing", BYTE Feb1985. pp. 207-218.

12. R. W. Hornbeck. Numerical Methods . (Prentice-Hall, EnglewoodCliffs. New Jersey), 1975.

13. J. Boyer, Kansas State University, (private communications).

14. J. Boyer, Regressi on and Correlation . Kansas State University1985, (unpublished).

15. A. A. Hopkins, R. E. Kelly, L. D. Looney and P. B. Lyons,"Transient Attenuation in Optical Fibers", presented at theSPIE annual technical symposium, San Diego, California. 1984.

Page 135: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

100

16. P. B. Lyons, L. D. Looney and J. W. Ogle. "Radiation-InducedTransient Attenuation of PCS Fiber", presented at PHOTON '83international conference on optical fibers and theirapplications, Paris. France, 1983.

17. P. J. Brannon, R. W. Morris, and J. B. Gerardo,"Nuclear-radiation-induced absorption in optical materials-presented at the SPIE Southwest Conference on Optics, 1985.'

18. V R Honnold. C. C. Berggren. R. R. Emmert and G. D. ThomasAn Investigation of Basis Mechanisms of Transient High Energy

Radiation Effects in Insulators and Semiconductors". (HughesAircraft Co., Fullerton. California), 1964.

'

19. D. Neamen. W. Shedd and B. Buchanan, "Effects of IonizingRadiation on Dielectrlcally Isolated Junction Field Effect

400?405tOrS "' IEEE TranS

'

°n NUCl'SCl -- Vo1

"19 "• 6 1972

' PP-

20. E. A Neyis. "Alteration of the transmission characteristics offused silica optical fibers by pulsed ultraviolet radiation".fcr-Ii. vol. 540 Southwest Conference on Optics. 1985.

21'

I'- £',Frankovoskv and H. Shatzkes. "Study of Effect ofHigh-Intensity Pulsed Nuclear Radiation on Electronic Parts andMaterials

.(IBM Federal Systems Division. Owego. New York),

22.

23.

130D'l9^7

tOn and °" "' Arnold"D1 «=>«s. Faraday Soc. vol 31.

P' «n^^ D

'H

"GI11

'IEEE Trans

- °n Nucl. Sci. NS-14. 6p. 62, 1967.

24'

48,\STia£' "* °' L"

G^isson•

Bul1-*" Ceram

-Soc

-vo1 -

25' p' MT4

rtMeB'

G' "' Slge1

'

Jr " BuH- *"• Phys

-Soc

-vo1

'13 '

26. JL A. Ferrel. "The Effects of Radiation on the OpticalCharacteristics of (Si0

2+Zr0

2on Si Substrate) Mirrors", M.S.

Thesis, Kansas State University. 1986 (unpublished).

27. American Institute of Physics Handbook. 3rd

ed. . AmericanInstitute of Physics, (McGraw-Hill, Inc.), 1972, p. 6-1246—134, 6—149. '

Page 136: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Al

I

<

Z

Page 137: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A2

•HOC

H <o •

14-1 < Ul

H a. mu Bcd qk •H

4-1

-3! d4 0) OJ

H <r 11 to^H " e

M oiJ OJ CNA P

qj 1 o 09

3 •H OB

B 4-1 300 eS<u h •H 4ah g u9 1-1 a ocbC U h ijf «H H «

Page 138: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A3

T~T

nU)

piL

U<4.

i

)

ct a on

1 01

a l

am 7

a nc

cr — a

IDag r Ofg *> C 1

ill

r n. w» cT3-

- Di ~TJM 3

LTIa

10

N

ar

N

o

a<<-- Ul .

*J TJ *a —LN

«" L-CO LC Z L010-- EUl c

a u

OIL

L Ua

. o~01 E II

b. *JTJ

C<in°5Zr.(urj 1 I5 / Cuj> 2r « (-jno) tl

Page 139: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

(CVio)2i«(u() [r)/(u; )SI . c,.no) [[

Page 140: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CC*no)2 r . (ut) II)/ (unz[.ono) [r

Page 141: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

T^~TI ' I '

I'

I

i

|i

|

i|

aCD

f^

|

J

Q a** c

Qtf>•« a .

o ~LC\I- L—

9*0 LCCL010 -

"D OIL-> ai *j

L U

CHE a

fcvwj2i#Cuj) rn/c"OEr*cvw) [r

Page 142: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A 7

i~i~ra c. uc » o- o -a.-. t> i" i £

» »~ oO.TJ

a - "C L— +1 ^_l " U)

a ui- ~ sL t/l

3 hi -i

<Ku. m «x o

•o Z (-

D I- t-

o a*i Id If,

a • «a ww* i i

S NIE t »

L-Iij

NmC(V»)ZI*cuf) tI>/CUT)Zt*CVHq [I

Page 143: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

El

1

1

1 1 I| 1 1

||

i i

|

i i|

i i|

i i

|i i E

E- \J J

1 T E

*.—

.

E r"J

=

r 15 ! iE v'^w <\ i

r

\\v i\ i

"4\ s; o £ ?>

c »— — "D \ \ igf\ \ i: «* i' r

(S 01

; — n \\ ==£ N\ =

CD" -i ^ w 3% s— C L

_j « (/i

: uiL (*

: » ui- ~ I

r L <n

\

x\ \5Vs

> us ~: o a: a

U.01 «: so

o se t-:. [»>'

1-1-= a: a:

o a aI +J Ul tf)

o « »z aw™z » i

N N: k t

i is i

-

'-\1 1 1

Illllilll1 1 1 1 1

iii, ,

\"%i ,

,i=

I 01a a

(NJ «l

CC

LT3o au. c

ou-- Ill .

—L(\i-i L_

OTJ L[CL010-- E01 C

u. OIL

L U

Ccano) 2r .(ut) [I)/(u|)2I.(ino) [j

Page 144: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A9

a cT 6 am in -1 01m ai

LaCM

n ?

» «1

cc

r -Q1

n r ovn <1 C 1

n ijj

i

1 HI co-L

g — 3£N s

LTJa 9« c

a10

CM

4.~ s .

•J TIT-.

LIM

n —OTJ L

(VI

aNCM

C C L010«- EU) c

a u

01 OIL

L UOf

. a—01E «

CC^nO)2i. Cuj) m/C"!>2I.Cin03 tl

Page 145: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I 'I

I

I

I

I

I

I

I

<Cino32r . (u n tI)/CUf>2I»CVW»j tr

Page 146: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

IT

— - "0

0.T)- "

C L•« » ~

- .-« XL V)3 111 -o x au. in «X o

•a x\-

o o+j (/) [/)

: amm

DOC a-*

n *J C 1

(ll

r H- 01> cT>-

u - 3to •~T)N a

LTJa

U- C

- ^OTJ L— CCL010-"< E

_ Ul C~ a

- OIL(\i — »*)

L U_ 9

. 3~_ a

oOIE 01

1 i :

cc»no>zr»<un tn/cu nzi« ono) n

Page 147: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A12

H OT3CH C•H J3 CO

M CM

4-> En

ai -d dx <u « oco g u-i

• t-t

i-t 13 <U to

CM CO X As 4J 3

00 u

to e

Page 148: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Mi

; 1

1

l

r '

'

^ *^ ^Nt£«C I"0-0— -o 1

Z **1 c

: ~> acoi a -« w— C (.

- *> ~_J w u)

i Ul

:L Kai in

i - ~ XL inD LU -.

I K aU. U) *J

Z XT> X 1-

Z— c ~ ~mz CC E

a a az f CO U)

a » «z Q CM CM

1DNS<K + t

:

r^^-r "T~T"

_L _L

aa

nim

L

Q c»

m c- .

OXm l c

aNre

J. Qa »-.

Fc*»

1 -a »i ado a

a r amn u C 1 cm a

<t- mCT)

•0- an L«> -DOD — •a-* o

co ao a l

0<t-

ro

-LCM"* L

(

)

m"t OTJ L<M

a o u

N OIL

a

l\l 0*1L ua

. o~die a

_L _LCD CO

<c*no5 S i« (ui) m/omai.cvio) n

Page 149: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CC->no)2I „ Cij,) U)/CUJ)2I»{VW) II

Page 150: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A15

i -aT) 1

1

i ro n— o0.-0

•« *i,

3Ul-iIK

U. U) -p

Z1thJ»«

h- I-x cr.

o a o> i/i tno * *

- Q CM CM

: * i i

: o n v

E I

n •

I I I I

i» acu-

n » c•» a om

I ox'i/i a

. L c

a a a

m c -r -o a

1

•no ar on

a *j C 1 cm

u. ma ctjo- aL«

u > - 3-,"0 -.

CM 3 •oLT3a a LH- C L

atoIM

OU.~ a .vow

~I. CMM L

2DT> L

CM C C LC710-- EUl C

UuCM u oil

CM CIVL U

. a—.me a

Ccino 5 2i. Cun lt>/CU()2t«(VH>) [I

Page 151: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

1

1 1'

I'

I I I

La

atuc

3 c-r cd am n- .

-i oxt a+ L z

a

nF

a a

c -i -a u

i aoa ar orn

o *j C 1 cn;r <«- O)

• CTJ•o - a

L-Ju > -DO

-Tl-(M » o

LT)3 L

U. C L

an.- 13 .

*»*DPJ—

L1M— L—

T 0-0 L.

(\J C C L010-- EJl C

U

(M •D Oil.(M 3 *J

L3

. 3~a 0)e a

u. vtj

(Ono)2i,{U!) rr>/<"S)2r»CViO) It

Page 152: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

fill

'1

1

1 ' 1 1 ' 1 ' 1 ' |

"1

9 2 UC I Q-i "0m "0

1~ i ra a~ a \0.-0 \

a — ~C L "

i /-*»<>-i ~ in l _

tag

L DC \ r /a to •

- ~ s / L I3 UI —010U. Ul 4J

IvlhC w *»

(- t-K CC

o a a+i w ina t «a (M w &»a» i i

N V \h?4a: + + U "H

1 1i

ii

ii , yaa i i

• • 00 (0 * 0J

ini'i

L

co c—ii

- oxi aID L c

a m o

ei 9 c -r — a a

!oo 0.n c am13 +j C 1 c

int 4- 01to 01 C"0o-o

Lia "30

"-0-.c\j » o

LT3OIL

ato(M

0^- .

•h-opj-i

LN"- L- a

•* Otl L(\j C C L

070-- Ei/i c

a o

« OIL

La

01 E

m

Page 153: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A18

C On») 2I«<"?)tI)/C"I>EI» orioj i [

Page 154: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A19

CC-»no)2i. Cuf) CI>/(UI)ZI*CV«>) tr

Page 155: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

covno>2r«<"o rr>/c"nzr.cvio) tr

Page 156: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A21

in

nL

ca _ c<e n om

m ex'i a

rj n -m c <J

I c -E -a n

i aoa c.

B c ona v C 1 c

01r u. X

OCT)d - a

L«J- 3 3— T) -

rj a aCOLtil

a10

cm— 8 .

CT1N—

n -0T> L

i\j CCL070-- E

u

h - 07L

L UI

. —07E 3

((>n=)?.i.(ui) rr)/cui>2i«»no) [r

Page 157: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A22

o<a 4 Bs 3u 1 Ori o•H 03 in-anj -a %iH eg oM £•H A

C 4-1

O a,CN -H a

3 i-i to tn

if, i- VJ -j

Page 158: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A23

r^ >i

'i

i

i

E

Iiiii

I JJi

E —

15i

T

cg1

1—

t%: «2 5C M

_ „ D TJ- " TJ ! v_-: '-ix \<; 01 V: Q.TI v- C L

« +* •N_l v 10

»

f£r ^UJ

L or01 U)

\ ^--J^>-\• - ~ s \ " V-g_vl in \ ™+iZr\

3 III ~- \ 13^=> \o or o v^^ *— \u. tn +j \ jjs" \so v —S^ A

- -a I 1-

_ c - ~Dhl- V\ M. ck or

; o a c*> en en

« « w Jen. a CM CM

= * 1 1 V3r5 N N 1'(- ~^~ ! i

- K +•I^ il

•1 1 1 1 1 I , NF-F |i'l

i

s

a10m

o(M

m

L

Oil-E

c• oen- .

cm crxni aa l cto ocm »-en

c --o eg

I

"Da o.e»mc I c

« CTJTJ-i U

LTJ DOILtCLOil-"'"« 01 .

JTJCM-.

LCM- L-

OTJ LC C LOJO-- Een c

o u

o 0>Len aj4J

L U

CC*na)ZI«Cu T) 1 1) / <uf j 2I » (Vio) tt

Page 159: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E ' I ' I

I

I 'I I ' I ' I

aID

oCMm

acm

aCOCM

ni oni a

CD QCM ID-

C+>C --O B

I

T3a a.urnc i c

u. 01I CTJD-Li-O

-,-0_•D

LT3OIL1CL

- a .

JTJCM~.

LCM— L-

OTJ LC C C.

0)0-.- E0) C

u

D OILm 04J

LI

. 9—o)e a

Cano)ZI.(UT) ri3/<uj)2i.<^no)iI

Page 160: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

US

«<*-c

CI c^r —(') m — .

n crm1

r^ L c

oNm

F c -r —a •>

i a

n e ong +j c t c

171

r <t- 01!» a co

TJ-0a L*>u -DO— -a-

(M X •aL"Do a l

<•- C La(DCM

on.- gi .

a -<-<M- L

n —0T> L.

rj CCL010-- EU) c

u

CM U OIL

L U9

. a—Oa

die u

U.4J-0

<<^no)2I«C"t) II>/<"T)2I.rtno3 (J

Page 161: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A26

I ' I ' I

o ro fm m

oCD

N

o10

cc

S oco - .

n CTEDI IB

O «4

c+>c --a a

i ooa a.omc i c

i•** «i*- m3 C"D-D- II

L-U-DO— TJ-TJ

LTJL

<fc C L

Ste-— ai .

a -LCU

-• L*>OTI LC C L010-~ Ein c

o o

a oilm a*)

L U

I I I

<<W>)2i.(ui) II5/<uj) SI . no) II

Page 162: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

or oil

L U

4 -! .J „ • • » Hi

Page 163: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A28

COno)2l*(UT) ri)/(ui )2I » ono) [j

Page 164: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A29

4 §

in

ALa

mc*.

ca c<* in opi 0)-~ .

» ami a- L c

a(MP)

in o-» u-

9 c -r — a w

1

"oa an r imn 4> C 1 c

01r t*. oiJ « COd- a

in— 3^•o^.

<\j *l -o aOILU. C L

a10

OK-— .

-•~ L

g « o0-0 L

N C C Lmo—« E

u

gioil

L Ua

. —aa

oi e »

ccv°5Er«c"F> to/C"t)zr*(vw) n

Page 165: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

II

I -I

i I

-

AA/>: a r »: c a o- - o -a: - "d i

- v1 JZ

z » »— a: Q.T3 A

a — -^ Lr c l— f ^: _i >• u)

Ulilk> U)

L. >nlL Ul

: 3 ui >io ce a

: u. ui -p

s: o: u ij-_ z w *»

; Dhhn: c

: o a aouin: o * •;_ a rj cm

- * I i

: a n n- E t t

E1 1 1 i i i

<B (O **

I I

I

l

i'

i I i

sm

L

OIK-c

o e•<r m o

in ami ain l c

am

o

9 c -E -•a a

i a•oo 0-

n e ann v El, C

nr M- 01a II C"0

-d- aL*>-DO

-c-0-i\) 3 o

LT1o a LX- C L

aCM

0«-- .

