163
University of Cape Town UNIVERSITY OF CAPE TOWN DEPARTMENT OF CIVIL ENGINEERING ., THESIS FOR M.SC. ENGINEERING "THE OPTIMUM DESIGN OF FLAT RECTANGULAR CONCRETE PLATES SUPPORTING LOADS IN BUILDING STRUCTURES AND TESTS ON A ONE-THIRD FULL SIZE EXPERIMENTAL MODEL". ·<BY EDWARD GROYER, Pr.Eng., B.Sc. (Eng) M.I.Struct.E A.M. (S.A. )I. C. E. (S.A. )Cons.E.

Town THE OPTIMUM DESIGN OF FLAT …. Ultimate Strength in Bending of Flat PlateR C. Punohine; Streng·th of SlabA D. ... Distribution of Moment across Panel width Direct Design for

Embed Size (px)

Citation preview

Univers

ity of

Cap

e Tow

n

UNIVERSITY OF CAPE TOWN

DEPARTMENT OF CIVIL ENGINEERING

.,

THESIS FOR M.SC. ENGINEERING

"THE OPTIMUM DESIGN OF FLAT RECTANGULAR CONCRETE PLATES

SUPPORTING LOADS IN BUILDING STRUCTURES

AND TESTS ON A ONE-THIRD FULL SIZE EXPERIMENTAL MODEL".

·<BY

EDWARD GROYER, Pr.Eng., B.Sc. (Eng) M.I.Struct.E

A.M. (S.A. )I. C. E. (S.A. )Cons.E.

Univers

ity of

Cap

e Tow

n

The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

;

IN DE X

S Y N 0 P S I S

PART 1 INTRODUCTION

PART 2 STRENGTH AND BEHAVIOUR OF FLAT PLATES

SECTION A. Ela.Rtic Theory

B. Ultimate Strength in Bending of Flat PlateR

C. Punohine; Streng·th of SlabA

D. DAflnotinn o~ Flat PlatnR

D.l Alternntive Methods of Deflection Prediction

D.2 Indirect Control of Deflection

E Methods of Design of Flat Plates

E.l

E.2

EE

EE.l

EE.2

EE.3

F.

F.l.l

F.l.2

F.1.3

F.2

F.2.1

F.2.2

F.3

F.3.1

F.3.2

G.

H.

H.l.

H.2

H.3

H.4

H.5

H.6

H.7

H.8 .

H.9

H.lO

H.ll

H.l2

H.l3

Elastic Method

Empirical Method

Examples of Plate Design

Elastic Method

Empirical Method

Yield Line Method

Elastic-Pla.stic Analysis and Direct Design

Elastic-Plastic Analysis

Summary

Distribution of Moment across Panel width

Direct Design for Optimum Criteria

Design procedure for Reinforced Plates

Elastic-Plastic Design Example

Behaviour of a Pre-stressed Plate

Design Procedure

Design of a Pre-stressed Plate

Finite Difference Method

Experimental Flat Plate

Description

Design Loading

Specification

Erection Procedure

Concrete·Sample Tests

Curing

Loading Arrangement

Instrumentation

Purpose of Test

"Exact" Analysis by Finite Differences

F,ffect of weight of Brickwork

Plate Flexural Rigidity

Testing Procedure

P.T.O.

Pa~e.

I

1

4 7

10

F .:J

19 21

24.

28 \

31

48

51

54

59 60

63

63

64.

69

73

79 86

91

91

91

91

91

95

95 96 96 96

102 102

103

SF.CTION I

I.l

1.2

1.3

1.4

I.5

I.6

I.7

I.8

I.9

I.lO

I.ll

I.l2

I.l3

I.l4

J.

PART 3

PART 4

..

-2-

Results of Tests

Tests on Concret~ Specimen

Tests on 8mm diameter Steel Rods

Preparation of Load-deflection Curves

Corrections to measure deflection

Cracking Load

Slab Behaviour

Yield of Reinforcement at Column Edge

Punching Strens-th

Ul t].mate Load

Computed Deflections

Moment Variation across Panel width

Hall Behaviour

Test Short-comings

General Test Conclusions

Conclusions ·

Rb~FERENCBS

APPENDIX

FIGURE A.Fl

.FIGURES A.F2 - A.F6

TABLES A.Tl A.T2

FIGURES A.F7 - A.Fl3.

·PHOTOGRAPHS

BEFORE TEST A.Pl - A.P3

AFTER TEST A.P4 - A.P8

FIGURE A.F.l4

104

104

104

115

116

117

.119 122

122

124

125

128

129 130

132

136

138

·139- 143

144 145

146- .;.._ 152

153

154 - 15.6

157

Page I

SYNOPSIS

The popularity of concrete flat plate construction in Building

Structures has soared in the last 20 years but their design has been

based mainly o:n their ultimate strength rather than their behaviour

in terms of deflection and cracking at working loads. As a result

their deflections have been larger than anticipated an<I. have caused

displacements and severe cracks in masonry partitions which are

being supported •

. In order to design any rectangular flat plate for optimum

performance and economy most of the present design procedures such

as the Ela.8tic, Empirical, Yield-Line, Elastic-Plastic and Finite

Difference, are reviewed, critically examined and illustrated by

d.esi.gning the same typical flat plate consisting of three bays in

each direction for a uniformly distributed transverse load.

Comparisons are made of the cost, _strength and behaviour

of each resulting plate. I

A.model plate measuring 3000 x 4132 x 63mm thick consisting

of four rectangular panels supported on 9 columns wej.s designed

by the Elastic-Plastic method to support llOmm thick walls and

a live load of 2,5 KN/m2 • The model was then constructed in

the Laboratory and loaded to destruction by applying four

concentrated loads to the quarter-points of each panel.

The results of the test showed that the slab deflected

elastically at the critical sections for superimposed loads,

excluding the walls, less than 80% of the theoretical Ultimate Load.

The deflection. could be closely calculated by Elastic Analysis,

using the full uncracked section stiffness for loads less than that

which causes cracking at the section for maximum positive moment,

and using an effective stiffness which is intermediate between the

cracked and uncracked values for higher loads but within the range

of elastic behaviour of the slab.

I.

By selecting the slab depth principally to satisfy the two criteria

(a.) L L 32 (b) no mid-span cracking due to the sustained load. d

and by distributing the.reinforcement in acoordancewith a step-function

approximation which is derived from-the theoretical moments along " the critical sections at the onset of yield in the reinforcement

at the column ~dge, flat plate behaviour including its effect on

masonry .partitions will be optimized throughout the full loading range

with a relatively small increase in c'onstruction oosts.

/ .

Page 1

PART 1. INTRODUCTION

"Flat Slab" structures can be described as reinforced

concrete slabs which distribute transverse loads directly to

a rectangular grid of reinforced concrete columns without

supporting beams. Either .or both column capitals and drop

panels are provided.

"Flat Plate" structures are a derivative and special

case of Flat Slab structures where the slab is of uniform

thickness throughout and the supporting ~olumns are either

structural steel columns with bearing plates or.reinforoed

concrete columns without capitals. It is not essential

that the columns form a rectangular array but this special

case will not be considered here.

In many parts of the world since the H'ar, Flat Plate

structures have become exceedingly popular, for multi-storey

flats and commercial buildings, with both the Builder and the

associated Professions. The reasons for this popularity

can be briefly ascribed to the following:-

1. The uniform under-surface is architecturally attractive

in that .it allows maximum flexibility in the sub-division

of internal space and the distribution of services.

2. Erection of formwork by the builder is simpler, quicker

and therefore cheaper than conventional beam and slab or

even "Flat Slab" construction.

3. · Placing of steel reinforcement is faster, in that beams

with small diameter stirrups are not required to be fixed

before the slab is commenced.

