Transient and Steady State Analysis

Embed Size (px)

Citation preview

  • 8/20/2019 Transient and Steady State Analysis

    1/16

     

    Transient and Steady State Analysis

    1. 

    A 10 Ω resistor, a 1 H inductor and 1 µF capacitor are connected in parallel. The

    combination is driven by a unit step current. Under the steady state condition, the source

    current flows through.

    (a)  the resistor

    (b) the inductor

    (c)  the capacitor only

    (d) all the three elements

    [GATE 1989: 2 Marks]

    Soln. Under steady state condition, the capacitor is open circuit and inductor short

    circuit. The source current flows through inductor.

    Option (a) 

    2.  If the Laplace transform of the voltage across a capacitor of value of ½ F is =   13    1 The value of the current through the capacitor at t = 0+ is

    (a) 0 A

    (b) 2 A

    (c)  (1/2) A

    (d) 1 A

    [GATE 1989: 2 Marks]

    Soln. Impedance of capacitor

    =    =  Current through the capacitor

     

    =         =    + = →  

  • 8/20/2019 Transient and Steady State Analysis

    2/16

     

    = →       = →      =  

    Option (c)

    3.  A ramp voltage, v(t) = 100 t volts, is applied to an RC differentiating circuit with R = 5

    kΩ and C = 4 µF. The maximum output voltage is

    (a) 0.2 volt

    (b) 2.0 volts

    (c) 10.0 volts

    (d) 50.0 volts

    [GATE 1994: 1 Mark]

    Soln. The output of an RC differentiating circuit

    =  = ×  × × −    

    = × − ×  

    = Option (b)

    4.  In the figure, the switch was closed for a long time before opening at t = 0. The voltage

    Vx at t = 0+ is

  • 8/20/2019 Transient and Steady State Analysis

    3/16

     

    20

    2.5A

    5H

    20

    Vx-   +

     

    (a) 

    25 V(b) 50 V

    (c) 

    -50 V(d) 0 V

    [GATE 2002 :1 Mark]

    Soln. When the switch was closed for a long time, the steady state is reached and inductor

    is short circuit.

    − = .  The current cannot change instantaneously in a inductor

    − = + = .  

    At = + inductor can be replaced by a current source of 2.5A. The equivalentcircuit for the same is drawn.

    20

    2.5A

    20

    V   -+

    2.5A

  • 8/20/2019 Transient and Steady State Analysis

    4/16

     

    = × .  =  

      =  is of opposite polarity

      =  Option (c)

    5.  For the R-L circuit shown in the figure, the input voltage Vi(t) = u(t). Plot the current i(t)

    i(t)V1(t)

    1H

    2

    Soln.  =    =    

    =  [    ]  = − 

    = ,  = 

     =  

    = ∞, ∞ =  = .   = , =  − 

  • 8/20/2019 Transient and Steady State Analysis

    5/16

     

    =  . = .  

    = . 

    0.316

    0.500

    i (t)

    t1/2

    6.  The circuit shown in the figure has initial current iL(0-) = 1 A through the inductor and an

    initial voltage VC (0-) = -1 V across the capacitor. For input v(t) = u(t) find the laplace

    transform of the current i(t) for ≥ 0 

    i(t)V1(t)

    1H

    +

    -

     1F

    +

    -

    1

    [GATE 2004 :2 Marks]

  • 8/20/2019 Transient and Steady State Analysis

    6/16

     

    Soln. Writing KVL

     =     ∫

    −  

    Taking Laplace transform on both sides

     = +     −    

    Where + is the initial current and  is the initial voltage of the capacitor.

     =      = [ ] 

     =  

       

    7.  A square pulse of 3 volts amplitude is applied to C-R circuit shown in the figure. The

    capacitor is initially uncharged. The output voltage V2 at time t = 2 sec is

  • 8/20/2019 Transient and Steady State Analysis

    7/16

     

    Vi

    2 sect

    V1   V2

    + +

    -   -

    1k

    0. 1 µF

    3

     

    (a) 3 V

    (b) -3 V

    (c) 4 V

    (d) -4 V

    [GATE : 2005 2 Marks]

    Soln. Time constant = ×  × . × − = . × −  = .  

    Steady state will be reached in time ≥  time constant (0.5 m sec). The capacitorgets charge to + 3 volts

     =  

    Option (b) 

    8.  A 2 mH inductor with some initial current is in figure. Where s is the laplace transform

    variable. The value of initial current is.