•P"0(M-

LCM

—4 OT) Lcm C C L

010-- E01 C

C OILm a*>

La

. a—aaCM

oie a

U.41-0

(Ora)2I.{U[) II3/C"t)2I«ono> tI

Page 166: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A31

II

I ' |I

c a o- o -a- -o I~ i £

a a"i aO.T)

a -" •

c (_

L en

: 3 HI —ia \r

: u. u> p1 a

: "o > i~— c: o V- >-

1E rr: o a a

in 1/1

: o * «- a N i\i

* 1

: a N v- te + +

Li_L I

^_L

01(4.

ca* 0Jm

to CTID

4, PL Ca0)

y c -i -O a

lHO Q.a E ona *t C 1 cra a

i «. 01a CD

T3- al> L6> - 3

•-•o-(VI 2 "D

LTJ a« L

<4- C Lo on-

<\i PTJN-i

Lru

Q m a•* 0TJ L<\I C C L

0)0-

5r E

a o u

M ~ OIL

O

m 9*tL Ua

oiE a

"»(\l

Page 167: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-. -I « „ <D *

Page 168: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A33

<U -U r-t

H 3T3 O 0)

1 CO

M ,tf r-l

o a dy-i o a

rHCO J- <uu 43o a> 4J-H J=a. j-i -a

M < cmc3 ega e00 O CO

cd OJ

CO -H -O<T TJ

n) aCO u (0 .

at ^ ai BOU -H E C3oo > a) o•h m s: ofa ~H U CN

Page 169: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

£ Vc i a- a -a- TJ I"

i ra— oQ.TJ

9 — vy

C L«" *» ^_l - to

UJL Ka in- ~ zL U)D UI —

IEU. 1/1 *I

ZT> I I-c ~ wo >- >-

o cj ap tn uiD « »a IM CM

* I I

T^ i—I—

r

o

z a- (0

aw

I I I I I I I

BD (O ^ili

B) CC .

-><CD CD

. 9 CO L<\I -

"DtO: B-TI> CIOI) - -n

:<< oio

I I c-T3-.TI

t-

« a l-0 L

LTJ*o a .

t cmot."-Hp-Da lecu t

~ E0"0ecu0)0-— Lin c*>

u- Of

0V-.•* O

L,-o

. 90)E L- —lL4J(k

Page 170: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CD: m

: oCO

: ro

c c.

a . 01* -JCm • L1 -0) |4J

. C-a(M

o a(\J(X)

P) . 0.E CQ£ - 1 c

"0(0

a £ 0-T3a +J c i ai*j O) -• *j

c «. 0103 » c-O-D« La > -31

00 a ,-0 LCM a

LTj"a a .

•»• cma10 o"!\1

- • L*J"0

LLt\l L

a ~ E* o-ot\i CCO

010-" (.

Ul C<JUa -* a

c\i Jl OV-iCM

oa DIE Lo — - o

<D » CM

C C-»no> 2I . (u„ ri) /(u t) 21. nna, t r

Page 171: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A36

o . 01»«c!0 L1 -

. c-a -• »

TO)m . a

COi

- 1 ca-"010

o r 0-.TJG +j c i aM ft — *j

r M. O)01 II c-

•0-.-0t. a

- 3 L-m s.

»3 .

s<- cmQ 0".

N -n*JTIa lLIM L

g - Ew 0T3

o

a

ecu0)0-— t(/) C»)

U—0>-T01L-o

* aOTE L— -Si^b.

COno) 2 ,. (ui) tl>/<u»>j!j. {vwj tl

Page 172: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A37

~n~ra r *j

c a a- a -o- T> Iwi ra isn aQ.TJ

a -. ~C i

» V ^_J « U)

UlL Ka U)

3 in —OKUs a

o s t-C » XOt-I-K K

a a a•p in ino t «D IM (M

* I Iass

ani

io a) a. a.

CO- i ca-"010»— TJc i a« *j

u- moa c-"O-TJ

L o-H-T3 L

L'o"o a .

x. eno"*»T3

_L h I

i

i

i

i.

I

aaM

~ Ea-aecu010 —— LUl Ctl

a u" 9

"O o>-* i a

T3. a01E L--

(O ftl

0) (0 •*

Page 173: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-I <« rt _ 1 "•

C(Vio) 2I,(u„ ri)/C"I>SI.C»n ) n

Page 174: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A39

T~n"

affl

!•*

CID--— «1

i ad a.a metc

1.1.1,1

r <•- i.

u> Ql JT)•a-o a

a M-o

»(.-

HLa(0

o —LT3C L

a - a* L(M C C L

cno —-- E

N » L* »4JE U- II

01

O(M U. C-D

<Cino)2I . <U j) tI>/<U|J2i#0no) tl

Page 175: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

MO

«V»)Z[»(UJ) tI)/<ui)Z:»CVio>ti

Page 176: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

,141

T~i-

t i

- (\i

: a- ID

W 01

10 c .

7c*<\l . c*o"1

I"

ouCCO-«~ a

i ao a.oi enetcCZ

"

9 3T3otj a

4>

"TJ« 0"CT3

L«Ql4- L

C L-00Lecu

010---. £01 O)

a uL-

r l» ai-pE

1111111 i7^TMl i

I , I ,

I I ^

Page 177: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

'Mil MM' T"aa

SL VC ID

« a u-. -o I~

I Xin 01

m ao.-o

a -. ~C L— > ^J v »

UL (K

V)- ^ rD UI -H D

u. m 4i

z oo z i-

x. a.a a a4J B) 01

* «a m <\i

* i iDNSa. t

aCD

n

-I 1 1 l_l I L

a r° in o>

ca

N *

aCM

ro o c00 L O

CO- I c

"0103-i-Dc i a

«J

«- mo« c-"O-tj

t. o-3L-0 L

LTJa .

* cmo<*-«i•JTJ

LLftl L

« Ea-oecu0)0-•I LU) C*J

u

.

DIE L-,-,Li. *>14-

03 (O * W

C (VW) 2I« C"T3 1 1) / C"T> 2r« CT-no) 1

1

Page 178: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A43

M egen o cm4-1 fc

4-1 u QJ O03 E cn•HH T3 QJ CO

in eg J3 (0S-j u s

o M4J H -45

d 4J« O MU"! tn •H C

Page 179: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Tt-T

C II

- a 13~ T) I- i jra a- a

a m vC L

:uj -a a: aU. Ul 4J

z oD XI-c ~ v,

Dr orooo+J U) ISI

o * *a (\i (m

I I I I I J

c c

CD -r.GQ

1

J

• 0)*r m a cn m l o

in eg «j

aIMm

din a

9cm a.

c .

r -Q C^oa

n r inna *j c i a

m4- 070

1 01 C-TJ -i-o

7 i.

a - 3 L-0 Lw 3

LT111 .

n- era

(0

NOfc- 9 L*)T3

LL(\l L

- E-t o-oCM ecu

0)0 ~- L«1C»

uLI'\J a o>-

in o a

. aOa

DIE L....

<Ono)2i„<ui) IIj/c"n2I«C^no) [j

Page 180: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

MS

'I I ' I ' I ' I ' I ' I ' I

o r -u

c » o- a 13-• -o I-

i ra amQ.TJ

a »• vC L- »> ~.-J « U)

111

L Ka a)-• ~ XL UlD UJ -a a: au. U) *»

£ o

k a:a a at> U) uio «QNN

: * i i

- a x s

9n

aIE

H

r~ aio c .

i mcoin

rt . aaia —

I *»

ca---tn u

i ao a.ii mcc:u. i_

DT3tjti a

ii

-T3— u->CD

L-01*- LU- 3 LOx

oi\j

F i I i [ i I L I i l i 1

L"0C L- o a

a lc c L010--- Ein ai

a uc-

.o Lin ii f

e u- 9

C«"o)ZI»CuD H)/(<JI>2I»CVi<»5 II

Page 181: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

M<

: a £ »

1' 1 I ' 1 1

1

c in a1. - TJ

: «• i r: — o- Q.T3: «# —— C L Iffl-: - -p ^, r B- _l »» Ul

iu " >

8 U)/- ~ riL UI

: ui™0X0 l

U. Ul **

: so H-- H II- f. -^1 .1

Z. C ~ ~ ™o >- -: a: k

o a a ^1*> U) tfi ZE=>4c * « 1! si

: a <\i w U«<lJ\: * i i

: o v n m- EC

|BE

ic

aa

amn

« a »('] "1 c .

I m.cm r:

aNm

F

r- . oioa-

1 uco-

r -ir, a1

"0 0.o r « ai

n *j c c crn

r •*- La dtjT3T1 a

do "0UJ — a-,

:* COL-OU. C<4- L

ID

"0 —

»(M .

—LI!C L

O -* IIM CCL

O>0 —-- Ein m

aN U L

m a+je u—

or aa

U. CO

CC»no)2I . Cun tI>/C"»2I««no5 jj

Page 182: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

.44 7

aa

11

*

: a00

: m

a10ei

Lau.a* S gin "1 c .« n

i in—• (\J ca . o"Q-

ei 1 V5 E co-

^ in it

1

— v a.2 a r a en- a *j c c c

n 01c <+ L1 3-0

"DTI

1 o > -o«;

OD aCD

L- a0«- L4- L

; o T3-.a

(O

1<\j

a -.

LTJC LH o - a a* L

1tM c C L

DlO-i— -, EU) 01

aj uo L «H (\J S L

1a

E u•m a

en at

Page 183: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A48

,' -." ~ — * • *

Page 184: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

.44 9

: I|

l1 ' 1 1 1 1 | 1 1 ' 1 ' 1 1

'\~r~z

: no z

c » aL. — TJ z

~ "a i

: wi c 2at is

: —aa. -a

: a - *- C L: - f /-.

~- _l ~ UI: ui

nt. K

: 1 ui\« ^ i

r i. ui

,\

~3 UI ~

: oca zU. U) u \

: so v z- HII-L. c w z

Ithh: o: a: Z

o a a: +j w ui z

o « «: a (\i m ^*

j z

H: > i i i

N N z: o: + * 5f

)

2

;

:i

z; m-: z

z. zjm: :

| w z

r i

Mllll

iii, ilSEL i,i,i,i.=

os

ni\.

nFr—

n ra *>

m ac

m aa c .n m, uiCDOJ C10 .—-

I uca--in a

i oo a.a enc c c

t La 3-0T3TJ «—

-oM «C-3

LTDC L-LCtL

010 "-•" BUI 01

a oL —

V- Lui cij

E- 9.*»-01 II— ««U. CT)

COno)EI« C"I> tI>/Cu l)2I«(V») II

Page 185: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E•

ii

1 ' 1

-*> r\ r.a c. t>- coo- "D— TJ 1

- " i run

- Q.TJ

!\i

I I I I I I.

ID *(\j

(Ono) 2I,(un ri)/<u t j 2r „ no, tr

in am c .

(u mi in"<\J ca . oC\JO~

. I w: co-: -in a' i a

•d a.07

> etcn -.-,._

«- LI « DTJ

utj a*i

-tT>"I-CD

L-OU. |_

"4- HI LT3-

a— ry .

*j — mo ~LTJ

c L-.an

LC C l_

mo —1 E

U) 07a o

07 Lin a u

E o— 3

. +*«07 a

Page 186: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I 'I

i T- C B^_ -1 n •B

i

VJ1 £a M

(1

C.Tl: g— c 1

AJ

; _J Ul

L »: or HI

r l 01z

: oUJrr a

- Ix VI +j

i uD > t-

1. C ^a h- h-

_ rr 11-

a Hr +j U) Ef)

*: a t\l N: * i 1

s N.: a: t 1-

"

ao

a *

:

: a- CD: n

: a10

nc

01 .

c-coo 01** CD 3 Crn (0 L

N -«

1 OliJin f

aei

n it

(MI/1

erj a

c .

c -a c^i -

a £ uimjo +J c i am 01 » f

c H- 0)01 <t c-0--001 La > -JL

CD -1] L.

r\j *LTj"a a .

*. cpiaCO o£"

- 01 LPTI a

LLPJ L

a -• E^r 0T3r\j CCO

010 «-• LUl CV

a ua —rj r o>-CM in oi of

. aa OlE La(V

-,«U. -P<4-

Page 187: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A52

c (ft q— ~ T)

a in- aQ.-0

a or

i i i i i

COna)2I . Cu n ir)/(u n2r.„n0 )

Page 188: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A53

U <D u-i

U J CMat 4J cm

H*D| c« at oa -M a) U"l

60 CO j^H -H 4J caen XI d

cO . 3a> n c£ M O j:"H-H u

4J M- * ccj a

•H ^ •<-! a;vD CM -O H

fd

M U <um at t! 0)

J3 -H Hcfl g 3

00 U o 13

r1

"d H I

Page 189: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A 5'.

C » QJ 13n T] |wi r"a.-D

a «• ^L« <j

' U)

o or au. ui +J

s: o

c ~ w01-)-

a a a*> in in

-, mm

Qairn

I ' I I I I

La

a zc o

1^0)m aI L

DOai mc I

t- 019 C13 -»

oJ in~ tvi

LT3o a~ c

au.« » .

tJTKOt\I

L(M— L~

0T> LC C L0)0-- El/l C

u

amia o *>

L U

II

I

(OnD> £r . (u[) tr)/C"D2r.Ona} Ir

Page 190: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

T~r IT: » r *>

•n n tJi. i

*-*i ru

do-tj

II

c i

-• +j ^-J 01

III

1ft

1 inr

1 m) 1:1

1) It DIL 111 +J

3a T f-r

h- 1-

If (ra U q*> in na * *a i\j nj

: * i i

El I l I i I i I I

i |

t_

a oen-

a in c*. aa-.mIS 071

aL C^

Ec "*-0

1

•dor on

a +j C 1

n nc t»- en~III » e"0-

a a> "i 3

ID a ^"D(V a

LTJz a az « c

2a12ftl

OU-— o .- f-OIB

(MLCM— L

j a -•* 0T> L~ w C C L

010 -;

- E01 C

a ua~

(\iA OILio a *>

~ Lz

3 a die a1 > i a

CM U.V-D

<o"0)2i.<u F) ti)/curj2t»cvw) ir

Page 191: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A56

T~n ~r-q

o r >c 01 o- on- T3 I~ i r

a <tnO.T1

9 - ~C L- *> ^-J x Ul

QCDm

3 UI —o oru. Ul

TJ 2 K— c — ~

I- >-

o a afUlOlB * •a CM IM

> I I

o s sor t +

ani

amc\j

j__LI i

l?t !

iI

iI

i

i

i |

: u-oiDO

»ni c I

D -«• ma cV-

L•" D«TJ

LT31

<• c

- » .^0(0D [\J

IN-> L-

0-0 LICloia-i- EUl c

a u

u OIL

L U

die ii

u.»jtj

tOno)2 ,. (u t) CD/(ut)2r.Ono) tl

Page 192: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A57

Page 193: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a: 8

ot oII cc |-« o _

m 01— o

~ L in

3 iii

r a \r nu. in

_ T 3TJ i t-

Z. ch- h-

_ K %a 11: +j in HI

* *: a ™ f\j

E * t

a N xr a. + +

-

-

T-1"T-T"T

: a- ID

n

QIO

L01 acc,.

CD 3

DOonC I

P. I .I -L

or

>a

J_ j_ J_CD CD

LT3a a

<t- c

o<Z•» » .

-tJ-DCDo r\j

LI\J-t Ln

DTJ LCCLcna«- EUl c

u

» OILco a-p

L U

Page 194: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A59

n10CI

La ocu.

a in ca o0J-

: " E a_C t-o

1noa £ oro

4J C 1

pi 0"

E u. oi12 s c

T3 —o or

>L

CD

(VI 3r-»TJ

LHa a~*• c

i a(0 a 14.

(vi WD 10a raLC\I•- L

a 4-4

*t a-n l~IM CCL

010-2 - E

01 cz a_^ f\i t»- OIL

tO 4J

j L Oa

. 0". a die a

iI a

IM U. *ITJ

«*»)ai.pn)ti)/(ui)a.<vw)ii

Page 195: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A60

-o I

3 5IDn

L01

i min ao lCM

L C

t-a

TJOonc I

t- tn» cT3 —

2 > riL"Da a<• c

Oi».