4. Engineers, once they have accepted the hair-raising

simplific~tion in the design permitted by most Codes of

Practice, learn to love them. This simplification

extends to the setting out Drawings of Structure and

Reinforcement as well as checking of steel placing.

5· The Client reaps the benefits of a more functional,

flexible and possible cheaper cost of construction

allied to an earlier completion date •.

Inevitably /

c

(.Rl?)

Page 2

Inevitably he will be sold. on "Flat Plate" construction

for all his other similar projects •

.Rarely in the History of the Construction Industry

has a form of Concrete Construction captctred the approval

and enthusiasm of all its participants as has the Concrete

Flat Plate. It is however surprising that in the design,

attention has been largely directed to their capacity to

ca.rry loads and that their behaviour in terms of crack.ine;

and deflection has-been largely nee;lected. Arbitrary

limitations to the ratio of spa~ are set by most Codes in depth

a similar manner to structural steelwork, with the intention

of providing sufficient rigidity to prevent excessive

deflections. The Australian Code for Concrete CA-2 1962,

the ACI Building Code 518-63 and the British Code CP 114,

iimit the ratio to 36 irrespective of span ratio, continuity,

superimposed loadine;, sustained loading or type of loading.

Whereas plates designed to this limit were shown by research

and experience to deflect initially less than the arbitrary

.§U2.~1'.?. set for all structures whether constructed in timber, .)60

steel or concrete (probably for aesthetic reasons),

seconrl.A.ry effBcts increased the d.eflection many.:..fold durine;

the course of time.

In the early 1960's flat plates which had. been constructed

a decad.e earlier began to show signs of distress in the shape

of visible cracks, abnormal deflection and particularly in

severe crackine; of brick partitions standing on the floor.

Figure Al in the Appendix reproduced from Reference 15 shows

one common mechanism of crack formation. Th1s brought growing

realisation that the deformation at working loads was as

important as the ultimate strength and that even moderate

deformation could cause damage to other parts of the building.

As a result of this, a comprehensive study of Flat

Plate structures was begun in 1959 by the Division of

Building .Research in Australia with the erection and testing

of four experimental structures as well as analytical ,

studies. The conclusions reached will be referred to at the

end of the Thesis, but the following observations will explaiti

the "excessive" deformation of Flat Plates compared tci ol"der

structures :-

(R37)

Page 3

), • In older forms of structure such as slabs Rupporterl by

deep beamR on all sides which were d.esignecl to carry

the full weight of masonry walls as well as the slabs,

many redundancies existed in the elastic interaction of

slabs, beams and walls which increased both beam and

slab stiffness. As a result computed stresses and

deflections were never achieved~

2. In slender flat plates the behaviour is close to the

design assumptions and all the old hidden factors of

safety are gone.

Westergaard reports one flat sl'ab structure built in

World War I where the columns were 5 ft. square at 20 ft • . centres resembling a Gothic Cathedral. A great deal of the

• load was carried by Arch action and not by bending. The

modern flat plate ha$ negligible arch action but is designed

by the same method.

3. Working stresses are now twice what they were 50 years

ago and with no significant change in the Elastic Modulus

of Steel, the corresponding strains and deformations

are twice those realised in the past.

Against the aforementioned. background of practical

experience and research still taking place in Australia and

also other parts of the world including South·Africa, the 1

writer proposes to discuss and predict the strength and

behaviour of flat plates at important stages of its life history.

The principal methods of analysis or design presently used

will then be critically examined in the light of these predictions.

A typical example will be fully designed by each method and

the relative cost of the resulting_slab will be estimated.

Based on these results, a proced.ure for direct design will

be selected which optimizes the behaviour of the plate throughout

its loading history for any given cost of concrete and

reinforcement. With a few small modifications this procedure

can be used for optimum design of plates carrying masonry

partitions.

· · As an illustration, a model plate will be directly designed

to carry average loading including brick partitions, and then

erected and tested to destruction to confirm or modify the

d.esign.

Page 4

PART 2. STRENGTH AND BBHA.VIOUR OF FLAT PL~_TF.S

(R34)

A. Elastic Theory of Thin Conc'rete Plates Sll.b,j ect to

Transverse Loads.

The following assumptions are generally made provided

any cracking is confined to small areas arounC!. the columns:-

1. The thickness of the plate is small compared to the

dimensions between the suonorts and the deflections are . .. small compared to its thickness.

2. The middle:·plane of the plate .undergoes no lateral

deformation.

3. Plane surfaces normal to the middle plane before bending

remain normal after bending.

4. Normal stresses transversely to the plate can be disregarded.

5. The plate is homogeneous and isotropic elastic.

It is convenient to set up three global axes at right

angles, OX, OY and OZ, so that plane XOY is horizontal and co-. .

incides with the middle plane of the plate before bending.

During bending points in the XOY plane undergo small vertical

displacements "w" to form the middle surface of the plate.

Any point in the middle plane of the plate is completely defined

by its X andY co-ordinates which are independent. The de-

flection under load "w" will then be a function of x,y and the

loading q, i.e. w = f(x,y,q). All other surfac~s in the-slab.

parallel to the middle surface are defined by their distance z

above are below it.

At any point x, y in the middle surface the following re­

lationships exist'-

Slope • 7Jw .• · ..••• ( 1) of surface in X direction Lx - ~ -Slope

. {)w ••••••• ( 2) of surface in y direction = l.!1 -~

Curvature of surface in the X direction

.L = d2.w : •••• ( 3)

rate of change of slope rx --= = "() )<.~

I ()'aw ( . Curvature in the y.direction - ..... - ~· ... 4) r':f -

"btj2. Tv1ist of surface with respect to the X and y axes

•••• ( 5)

Page 5

The following relationships can then be proved :-

1. At any point, the sum of the curvatures in any two

directions at right angles ,is constant.

Fir;.2

2. At any point the maximum and minimum curvatures, called

the "·principal curvatures" occur in two directions at

right angles.

3. If 1 r

and 1 are the principal curvatures at any r

X y point, then 1 = 0 and the curvature and twist

If both r and r are positive the surface is "synclastio" X y

If r and r are of opposite sign, the surface is "anticlastic" X y

or saddle shaped. Further examples 'are points midway between

the columns in a flat plate.

' By considering an element of the slab dx x dy. x h where

h =. slab thickness at the point x, y, the following

relationships between internal moments and curvatures can

be established :-

M i:: D (..L x. r.>l.

M1=1>(~lj

( c? 'd't. ·) · - -"D ~ + V"""~ ••••••• (6) Q.)l. g ~:a.

(. ":\ 2. ""'\ '2 ') •••••• ( 7 ) .:;. - .. b (I w + ·v-- (/ vV

. Vc{l. ~

M,£ 1 ~ MJ>'- .D (1-'lr') d~vJ ) •••••• (8) ()·x. • -;; ';!

Again if l_ and 1 are the principal curvatures then Mx r r

and My ar~ the principal moments and Mxy = 0. If Mx and My

are known, the bending and twisting moment in any other

direction can be graphically obtained by a Mohr cicle. Mx,

My may be positive or negative.

(Rll)

Page 6

By further consideration of all the forces and bending

moments acting on the element which are shown below, and the

eQuations of eQuilibrium, the following basic plate e~uations

are d.erived :-

"'ll1 Mx · ·::z rl M "1 + () '1. fv1

·- ~ -~ •••••••• ( 9)

;:;

0 .x.z v '1-. )'j '() ~'2.

C>4-w + 2 )4- IN

+ '04-w = ey.D •••••• :(10) "d X 4 v ;..'2. 't><j~ ~ij4 () d:t

+~) - - Q.~~ ••••••• (11) -( w -0)l. 7; ..( 2.. -v '(} '2. .J)

C.l ( ()2w + 0'2. w) - - Q'1 •.•..• (12)

~· ~ ~.'" -0 'j ~ .D

where .. n == flexural rigidity per unit length

Ee ~,~

= IZ (I .... -,r~f

~ = transverse lbad per unit area.