    +

    -

    I(s)

    0.002s

    1 mV

     

  • 8/20/2019 Transient and Steady State Analysis

    8/16

     

    (a) 0.5 A

    (b) 2.0 A

    (c) 1.0 A

    (d) 0.0 A

    [GATE : 2006 1 Mark]

    Soln. Voltage across inductor L

    =  = +  + =  

    + =   = .  Option (a)

    9.  In the figure shown below, assume that all the capacitors are initially uncharged. If Vi (t)

    = 10 u(t) Volts, V0(t) is given by

    +   +

    -   -

    1 K 

    V1(t)4 µF

    4K  1 µF V0(t)

     (a) 8e-t/0.004 Volts

    (b) 8 (1 –  e-t/0.004) Volts

    (c) 8u(t) Volts

    (d) 8 Volts

    [GATE : 2006 1 Mark]

    Soln. Let

     = ‖ =     =   × −  

  • 8/20/2019 Transient and Steady State Analysis

    9/16

     

    +   +

    -   -

    1 K 

    V1(t)

    4 µF

    4 K  1 µF V0(t)

    R 1

    C1

    R 2

    C2

     

     = ‖ 

     =    =   =      

    =  = .  

    = . ×  =  Option (c)

    10. In the following circuit, the switch S is closed at t = 0. The rate of change of current

    0+  

  • 8/20/2019 Transient and Steady State Analysis

    10/16

     

    i(t)IS R S

    S

    L

     

    (a) 0

    (b)   

    (c) +  

    (d) ∞ [GATE : 2008 1 Mark]

    Soln. Drawing the equivalent circuit as the switch is closed

    i(t)

    IS

    R S   R 

    LDC I(S) R S

     

     =   

    = +,  =  + + Since current can not change instantaneously in a inductor so + = − =  

    + =  

    Option (b)

    11. For t > 0, the voltage across the capacitor is:

  • 8/20/2019 Transient and Steady State Analysis

    11/16

     

    DCδ (t) VC (t)

    1 H 1

    1 F

    (a) √ 3 −√    − 

    (b) − √ 3     √ 3 √ 3    (c) 

    √ 3 −√ 3    (d) 

    √ 3 −√ 3  

     

    [GATE: 2008 2 Marks]

    Soln. Writing KVL

     =

      

     

    Taking laplace transform on both sides = [   ]  =    =     

     =    =      

       

    =     √    − =      

  • 8/20/2019 Transient and Steady State Analysis

    12/16

     

     =   √ √   

      √ 

     

     

    =   √  − √     Option(c)

    12. The switch in the circuit shown was on position a for a long time, and is moved to

     position b at time t = 0. Find the current i(t) for t > 0

    DC100 V

    10k 

    0.2µF

    0.5µF 0.3µF

    5 k 

    a  b

    i(t)

     [GATE : 2009 2 Marks]

    Soln. Total capacitance : C

     =  

    .  

    .  

    =  =   

  • 8/20/2019 Transient and Steady State Analysis

    13/16

     

    =    = . The switch is in position a for a long a for a long time, the capacitor C is fully

    charged to 100 volts.

    When switch is in position b, the equivalent circuit for the same is

    1 / CS

    I(S)

    DC

    R  5 K 

    100 / SV (0+) / S

     

     =   ⁄    

    =      =      

     =    − ⁄  = − = −  

    13. The time domain behavior of an RL circuit is represented by

      = 1

       

    For an initial current of 0 =    the steady state value of the current is given by(a)   →    (b)  →    

    (c)   →   1  (d)  =     1  

    [GATE : 2009 2 Marks]

  • 8/20/2019 Transient and Steady State Analysis

    14/16

     

    Soln. = −    Taking Laplace transform

    +  =        

    + =

       

       

     =         + The steady sate value of current is

    → = →  

     =           

    →  =    → =   

    Option (a)

  • 8/20/2019 Transient and Steady State Analysis

    15/16

     

    14. In the circuit shown below, the initial charge on the capacitor is 2.5 mC, with the voltage

     polarity as indicated. The switch is closed at time t = 0. The current i(t) at a time t after

    the switch is closed is

    DC

    10

    100 V

    i(t)

    -

    +50 µF

    (a) 

     = 15 exp 2 × 1 0

    3

     

     

    (b) 

     = 5 exp 2 × 1 03  

    (c) 

     = 10exp 2 × 1 0

    3

     

     

    (d) 

     = 5 exp 2 × 1 03  

    [GATE : 2011 2 Marks]

    Soln. Initial charge = 2.5 mc

    Initial voltage on capacitor = . × − × −  =  Net voltage

    = =  

     =  − ⁄  Where = × × − = × −  

     =    − ×⁄  

    = (−× )

       

    Option (a)

    15. In the following figure C1 and C2 are ideal capacitors. C1 had been charged to 12V before

    the ideal switch S is closed at t = 0. The current i(t) for all t is

  • 8/20/2019 Transient and Steady State Analysis

    16/16

     

    S t = 0

    C1 C2i(t)

     

    (a) Zero

    (b) A step function

    (c) An exponentially decaying function

    (d) An impulse function

    [GATE : 2012 1 Mark]

    Soln. Since there is no resistance so time constant is zero. This means as the switch is

    closed, C2 will get charge. Charging and discharge time constant is zero. Sudden

    change of voltage exists only if impulse of current passes through it.

    Option (d)