- a .

+JTJIOD f\J

lim— L-

OTJ LC C L0)0 —- Ein C

U

0)0)Lid a *i

L U

J I I L II ' I ' LJ

(On»)2I.(ui)I[)/(u|)JI.ono) [r

Page 196: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A61

C HI

- TJ— TJ I

~ t rQ »

L Ul: ui-o a: ou. i/i +»

^ xn s i-

c - ~a i- (-

- a: oro a a«»»!

« «- D 1M IV

* ! r

- \ sOC * t

_*~

.

-L_L

a"I

1v

1

: a- m: n

: o- 10: n

L<8

C<4-

aT h am cm"

I mCD 3

H 0) Ld a M

"i

uL Ca

^c u-oi

z ua2 a -C am

a M C 1™ m C7]«

C U. 013 a c

v -

f a >L— 3

•^ ->T3

3 LHa a

T «- c

H 9 o<T

d w •» a .

•PTJIOr\j

L(\J— L3 c —-i

» OT) L~ w C C lmo -j - E

Ul C; a U

jl\l

C OILIOBU

~L U

a. 0-.

1

. - a ote a1 I L i £ a

U. tfl

C Cinoj 2r . (ut 3 tr , /fuf , 2r . c,no, t j

Page 197: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ifr1

'' I'll

OTJ LC C L0)0 —

a u

-OILID »*l

L US

. I-oje a

!»™)EI.(ut, rr)/(u„ 2,, (,no) tr

Page 198: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

.V. J

la 4-1 HIro : Cc o XI

CJ

1 1H

H u OJ

en o CDj-i H rH01 J2 39

0)5,

M £ Ol

O u XJU-l

h4J

00 c au u. 3

M

B. <<<o

•H cu o COH i

1

4-1

H 2

H CO 4-J

o cC a QJ

Q U•H a Un •H 3

01 T3J3 a dH 4-1 «

« cuH £H TjK cs OJ

H J=O h 4-1

tJ Hc

id o -

r-» J H (0—

1

u sj cq

0) M H Ch O g oj

ft. S rt »

Page 199: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

AM

rT~T-r 1

i'

i'

i

>i

'

L. *>

C 01

-DTI- -O I^ I .C

« <o

-<O-TI

g — vC L— *J ^-J " U)

111

L or9 Ul"< ~ zL </)

: a «(K O

IL Ul +1

s: ov z i-

K a:a a a*> «) in

: a im (\i

I I 1 I

a(D

La

ttc*-

Cc

a o

in mi aa l

d hi

cc-a

u. enHi ca-

riLh i

i

LTla ai

><. c

4-

J

0T3-C C Ema

. 9 atJ)E*J«« aU. *J E

CCinojgi.^uf) tI)/(un 2I „(v->o) rr

Page 200: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

An 5

Oa

g

aam

a ca

o-.

IDO

a a<* c

cm- J- a)-,41TJ

LLIM

"-" L- Lot>«C C Emo- T5U! c i

0<J"

J3 moL I

.

mEu-.-•U. +» E

CCVWJBi.cui) tI)/ Cu;> 2r . no) t I

Page 201: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

4 8

a LC «

u . cm in oI'l

Toia a

. L

QN

9

oc

tE -o

1

TJOn r 0-»

•j C 1

m mi n. mo a c

Lu -• 3III ,-0(M a

9H- C

o10

01- _1

*JTJL

L(M— L-" LDTJ-i

N C C Emo-* T)ui c a>

Ofu -.(\I

t\J

aa

u mop- a u

L 1

. 1001E jJ

-,., a|L4> e

(CViii)ZI.(ut) lI)/CUT)ZI»CVO> II

Page 202: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A67

•d moMOL I

COn°>ZI»C>JT> tI)/<ui)2I«<-»no) u

Page 203: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

. II

CUE*)

U. *J E

(CVio) 2i.(u,) U)/(u , )2I , (,no)II

Page 204: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

COno)2i„<uI>tn/Cu5 )2r „ cv,OMI

Page 205: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A?0

h ' r •p

c I u«• E 11

Tw1 rI. 01

nB.V

: o **- c 1

+J ^- _j HI_ HI

L: »

r l 5)i

3 in: o rr n- U- in 4J

_ J- "D i h-I. C ^

a i- h-_ ir tr

1 ! l!z *> l/i [fl

E o * *

E_a (M CM

F * 1 1

P s V: a: +

. a a

U.4J E

Ce»no)ZI»(UJj rn/<ut)2i.o»no) tr

Page 206: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A71

CCV«9ZI«CIH) ii)/{uij 2I . or,o) tI

Page 207: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ac

1 mTl »

<

mr*

i

i

* u

J c 4- U)-

1 » CT) -

Lz a > - 3

CD ^0~z CM 3

LT1z II- '* C

• a(0

N04. J*JT3

3 LL(\J~ « L

O "1 L** 0T>-*l\J ICE

z aia- -o

z Ul c 9o-w

a ~ f5

- M - mo~Z rj rv a o

I

L 1

. a a

aa

OTE^1.3 ••••a

(D CO

CCVW)2X*CUtt II)/<u T)2I*ono) d

Page 208: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A73

9 ja js6 +j

at

M x: -a

<3 CMOH C enw o au uI 1-f 4J

QJ -U cJS <U 03

u u 0)

03 1H w^ -a <D cGO 03 M

14 ij co M c4-1 H

cCN

ctf o CDCO kJ -H 03

Ol u 3Cfl 03

a» u H JSM nD3 h 03 00M M S-i c

•rl -H U 0!

Page 209: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I 'I

'I

I

I

I

a cz «- a

-J w (/)

Ull a:

ra*3 UJ -.

o k aU. 10 *)

- s °

c ^ ^o h- ^-

ac ora a a*> in ina « *a cm oj

* i i

»c<c

•" ca 01 [310

. o-in

M -i

1 0) MCD C

a a cd

PIn CO"r •H 1

0"DTD10

a c 0—*)a -u C 1

m mi

4- UJUin 01 C

XI- LL L— D-.

3L-D_lO 0(Mo- c

aID

04-

— T>OTi aC[*mo o-i

in c u1

010CD +J

L 9E

.

DIE L•-.- ali. +JC+.

CC^"0)2I.CJ?) tI)/("!)2ttOnti) tr

Page 210: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A75

Page 211: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Mb

(f»no)2[.(u[) tI)/(uT)2I*C«no] t[

Page 212: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A 77

C C .

0<r\i«

. 01C1- "10n ID L »

1+J

— WW. c a

a — 0.LI :i.

F CO-i

— 1

a-oTJtO

r a> — *a *j C 1

in

iu- u;u

c•0- L

!J L Lu - D .-

-i-D(\J 3

LH Ja iiimIk c

aID

- L

4JTI L~

loj E

- -aoxi 01

ecumo a

*o cnom o -p

l a

DIE L•-.„ a

ccin°)sr»cu n tn/<uf)zr»<vx>) rr

Page 213: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a z ^C » o- on

A78

I ' I ' I ' I ' I 'I

a

Q CCU. 01 *J

X1111-c ~ —a >- i-

o aJ vi ino * *nnin* i i

a v n

» C<c a— c

2 moo »-•f LtJI ^W ID III

C Q— a.CD CD

. cCO-OT)

ceo ga — tJ

r i oi— —M- 070HI CTJ-. L

L L~ J«— oLT3 Jo aruu- c- L

0'4-• IL^•0 L

-LN E

- -oo-o[IJat a o- ouica

I

"maa> qi *->

1 a

J I I I I I i

01E L-.-0IL *J(4-

CCTno) 2r . Cut 3 II)/Cu t)2I« C5no) tf

Page 214: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A79

F^r

» - Bl<(M C— ci cd a

aau(\J

m a wCIO

i

•--. D-r

D Ca c Or 0T«u -p c cm I) •-.-.Tl

r u- l a19 01 D*J

TJTt1

"TITI

:* C L

Ot*. -.

a10

13 .

_l-»»L

L"0C L

1

1

- L^(VI C C E

cno

oi cno

(4-

CD JDE 1

.PaaIM

CO +J" oi aU. C E

(Ono, gi. (un tI)/ pjjj gj# (:(na) w

Page 215: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CCVio, 2r . ( L.nri)/cun 2 rifCvlo) tI

Page 216: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Q9

o r ac b o- T)- TJ I

« i r01 01

" a0.TJ

a -i —c L" f ^_i *» in

UlL Ita lo- ^ zt in3 ui ~o e au. in <j

r c

Ohha a a*> in in

aCD

m

a•am

<\i n<10 c— ci co a

<\i .-

-H | Ma in

CIO-.-. a

i

TJ Ca en—c c

14- L 3a 3 *j"0"0

— DTI— a a

c LL- L014.-,<4- a

a lLTIC L- L

-4

C C Emo--TJin cno

m 4J

LjCCO Of

COno) S i. CLij) tn/CU!)2I»C^no) [I

Page 217: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

as:

MM i

I

a z *>

c n o- O TJ

a en- ~ s3 ID ~

DTU. U) *)

XU If-t 5 >'O t- I-

oc oro a a+j w ina « <

a i\i <\j

» i i

a v nox + +

o rv

m enca

9 >

I II

II

II

I

i I

^"Hi I . I , |

CD tD * t\J

CD ID ^

I joo

c<a oc- cmo

n oi-n l *j

I U) u(M CCO 0.«co

. cCO-.«

I

"DID 9

C I

(4- D7T301 C

L L~ s„— TJ

LTrJo aoju. C

•« L4-

- II L*>T1 L

OT3EC*070- a

o I

- 010cd a *j

L II

01E L-.--.

Page 218: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A83

U CMW O CM

QJ TD gJZ 0) CO cu tJ 0) O

a 9 cmHH 13 VO C] 43 CO

h U 3

M O *0 CD

3 M (0 (0

Page 219: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

1

11

'I

I

I

I

I

I

I

I

I T"1"!

C » Q- "0

" T) I-i r

a

L a.a ui- ^ iL (/>

: ui"IK

U. Ul *1

Io I h-C ° "Ol-I-

a a a+> to wa • »

aiMiv* i i

X Xa. t *

i i i thru i

I i

n . mo<f P) OJ ~m n l +j

I -tn «

a ainm

| -a1"0

no or am 4J

n *j c i aid

U- UJU• CO"0- L

w L Lu - 3 .r.

CD -.-N >

LT! Ja >n1- c

10

(VI

ou- a— 01 L»m lo -LN E

ih Ttxi a

CM ecu010-lo c u

1

al\J o mo

en at *j

LE

. aDIE L

U. -PU.

<Ono)2I»Cu T> ir)/< L, f5ZI«C*no ) II

Page 220: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

- '

'

1 1 1

o r uZ C W— — a -a- ~ TJ 1

- *» i ro «~

: co~ V

r c l" +* ^

: _i -^ enUJ

: l a:o in•> " XL inD MJ ~q tx a

_ a. £»LI a '.3

+> !;> <n'1 * +

t_ u r\j (M

z <I 1

a v, N- it * +

t

ooq <

3 o] ID

3 m

5 93 ID

3 mLa

' ciu.: a* N wai: n CD C

1 Ccom o.(V-

a n . +j

oio-01 " 1 19

COc -ma

i

•a co r » o>~a w c cm oi -.-r. XI

c U. L »a a j-n

-o-D~ tD

_ S > «TJ"C~ ffi D —

CM » C LL- L0U-.«

-u- ai

r O10 -J

:

I\J« t\j rj

a lLTJ

C Lo — D L* -.

E

PJ CCEcno

in rjirj

eg 4Jo L[\J D(\J 01 3 u

E 1

.w'oa cn -u

a(M

••-•woix c E

J -'-I „ m *

Page 221: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^ «-s f\r *>

c a am a -o— TJ 1

•*i ra »n aQ.T)

!J „ -^

c u- *> ^-J «* </>

I

I

I

I

I

, o3 am

i - ~ xL inDUIn

<KU. LO *>

XUII-c » «*- I-K K

a a a*i ui ino * «Q (\l N> I I

\ sK

L i i i

** a BCDn

nm o•Ri-

fe .^

M 9

10O-1 IS

CDr -in a.

1

TJ Cr a a>«4> c crn - -T3

t*. l aa 3*;tjtj a

-TJTJ— a oN a C L

L- L0M--

QID

TJ .

a _i

a lLTJ

C Ln - L

<\j C C E010

Ul 010

I.I.Ii d

01 +*-MOU. C E

cci"ojar«<uj) m/c'-'nzi.cvia) tl

Page 222: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

AS 7

a r uC u— o -o

^ i rM (B—an

a „ ~C L- -n ,,_] « 01

ull orv Ul« ~ zL Ul3 UJ -o a: oLL Ul 4»

z oTJ I I-C •* -O V~ V-

o a a+> tn uio * *a im cvj

* i im oi

cHI

II

id

S amei c« ci in o"(\i~o ,*J

-a-i n

i

-o co ov«c c«-TJu. l a<» 3*J"DTI

-"OXI"10C L

L- LOK--H- II

TJ .

_l-l\J(\J+>-

LLTJ

C L- L-

C C E010

Ul 010IdL0

01E I

. 4J

ht+m iiii L-L_LJ

CC*no)2i« Cuj) ID/C->I)2I»CT-"°) ri

Page 223: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A3 8

CCVlo> 2I » (Uf) [I)/(U|)!I<(Vlg, [j

Page 224: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A89

T^ J~r T~r-

m c 17i—

*

i r-

01

- CLT3r g— c L

*J

=J

in

t L Kt in

Xm

F o in

F ° ir DE u. VI +J

1 uE T > i-

fc- Cfc

t- Nt a *<-l

+J 1/7 Ul» *

: n l\l ftl

: * 1

D \, \: a: + +

=

Q07

m

: o10

mL

I

f

o c0>«

c c

•4- LIII ZJ-U"dti d

-D-0

C LL- LOK.-u. i

LT3C L- L

•*

CCEcno-.-iTJLn 070

*>

O * *a - in a

ccviojai.juij rr)/c<Ji)2r««no) tr

Page 225: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A9U

<CV^O)2I„Cu F j II)/ (ujj 2r.„no) rr

Page 226: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A<JI

CD UCO10 cCM C

I in o

m . *j

i u

I

o c

c c

KitI3t'"DTI

-"•CDnIDC L

L~ L04--4-

•0 .

_1-row*"-

LLTJ

C L«H-

C C Emoin mo

L

r q01 1

E I

CC^no) SI . Cu !5 II)/(Uf) 2 r»(-ino) t [

Page 227: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A92

'I'll'

a in- ^ ic o>3 Ul -a k oU. U) +J

I"0 X h-

C 3 «1-1-o: ik

o a o+J IJ1 U)n • >

a ru cm

» i i

a s nnr * t

a

N

a

I i I I r

cma oc - cmo

m »-O) L f(M -I 01 ItocaCO a.rvcnw c

c .--a

I "O"DO 9OL'l *J

C I

4- OTOa c aTJ- L

L L-. 3->->"0

LT>Ja t\j

« c-< L

0<4-i JL4JTJ L

wLIM E

— VCD (I

ecudid a-« a01 c u

I

-< DIDoi a*>

1 aE

.

0)E C-, - aU_ tit*.