Ec = Instantaneous Elastic Modulus of Concrete.

h = Thickness of slab.

iC' = Poissons ratio (0.15-0.25)

Mx, My, Mxy are moments per unit length expressed in force

units. ·

To find a soltition for a given plate it is necessay to

integrate (10) successively and determine the constants of

integration by satisfying the known boundary conditions.(Two per edge)

In this "day, an expression is found for "w" in the form of a

converging trigonometric series •.

By way of illustration for a simply supported SQuare .

plate a solution is

w = 1, "'4 j- ( 4 + A .. eneit ,. "r( :51 -+ B .... ..Jf'1 s .. t.. !:' Tj X s'"t.. ""'iiX) J) tr s""' ~ c::t. ~ ~ ""-

flo\ " I where m = 1, 3, 5 •.. • •.•••• • •••••• (13)

Am, Em are parameters to be determined from the boundary

conditions •.

Mx, My can similarly bA calculated from a converging series.

Design of fla.t plates a)(.

analysis reQuires that

Fj.g. 3

Slab Element

(R38)

Page 7

constants similar to those in the above eq_uation be obtained

by the satisfaction at a large number of points of bound.a.ry

con(litions which may change sharply from one panel to the next.

In view of this complexity and the vast amount of com­

putation required to determine the bending moments at selected

points in order to proportion the steel reinforcement, the

method is not suitable for use in a design office. I

An approximate solution to the above with a small margin

of error can how~ver be obt·ained by the method of FinHe

Differences and this will be discussed in detail at a later

stage.

B. Ul,TIMATE STRENari'H IN BENDING OF FLAT PLATES:

For under reinforced sections, the plastic moment ci>f

resistance or ultimate moment per unit width of slab

by various Codes as follows:-

CP 114 m = p fyd2 (1- 0.75

pfy ) ..... u

ACI-315-68 m = p fyd2 (1- 0.59 .E£1.1) ..... fc

where

Both

./:' 1 . or .l.C

m = ultimate moment per unit width

p = reinforcement ratio

fy = yield stress of the steel

d. = ·effective depth oft the steel

u = concrete cube strength

fc1 = concrete cylinder strength.

formulae are identical if 9.!12 = u

0.79 u which is generally accepted •

is given

(14)

(15)

C E B ~ ( 1- ~) h1 ... p~ ~l.\ whe..r.e. ~ = sr.u{ s·l-re~S' 2

v;:,Ll ::::. o-;'2. (_ J. :2.- ~p) c:r-' =::. 0• 2. p l'e>o f -srr-~ss. 0·'2.

w P(/'~/o I . I

~ C. "jim.::>( er s h· e '""l"-- o-~r o- ~tit For convenience formulae (14) will be used.

Consider a continuous fla.t plate on columns at "L" centres

in the one direction ;;mel 111" centres in the dir13ction at :fight

angles and req_uired to carry a total uniformly distributed

ultimate load P (See figures 4 ) •

Accord.ing to yield-line theory ·the simplified fra.cture

line /

(R4)

Page 8

/ l : r~ '/.,

------ 'Posrfrvt. JV1o..,..,t.,f N t' q .f,ue. "1 0 ..,~"f

f.-- cf"" rt. l t "'' S.

fr~c·h .. , L •nes.

Fig 4 - Fracture Line Pattern and Deflected Shape

If +M = Total positive yield moment of width 1 of L

rvl - 1 Total negative yield moment of width 1 of L.

then from-equilibrium of the full panel L x 1

wh~reM . 0

p.

............ II

Mo = PL 8 =

= total static moment for the Panel

= total panel load at failure = q L 1

reduction in Mo due to column size •

in

in

direction

direction

_ rb )· ••• (16) 'II

However the slab ma.y fail at lesser values of P by similar

fracture lines running in the opposit~ direction if

l where N and N are respectively the total positive and negative

yield moments in the direction 1 across the slab width L.

(R35)

Page 9

For the panel load at failure to be the same in both

directions

M + M 1 N'+ Nl = ( 17) L - r 1 - rb ......

- b 8 8 - _._./ ~

II II

In this way yield lines will form simultaneously in both

directions as shown in Figure 4 when the panel load P is reached.

Hence (M + M1) for bendin~ in the one direction and(N + N1)

for bending in the transverse direct.ion can be readily determined. I 1

For reasons of economy and optimum behaviour, M and M should be

proportioned so that 1.0 ~ M1 ~ 1.5

M

-1 I

'@ ,..

Figure 5

Due to·the column reaction an inverted conical failure mode

mieht develop over each support causing the central rigid portion

to deflect equally (Figure 5 ) • In the special case of a s~uare

panel of side 1 with isotropic reinforcement and yield moment "m" 1 per unit length, let R = assumed radius of the failure cone. m=M •

Then from the virtual work ,_./

e~uation

p

m

If R L

Assuming a

=

4II

l-IT R2

312

0.05 p m

parallel line mode

p 16m

and p • 18 m .-..J .-...;

·'·

. ---' ~ 4 II

of collapse

for rb for rb

L

1

• • • • • • • ( 18)

p~ 12.6 m

(Figu~e 4 )

0

0.05

Hence it will be necessary to increase the value of "m" near the

column to jm I= 1:_§. x m 1.44 m to prevent collapse by·

the conical fractu~~·~attern at a lesser load than that determined

from the e~uation (16).

A similar precaution is required for rectangular slabs and

is simply achieved by concentrating 50% of the total panel negative

moment in 25% of the panel width opposite the column i.e.

2 m > 1.44 m

(R38)

Page 10

As

1.0 ~ stated earlier

Ml .( - ....... 1.5.

M1 should be made )> M within the range

This concentration of steel reinforcement M

directly over the column has the additional benefit of raising

tlie punching shear strength and also reducing the deflections of

the slab. (See Elastic-Plastic behaviour).

Reference is made here to tests on an experimental model

made in America at the University of Illinois in 1959· The

slab consists of 9 square bays each 1525 x 1525 mm simply

supported along the perimeter by either shallow or rigid beams

on columns and by 4 central columns. The slab is 45 mm thick.

Details of the Model and of the cracks formed on reaching

ultimr'ite load are shown in Figures A.F2, A.F3~A.F4 in the Appendix

Two i~ealized: fracture patterns were considered and the·

ultimate load calculated for each. (Figs.~·F5, A.F6)

The experimental failure load of 1760 kg/cm2 ·w~~ f-~~d ~o be

the exact mean of the two predicted failure loads. In addition

the steel stresses were found to reach the yield values over

the entire length of the yield line.

This and other tests confirm the close agreement of the

predicted values of ultimate load using yield-line theory with.

the experimental values.

Average P test

P calc.

= 1.2.

(G) PUNCHING SHEAR STRENGTH OF SLABS

Most Codes presently determine the allowable

or ultimate punching shear at the slab-column junction

by considering the shear stress on a vertical section

around the periphery as the criterion, although failure

is actually in diagonal tension. Depending upon the Code,

the vertical section varies from the edge of the columri or

loaded area to a d.istance away equal to the effective depth

of the slab. For example :-

Page 11

A.S. No. Ca 2 - 1958 (Australian Standard)

Vs =

b2 =

d = Fe l =

L 0.022 l<'c 1 + 22 'or 100 p.s.i. maximum ......... (19)

when at least 50% of the total negative steel

and parallel to it.·

allowable shear load

Total periphery at distance

effective depth of slab

(d)

A.C.I. - 1968

v u

bl

OR

v. u

=

=

..................... •·• ••••• ( 20)

effective periphery at a distance (d/2)

from the edge of the loaded area.