<CV-iO)2r«cux) [I)/C 1J t)Er.C^no) II

Page 228: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A93

w <u 5-1

o mH Eha 00

io 2H <4-1 4-1

aj a aU o oj

1 •H HU Ed •H 33 n aOJD oHa

a.I

d OJ

01 vH XIA4-1 -a C

0) a4-1 <u

—I d 1c fl—

'

•g qj w

u o -a u3 j-i oj oo00 j-i M c

Page 229: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A94

l—<- 1

I ' II

-

i~T~rI

TJ"0

I

1 r

Q.T)a - wc L•< <j ^

1 i/i

in

a ii-

u w VI aK t~

cn i- t-

rr (rD il ap 1(7 ina * *a (M (M

i 1 1

ii N Ncc +

-L_L

Dm

Qm

Lin acu.

a c. a

in-1 ma a

. L

c c

d 1

tioct« 1

4-

a oiTJ C

LOTJ<*-

V 0(0DTIL Lrj

m-i LL

CXI-OIC E-in -a

c oon0- o

o 010-< Q U

. a01E*J-i--. or

Q.V E

C«no>2I«<u fJ II)/<ut)EI,c*no5 tI

Page 230: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A95

'

» LC

l<-

aa . cTf a am

i ma a

L

aNpi ?

in

c c

r ot) 1

ton E e*i

)

-a

in0)

s •o c

- Lu « 3ID n a

X Lo"n

•».

c

oIDCM

0- .

*> DIDotjL LN

-,-, LL

CTI-.N D)C E— a

U) "0

C II

Ofjj- a

s a mo-inL 1

. 00oa

01E-U„- aa.*) E

C(-»no)2 r . Cui) tn/cun2I.Ono> u

Page 231: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

•I'll "'I'M

Ifi

- ^ XL l/l

3 UJ •-

K3!

B X I-r " —

1-1-x r.

o a a*) in ui

: * i i

i Mi1 i I

aC L

au-

a m c* -< Qi'i 1 -

o m

00Ct- I

atj**- a

c

a 0- .

p QJIODDL LPJ~~ L

Lco-me E«

if) "Dc af

a o- aN a aioN — n u

~„. a o

oo

DIE*)« — a

CCI^o^SI^CUt) t!)/C>-iT)2r.C^n°) II

Page 232: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

amn

: m aC L

a a c

m i-

a ai. a

en l

Q -•

Fc c

1 oo 1

noo £ cto v - 1

m (i) c+-

01 01» Tl C

" L-i D

<\i > L0X1it- a

ca— .

-U.J*J J 10

0T]L L(V

-,-, l_

LC"D-01C E-Ul "0

c a0*J

-o- aa oio" 01 u

L I

. 0001E4J

U.*J E

(ano, 2I. (u ,) II>/CUf>EI»{VW) tl

Page 233: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A98

Page 234: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

: i

|l Ml'l 1 1 | 1 | 1 | 1 | 1 ;

- r\ r\ ^> ;: a c *• f

c 1— — T3 jj— -o 1

: * i n ja to

I —CLT) f

IIIJ— C L l<

I «*>/> 1

4 1E_l x 1/1

: uil a

: i uj1

•1— *-N X J"r i ui-

:ui -i: o a a i ! :

U. W *>1

r x o 1 :0 X H i 1 zI. c ~ w

tn-1 1 "si a: a:

o 9 az *> tn ui

l<

~

o * « »Z

: QNN 1 , 1 J

: * i i

S X1

i i 1z a. * t

InOj i

|H3 i

1 1/3

- 4=

i _

r j: j _

if -:

- * "H.1 i

E

nE

mn m L*r »m 1 <4-

a. is

in c

aw ?

CMa

C 1

E •*

n i

aE C CO

n *j - cn

01 LD 3

TJ

» -.Tln a

oIDi\i

a*t\t

ac\t

rj

oa

* L C0-.*4-t4-

0"D .

- _1+JIAJIO0"L LTJ Q»CLDDL

C -<D1C E-l/l — "0

maa p

h- L aa a«««

E 1

4» DCO +J

X «l

CCV°)ZI«Cu O II)/Cu f>ZI»CV«o jj

Page 235: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

T~r- 1~^Tc a a

. -, T)-. -o I~ i jc

i a*

C L- *i ^-I « (/I

Gj

t Ka to

3U1-.o a: aU. U) «J

_ 3 oTJ I >-

C " "a k i-

<k a:a a a*> u) ui

« «onw* I I

a N sX * *

ll.l.

o -1-0

t\j

aL c0-«-«

aQ 0T> .

(M~ o>-L Lo

— C LO OIL^ c ——(M nc e

X- Ul-TJ

ma»*>

OIL-

<\Ja o-00

~ E 1

.*»

Oa(M

07 +i

1: 'I

li.CE

i, A » „ • *» *

< On=) 21. (Ufj : r j / CUJ) ZI . ono) t j

Page 236: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A101

C (V"=) 2I« Cu T , : j) f cut) 2r . ono > u

Page 237: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E~~

r

I ' I

i

I

l

I

T)

C L" 4J ^-J »» U)

UlL K

U)- ~ SL U)DUI -.

o at au. ui *>

x o

Jewnu-ll a.

o a aCtllD

« *: a nim

* t i

S NOf + *

o £9 i

I I I I I I I I

Q

(D LCD

OC I

-a»d I

aC 0)- c

a lT>3o

*-t

- T)a

L C0-a

ou .

- _i+J0JLD0~L C.

TJ- C L

LC -OIC E- ain->T)ma»*>-u

a anigE I

.*)001 >- a au. c E

c«"o>ei»c"n tr>/{u»er«<vw>) n

Page 238: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A103

+J U egO O CNH fe

B O•H a £00 3

d o0) H SiAu T3 gs 03

u a;H rt i•h 0)"o 01 a3 XI

O tj 4J o4J i-i o

III M-H £^ O "O w3 ^ c3 mtto u u c

Page 239: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

t-7!

a c fc i a- o -o" TJ I~ i c

9 U— aQ.-0- «

C L- t> ~_l - V)

1 a:

K

X. X.o a l/J

j_JL

«1 c .

c a<f- 01Cro at

i (--«a u««

ecu« aa q_

"D 1

aa ccm-u. -aqi moTJ Cf-

- DTID

L LOT3 L<* -.

C- .

"<-_]4J 0([V

ovL Lro o

-,-, LL

CT3-.m: e— aUl "D

C 01

a <j

o - a— mo— or u

L 1

. at aaiE +j

<C^"a) 2[ . Cut) r[)/(U|)Z[. 0™) II

Page 240: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A105

T '

I 'I

'I

'IT—f—T

COno) 2I „ Cu n [I)/(ut)j[, (,no)tI

Page 241: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A106

- '

1

1 MMI

a jc uc » o- o -d

v1 £.a t»

•-Q-TI— ^

C L— 4J ^_1 »* U)

UiL K01 l/>

- ^ rL 0)3 Ul —

- o a: ou. m vX o

T> 5 i-

d o a*j in ina * «a <\i rvj

COW)2I.(Ut) tI)/CUT)2I.Clno) tr

Page 242: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A107

£C »-OH-, Tl I~ i r.

a is- oQ.T3« ^

C L

or

X3 UJo a.

DV-hd a a> in U)

(OnD, 2i, (u n ri)/CUT)2I»(ViO) tl

Page 243: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

- 1

1

i

1 '

z ^ ^ ^\fl r *>

-i. V

-r_l T) 1

_ *-*i r.a a

- at]if— L L

-I ~ Ul- ui

L o;- l/I

L UlD 111 ~Q a; ou. in *j

s: o

CC^no, 2 i« CL,n ri)/ (ur) 2I .„no) tI

Page 244: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A109

T~q

a z. *>

C HI

- T>m "0

I

•"I Ca »-i o0.T)

D « «C L•* +> *-*

_J « t/l

u in- -. XL (/)

3 id -0X0U.U <l

X0 11-

o a av in in

• b

K c•O 0<

ru-i oic

r, ecuE -c a a.- -a i

r cm-

ai oia"D C *J

•«

-. L-- STJTJ

L LOTJ LH-C

0-< .

~U._|p or*OTJL L

r\i o— ™ LL

CT3-mc e•-. aui "0

c aOlJ

«---" 010"ID

-V

N

i I i I _L_

a) id * (\j

Page 245: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Alio

T-r

~« o0.-0-~ —

C L- *> ,-,

_i «"• U)Ul

I. U)3 '-U -.o a au. in v_ s oo x l-

>- h-ne. a

o a» *

a (\j cm

I I I I .!_[

Page 246: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^J CD (D

(Qno, 2 i#(u ,HI)/(u ,)2I<inn0) tI

Page 247: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a oCK.

ro c .

-t « o<n

1 oicf\J Of

r~ L-aN

<\l u

ecuF -r O Q.

XI 1

n C CB->•i

91 u. XI

r » COOro TJ C*J

—"" DTI

TD

s L LOTJ L

14. 0-C

aa

0- .

*J G'r^DTDL LOJ

~~. La lCU-

N BIC E-,

in -ac a

(VI

N

aa

«—— cno-. (J u

L 1

. a oCHE +J

U. *J E

cc^"o>zr»<u!> ri)/cuT>zt*cvw) n

Page 248: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A113

at Hi J=id J2 -U

u c a« rH

-4-1 Q) -H6 x:

BO 3u a)x: <H H B

O M Oh u in

U O 4J -U

5) ^ U C

Page 249: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

T^T-1-

s\ /> s\a c fc a o- o -o— -o I

•*i ra a— ao.tj

» - «c L-> v «_i «* in

HL E« 0)-> ~ XL in

3 Ejj -.o a: au. in 4>

ZTJ Z I-C w wOl-h

a: ko a aa « *a CM (M

* i i

a s nK + t

i/ i

i cnca a oen l-pj *j

o-ecu-O 0.

T3 I

DO Cen-— i

«- T>» moTJ C*J-

OTJ l_

H- 0-c0- .

** »r-OTJL LCM

«-. LL

c-o-OTC E-in tj

. a aOTE4J-.-t a

co"°)si*cun ir>/<"i>2i»cvio> t r

Page 250: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ah5

«ino) 2I, (u,)n , /(u!)2I, (.n0)[r

Page 251: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

n 2 c .

* in OCQp)

1 oicP* 01

m

t*l *J

01-C C »

F -o a

T3 1

ao cn r cm-c

)

f01 •<- T3

r a oia1 ucn

-~ (_-

u -, 3TJii) TJ

x L L0TJ LH. »-

C

oCO

0— .

d-dL L

IM-.-, L

LCO-OIC E-U) U

c ao v

u- o(M 010•h U

L I

. iaHE*-- aU.-P E

<Ono)2 [.(j,) tI)/C"T>2I»CT.no} tl

Page 252: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A117

. a oOlE-P

U. -P E

Page 253: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

k1

1'

s^ r\ r\a c fzap- TJ~ -i -a iw

i r2 a it

*i~

Q.T)~ ~—

C L" «J ^-1 «•> Ul

uL a:

» » U)

r a ^L U)

2 :in«O CU. U) 4)

ZT) X 1-c o ^

- ll-hk a:

o a a•M U) U)O t (Q (\J (M

* 1 1

N \a. t +

. a aU)E*J

u. -w E

COno)Zl.(ui) tI>/C"I)2I»CVWJ II

Page 254: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A119

: | i | i

- o 2 3r c a o— » TJ

: " -d i

- ~ I nZ » Mn a

iI

r T^-T

<D (D "f (\J

. 3CT1E +J

U~ 4J E

4 „ ri „ * to «

(Ona)2i. (u„ r D / cuj) z r « cv,a) rI

Page 255: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A120

C(VW)ZI»<Uf) tI)/CU|) 2I . no) tI

Page 256: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

'I'll I

I

I

coo~ o t>— -o I

*' i rv t>-Q.T)- «

C L— *> ^-J « (I)

111

L K< in— ^ IL U)3 Ul -i

o a oILIO nIOXI-

a t- i-a: a:a

*) U) U)« «

Q N <\l

* I I

O N Xa *

a!\J

I M- TJ01 31(1TJ C*J

-• an L-- 3T3D

L LTJ L

c0- .

v or-DTDL LPJ- .-. r

LCTJ-U1C E-U) T)

C II

0*>fix 8ru ma

I I I

CCT-no>2i.(uj) ir)/C"I>2I»C*no) n

Page 257: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A122

. <J

0)E*J-<-iLL+J E

C«no) 2 i„ Cut) Il)/c"I>2I«rtno) tI

Page 258: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A123

1

I M I ' I I ' II

I ' In *

r«c it ot o -a~ -a iw

i co a-t aO.TJ

a -. -^

C L« V ^_l » U)

Ul

L Ul3 W -K

u. tn 4J

2!'»

I- t-a: n:

o o a+» ui uio « «a cm (\i

* i I

N No: t

I I I I I I J_ J I L I I 3

nin

AL

<B

C<4-

m c .

•» ui an01 in-

1 cnc(MHOin l-

a m n

mF

ecu-

E O 0."0

1

Cl r cm —n u

Ula oiii

a o C-Pm

n L«u i J-OUJ n T3 aIM * L L

0TJ Ln- a ™

cQ10IM

0- .

-I*-_I•p or-0TJL L

IM»•- l

n LCTJ-

<\j mc E— aui -a

c aavu -Vi

(M 010-i a u

L 1

noOlEf

cd io** rj

CD (0 -4-

CC*n°)ZI«<ur) tI)/CUT>ZI«CVK>3 jj

Page 259: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I:!

Appendix B: Programs used in data analysis

Page 260: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B2

Program "BINTOASCII" used to convert binary datainto ASCII format for the KSU Mainframe.

Page 261: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B3

PROCRAM 8INT0ASCII Convert binary direct access files

VERSION:

FACILITY:

ABSTRACT:

ENVIRONMENT:

AUTHOR

:

1-001

Standalone Program

This program is used to convert 944 block binary directaccess Streak Camera data files to ASCII form.

Mark Probert, ECfcC Energy Measurements, 130 Robin Hill Road,Ooleta, CA 93117 CREATION DATE: 27-May-1986

! FUNCTIONAL DESCRIPTION:

Convert 944 block Streak Camera binary files to ascii.The program should be installed as a VMS foreign command:

S BINTOASCII :== tdisk: [directory]BINTOASCII.EXE

The only input needed on the command line is the name ofa binary file, eg. S BINTOASCII LPA304.DAT . An outputfile with the same filename but an extension of ".TXT"will be used

.

Streak Camera video

IXS

I

s s s s sc c c c c

a a a a a

n1

n

1

n

1

n

1

n

1

ni

n

i

n

i

n n

es

© e e

ca 512 integer *2 binary nos

.

n

|

na

V \1 ' 1

t V

wave length

Page 262: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

M

JfSrf;*K

Cam,ra.

ima90 If* digitized video frame consistingof 512 by 512 pixels. 612 pixels in the time directionform a scanline. Each scanline is at a constant »avelength.

A scanline is stored as 512 integer. 2 binary values. Sinceeach record in the data file contains 512 bytes and we areusing integer. 2 data, it takes t«o records to make up acomplete scanline.

These particular Streak Camera files have g44 512-byte

ah^fU"" S'Th

; !:rs

Tl,° r"cords "ntain informationabout the image and the last 842 records contain pairs ofrecords. The first record contains 2 data items. Thet.rst two bytes contain the integer. 2 variable IXS and thesecond two bytes contain the integer. 2 variable IXE. Thesevariables tell the the range of scanlines saved from theStreak Camera image, i.e. IXS is the scan number of the first

J1;? '» th ° ';'«( ?"<" IXE is the last. These numbersneeded because a full image need not be saved into a data

ill J II"FeSt

°Jthe first rec ° rd 's garbage, and so is

all of the second record in the file.

Note that the polaroid images included with this packagehave rotated the image pi/2 radians counter-clockwise.

IMPLICIT INTECER (A-Z)

C Variable DeclarationsINTECER.2 BUFFER (256)INTECER.2 IXS, IXECHARACTER.132 INFILE, OUTFILE

C Function DeclarationsLOGICAL. 4 IS_0DD

EQUIVALENCE (IXS , BUFFER (1)

)

EQUIVALENCE (IXE , BUFFER (2)

)

C Open the Input FileSTATUS • LIBJCET FOREICN(INFILE, ,LEN 1

C Open the Outout Fi leI = INDEX(INFILE,'.)OUTFILE = INFILE(1:I)//'TXT'OPEN <2,FILE=0UTFILE,TYPE='NEW',CARRIACEC0NTR0L='LIST-)

C£?

ai!.

th° ima 9» frame informationREAD(l'l) BUFFERWRITE(2,1000) IXS, IXELINE NUMBER = IXSREADT.1'2) BUFFER I Carban.

1000 FORMAT(2I10) 'l'arba 9"

C Read the scanlinesDO I = 3,844

IF(IWRITE

(

(2 io?6) SarE;),T

MENi °o°

thi> •* »«

KB! |i:}S8J MbER I

!

L.t^em ^ow".^1

fin.'., .re .

Page 263: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B5

__ LINE_NUMBER = LINE NUMBER.ltNO IF "READ(1>I) BUFFERDO J = 1,256,16

END ^ITE f2 ' 1030) (BUFFER{K),K=J,j.l5)

END DO

1010 FORMAT(Al)

}«S FORMAT 'Sc.nl in. Number ',13)1030 F0RMAT(l6iS) '

CLOSE (2)CLOSE (l)

GO TO 9999

9900 TYPE 9910, INFILE(1:LEN)9910 FORMAT (• Tn. ttii 'mU.- couid Bot b. „,.„„,..)9999 CONTINUE

END

!

i

FUNCTION IS_ODD(INT_VAL)

Determine if INT_VAL is an odd number

IMPLICIT INTECER (A-2)I = INT VAL/2

^L

F

SW= :^J8

EQ - !) THEN

endV000 - FALSE -

RETURNEND

Page 264: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

jconl ine NumberC? 90 103

B6

99 70 07 77 03 07 Ult 105 104 10001 UO 101 93 03 05 66 79 75 070/ 00 03 92 70 05 97 102 84 92

_6fi 70 79 00 71 77 00 07 07 72*M 01 79 77 01 07 91 CG CO 0001 M 03 07 77 72 59 75 66 03rM 70 01 CI 01 G9 76 09 9C 00

_7/ 76 75 51 95 01 U3 56 03 717 * 63 C9 59 56 62 50 40 73 CC70 CO 76 71 75 74 RC 61 CO b560 19 C9 0? 79 69 79 54 79 6967 7S 75 CO 50 52 71 75 C9 40

_'» 65 CI 70 62 02 73 62 45 51

fi3 13 03 79 87 7S7C 72 99 93 06 02CO Bl 111 ac 78 7SII 83 00 70 70 6301 03 75 03 66 7873 7/ GO 02 56 6?71 66 76 63 73 G*

62 72 50 60

69 CO 53 SG

6770

UO 70 81 Gl

J10 92 03 99102 CC117 13912 7 119

113 64 61 67 60 59 64 CO52 CO G4 71 45 46 65 C464 CI GO CO CO 70 54 44G7 66 71 43 51 40 73 6454 GG 49 65 67 61 59 6753 G6 65 41 72 64 67 70n 67 7G CS G3 61 54 7207 70 03 05 66 54 50 716a 70 7G 71 77 05 74 66GO 73 72 77 63 Gtl 7? 9105 76 77 OG 93 C5 05 7510 102 127 no 91 93 95 99H OS 10G 121 97 100 05 04

119 110 111 170 107 137 144 135m 132 130 1?6 125 113 104 105122 107 117 115 11.1 95 112 116

6059

99 90 116 117 119 110 114 170 107 137 144 135 131 140117106

Sample output of BINTOASCII

Page 265: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B7

Program "INOUT" used to compare the simple-summation,trapezoidal, and Romberg integration techniques.

Page 266: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

QOOOOHOOCMMKMMlDHOOODHOOOIKMKKXMMXMKKMlOOOOOOOdClOOOOOOOOOOOIMKMWIIMMMlO)MC THIS PROGRAM CALCULATES THE TOTAL INTEGRAL. OVER ALL TIMES. OFC THE SIGNAL LIGHT INTENSITIES. THE PROGRAM CALCULATES THE INTEGRALC OVER THE STARTING AND ENDING TIMES DEFINED IN TABLE 4.3 FOR EACHC DATA FILE. THE PROGRAM IS EXECUTED FROM AN EXEC PROGRAM.CC THE PROGRAM USES THREE TECHNIQUES TO NUMERICALLY ESTIMATE THEC VALUE OF THE TOTAL TIME INTEGRAL. THE SIMPLE-SUMMATION.C TRAPEZOIDAL. AND ROMBERG TECHNIQUES. EACH TECHNIQUE IS DEFINED INC REFERENCE 12.

C NOTE THE ROMBERG TECHNIQUE DIVIDES THE FILE INTO FOURTHS SO THEC REQUIRED SPACING NEVER EXCEEDS THE SPACING AVAILABLE.OWKMMMHIOOOOOOCXlHDOOOOOOOOOOHHnDOOHHOdllCMMMKMmOHIIKOOnDlKllXMKMMKKMIOlMCC SET VARIABLES TO DOUBLE PRECISIONC AND DEFINE THE INPUT AND OUTPUT FILES (FN=4 AND 6 RESPECTIVELY)

REAL*8 T(8,8.4).Xl(16,32).TRAP(8.8).X(512),SUM,TOTAL,REL.LAMDAINTEGER START.FINI.I.J.K.L.M.II.KK.FNCHARACTER*30 STRINGFN=4

CC READ THE STARTING AND ENDING SCANLINE NUMBERS FOR THE INTEGRATIONC FOR TOTAL INTEGRATION OVER ALL TIMES, START=1 AND FINI=470C200 READ(FN,110)START.FINICC PRINT TO THE OUTPUT FILE THE HEADERS AND STARTING AND FINISHINGC SCANLINE NUMBERS.C

WRITE(6. 150)START.FINIWRITE(6,170)WRITE(6.170)WRITE(6,160)WRITE(6. 170)

CC READ IN THE SIGNAL LIGHT INTENSITY DATA INTO ARRAY X(I)C NEXT CALCULATE THE SIMPLE-SUMMATION INTEGRAL ESTIMATE BY SUMMINGC OVER ALL X(I).C

KK=0DO 100 II=START,FINITOTAL=O.0D0READ(FN,130)STRINGREAD(FN,130)STRING

DO 1 1=1,321 READ(FN.120)(X1(J.I).J=1,16)

DO 6 J=1.16DO 5 1=1.32

Page 267: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B9

M=(I-1)*16+JX(M)=X1(J.I)

5 TOTAL=TOTAL+X(M)6 CONTINUECC INITIALIZE TRAPEZOIDAL AND ROMBERG ESTIMATES TO ZERO (T AND TRAP)

DO 30 1=1.8DO 20 J=1.8

DO 10 K=l,4T(I.J,K)=0.0D0

10 TRAP(I.J)=0.0D020 CONTINUE30 CONTINUECC CALCULATE THE ROMBERG ESTIMATE OF THE ENDPOINT CONTRIBUTION OFC EACH OF THE FOUR REGIONS.C

T(1.1.1)=64.0DO*X(128)T(1.1.2)=64.0D0*(X(128)+X(256))T( 1 . 1 .3)=64. 0DO*(X(256)+X(384)

)

T(1,1.4)=64.0D0*(X(384)+X(512))CC CALCULATE THE COLUMN ESTIMATES FOR THE ROMBERG TECHNIQUE AND THEC TRAPEZOIDAL ESTIMATEC

DO 50 J=2.8DO 40 K=l,4

I=J-140 T(1,J.K)=(T(1.1.K)+SUM(X.J.K)*128.0D0)/(2.0D0»*(J-1))50 CONTINUE

DO 70 J=1.8DO 60 K=l,4

60 TRAP(1.J)=T(1,J.K)+TRAP(1,J)70 CONTINUE

DO 80 L=2,880 CALL ROMBER(TRAP.L)CC CALCULATE RELATIVE ERROR BASED ON SUMMATION AND ROMBERG INTEGRALSC AND PERFORM WAVELENGTH CALIBRATION BEFORE PRINTING RESULTSC

REL=100.0D0KDABS(TRAP(8. 1)-T0TAL)/TRAP(8, 1)LAMDA=-0.361D0*(II)+375. 108D0WRITE(6. 175)LAMDA. TOTAL. II,TRAP(8. 1) ,RELIF( II . LT. 179)WRITE(7 . 180JLAMDA, TRAP(8 , 1 )/l . 0DO4IF(II.GT.170.AND.II.LT.340)WRITE(8,180)LAMDA,TRAP(8.1)/1.0D04IF(II.GT.330)WRITE(9, 180)LAMDA.TRAP(8. 11/1 .0D04IF(KK.NE.5)GOT090WRITE(6,170)KK=0

Page 268: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

BIO

90 KK=KK+1100 CONTINUECC FORMAT STATEMENTSC110 F0RMAT(I5,I5.I5)120 F0RMAT(16F5.0)130 FORMAT( 19A)140 F0RMAT(F5.0,I5)150 FORMAT('TIME INTEGRATION FOR SCANLINES ',13,' TO ',13)160 FORMAT( ' WAVELENGTH (NM) SUM OF DATA SCANLINE **

C BEST ROMBERG % REL-ERROR')170 FORMAT( "

)

175 F0RMAT(5X.F7.2.5X,F12.2.4X.I12.6X.F12.2.5X.F6.3)180 F0RMAT(3X,F9.5,5X.F9.5)

IF(FN.EQ.5)G0T0 190FN=5GOTO 200

190 STOPENDDOUBLEFRECISIONFUNCTION SUM(X.J.K)

CC CALCULATE APPROPRIATE SUM FOR THE ROMBERG TRIANGLE BASED ONC CURRENT GRID SIZE PARAMETER L.C

REAL*8 X(512)INTEGER J.K.L.DELTAX.ML=2.0D0>«(J-1)-1DELTAX= 128/(L+1)SUM=O.0D0DO 10 1=1.

L

M=I*DELTAX+(K-1 )*12810 SUM=SUM+X(M)

RETURNENDSUBROUTINE ROMBER(TRAP.L)

CC CALCULATE THE NEXT MEMBER OF THE ROMBERG TRIANGLEC

REAL*8 TRAP(8.8)INTEGER K.L.II=9-LDO 10 K=l . I

10 TRAP(L.K)=DEXP(DLOG(4.0DO)*(L-1)+DLOG(TRAP(L-1,K+1))-CXCC(4.0DO**C(L-l)-1.0D0))-DEXP(DLOG(TRAP(L-l.K))-a>LOG(4.0DO**(L-l)-1.0D0))RETURNEND

Page 269: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Bll

KANSAS STATE UNIVERSITY VM/S? CMS

NTEGRATION F OR SCANLINES 10 TO 139

SNGTH CNH) SUM OF DATA SCANLINc * BEST ROMSSRG I RSL-ERROR

371.50 33009.00 10 33014.54 0.017371.14 3-637.00 11 34553.09 0.061370.7a 36309.00 12 36712.50 0.253370.41 33519.00 13 38543.71 0.C64370. OS 42196.00 14 42116.93 0.133369.69 45255.00 15 45243.33 0.C25

369.33 49253.00 16 49355.01 0.116363.97 53051.00 17 53189.16 0.135363.61 53354.00 18 5S393.26 0.057363.25 52359.00 19 62454. 4S 0.105367.39 66306. 00 20 66382.34 0.115

367.53 63826.00 21 63763.42 0.091367.17 73105.00 22 73192.41 0.114365.80 75470.00 i3 75660.0. 0.013366.46 73753.00 24 73766.21 o.eio355.08 79505.00 23 79852.35 0.053

365.72 33042.00 25 33214.43 0.207365.36 35009.00 27 55069.23 0.071365.00 37706.00 28 37655.43 0.053364. 64 33012.00 29 875=1.09 0.035364.26 d5526.00 30 39=36.62 0.0 = 3

363.92 59946.00 31 59923.31 0.020363. 56 91626.00 32 91571.46 0.060363.19 93025.00 33 53239.43 0.230362.83 93235.00 34 93180.71 0.112362.47 95423.00 35 55530.91 0.105

362.11 57321.00 36 57297.72 0.024361.75 96365.00 J7 97023.51 0.163361.39 53133.00 38 53114.21 0.015351.03 9779o.OO 39 97955.63 5.14=360.67 57017.00 -0 56934.70 0.033

350.31 94130.00 -1 94253.33 C.1J1359.95 92536.00 42 92713.33 0.039359,53 91757.00 43 51593.33 0.C64359.22 91410.00 44 91548.54 0.151353.86 91342.00 45 91900.49 0.C64

359.50 92765.00 45 92724.17 0.044353.14 92=10.00 -7 92733.34 0. 157357.78 52235.00 -3 92063.44 0.154357.42 91*22.00 49 922-2.63 0.34 5357.06 52726.00 5 52573.95 0.051

Sample output from program "INOUT"

Page 270: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B12

Program "TRANS" used to calculate' the timeintegrations for the signal-ratio plots.

Page 271: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B13

C K)OC)C)OC)l»KMH»)nrilWir)«1nnricw.n.wwwwiriiwwwwwwww.,.„, ""•mmHt]tHHItlt)IHII]l][H]lHHC THIS PROGRAM CALCULATES THE INTEGRAL OVER A DEFINED TIME SEGMENTC USING THE TRAPEZOIDAL ESTIMATE. THE USER MUST DEFINE THE NUMBERC OF INTEGRATING REGIONS. NIR. AND THE STARTING AND ENDING CHANNELC NUMBER FOR EACH OF THESE REGIONS. SEE THE SAMPLE HEADER INPUTC FILE IMMEDIATELY FOLLOWING THE PROGRAM. RECALL THE SCANLINEC NUMBERS DEFINE SPECIFIC WAVELENGTHS WHILE THE CHANNEL NUMBERSC DEFINE SPECIFIC TIMES FOR THE SIGNAL INTENSITY DATA. THE PROGRAMC ALSO CALCULATES THE INTEGRAL OF THE SIGNAL LIGHT INTENSITY FORC DEFINED WAVELENGTHS IN THE SOFT (THE SIGNAL LIGHT INTENSITY ASC FUNCTION OF TIME) CALCULATIONS. THE PROGRAM IS EXECUTED FROM ANC EXEC FILE.

cC BEGIN BY DEFINING THE PRECISION AND THE INPUT AND OUTPUT FILESC INPUT FN=4. OUTPUT FN=6. AND 10 TO 32.C

REAL*8 TOT( 100). Xl(16. 32). X(512).S0FT(512). TOTAL. TIME.TSTARTSSWL.EWL.LAMDAINTEGER IR(100).START,FINI,I.J.K.L,M.N,II.FN,KK.NIR.