•.....-:-t Vu 4l9:_ + l}/Fc1

(Hyperbolic fitting •••• (21) Equation) b d r

b = periphery at edge of loaded area r= side of square column

C.P. 114- 1967

= u w

30

The best available analysis of punching shear strength of

reinforced concrete slabs appears to be that-by MC?_~ for .E. < 3

vu = ~~~ := [15(1-0.075 r; )-5.25 Vu lp d d Vfle:J .

~(9.75-1.125 r;) r;:;}"'when Vu = l ••••••••(22) d '..../ .~.·v Vflex

Vu ultimate Shear Load

b Column perimeter or periphery of loaded area

d = Average effective depth of reinforcement

r

Vflex

For

Concrete cylinder compressive strength

Length of side of square column of equivalent area.

Ultimate flexural capacity using Yield Line

r )> 3 and for specimens with shear reinforcement the d experimental formula deduced by Tasker and Wyatt

gives

v u =

excellent results :-· .

Vu (2.5+10 )F ............ (23) bd [r/1+l · . . : .

If shear reinforcement is used r base of the outermost reinforcement. The effect of the shear reinforcement is not to support all or part of the load but to transmit the entire load

to the /

Page 1?

to the surrounding concrete so that failure can only occur

outside the shear oage.

Formula will also give good results for 1 < r

The authors recommend that the F.S. for shear should d

exceed F.S. for flexure by 0.2.

From the results of shear tests on flat slabs carried out

at the University of Illinois in 1952 and by the Portland.Cement

Association in 1954, Whitney has produced a ~traight line Empirical

formula for estimating the ultimate shear strength. Approximately

40 slabs were tested 6ft. square x 6 in. thiok.with steel ratios 1 from 0.0055 to 0.037 and with Fe from 2,000 to 5,000 p.s.i. The

slabs were loaded through the column stub and supported around their

perimeter. .All ·the important variables which greatly influence

shear strength, were taken into account e.g. steel and concrete

strength, size and spacing of bars, position of applied loading,

depth to span ,ratio and column size. The slabs were reinforced in

.two directions in which maximum shear is accompanied by maximum

bending moment. Three main types of failure were distinguished:-

1. With lightly r reinforced slabs i.e.

the full flexural strength was reached

using yield line theory. After yielding excessive

cracking of the concrete occurred due to elongation

of the steel, reducing the shear strength until the column

punched through.

2. With heavier reinforoement, bars near the column yielded

sufficiently to cause cracking leading to punching, before

the bars outside the zone .of rupture had yielded.

3. In the over-reinforced slabs, the compression zone around

the column was destroy~d before any steel had yield.ed causing

sudden punching. The author considers that load failure due

to too close Spacing .:leo oontributed. For Mu/J~ = 500

P Test

P flex = o.6o

Most consistent results were obtained by calculating

the shear stress at a distance d/2 from the column faoe

and using this as the criterion. i

. --·l

P ult L. 100 + '0.75 Mu~ . i.e. ; v !: •••••• (24) u ! i 4 d (r+d) .. d2 I

Where r "' length of the side of the column

d = effective depth of the steel

ls "" "shear span"

Mu /

Page 13

Mu = ultimate R.M. per in. width within the base

=

=

of the

2 pd fy

pyramid of rupture ••••••••• (25)

[1-0.59 pff] when under-reinforced

fc

1vhen over-reinforced

To Pf:'eve:nt bond. failul'e, the bars should be fully anchored beyond

the point where they intersect the· pyramid of rupture. If the

bars are uniformly spaced they should not be closer than

18,000

fc 1 X bar diameter

Ttlhitney suggests that as in most cases of uniformly spaced

bars the shear capacity is less than the flexural capacity, the

best procedure would be to first calculate the total amount of

reinforcement req_uired for flexure and provide enough steel

through the pyramid of rupture to provide the same shear strength

using eq_uation (24 ). The balance of the total steel should

then be distributed outside this zone.

The above formula may be used for flat plates by assuming

ls distanc~ from the face of the column to the line of inflexion.

As some of the load is d.istrihtited inside the lines of inflexion,

ls may he reduced slightly.

Assuming a sq_uare plate with points of contraflexure at

0. 221, then a ~ 0.441 = 0.40r~ say.

Fig. 6

A. ::: 0·401.. . ~

c: - - :::::> /

I /is ~ r is I

~ ~ t I---~

-- v

-L t . . tJ. ~

tT p

The tests show that shear failure only takes place after

local yield ~~ f the tensile steel, provided it is less than that·

req_uired for balanced design at ultimate flexural capacity.

Hence prevention of·yield will not only prevent shear failure but

also unserviceability through excessive cracking. The following

load at which local yielding occurs at the columns can then be

taken a.R the lower bound of the ultimate shear strength.

(See Elastic-Plastic Design)

For rectangular slab :-

If effective columri radius :

P2 = Log

e rb Lx

+ 2.310 - .!:x. Lx

••••••••• ( 26)

where /

(R29)

where · M PY Ly

Lx

Page 14

= yield moment per unit width in long direction

Long span

= Short span

ELSTNER & HOGNESTAD (19.22..)_

v u = ~33 + 0.046 Fc1 in p.s.i. · • • (27)

The punching shear strength of plates is seldom a limiting

criterion however. For optimum slab performance, it will later

be shown that the slab depth is chosen so that the modulus of

rupture is not exceeded at mid-span. The resulting slab depth

normally provides adequate shear strength.

Should it be necessary however, the shear strength can be

increased by placing a structural steel shear-head over the column

and within the slab designed to take at least 75% of the full

punching shear. The length of the arms are selected so. that the

ultimate shear stress at the critical section shown which connects

the extremeties of the shear head arms,· is not exceeded at ultimate

load. Figure (7) shows a typical; detail. Tests on other

types of shear reinforcement show that the function of the shear

reinforcement is to distribute the column load to a sufficiently

large area of the adjoining slab so that shear failure can only

occur outside of it.

/ /

/ /

/

r

'\. ' /_c,_,.._l t_, _c.._ct_...;:;S;:...e.._d_·,_o_l'\_. ~1oz." c 011t.-r ·

''· l l ~I -[-_+}--J[-----'------=. -:-. ----:~1 h ' .....

T

Fie. 7

Various other authors also report excellent results by .

uRing steel grillages over the columns to transmit the column

loads safely into the slab.

(D) DEFLECTIONS I

(R37)

Pa.ge 15

(D) DEFLECTIONS OF FLAT Pl,ATES

The methods most commonly used for the analysis of Flat

Plates are ba.r->ed upon either the criterion of "allowable stress"

or the criterion of "ultimate load". This treatment is therefore '

the same as the conventional treatment of structural members.

There is increasing evidence however, that deflection should

be considered as an additional criterion, either. because it may

be associated with large strains and cracking of the concrete, or

because it may affect other parts of the structure, principally

brittle partitions. The principal difficulties to using this

criterion are however :-

1. A suitable method of calculation of the deflection

2. The rational choice of the limits of deflection.

Traditional design by "allowable stresses" of Timber structures

introduced deflection indirectly as a criterion by setting a limit

of span/360. This was supposed to prevent visible cracking of

plaster surfaces and badly sagging floors. Youngs :Modulus for

Timber under sustained loading was taken at i that for short-term

loading •. Thi~ treatment curiously resembles the present

treatment of concrete members~

In the case of·concrete structures however, which consist of

beams and slabs and panel walls bet>'l'een floor beams' inter-action

or composite action reduces stresses and deflections to a fraction

of the calculated values. In contrast, flat plate structures

behave fairly closely to the design assumptions and although

satisfactory in all respects can have deflections less than span/360

which cause severe cracking of internal partitions.