$FLAG.FN2.NPAGECHARACTER*30 STRINGFN=4

CC READ IN HEADER DATA AND TIME CALIBRATION INFORMATION (TIME &C TSTART)C200 READ(FN.110)START.FINI. NIR, TIME.TSTART

DO 10 1=1,51210 SOFT(I)=O.ODO

FLAG=0READ(FN. 190)(IR(I) , 1=1 .NIR+1)READ(FN.*)SWL.EWLWRITE(6.170)WRITE(6, 150)START,FINIWRITE(6.170)WRITE(6.170)WRITE(6.160)WRITE(6.170)KK=0

CC READ IN THE SIGNAL LIGHT INTENSITY DATAC

DO 100 II=START.FINIDO 15 1=1, NIR

15 TOT(I)=O.ODOTOTAL=0.0D0READ(FN.130)STRINGREAD(FN,130)STRING

Page 272: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B14

DO 1 1=1,321 READ(FN.120)(X1(J.I),J=1,16)

DO 6 J=1.16DO 5 1=1,32

M=(I-1)*16+JX(M)=X1(J,I)

5 TOTAL=TOTAL+X(H)6 CONTINUE

TOTAL=TOTAL-(X(1 )+X(512) )/2 . ODO

CC NOW, FOR EACH INTEGRATED TIME REGION. CALCULATE THE AREA USINGC THE TRAPEZOIDAL ESTIMATE.C

DO 50 J=1,NIRDO 40 I=IR(J).IR(J+1)

40 TOT(J)=T0T(J)+X(I)TOT(J)=TOT(J)-(X(IR(J))+X(IR(J+l)))/2.0D0

50 CONTINUECC PERFORM A WAVLENGTH CALIBRATION. IF THE WAVELENGTH IS OUTSIDE OFC THE REGION DEFINED FOR THE WAVELENGTH INTEGRATION, DO NOT INCLUDEC THE SIGNAL LIGHT INTENSITY DATA IN THE WAVELENGTH INTEGRATIONC ESTIMATE.C

LAMDA=-0.361D0>«(II)+375. 108D0IF(LAMDA.LT.SWL)GOT0 70IF(LAMDA.CT.EWL)GOTO 70FLAG=1

CC PERFORM INTEGRATION OVER DEFINED WAVELENGTH BAND I.E.C SWL<LAMDA<EWL.CC NEXT PRINT OUT THE RESULTS OF THE WAVELENGTH AND TIME INTEGRATIONSC

DO 60 1=1,51260 SOFT(I)=X(I)+SOFT(I)70 WRITE(6,175)LAMDA, TOTAL/1. 0D04,TOT(l)/1.0D04.TOTf21/l 0D04

DO 80 1=1. NIRFN2=9+I

80 WRITE(FN2,180)LAMDA,T0T(I)/1.0D04IF(KK.NE.5)G0T090WRITE(6.170)KK=0

90 KK=KK+1100 CONTINUE

WRITE(6,170)109 IF(FLAG.EQ.0)GOTO 300

WRITE( 1.170)WRITE( 1,170)WRITE( 1,170)

Page 273: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

315

WRITE(1,171)SWL.EWLWRITE( 1,170)WRITE( 1,181)WRITE( 1,170)WRITE( 1.170)

CC PERFORM TIME CALIBRATION FOR HARD COPYC

DO 108 1=1,512108 WRITE(1.191)TSTART+TIME*(I-1),S0FT(I)CC FORMAT STATEMENTSC110 F0RMAT(3I5,2E10.3)120 FORMAT(16F5.0)130 F0RMAT(19A)150 FORMAT(TIME INTEGRATION FOR SCANLINES \I3,- TO 13)160 FORMATC WAVELENGTH (NM) TRAP INTEGRAL TOTf 1)

$T0T(2)'

)

170 FORMAT( ' '

)

171 FORMATf •WAVELENGTH INTEGRATION OVER ',F7.2.• TO ' F7 2)175 F0RMAT(2X,F7.2,14X,F7.2.7X,F7.2,9X.F7.2)180 F0RMAT(2F7.2)181 FORMATC TIME(NS) WAVELENGTH INTEGRAL')190 FORMAT( 11 15)191 F0RMAT(2F9.2)300 ENDC BELOW IS A SAMPLE HEADER FILE USED TO SUPPLY THE BASICC INFORMATION NECESSARY FOR PROGRAM EXECUTION. IN THE FIRST LINEC NUMBERS CORRESPOND TO :

C 1&2. STARTING AND ENDING SCNALINES FOR CURRENT INTEGRATION f 10C 139)C 3. THE NUMBER OF DEFINED TIME REGIONS (10)C 485. THE TIME PER CHANNEL SLOPE AND THE STARTING TIME FOR THE TIMEC CALIBRATION (0.67 AND 250)CC ON THE SECOND LINE THE ELEVEN NUMBERS ARE USED TO DEFINE THEC CHANNEL NUMBERS WHERE ONE TIME REGION ENDS AND THE OTHER STARTSC THE NUMBER OF DATA POINTS ON THIS LINE ALWAYS EQUALS THE NUMBER OFC. INTEGRATING REGIONS PLUS ONE.CC FINALLY. ON THE LAST LINE, THE STARTING AND ENDING WAVELENGTHSC SWL AND EWL, ARE GIVEN FOR INTEGRATION OF THE SIGNAL LIGHTC INTENSITY OVER WAVELENGTH.CC NOTE THE PRECISION OF EACH DATA POINT IN THE HEADER AFFECTS PROPERC EXECUTION. DEFINE ALL VALUES ACCORDING TO PROPER PRECISION.

Page 274: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

B16

C 10 139 10 0.67D0 250. 0DOC 1 50 100 150 200 250 300 350 400 450 512C 245. ODO 255. ODO

Page 275: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CI

o

a,

Page 276: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C2

M CO

u auo cu~ r^ CM

0) 014J £ 4O F ii—(

c4J

>>< GO4-1 CH c QJ

> 6 HH Hu U uo •H no 0) tH

ifal 3Cl CL

0)

M d 0)^ Aj-i 4-1

a "H0) 0) 0)•H u rHVI 00 •H

i •H £t« TD 3h rc

•U uu<

01 •H mA

Page 277: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C3

I

I

I

ri

m m * ai oC B La L L~ J]-

„ » c EO > X(D o -«P UM s *!.,,,

D > L

"0*J Ua ° u

u( —i faw iC

'

I »TJa lL L

a cl+j o» C<tfAi an

£.- .

cL

a in

z I

.*>a

t L I I I I I I I x_L

Xlj/\f^=ot joy

Page 278: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C4

X^TAI^aoT J-°a

Page 279: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C5

I

I

I

a.

.

e u

V -11 L01 «- « Lr ll>3 L E-. na c o> o x-.~f L

o > u-.- «THJ-iDUOL 0-

C .

a a~r- «i- i» c

cdoL .

a i

m a

X^IAi^BIioy

Page 280: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X-3.iatt.30 i j.oy

Page 281: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C7

: ' 1 I'M 1 11

11

: » 2 3- C 101- n- m n 1

: - i ca

: "0: a- S— L- < S^ 0)

111

- C K- Ul- -M Z- a J*- ,, Hlit |

= o c a• L 1 »ri; I: i c .

- 9 a J: l l >- 0. 1-

-

E

!

L . ,,.

V*" r~ /^ =p!K \_ f Vz.

""

1MIIIIUB; _

:

l^~T

]

i

4 §i

-^<C£.<

sc>

J_l

x .

*i wF >U.V

f cU L

r ii a-TJ L

rr Htr <l-

l a eI

c uX-

n -<t> L

>..- II

TJ»1—a u oL »-L-TJ~U-1 Li l aL K.Qjlc .

a a~r- u1- II c

Eaa

a l .

n)*Jtn-* c\j

a i

IO.41 .

o) a~ ON0.41^

X»IAjl=«t^By

Page 282: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C8

Xl7AI5Q»[jOij

Page 283: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C9

^ITAjlaetjoij

Page 284: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

1—

q

: o- 00- m

i s— m a.

.

E£0«

s : c"

UOLr i ojj m-d L01 <t- » LC II"a L E« XI

a c u> o x~a -<i> l

a > oh- aVt>~nunl o-<L-'TJ"it.

I a lOLOL <4-

Q.*J

C .

ii a^r-< ahlC

Cam

Z L .

« r*a i

I I [

oi r--4 ain

^IM^oj joy

Page 285: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Cll

*1IAf^3»tjoy

Page 286: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X»jAf»aotjoy

Page 287: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X»SAJ%3»xj.oy

Page 288: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C14

a l

i a L aL<t-

z piF 1 u1 HP]

L~Q.

Z Q 1

1 Q 4J 3 01

: pi D £«f •Mti.

1<•.*.

-1 a o

n » it

» 9 9

o10INJ

T) >»-TJ*J .

C CW»«

Q^XI* L

o II II

n L L(M II L

HEa

p> c l"OHL U

U7U 9a

U. 0"D

<J!AH=» !i0i|

Page 289: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^*lAt3.30[J y

Page 290: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

**TAI»oet j.ay

Page 291: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

OTO II

^lAt^OJ^O;

Page 292: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CIS

^aiAnaai^By

Page 293: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a m-n c l-i 0*1

L*> a

tJTO J

N u. on

<5IAJMB[jojj

Page 294: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

cto a

U. OTJ

XjJAIW'tJ'il

Page 295: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C21

u oO <-\ tfl

3

w ,c .cO H 4Jh on

9 en

H O <U

IM a XOJ 4->

M cH QJ

w rHc •O -HB (U X•H 4J >M ffl

C3 itU m4-1 u in

t-i egOJ -H CM

Page 296: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 297: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 298: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 299: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C25

w m- on

Page 300: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X*

I

a t *3e [ jay

Page 301: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

r

a £ 3C II o- a -d

r. v i

1 I" T~r

1

w aw

O JClU

l> n « ca *j -.-n-oi 07 t- 3

c a iinI L 0-.-• Jlact> o xoD "»J L* V- L0>-

tija u u

L »~L«L•k »1

1 II UL U

L —a a*j a^ c-IM o «t)

r-t- 11 L

c014.

<1- L

N •» .

II II

c c.3oj in- aa

(M U. *J(\J

<H/viM« IiB!1

Page 302: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-* onLL 4->CV

XaTAt^3»u^oy

I

Page 303: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

nID(1

a"DPI9IM

q** a. . .

ci Er<Ctsl

c

awm

X .-"«j aw

9 >u. II

r «• a

u a

g r » c+j

II! o. aa a(M

a L 0-J

C Lxo

•>f LN s

0>-«

TJ*1

aID

00

DUIIu »-L-L-<<4.*»

1 II

II L IL «

q 0-4> It«

CM

N

aa

a avc->- II L

c a

Z L»> .

11r c

HI |\J

« or~LL -PCJ

Page 304: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

i1

1

F ' X VE c a o

D TJ"0

1

|"

1 cor a"iS.T3

_— uf n" U>

_ Id- c t: o 01

z. *> I

1-- V t> X: d c o- (. U)- l •X *- »-t a ni: i c- » 1

: l L S: o- i t

^lAIWBJJOjl

Page 305: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

(7TD a

U. OTJ

Page 306: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C32

^f Af-q,aai j.oy

Page 307: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C33

V L

LU.

~ m m r-r PlL.V c

4-M-0-

!B-:* V 3 10

««• o

TJ > C

-0*1

C 0(\I0-

Qj~Xd- L

n Ida-* L L(M L

I

gfCL

L U4J

UIU EB

aCM U. OTI

^ FAnaa [|oy

Page 308: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CM

OTT3- c-u 01]

i<l!AIl=ni joy

Page 309: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

cmj a- Z-

X^iAt^aot joy

Page 310: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C36

0 L

N ^ -"<*.

fi

«~LD.

n rQ +j 01 .

m u r-<C OH.m z.

<t-4-

I 0-

3c a i a«« Q

T>> Cto

TJ*>C 0(\Jo »«Cb-i

XH- Ln ri a o^r L LM a l

1- C E1

oa-t C L-i OV

L<J II

U/U II

a " I"U- OTJ

^Tauoo [ j.oy

Page 311: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C3 7

^»F/\j*=»I^ojj

Page 312: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<<*!Aii3»jjoy

Page 313: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

/^lAj^aBi^oy

Page 314: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C40

i cM oa un

u o

•H +J 3

u Mm

Page 315: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C*l

oDin«w

Q. .mEon cu o

~ 4) Cu a c

11 x » -i] 4J „TJN 01 1- 11V

c a u«OLD.0 L

> XLa "4Jl» *>--.

0> E

"D+i Ua 0-

III.i\j

L~*J-U. u1 II II

« L-L II

u a»-<f CT)i\i II II

r- l1- »

ex.

a OL .

w in»j„

acj:.**»oi m- ON

OJ U. *J 1

Page 316: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

«2

/»IAii3»tj.oy

Page 317: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^^IAI>00 [iOy

Page 318: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 319: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 320: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

I

I

a. .mEt-on cu a

x .«*J 0>«

^ -- II

E >U. Q

U Q C£ i_«j --n07 i* Qiry

c o i«a L o~ n la c o> XL-HIo > E

"D+J U0-

L » LL—4J-c*. o

i a oa l-<L >Q.U-

CT3a o£- LI- I

CD (0

Page 321: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Lu_1

' I i Ii

i

i I

CD (0

Page 322: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

'

as

^MU3B

Page 323: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C49

Page 324: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X-*f af^30[ j.oy

Page 325: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C51

OTTJ

U. Ot)

X^iAj^oBx^oy

Page 326: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CM

D LQ

a

n ?

L-.0i in

r i..L0-

rtJ 01 .

m £"01r •>U-17 c

t*- U-0-

*J

* »-a 9IU

>4j Q.

a'C

o > c«--nnC ON»-

Oj-.X<-- L090

-* L Lftl 9 L

£»>-HE9

q -. «-in c l— o*>

L*• 1

OTO 9

a - c-Ll 0-0

XiiAiinojjoy

Page 327: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C53

1 r

or?-C

3 3

11

ilc

CI

*(1 a

TJ La a

01

L<4-L-> U

v i ini

!•La.

rII +j a a)

.

n » jc^mi fU.ii C

u-<*. a(i 0-> tl

b * »-* dan-i

>*J Q.

TJ> C

TJ*JC UPJa a-Q/-t

X<t- LU a ii ot L LC\J 2 L

I-CEa

E II-

njn cl- 04i

L Uf a

u;u ii

aftl

i. a"o

<»iAu=oiioa

Page 328: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

TTT1

: a r 3- C o- - TJ~ H |

: - i Il i g: Q-u

: v wUl

: £ K- (/)

' ". s- * s- o 8^ ~ H- tj v a:- D c o- L » 0)- L - «- -, a (\i

- 1 c-HOI: l l \- 0. 1- *

J

- c«u. OTJ

<»ia f»3Bj rfBy

Page 329: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CIa

1 ] *

nam

: a

t10ni

Page 330: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C56

^aiAj^aatjoy

Page 331: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CTTTJ 1- C-u. cm

^lIAIIDSI^ojj

Page 332: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

nA

c

q* t>

m

arj

L-r

F i in

r »-La.

r*j a m

.

m r-mi' *>u.(i c

Ihlha o-

Q jI » u-N * 11 9 U

a(SJ

TJ> C»...»T)*>C ONa »-Qi-i•>.<* L

o 9 ii aL L

N j Er *>«l-CE

9

O I II-tn c l- ox

L U

aa

UJU J" C-U. 0TJ

XlfAnaBT^ny

Page 333: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

css

(J7D" C-iU. D-D

<5!AU=B[i0!|

Page 334: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<<*iAT»3«tj<»y

Page 335: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C61

3O 09

i aM 3a

U O 43O H 4-J

im j3 aoa

co a) a)

rH <D

H c> SH H CO

4-1 w oj

•H XIcu 09

H o cu

tw a X,a) wh aH OJ4J rHc -acu CU .CH u 3W (B

01 51Li ^3

U u mLi CN

QJ •H CM

I 3eg u^o u—< -H 1h aj

M 4-1 CU •

OJ CJ .£> CO

U cu a3 H aM OJ 03 O•H -H CU oI* -a 1 N

Page 336: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C62

Page 337: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XliAfiaox^oy

Page 338: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

:1

!1 ' 1 ' 1 1 1 ' |

- ^ _ ^: o r *j

: c i) aT)

D 1

z *-•I z

~0) {|

x aa. -o

Li « «- " Ul

HI- c S: o n

xZ~ *J sZ

- Tl- tj 4J a.a

I I I 1

*arAtwB[ j.oy

Page 339: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Xl!AH=o[j.oy

Page 340: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<HAI^3Bjjoy

Page 341: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 342: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C68

Page 343: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C69

X^rAti=Btfu

Page 344: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C7I)

Page 345: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C71

XaTAI»3B[j.oy

Page 346: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

aro a

u. OTJ

X^T Anao[ j.oy

Page 347: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C73

: S-

~ a -d-

Tv

z +j ^*" U)