Short-Term Deflections of Slabs

The basic form of the load-deflection relationShip

is .shown in Fig ( 8 )

J[

Deflec.fton Deflec:.flon

Flat Plates

Fig. 8 (a 2_ Fig. 8(b)

In /

Page 16

In Stage I which is linear, the concrete section at mid-span

remains uncracked and the deflection is governed by the uFiual

moment-curvature relation

£y = M Ecig

•••••.•••••• ~ • ( 28)

where

d. 2

X

d2 2:...X. 2 dx

is the usual approximation for the curvature

Eo = short-term modulus for con.orete

Ig moment of inertia of the gross section neglecting the steel

T.n Sta.ge II the concrw~e has cracked. nt all crHioal Aeot:i.onB

a::> well as over large portions of its leneth, wherever M > Mer

(cracking moment). The deflection is governed ·hy th(~ following

relation at cracked sections, which neglects the ~tiffness of the

~onoret~ in tension between the cracks

M ••• • • • • • • ( 29) ------Es As d2(1-k)(l-k/

3)

where Es .modulus of elasticity of the steel

As ~ area of tensile reinforcement

k = parameter defining the depth of the neutral axis and is given by

k = j pn ( 2+pn) 1

. - pn

For lightly reinforced sections k ~ 3/8

and d2 ~Y.. = M = Ll

••••••• (30)

dx 2 0.6 Es Asd2 E·s I

where Il = 0.6 Asd2

If the average M over the beam is high e.g. simply supported

beam, equation ( 29 ) will apply over a large portion which can .

be taken as the whole beam 1vi th no serious error. Hence Stage II

will be nearly linear and the transrtion between I and II will be

brief. In other cases such as a continuous beam, equations

( 28 ) and ( 29 . ) must be applied. to the appropriate zones of

the beam and the transition will be gradual.

characterized by yield of the reinforcement.

Staee III is

However if high

shear combined. with moment at the critical section has caused bond

failure, the Gtiffner;s of that section may,be reduced to one-half

that ei.ven by equation ( 29 ) . Cent reP. of panels of flat plates shov1 the same basic pattern

of d.eflection unrl.er load. (Fig. 8(b) ) but the transition stage is

usuRlly so long that the deformations ·are quite large before the

Recond. RtR~e iR reached .• ~xperiments Rhow that cracking starts in/

Page 17

in the neighbourhood of the column head and is confined to a

fairly small roughly circular zone, having no noticeable effect

on the overall slab stiffness, especially as the reinforcement

ratio in this zone is high. Only when the modulus of rupture

i~ surpassed at the mid-span section does the slope of the curve

cbange. Cracking then spreads wjd~ly over~ ~one which ia the

most lightly reinforced in the whole slab causing a large overall

reduction in stiffness. Calculation of the average stiffness

at any cross-section 'aill be difficult ho-vHwer b·ecause of the

moment variations across the width of the panel causing portions

to be cracked ~r uncracked. This variation is greatest in the

negative moment regions. See Fig. ( 9 ) • Furthermore in

the cracked zones, variation in the amount of reinforcement in

the column and mid strips respectively will also greatly vary r 1•

To complicate the calculations further in a rectan~1lar plate,

each direction will have a different cracking load which will be

roughly proportional to the,inverse of the square of the span.

Su-ouort ____.._..._ __

'PQnef tVcdfk._

Un c..r~ cke.e;l.

Mid-Suan

Fi,q;. 9 Cracked and uncracked -oortions of full panel width

Calculations of ~eflection will be greatly simplified if the

cracking moment· (Mer) of the slab were only to be exc~eded within

the column strip at the column face and in the longer direction of

span. Crackin:'l,' would. then be confined. to a small zone around the

column of arAa approximn~ely 10% of the panel area in the case of

a square pG.nAl. The stiffneAs Eo Ig of the uncracked section

could then be used in all deflection calculationR without serious

error.

As the use of equRtions ( 28 ) and. ( 29 ) simultaneously

is not practical, the following ap~roximate procedure is suggested

for /

Page 18

for the estimation of deflections and has been found to yield'

fairly reliable results :-

1. Treat the plate as an elastic frame firstly in the one

direction carrying the full de~ign load and then the

other direction. Calculate the deflection in each case

as shown bAlow and then add both ~eflections together.

2. Calculn.te the foad. required to crack the panel j,n

th0 centre.

3. For loads < cracking load, calculate the deflection

·on the basis of·the uncracked section stiffness.

(Equation 28 ) •·

4. For loads > cr~cking load calculate the deflection

~for thA margin Of J.oad..;. above th.e craokine J.OA.d,

using th~ cracked section stiffness (Equation 29 ) or table 1 (See below).

5. For ratios of sides> 1.33 the deflection contribution

from the short span can be neglected.

To assist in calculations, the cracked section stiffness of

under-reinforced sections for various percentages of reinforcement

and the short-term Concrete Modulus Eo are given in the following

Table :-

Table.l

n

Stiffness Parameters for Cracked Reinforced Concrete Sections

p El x bd3.

6 E== 6xl 0 p • s • i. . c

7-5 6 F::o4xl0 p. r:<. i.

'

1.00 6

B= 3xl 0 p. !?! • i. c

0.005

0.010

0.015

0.020

0.025

0.005

0.010

0.015

0.020

0.025

0.005

0.010

0.015

0.020

0.025

.112

.211

.274

.339

.398

.105

.182

.246

.301

.348

.100

.170

.225

.272

.313

10-6

Page 19

D.l. Al te:r.nati ve Method.~ of Deflection Prediction Stler,-esterl by the Writer

In its report on the defl~ction of R.C. flexural members,

( R39) A. C. I. Committee 435 recommends inter-alia the following methods

for predicting the short-term deflections :-

(R~n)

l. Bram:;on 19_63

1>/hen Mmax > Mer use the average effective stiffness

given by

Ieff - [Mer )] 3rg + E - Mer ] 3 Icr ••• (31)

Mmax Mmax

If Mmax ·< Mer use I eff = Ig

If the be~m is continuous, use the average of the I eff

. values for the positive and negative M regions •

Mer

1vhere Mer = f

1ob = Ig

cracking moment

modulus of rupture

••••••••••••••• ~(32)

second moment of area of the gross section neglecting the steel

Icr = second moment of area of cracked transformed section

Yt distance of extreme tensile fibre

Eo =

from the N.A.

33/ w3 Fo11

p.s.i. for win per ft. 3

57 ,6oop :p.s.i.

2. A.C.I. Code 1963

Use I = I

Ig when pfy ~ 500 p.s.i.

Icr when :pfy > 500 p.s.i.

If the beam is continuous use the average of the values

obtained for the positive and negative moment regions.

By applying methods (1) or (2) to. determine I eff of the

full panel width which is assumed to be conBtant over the entire

panel span, calculate the deflections ~X and .Afj in

ea.ch direction under the full load and add together for the

deflection of the panel centre.

Reference is also made to an approximate method developed

to predict deflections of floor slab systems with or without beams

based on 11 exact" or finite difference solutions for interior

rectangular panels and test data from 5 structures.

A Physical analog is proposed as a substitute for the frame/

Page 20

frame consisting of beam and plate elements delimited by the

idealized lines of contraflexure at d.istances of 0.2 L and 0.2 S

from the column lines (L = Lon~ span, S = Short span).

The beam elements have widths of 0.4 L and 0.4 S respectively

supported by columns at S centres and L centres respectively and

the plate element is the portion of slab bounded by the beam

elementR.

The total deflection at the centre of an:;internal panel

would then be the sum.of :-

(a) Deflection A~ at the centre of one of the lon~er beams

in respect to its supporting columns.

(b) Deflection ~b at the edge of the beam in respect to

its centre.

·(c) The deflection .6.c of the plate element with

respect to the edge of the beam.

~~is calculated by the elastic analysis of the beam and

Column frame (Ersatz Frame). ~b + ~ C is approximately

equal to the mid-panel deflection of a rigidly_clamped plate

of the same size and is calculated by approximate methods.

Different boundaty conditions are taken into account by. . '

calculating the rotation ~ of the panel at the boundary from

a. full panel elastic analysis, and by adjusting

fpr this rotation. This method takes into account the

restraints offered by the column stiffnesses as

fj- is then= Mcol. Col. stiffness

Measured load-deflection curves are compared with curves

obtained from the approximate method on the basis of both cracked

and uncracked sections. It was observed that short time

deflections under working load are better predicted on the basis

of uncracked sections since a large portion of the.slab is uncracked.

Furthermore slab construction under working load owes its

successful behaviour to the tensile strength of the concrete.

As there is little published evidence available that the

methods outlined above give results in reasonable agreement with

prototype flat plates, they must be ·regarded as first approximations

only. It appears more practical to restrict deflection by

ind.irect means v1hioh will be outlined hereunder.

INDIRECT CONTROL I

Page 21

D. 2. TNDT.RECT CONTROL OF DBF'LECTION

As a basis, it may be assumed for practical purposes that

gypsum plaster cracks at a strain of: 5x 10-4 and c.oncrete at a

strain of 1 x 10-4 irrespective of its strength. The cracking

strain of brickwork is believed to lie between these values and

will be estimated from tests •.

For a uniform elastic beam i'l'i th N .A. at mid-depth

M f = E &= f I y R E

1 £ = 2 Et R y h

where ~ t" = extreme fibre strain

(See Fig~ 10

N. A. --J!----1---·----- •

= v u...

h

)

h

R

Cross-Section Stress

Fig. · 10

••••• ; •••••• i •••• (33)

overall depth

Strain

Consider the case of a simply supported slab span 1 with

total load 'If uniformly distributed. (Fig. 11 )

To r al L o.-.C( 'vV )

Fig. 11

Mid-s:pan deflection \ . 5 WL~ _ 0 '- = 384 E I -

If slab is

tben

From

Et (33)

be = ~. _!_ • L L 48' R. c-

designed for no cracking at

lxl0-4 maximum

mid:-span

' -

•••••••• ( 34)

...............• ( 3 5)

i.e. Me <Mer

• and(35) fc ='s.2£~.L T. 4g T 4~ooo

de -L = ){S'oo ......••••.•• ( 3 6)

Page 22

The above deflection refers only to the immediate

elastic deflection under load. If the load is sustained for 5 years or longer, then due to creep and shrinkage which are time

I

dependant, further cracking and additional movements develop

whjch increase the deflection by an estimated 200% of its

initial value. Table ( 2 ) shows the multipliers F proposed

by th~ A.C.I. for the Long-term deflection in terms of the

initial value with a maximum value of 3. It should be noted

that by increasing the age or strength of the concr.ete at the

time of loading by curing or by delaying the application of the

load., the time dependent deflection will be reduced substantially •. -

1)t.4r~+lo.,. c4 L o~~,.,<j I Yl'jo ... th

~ mo ... .k,s

I 'je,a.r-

5 ljtt;l ($ o(' 1'\o'\OI"'e

A~ov.,r of Co""'prets•on re,~ ... forceme"'-f

A'~·O A's~o·'SAs A's ~As

I·~ t. 4 I· 3

2·0 t. g f.~

2·4 2-o f. 8

?J.o 2.. 2 ,. g

Table 2

Fo~ Lot-JG- Tf f!Vl

::Dt:Ft..ec Ttt~N.

Masonry partitions are too rigid to follow the floor

deflections and so they span from end to end possibly supporting

some- of the weight of the slabs or walls above. This will

cause severe cracking especially at openings. As only the

creep deflection of the floors influences the walls, it is

necessar,y to limit this. The American Society of Civil

Engineers limits the creep deflection to span/500 for concrete­

block masonry without any information to substantiate it. On

this basis it would seem desirable to limit still further the

creep deflection of slabs carrying brick masonry.

The following criteria are therefore suggested as an ' indirect means for limiting deflection and cracking :-

· Cl. Design for no cracking at mid-span

C 2. Ratio of s~- L 32 for simple spans slab depth

These requirements will result in an initial deflection of

span/1500 and a creep deflection twice as much namely span/750

which appears to be acceptable to brick partitions.

Should req_uirement (1) above not be met the effect on the

d.eflection is illustrated in the following manner :-

In a /

Page 23

In a reinforced. concrete section cracked. in flexure, the

steel i$ approximately a.t 5/8 d. from the N .A. and equa.tion ( 33 )

becomes 1

_ $5·&<;. •••••••••••••••••••••••••••• (37)

where

If

and

then

From (

·r. . c. -L

lf L -h.

• •

R. Sd.

£.s d

s

fs

£s

_,It-

J. ... - -

Stress Strain Section

strain in tensile reinforcement

effective depth

l

\ct 9gd h.

modulus of the reinforcement = 30 x 106 lb/in2

tensile stress in steel at mid-span

30,000 lb/in2 say

30 ,ooo = 30 '000 '000 .

35 ) and ( 3 7 )

s 8 cs .L L .................. ( 38) =' =- ·--. 4g 5 G( bOC>O c(

r::. 32' L 32 ~ 3~ So1 ct t~>r slab'. ::; - t::\S h~o.88 ·88 0(.

~c, 3~ - Y,~s for ts- :;:. 31>, 000 P·''' - -- - boo o L - .Y27s

fpr fs - 18' oo C> - -

Hence mild steel stressed to.l8,000 p.s.i. would be required

and the deflection would still be more than 5 ti~es the deflection

· of span achieved. by meeting requirement ( Cl ~ ) . Although ·'· 1500 l' II

the depth of slab h must be increased to do so, a reduced quantity

of high tensile reinforcement can then be used to offset the cost

of the extra concrete. The benefits of a crack free slab and

partJ.tion walls fully justify the small additional expense.

E. METHODS I

Page 24

E. M~THODS OF DESIGN OF FLAT PLATES

E.l. ELASTIC METHOD

Design by the above method may be carried out either in

accordance with the American Concrete Institute (A.C.I.) Building

Co<le 318~63 sections 2101 - 2104,. or the British Standard. Code of

Practice C.P. 114 Clauses 325 - 332. Both methods are essentially

the same with small variations which will be described. It is

expected that the European Codes are also similar in their methods.

The follovting assumptions are made and all .sections are

proportioned for the moments and shears so obtained.

l. The structure may be considered to be divided longitudinally

and transversely into frames consisting of a row of columns and

strips of supported slabs with a width eq_ual to the distance

between the centre lines of the panels on either side of the

columns.

2. Each frame may be analysed in its entirety or each floor or

roof may be analysed separately with the columns above or below

fixed at thei.r extremeties. Any sui table method of analysis may

be used e.g. Moment Distribution.

3. The spans used in the analysis should be the ·distances between

centres of supports. For the purpose of determining the relative

stiffness of the members the moment of inertia of any section of

slab or column shall be taken as the gross section of concrete

alone. Any variation in the moment of inertia along the axes

of the slabs and columns should be taken into account. (In flat

plates there is no variation). Joints between columns and

slab are to be considered rigid (infinite moment of inertia).