111

inEto

z- a_ -i t-- TJ u q:r a c a- L a inI- L - *

u cvI c

- a a I

: l L N- Q. 1-- t

z

i

4<

^afAU38^oy

Page 348: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XlTAT-*30[ j.Qy

Page 349: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

D7T3

U. Q-D

X-aiAi^aoj j.oy

Page 350: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

lAt^aot^oy

Page 351: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^JA i«»t#=a

Page 352: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X»JAI1=o t joy

Page 353: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C79

*1 f a t ^3» [ joy

Page 354: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C80

3 J3o St 00* ao at

U O rHO iHy-i .a a)

COCO 01 rH

o H a

4J 4J

<U CO g-H On-i a. ina> cm^ a cn

iHU CO

C T3 m

41 O -H O^ HI -O M60 0) U CO

Page 355: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C81

Page 356: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<^FAI^3B[ JOy

Page 357: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C83

:

— m

4 a. .mn E U

oin cu

o(M

X .n»> 0>~-.-.9

F >U.1

- Q.

a cr a -

1 ) *j

Hi <*. onir 3 9~9 L a

.0 Lc aU XL

n "f L3c *i — ~

> F

"0«J U

an

a o-titL~H-u. ui a aa l-L 90_»>-

C"D<\l a a

r- l1-9

L .

r>w^« 9

11 Cr

a) aa(M

U. *J !

Xl iauo»i ^»y

Page 358: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a. .a>ET3am c

F >U.r - a.

u a cg r a -

(i t4. onr » »—or i- a

.0 1.

c au XL

n -*> Lx

0> E

T3*J LI

QsN

U-tL 11 LL~*J-U. Ui ii aa l-l a

n a*j-CD

w 9 »r- l1- 11

0 L .ar**J^.

a cz.Ailoi m

a1M

U. *J 1

XijAt^oBtjay

Page 359: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C85

1

I

i

|

r

Page 360: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 361: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C87

&% I A J'+DOf ^o

Page 362: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ess

XlIAj*=»[ joy

Page 363: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

tn 01•* ONLi. *J I

X^IAfaoot^oy

Page 364: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ore o

XltAI^3B[J0y

Page 365: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C9J

XlIATia© j jpy

Page 366: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

OTO" t-U. DTI

Page 367: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C93

Xiiah3»i joy

Page 368: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 369: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X-ai/si^oot joy

Page 370: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

•<»[ Ai^aat^oy

Page 371: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<%t ATianj^oy

Page 372: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

giu

n

ca

a% »j

m a

n lQ

QN

F

L

1 r.

r »-La

:(1 9 01 .

rr; •c-air wu.i c

(*(* a0-

*j

ki*icm a

>*> a.

a(0

o > c

TJWE UP]

»-.Or-X<4. L

a a i a4 L L(\i o l

1- C Ea-

L II-p:l

L U

UJU

aN

- c-u. a-o

X^.|AT^.a»l joy

Page 373: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C99

a ao m

>>-H CN4-1 4-1 C-J

^£3 01 o01 CM S O.C u->

4-1 l-l Co to

- u H CO

u u 4-» 3ao *h CO^ e H X

T) 4->

o u co ao4J -h ^ c

— at 4J OJ

H 9 0)en ai o -HOJ *H 1 3U T3 a: a3 y00 M o OJH H x:fr- y-i X) j-i

Page 374: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C100

/<-iTAjr>=0[jBy

Page 375: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C101

3 Cc i-— 13

3.1

T^

i I i I _i__L j_

_. a

I

ao

a.

.

IJ.'C

F Mi.

1

i> cu aa«T3(0

n o- arja vL L

XI

C LXL

«+>~4) •< E

>-- ul4l-D U Ll auL—-c*. <j

I a~HIL -«

(L*J"CC

•H£-C at-

ca .

XI L~OliJtl™ c

arin

. *j .

ai a- I'-

ll. -H 1

CD (0

Page 376: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CD 10

Page 377: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 378: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XaiAj-»3«tj»a

Page 379: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X^lAl»= e>l;joa

Page 380: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-<a!*r*=»tjoy

Page 381: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

DmL*>aa.

.

E£oiou

"U

1 9CI *J "T) .

m n (*. 0(0c VIMi L

a Lii C> a xlii -HL^

0> E

TSfa U-

L «LIM L~*>

-4-i a a»L-L a

g a.*)-.*r CT>N < a£- L

1-8en.

ri .

w at V/>

»cr

.-PtMm ts- am

^iJAp^ootjoy

Page 382: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X-itACiSBt^ay

Page 383: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

:

1

1

; 3 C >_ —

TJ

z **1 r~

(i

~ IV TJ

1

_ f~ w

UlLiam

" •< T1

-r a

L 1 ini •

-l r

CM

V fi

L l t X" U- t~ f-

:

:

_L

ro cm

Page 384: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^1 tAi^aoj j.oy

Page 385: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Mil 1 ' 1 ' 1 ' | 1 :

I b r «i- c w oI. - -o

:

- ~ "D |

: " I «J LI z- "0; Q.T, z

— 1

i- U|

= £ ' s_ Ifl

• » ir 4j x 4- a ~: -

fc £ -- TJ *) q;: d c a j- l a uiL. l - « <j£ -- *- « (\i

: i c ^^5- » o l

: L L N rf"' Z

z a. i- *

^___^^>: =^zSz

—" -T

1J11fiI

II

Inn.

.i.i

I i.l

"D L

L<<-

01

r-

o >«-«v*> .

C U(0HIM

X<*. LHOL L

DCL«0+i

L

OTTJ

U. 0T3

Xlf Afiaojjoy

Page 386: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 387: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C113

U. DID

^^JAnaoijoy

Page 388: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

A"X ; At^3B[ J.OJ.

Page 389: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<»JAJ^aotjoy

Page 390: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X^ta; -3.30j j.oy

Page 391: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-<*!AF*3B t J y

Page 392: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C118

1JO XI.H 4-»

S- JZ MlO Ctu <u <u

CD P>u to

O COr-t . iH

a>> aWOO)i-\ -<-i J2> U 4-1

O O fiman)<w C <

0) CO

4J <0

gg s

u i-t TJ CO

9 n « aM 4-1 NH 0J u olb 1 H CM

Page 393: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^IAI3.aB [jBy

Page 394: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

I

I

I

I

I

I

I

I I I

XjI/Miaoi^Bjj

Page 395: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

*-»IAIi=o tioy

Page 396: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-l_i -''

I'

I 'II I

^aTA^oB tiay

m a* QfyLi. 4J |

Page 397: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

tD •*(\J

^TAn3»[ir>y

Page 398: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

"<3-1 A float

Page 399: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

: 12a

'; 1 ' 1 ' 1

: e I o_ - TJ

E "I I01 u: ~ o: a- tj

r L \\\: "8- Ul \\N- z K- o m

\s^: $ 5 "^^Z 2 H *"*^^^^-.- Ti +j o:: a c a- l 9 inr. i_ - «- — » Mr i c- o a i

Z L L \; 0. I- 4

I— m 07

<fcU L

a > oxe

tjv ao u aLOU

iii ii i ;

07 [^

^TAf^3R t;JBy

Page 400: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

I

I

II

I

ID (0

Page 401: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1

: 925|

i|

i| 1 | 1 | 1

IIIMI

- C 'J zZ. - T3- - -n i

: ~ i i.z

- (| z

; Q.T3 z

3- L v\\ _z

- X RUl \\\

;

|!11

t

ion

MMSR % :

- w ^^^^ 3- "D 4J K: » [o ^^*w- Z-LOW^ L - « ^^vZ- - » <M: i c- 9 1ILLS iz.

: a. k m ~

-

i\;

:Hill

- II|

z/

'

1 1 1

1

I

1 1 I

aiu

ro

om»r~L~

<J* a.

.

pi E-or^

£9HI

10COLa l

e -NE

*J -.TJo > a

TJ+Ju a

1 a oL~ I

a a L£-< oi- «tt-

£0.+» .

0) ID-* 0(D

OD CO

Page 402: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C128

1 J3

y oco cH <l)

c ^ iH

<U <U

4-1 fij

H (0

0} U O

Page 403: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C129

^JInt»=0[iOjj

Page 404: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

DQ<0(\J

Lw C

a .-EJJy003 -i

U w

a X . 0.*j m

m1 >u.-i

u 0_Ja i « 1M

a *j —uD HL

1 (9 (A

IB L LJ L

IJ C -> \E11 •« *J

3>

T3 *j aDUO

Mi a d1 Lt>L a

C) Q.+J Et coj o at lr- o

c

aM

.

J3 L~D+J (3

(M CII

ra. 4» .

m ~a(M

- OTi- *J

1

^»TA|10S[JOjj

Page 405: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

'I'M

i I i

at

QCD

n

QID

fl a

o-<L" C

a o a« a .«m E0«

OCT-.U U

QNn

X . 0.f 01

^ -., cE >li.-i

OJa £ II CM

a *J "XIm 01 t- L

c • IDa L L

.0 L3 C ~

a > XEa) -<*iN a 4J--Q

>~-.4J"D*i

a10

uLOUL-* 1

«it.«i a oa i_ *j

l aa 0.4' Et c

N

cm

QaCM

II II Lr- o1- »c*

Co .

U L^ana<M C

9r-

.*> .

01 »<« 01DU.+J 1

Xiia^so,; j.ay

Page 406: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XlfAf ^3B[ joy

Page 407: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E ' 11

' 1 ' 1 " 1 '1

1 i:

: »2 5- c 10

n - o -o ^- r"> TJ 1

: "i n -

a uz -- Q_ XI

— L V i

: w \ :

- C K: a oi- - s- o ° V -

: - k -

- -n *j K: o c a- l o in **^^^^ L -- ~ in ro

: i c t-•01I L L X I -

r a. i- » M :

= / 1

:_1i

:

I /['

- z.

- z

: Iz 2

^- _I

: 11

:

i;

=i i

ii

i i 1

:

OtH«J«

x . af no.

F >u. c

f cu a .

a J— •ON<v (J

out.LOOJ] L

(I C L>--<

-OS4i«

>T3

TJ+J-PDUOL »

J LL fo.f a

C Ea a

: a

CO ID

Page 408: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

*%TAT%a*i j-oy

Page 409: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

TJ[\J .

»-<u C*t o. .a

E 0>~OtD *J

-u

aNn

X .

*j mo.

j >u. c

.

a r _l

171 u- ar II U Lii LOO

JI LC L

u X-CI) b "*E

*>T)

-.. a"D+J+J

o10

(NJ

L II

L —-! 1

1 0-II LL O

n 0-fC E

N ii ar~ l1- 1

Cu-ll

OIL .a

(M II

II Cz

.*(\l

/lIAn=»[i<>a

Page 410: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

CD (0

Page 411: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-<l[Af130 [JC>y

Page 412: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C138

u oo o

U XI

a •U —

I

OJ (0 js•-> — 300 v1 u 1Is >-.

•U •H

u Nx: Ju CN »

0)

h 3•H—

<

^ i-i

H <ll (UK i E

Page 413: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<(5iAn=o[ioj|

Page 414: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

cuo

^J7AU=0[iOjj

Page 415: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

or- .

atom

S c0- .0ED-001 +J

n ma

«* +> cU .

u r » -jn *J "TINm o) t- a

c a ii l« LOO- <L

C L> X-

~t> E» 4>-

>TJ

TJOtJ

a LOOL~ U">t- I

1 »-.» LL *»

a D-V (1

t C EN a 9C-L

P II

C<4-

a U L .

•*9nN II

II cr.

.*J-i07 ai o~

OJ ii+j i

^lIAJiaoj^ay

Page 416: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

: ' 1 1 ' 1 '

-

: a 2 QE c » o- " & Vh: o-ti

- L

: " 5!

XlIAJ^aoj^oy

Page 417: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XljAIiaoj^oy

Page 418: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1

|l | 1 | 1 | 1 | 1 i

:

- r\ *•< r\z a c *j E

- C IB

:_ -i d -d- — 13 1

™: « i r -

9 II

: - o -

: ij ~

- L

>» in \-E

: m -- c n:: o m- -• z- *l z- °- -. l-- -o *> a:

1

: o c a Z- l » in

- L - .* ^^vl- - » N: ' c ,

1-

- a a i

: t l •>

: D_ 1- * J ~

- M --

//» ""

i

: £ i

z.III

: ii ;

1 [ :

2.1

E

:

i

i

I

z.i

:

Ei

1

E

llllllln

i i i . i, 1

DTJID .

[xo ca. .aEU.-oai ij

u -

E >li. C

no .

£ » -J

01 % IC »IL< LOO- JJ La c l> a >.-.

"*• Es *>-

D >TJ-.-. aumioool ii aL- uhi*. I

i a™LO

L UO.U II

C Ea ir- ll-ID

Ct-

It- L .

IM II

II Cr.*!«oi a« onILU |

/<» J a i ,m j j.oy

Page 419: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E' 1

|I | I | I | I | I i :

- /-\ »-« *^:

: a z t>- C U- - a v _z- ~ TJ 1

= ~ 1 £ zo a

: -< a z

; CLTJ

— L

: u- ' t Kr a ui

\

- •< z ^vTV X- a ° 1- - »-

-

- TJ *) K -

: a c a z- LOO)- L -

J.\.

"

:~ (4 tM c

- a a i/:

: l l > J z

j £ f.z

/ \

:

1j

r

1

I

I

1

i

I

f

i

i

I

1

1

\

=i 1

i i i ii

\

- <M :»

oa .

E OV"001 *i

>. . af 0)0.

>u. c

.

or _i-UNu. aor u LLOOn L

c Lo X"~f E41 «>D

«-. aH4J*)

1 tj a

I S"a l oL 4)

a» 9C E

ii aj:- lk I a£«a

0)L .

CM II

9 Cr

.+Jino) m-< awL.4J I

ID (0

Page 420: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 421: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

oa

1—q *

"DID .

OCMO)L-

q Cf a. .ap]

a oi +j

u -ci

acu

* . Q

F

f ma.

o a .

c a -I*> ~TJC\1m <4- ar (1 L

LOOJl L

C Lx-<

~» E*

>T3

QIDCM

L 1)

-<*-1

1 0~OLDL *•

(w aC E

CM II II

r- l1- II

CI-

-, o<\I

X^TAT^-ooxj-oy

Page 422: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C148

iuo gs

au J3 O*u OJ)

to H 094J Vo 3«Ha < 4=

W>, d 03ij o d-H —i OJ

> ij•H •H

00 QJ

u o (0

<u a. .hrH 9l|j a aOJ HM a;

X) 43u £ 4-1

c 4-1

OJ ca a)•H H —

i

CO T3 •He 3 iscfl M sU Lj

4J «H 4V « LAJ= Ju vC en

M 5-HCM u 4-1

c*j u aH cu

o E u4-1 M

"0 3sj OJ UCN IJCvl 4 e

O 3tq a 0)

OJi 43

M H3 « dcc 4-1 3h 0) aj

h B I

Page 423: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

I

I I

I 3

E >U.-JC - 10" f C

U Lr o o•M ~TI L01 U. 3 LC II lu-ll L E-. Da c n> ox>

-+>>3 +>«

>«« uT3U I

U-L » D

-«U.1 II E9 LL LCLP

ii ar- .

I I I I J d

o cL

amr i

XiTAH38[ joy

Page 424: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

I

I

I1—

q

aa

a .

0-0En

f m .

-.„_|>U.I0

f C L

II L-TJ L

i«• a-HUEL.0X1

c aX+J

-*>V~a > u-t-H |

DUOI. IfL-. II

-<». Ei aILLL aO-ft-c

II II .