4· The maximum bending moments near mid-span of a panel and at

the centre line of the supports should be calculated for th.e

following arrangements of the full imposed loads :-

(i) Alternate spans loaded and all other spans unloaded

(ii) Any two adjacent spans loaded and the other unloaded

The above req_uirements are from C.P. 114. A. C. I. 318-63

as8umes that the maximum bending moments at the critical sections

occur und.er t full live loads,· as conditions (i) and (ii) cannot

occur simultaneously and hence some redis~ribution of moment is

possible. However the design moments taken must not be less

tha.n those occuring with full live load on all panels.

s. I

Page 25

5. The slab should be designed for the bend.ine moments so

calculated at any section except that the critical section for

negative moment is assumed to be the same as the.critical section

for shear ( wh.ich is d/2 from the face of the column.) In all

cases the numerical sum of the maximum positive bending moments

and the average of the negative bending moments (at the critical

sections assumed) used in t~e design of· any one span of the

slab should be not less than :-

CP 114 Mo = 0.10 WL (1 - 20 ) 2

31 •••••••••• ( 39)

A.C.I. 318-63 Mo 0.10 WLF (1 - 20 ) 2

31

••••.••••• ( 40)

where Mo = numerical sum of positive and negative moments

\·T = rrotal load on panel

L = Span length centre to centre of supports

c = effective support size (or average)

= side of equivalent square column

F 1.15 - C f 1. 0 L

5. (~) A.C.I. 318-63 requirement for Mo above applies when

the steel is to be proportioned for each se~tion by the Load

factor method. If the elastic method is used the requirement

will be Mo = 0.09 TrTLF (1~_2C) 2 •••••••••••••• (41) 31

The value of Mo represents the total static moment for which

each direction of the panel must be designed. The 1..}.se of the

0.09 factor instead of 0.125 is claimed td be justified bf. the

experience of many years service with flat slabs having standard

oapi tals and. accounts for the. so-called plate effects. The

factor "F" which is greater than one,'is provided to protect

flat plates using smaller columns. For example if C = 0.05 F = 1.10

and Mo 0.09· W1F (1- ~ ) 2

31 0 • 1 0 HL ( 1 - .?.Q. ) 2

31

which is back to the formula from C.P. 114

.L

6. Each panel shall be considered as consisting of strips in

each direction as follows:-

(i) A middle strip one-half panel in width and

symmetrical about the panel centre-line

(ii) A column strip consisting of the two adjacent

quarter panels one on either side of the column

centre line. The/

oc

*-

Page 26

'I1he bend.ing moments 1-1hich have been. calculated for the full panel

11idth at the ori tical c>ections 8houlrl be divided betw8cn the

oolnmn anrl mid-strips as follows:-

C'P .114 '118.ble 21 Co1umn Stri12 Middle

A.C.I. 318-63 Table 219.L(.9l CP114 ACI CP114

Negative moments at internal support 75 76 25

Positive II 55 60 45

Negative II at external support 75 80 25

StriT

ACI

24

40

20

These percentages may be varied by 10% provided the total is the same •.

Distribution of bending moments between Column and Mid. Strips in

percent of the total moment at the critical sections

7. The shear on vertical sections following a periphery b1 at

a distance d/2 from the face of the column shall be computed and

limited as follows :-

CP 114 . • • v '= s 40 ~ 130 p.£., ..• (42) ' .

ACI 318"-63 : v u

• • • • • • • • • • • • • ( 43)

Uw cube strength = cylinder strength

8. Bars should be spaced uniformly across each panel strip in

both directions except

CP 114 - 50% of the total panel negative moment steel should

be uniformly spaced across the middle so% of the

column strip

ACI 318-63 At least 25% of the total negative reinforcement

in the column strip C: 20% of total steel in panel)

should cross a periphery located at a distance d

from the column. Spacing of bars·= Zh maximum

Page 27

1 ' I

~r.,~~t~]) rstrt\1t.., rr--o­""'" > ~

~ ~

\ .

II 4-

'1-,)'-ft d. I""'

K ,., '4 i. g L o/4 f-+<..+M 1 '1 ,

CtJ. S+r•(l 'I~ Lj~ "f Y4-. 1~

CP 114 ACI 318-63

Stepped Distribution of Reinforcement at

Critical Negative Moment Section c = column width d = ·.slab effective depth

9. 'Total thickness of the slab shall not be less than

CP 114 ~ 5 tf \

ACI 318-63 . 5" • \

(Elastic)

A.C.I. (Load Factor

f _L_ 40,000

50,000

60,000

L 32

1 36

for end panels 1 . ) 36

or 0.0281 (l-2c) 31

for internal panels

+ 1-~tl

Fc1

design) Table 2101 (e)

minimum slab thickness

L/36 )

L/33 ) or 5" )

L/30 )

10. Maximum Bending Moments in Columns shall be determined from

the condition of full live load on one adjacent panel and the

other adjacent panel unloaded.

11. In the case of flat plates designed by the TSJ.astic Method.

which fall within the limitations req_uired by the Empirical

.Methoc1 (::;ee section E2) the A.C.I. code permits the resnlting

an8.lyti.cal moments to be reduced by a constant proportion. so

· that the value of Mo is the same as that permitted in the

F.mpirical Method. If this is done, it amounts to a redistri­

bution of the moments obtained by the Empirical Method,from the

critical negative moment section to the critical positive moment

section,necessitating slightly more reinforcement.

Under these circumstances it·would be more feasible to /

Paee 28

to design by the Empirical Method in all cases where the

limitations are ~atisfied. The value of this dispensation

is therefore queried. No similar.dispensation is made in CP.ll4

E.2. EMPIRICAL METHOD

Design Bending Moments are given at the critical sections

which are ,justified by the behaviour and ultimate capacity of

similar tested. structures. They apply one when the following

limitations are satisfied :-

l. The construction shall consist of at least 3 continuotis

panels in each direction.

2. The ratio of length to width of any panel is not greater

than 1.33

3. The grid pattern shall be approximately rectangular.

Successive span lengths in any direction shall not differ

by more than. in CP.ll4 - 10% and in A.C.I. - 20%

of the longer span. End spans to be equal or less

than interior spans. In the A.C.I.,~columns may be

also offset a maximum of 10% of the span in direction

of the offset.

4. Critical sections for the bending moments are given

as follows :-

(i) Positive moment along the centre lines of ~he panel

( ii) Negat·i ve moment along the line adjacent and parallel

to the column centre line and a distance of d/2

from the column face.

5. Numerical sums of positive and negative moments (Mo) ·

is given by

CP.ll4 Mo = 0.10 WL (l-2c ) 2

31

ACI : Mo 0.10 WLF (l-2c) 2 for Load-factor 31 ·; design of sections

0.09 1-TLF (l-2c )2 for Elastic design 31 of sections

6. Distribution of B~M. between Column and Mid-strip as

percentages of Mo are given below· in plan.form by

ACI - Section 2104

•I '-! ·' .f ~ ~-~ ~ ~· .:t-v

~~ ~ ~~ ' 4 ~

~ ~ ~ ~ ~ 1...

~~

Page 29

In T£/ftP,e IN 7 ~,e ID,e ;rr /,vr,!=,fto,e E~r~,e.,6,e ~~ 7,C:~I'D,('

Svf'P o,e r CI!NrR~ ..!'v)'}'~,e r ~~,vrR~ .r v .,i),l'~,e.,.

f ] I_ .. l L

--23 +II - zs (-zi) +14 -20

-16 riG· -/t? f-tc) r2o -10

:

D 0 r t-ZZ. .f Zi -

.. ~

~46 -so {-- 4bj -/10

Fig. 14 Design Moment Diagram

Distribution given by CP 114 is identical to the above

except for the ~ercentages given ·in brackets.

O•'Z.L

Fig. 15_ Arranp.:ement of Bars in Column and Mid Strips

7./

Page 30

B. M. in Columns

CP 114 : Internal Columns M 50% of Negative M in Column c

::: 23% Mo

E:xternal Columns M = 90% of Negative M in Colurim c

37% Mo

ACI 318-63;Columns to be proportioned for B.M. developed

by ineq_ual loading on panels or uneven

column spacing so that

Strip

Strip

!vic = ••••••••••••••• (44)

f = 30 for External Columns

= 40 for Internal Columns

In both Codes, Me is. to be divided between the upper and

lower column in proportion to their stiffnesses.