—!»(»c c

ji LaOd

r i

I I I I

XijAji.3Btj.oy

Page 425: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^1TAT^oe»^j.oy

Page 426: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 427: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1

- f^ r^ r\: o r. *i

1 ' 1 ' 1 ' 1 ' 1

1| 1 :

- c u o- " a -a ~- •-< "0

|

za i

: m a z

: a 3- L

I i

i

—: +* ~

l:

: m- z X i

: a oii

- - Ir v s

i \

™-a °- « H i \

- -a *j orzona ~

- L I ID

- <- - t 1

1

_Z• n « N z

- a o i

;

'

z

: L L X1

1

z- g. t-

i

-

-

/;

;

j /:

r / \i

: / \ =

-

I 1 \

^

:

I i \^

: :

:

\ \\ 1:

illlllllllllll

1 \\ \

i i i i i i i i i i 1 I=

.

D-dEQ0"

n ou

not*l -Tl-oi ^ m Ec » a

LOT)-, n a

a > i

"0*1 a0+1

LIDL" E"U.1 HI LII LL "4-

CLiJ

C .

a m~j:- ii

i- u ccii

9 L(\i+itn

m o- awluiw

CD (0

Page 428: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

i1 ' 1 ' 1 ' 1 ' 1

'| 1 :

E ^ ^ *» ;

F c » o zp. - a -oF-i *

E " • & ;t • I

1 5-1 :

F- l~

1 _2

= So I

I" r u I

= S i 1

1

-o m

ri 1 ii 4- 2 H- t J it: o c a z- l oi m i z- L - «

;t! b~z

- a a i 1

: l l \ 1

-

: a. t- t 1 i

/ -_:

: /z

z

/! 1~

z

/I i

? / \—

1 j\ \

I ( )z

;1 !

I

= • I

'

i

\ \\ \

i < i i i i I i i 1 1 1

=

cm-

o~

- LP COOla lr,TJ-U- E

L 0TJ

C »)

>*0

"0 +J

U*JLOOL~ E

1 01 La> L aL <0-*>

c .

a ai~C- Ih- » c

com

4- l .

f\i

o I

oj inh on

XliAn=o[Joy

Page 429: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^11 Ar^aot j.»y

Page 430: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

r-, n

1

t>w 111

HI

1 ir

1 Ul

31

Hn t> IT

u r L)

l 1 Ul

l

i

(1

ru ii

L i \1 h

1

/

/ J

/

/

1

/

I

eo0"

^ -«-<0E >U-C - U« *J C

U Lr £+i !<Dl 4-IIEC » II

L D"Dr> Jl II

B C JJ

> 0X0a "no* 4i" U

> I

n U*JinL-. E-<•1 9 L11.0L (4-

CWc .

II B,-,

r- at- is c

cOCD

r l .

cj+jp)w r.

o I

.cm.+j .

en r*m oin

<<^tAti3B t j.oy

Page 431: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1I'M 1 • 1 » 1 • 1 1 :

- c u z:. -> a u- « TJ 1

™: " i r -

9 a: -•o -

Q. TJ•n ** -

- L: p ^.w w: in- C K 2: o in- « Ir « i- °- « 1-= TJ *J IE

: a c a1

:-LOW -

:. L - *- « M CM

: i c /!T

- a a i : I

: L L >: Q. 1-

/ ' :

/ i i:

:

/ ;' \ [

r J I l 4z

fj

1 i

! \|

i

I'i

) I

;\ i

= . 1 .

1 I1

1 1 1 11,1,1,1,1

.

a-a-

U DU_ fi^ip

I ^L3 ti zaU L

*) -T3-O! t 9 EC II U9 L DT3-i J3 1

a C V> NO

-fa *j-h o

> I

TJ*Inn.iL 9 aL" E-*4-i a luL ±a.t>

c .

a anr-> ak ii c

ioa

-* L .

(\I*J(E(\J (D

a i

XlIAHJOIJOJl

Page 432: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C158

\iu oo o

4J ai 3a% aH

M-l C j=•H 4J

h73 <u

<U iHa W -H0) tfl JB•H 2 *

id hi uCO 4J

Page 433: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1

: a 2 3

11

1.

1 11

11

11 1

- C » Q- " i "o

E =| £: a a

•2 D: o-j— L

1: to- u- C K- o in

r3 i1- ~

1 h-1

, 1

- "o v a.

/

/- L a ui

i. L - * ; /- -. « w

1/ / -

: I c- » a i Fill 'ILLS / :

; 0. F- t ' :

-/ :

E 1

lilllll

E \ \

\\\ \

\ \\\ \

\ \\\ 1

\ \\\\ \

\ "M ' i

L_l_ 1 1 1 1 1 I 1 , | , | , | , I

TJO .

a~<L

a .c1- 0.0m E-.~

0-.fl«a

a

n

X .

F

4J Old.

>u. c

V Co a_i

a r a r-

n ii "TJn <t a lr a a oa L L

Jl La c ->

u a xe-»j

t\j »> B

o*j

ato

CM

a u ollllL-> 1

i a aa l*>L

a rw ec

rvj

Qa

a a lr-> o

ca .

D LnIM c

a-CD

• 4> .

m r*-< on)U-f 1

CD (0

Page 434: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

« TJ- V I

« i r

_ a— m

o *> Koca

o ro *»

m a)c

s >

J I L I I I

ax . oH 0)0-

>u! c

0_lii r-mX"VOLa ii oL La l

C "i

XE4J-.TJ

> II

~ -*jTJ*)

ULOUL" I

"If-i1 II

II Lfl aQ-«J EcII L

X"t- III*.

E.

V L~ro»> ii

ftl Cacm

.41 .

o) a- Of-L.4> I

XlIAl^aot*°a

Page 435: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I 'I

j__L I i I

noHI- .

L~<i 1 DV a. .cn E

0«*J

aNn

X . u*J 0)0-i- Q.

f >u.c -> c-

r » -J

V -"Dl^b <4-

r 9 It L11 LOO

a LC LX-

-*> E*

>DVft>

a10

NLOOL-.-t- 1

1 0-a l aL *>

a a.f a•t C E<m a a

£- LHOcu.

u L .B*nN II

» Cc

oi aa U.4J 1

•<1IAf»oa[^By

Page 436: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

XllAj^dot^By

Page 437: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E ' 1

E orSi i i

i

i

i

i

1

i

-coo:. - o -o-"•01: " i r- a a

o.|- L tj

- +* ^.

: ~ in: ui- C K: o ui- -" XT » !- ^: — h>- V Jf K: o c o- l a in

1. L -< «- >" a N: I c- a a i

: L L N; Lh t-

;

nun

\\r

\

:

\\E- \\1 i \\= \\\j \\ \i, \w \

I I I I I I I I 1

.

0.0 cE-.0-<-U V

x . a» 0)0-.- Q.>u.~ cVC-ll

J"ors

i t- ii

a it LLOO.0 L

C LX-

-» E

>TJ--. ITIP*!DUOL II

L™ U"<*

I

1 «"OLDL fa-n a

C EII II

£-LP II

(VJ (I

£

-. o—U. V I

*T-T*I*=o^oy

Page 438: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

: 1

1

I

' '

: a r- C 11

TJ- - TJ

- " 1 rII I

Da. TJ

Z 4* ^^inLI

- cr o

it

_ -p X- v^

1-- TJ » trroc ii- L » m1. L -< t- •-. IMt 1 C-80 1

E L L \- a. k *

T—r

L_L 1' ' 1 I I I I

. -pinm a« 0(\J

li. 41 1

XiTAria»r^»y

Page 439: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 440: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E L _i__L

IDP)

oj: ce- o

x . aw mo

« --a.

I ^cu a

*i —"-Dr^01 1-

C HIII LOO- XI L

I C [> ox-

-•> E* <£*>

>TJ-h J

DUDLIIOL- U-< I

1 1"» L aL *>o_+i aC E

a ar- li- a o

ci-a

r. l .

PI 4*^(M II

a c£.4TJm r^- ONLL-O I

X^IAt^oBt^oy

Page 441: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

~

-» on)

XltAr-iOOj^oy

Page 442: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C168

o c *jM oan d

>> -H -H±J « J=H o 3

H IB Cs|

<W 01 CM<U 4-1

l-i aj CO— a4-1 T3 2a a]

0) U 4-1

H M au -H CJ

c 1-1

fl Ms-. J 34-1 r-» U

(SI T) CU WDJ J «

O 4-t iu <o u

O 3 ,CC0 U O -M•4-

I I 00Csi H Jd C

3

Page 443: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-<»tAt^3B[J.oy

Page 444: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

x anu. V I

/^IAf»3»j.*»y

Page 445: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

-.'

1 1'

1'

11

11

1

I| 1 :

- r\ /^ r\;

-CUD- « TJ z

: •» i r ^a v

: .- o -

- Q. TJ1

- Li i i

2«* Ul 1 >

z

: ui 1;

-

- c a:: o ui I i

- - s i i

- a w \\ *t

: " »-- TJ «l K

i i \z

: o c a1 1

1

-LOU):. l - »

i i 1- -c » (\l

: ' c .! 1 II -

- 1 1 : i

: l l >- Q. \- *

! 1 z

-

n-j

;

: hi :

z.1 ill

:

z i 1 1 \J

z1 \\ :

\-\ \\\

z

\ \\\ z

L \ \ \:

\\\ z

z-\\\

4

lllll

iii iii =

: w a

x . uv mo».. Q.>u.- c*• c-U» -J

q- aXLLOG2 L

C LX-"

•"*> E

>TJ

•*"*»u a

LaoL- U«<v I

1 a~OLDL *•'

0-*J 9C E

ii aZ~ LI- II

en.a

u l .

<M 9a cr.v~oi in-< on

XiiAtvoejjoy

Page 446: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

:' r 1

1

I

" « *> r*- » Z V- C W- - a -n

: ~ i £; 11 u—b a- T>

— L'' ^

: " in

Id

~i—I—

r

- 001u. *> I

Page 447: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 448: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E '1

- s* «-\ r\z a z o

1 ' 1 ' 1 ' 1 ' 1

Mini

- c w- - TJ- - TJ |

: " i ro (i

z

: ~ o -

; 0. T)

- L

II

z

z

: ui J-

- C X: o in -

- - ir -f x

1- « 1 5: « i-- tj »j q:

1

: d c a -- L 3 0)2. t. * 9- « » N: I c -- 1ILLS: a. i- f 5-

1 I j

liiiiiinlii

1

11

11j

Mill

:

J" I \\\ ^

rnr

j

! \ \\\ j

I \ \ :

iniiiii 4

\ 1 1 1 1 1 1 I 1 I 1 I 1 1 ,\

C.U. cECVJ

X . uf mo-., o.>u.

~TJf.l <4- a

II LLOOJJ L

C L»,-*

-*J E*""

>TJ--"PVt>

L 3L«-« I

1 S-» LL *>

o.*>t E

II

C- LhlGcu-

U. L .

N 1C

c. *J—en in- o«u. p I

XitAliaot^oy

Page 449: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I 'I

'

I I I.

: inTJ*

- »^ .

L m: a o .

aoicen a

U V

: a >. . a*> 0)0

ra--. a.

F >u.1

-< c^ HC-ll

a 1 » _l

a V -iDt^m U Q- a

C VOL[I LOO

S> L(1 C L

X-.n -« Ea f

-

>T3-,- aTJ*)*)

al ii a

(M L~> U-"<-

1

1 InOLDL 4>

a Q-*J

* C E<u a£-1HMO

OIL .»4l^IM II

a cc

.4Jin0) at

(M

« o»U.41 1

*irAjT.=»jj.oa

Page 450: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

C176

<m oinU. 4' I

/( + lAf +30[ i+oy

Page 451: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

T^

: ma.- cEIMa«_u >

-1

aw

X . II

+J 070

ni«« Q_

E >ILC - c

4) C-

O r II Ja +) -•Df-ni a (*- a

c IIILLOOJ> L

3 C L- t > X-<-3 s D -*J E3 " 3t «J-- >T)

«*» a- TJ+i+J

a(0j L II

(ML-. U~ "<4- 1

1 »-.; a l o

L fO cu» a<*• CE~ w 9

r- l~i- ii a

C4.

3 9 -* L .

_j N *Or,3 CM

i3 O 0) in

1 i a q*' 1 fM

h amU-f 1

X-itAfiaar^ojj

Page 452: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<<aiAiv=» t ,*o

Page 453: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

Dl

O r-t

•H .C

a h•H•o c

Page 454: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

D2

Q1

1

11111i1

a

^HAJ^aojjjBy

Page 455: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

<1jAt»3»ijoy

Page 456: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

M

<5IAH3»IJOU

Page 457: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

35

^fvj^oBi jay

Page 458: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

I

r

E iI

Page 459: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

^j*iv»i.*<»a

Page 460: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

i—i—'—

r

j i ii

m 9La

r u.

*>.

B £ «"

l) Vra in >

i

» Vua

(Jin 1-l\l > a

L

r

a a

(Mfa

aa .

n LJ* LtOCJ

1 La «

a. fu 5(M r

La

. i

0)L

aN li- E

XlIAiiaaijOjj

Page 461: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

X*JAj^oBtjoy

Page 462: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

El

Appendix E: Block-in and Block-out IrradiationPicture Data

Page 463: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E2

Each picture in Appendix E is identified by a three-digit filenumber following the letters "LPA" appearing on the lower right-handcorner of each picture just above the color-intensity scale. Usethe information in Table El to identify a specific irradiation.

The color levels on the photographs represent the signal lightintensity seen at the video camera as a function of time andwavelength. The origin of each data set is found in the lowerright-hand corner of each photograph. The wavelength and timescales are the abscissa and ordinate, respectively. The thirddimension, color level, represents the signal light intensity.

Table El The LPA file numbers for the block-in and block-outirradiations and their corresponding page numbers.

Mirror Block Irradition LPA File PageNumberNumber Position Position Number

14 in A 313 E7out A 314

12 in A 210 E3out A 211in B 212 E4out B 213

13 in A 303 E5out A 304in B 305 E6out B 306

26 in A 100 E3out A 102

1L in A 317 E8out A 318

2L in A 307 E6out A 308in B 309 E7out B 310

6L in A 315 E8out A 316

7L in A 214 E4out A 215in B 216 E5out B 217

Page 464: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E3

Page 465: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

F,4

Page 466: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

HI • l| Ml |

Et

Page 467: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated
Page 468: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

a^pfgf^e^^^^^* »ii 1

r 11

E7

Page 469: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

E8

Page 470: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

TRANSIENT REFLECTIVITY RESPONSE OF LASER MIRRORSTO ELECTRON BEAM IRRADIATION

by

Kevin A. Stroh

B.S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Nuclear Engineering

KANSAS STATE UNIVERSITYManhattan, Kansas

1987

'

Page 471: Transient reflectivity response of laser mirrors to ... · Figure Page 2b SignalratioforIIdefinedin37.0-70.5ns timeregionand12definedduring-30-0ns regionfordielectricmirror12,irradiated

ABSTRACT

The transient effects of electron radiation on dielectric and

metal-coated mirrors was studied to estimate transient mirror

reflectivity. The electron radiation came from single short-time

(20 ns to 500 ns) pulses with mean currents from 225 mA for the

longer pulses to 5 A for the shorter pulses. High fluences of

15 MeV electrons were used to simulate the effects of a high fluence

gamma-rays and the secondary electron effects caused by gamma-rays.

The goal of the irradiations was to measure the transient

reflectivity of the dielectric, aluminum, and silver-on-copper

coated mirrors, determine statistically significant deviations from

pre-irradiation reflectivities, and note if any differences occured

at important wavelengths. The dielectric mirrors were designed to

operate in a KrF excimer laser system at 248 nm. The results of the

investigation suggest the electron beam had a significant transient

effect on the aluminum and dielectric mirrors. Estimates of the

transient reflectivity versus wavelength were plotted. The

estimates were based on ratios of pre-irradiation and transient

light intensities measured at a streak camera detector.

.