8. Minimum thicknesses of slab are specified in the

same way as the Elastic Method.

9. Shear on the critical sections is limited in the

same way as· in the Elastic Method.

Page 31

EE. Ex AMPt.e.r

EE.J. £ L /i S"Ttc M c 7 Ho:/) c.p 114

_E_E~. _?_. __ E_N;_.:._P_I/?_I_C_/?_L __ /V1_..::.£...:...T...:....:#_o_z;=-_-A_.:.....C:::....:...:. • .7=-=3~/...::'8-_--_:,:..=~·

f£.1. f L IJSTIC lv1 £ 'THOZJ ( //'! /6 )

.f'l ~ 6t:J(J()

6qy .:::: 1:. ~ .lZ.

/l"'e~'7.t t = ?~or, ?ooo C' 2~0 7'2-

;=;,~.rt,

:: 2 q,, ~ 2?tJ ;:; SS2 ~ ~~ 4.­

~ ~ 4 I:"N/~~t ,_

) S' ,

&vii fot:fof (ISO i· $./) .:;, 7 2 .J .

Ch1cl~ dUj/1, ,;:,.. IJeQr ~ J

/If ,,/t',.#"'q/ ~ 7-> .: ~~~ ><' & )(' P~;; 1.r x11r z RZS RN. .4t /r'~ .. n fo(l,. c;l! ~ ~ Jy FZl"' ~ 24?1' KAI.

ChtJ~It ~ ..f"o~~ .!"otJ ZJ1recr .r/I'IJ'.fr C~~o 24?.Jx lbo~ . f~ ~ ~tU)

·. . =: /ON~_,~(/r~J.D;.r;)

·ZJf!'.r~'7~ &. rr-,7;~, e .!!!... ~ 33 M!?ct. · ~1

~ .. ()o.,./~a 1 7""'"" e/,.,r-./ ~-e~l. ..-;// k ~_,p,,_,e.A' (,oM !i M ~ ~/c:.-4h,,

#1/t;w q,6_k lfref'.f q/ e'/',nct:~/ -""r"~~? ~ t:PI'/ _t /r~~~ c«. ~re

z. = UN +JZl.J ~ ~Cf Ml'c;,_ -3f)

:: 0 I /fA,._ ;:,,. UN$ ZS" H jJ~

/},eq,. v = /'lS .Y /tJ~ .:: ~ 41' k~ # .1<: 7./P .>e /9'

~

"" (\) T~--''--t---+---L.---1 •• I ~

I -~~---,

u_ I f[ :IJ' !~ !J I . .. I L ___ ____J

V > je~ ,.,.,, J..! 1~/.e f6e Qr J/,er J'

9f". /;;e ~l!vt/1/,.,~ Q//er ,-,e;-;/,vt'.l'

net'e.r~a7 'l ~e J/~6 d#7#.

Page 32

' ;

~===:=::::=::::;::;======~;==:::======++ -:r ~ ~ Ty}d"'-' r/m-

. :'[~·.. t. I.' ~ z -t""f •.. 0 .

';;-;- w

1:*===:::::::::====::±=::=====!=:::::::=======~ ~L--,:---

.. ; 1-i

Page 33

1.1' ntJ/ ~'l?artta.rect .-/. hcl'~r;.re .r/ot

~""" 1/ ~ fh, .-K"*.rr f2- /c, 3J'o "'- ~,.,.,1h,,f

/6 6 X' 41' X ~I~ J(/OOD ::: () 9/ N~ J

4 ~ J'?o Jt (?tfo·..r(}}

C~ .//2€1 ~. 9.JD K i:J.rtJ 2. L;,c,.~ li'.l'~ -"e. ~t~~ ~ J:. (J'z.r- /J) /tJ~ ~ · = ~ 9/ N/~

~ ><! //1': ~ ICJ~.

1. 'Prt~(n&Ye ~eq,. '<?~/&''~ ~H/',,e ~9. /k.tP/ ;r;tl'~ ·

4'. Znc-,,Q~ 4t. . .1/t?l /h,cK-ne/.1 ~.1')5 ~P-'' life ~n ~ a .r/q-6 at~>~· 3J-o .... .)(' i'f:)(/~ ~ 2()o tJ

~d h/) ~~~, cl1a7e..r :!he Cru'>.drtJ# d,.~, 4 __ _ ., / letr .f'/e:~J h Q;,llf /.f n~l Ct>n.r,.q.?,.,q he~ •

.r. a ('r;,._, /;,, QfnP,.· r 0 2 ~PI" 3.

Jo kf,.~ : hcN'fl.!e' ,n;e .lfol ~~.f n'.r/ fo f' 2.!"'() ~-­Q,.Iilf j re' VI'~ q .rfN~I .l'h6't:>i-- ~I'Qtf e>~r

~~ ~t ( Ft:~ 17 ) .

..

;fe~N-~ ?J,Qq Lo~ .- ~ 4 K~ l Lt~ I#Q&; J:. ~ 2 I ~ -

. /of4/ /J b "' . J

-= /;t' ~ #I'~ lt.f "- = J' G .r R AI. ~ J

Z "" /.5'~,; .vJ.!" L 114/~C( l<:i~r ;4 Jont ~~,.. IJt.r,l'/t;,.f'e r:: 4 '< /rPx 1.:1~ Cj..l

: J2.! K ...v t:::;; J>'o% p '""'

.7/ -h7~ 4 r. /heor htiQp/ I 2 0~ ./;;eo,. .rh~r,. "'" cr, /; ro / jer'/6.> 7 : -

t/.; u~~- t) ~"~ :::: ~l6 H/et_ · 4 .v J(jt>~ Jt' "Jo;J v 2o t>J < 0.) 9 ~/"'-' .

Pe,'l/,(7 /gy c;..,;,.("Q/ ./le&-r

.,r:;,_ I 7

>

Page 34

{~1 IC )

ne. /()!/,...;,,, /~t:;-oflnJ Qrre:fnlem enf.J Qr£

I. L c J4~ k.1.1

("') f Zl.~ • 7o}KA/ f ... J . t '.1•7

A B c

L.~:: 34.S

13

/-",,. H,.Jt ~ ~ c:n' t?j 8 c/.Z>

(c) ~k=="~:;=:?:;.J.f,~~==~ti==~::;:.=~=J=ttt.r==Jf:===1=t>=7===t..1- ,e., ~..r $.1'f ~ ~ c

.Z.rlt:('6

(~n c,.eutvPI)

.Tc.t (t4 r;~:u·kP()

7) /.Jf,,o~ It#~

c I,

f!t~,_efne&l'/ ?),-.rfr~~.,-/tP, f;rJ (6)

/lJy._._ef,.lrar~ J)~.rr,~I-1'/DM

(c)

hx ..ec.r .6,pt ~Alii' 'I H

lJeqtt t t:Ja « M -==

f,~ L oet« M ..: .?oJ x ~-z..

.l4r J( ~'

. ·.. ~····. ' '

D

-r

e co.) k--V, ~

z. Z]o k...u. ~

Page 35

C? !y;~(Q/ C q /t:r;, /af" Pn will 6e C,Qrr ~'Cl oc.~f /Pr ·(b) L J.9

(:fJ @® <i~ " 6S'2k AJ

(JA B' )4zt Z).~ ~zo~ -rz.o.r --z~s- 1.: fM

L.t. -2]t:J +llQ 0 34--o -!Jl.&

I ,... I~

f 117 -2i -- J".l /16 K~l.~:J >< '-.!"'9 - ze 0 MA/8 _. /.9Jt' 3·16 x_1~ + K' >< - ltJ!! - 7

- 7 "' 4 <:> ~4-o

.,t 2 - I 0 - 2 7? £». ,._ -..tD-

-]4o ~.t;fl~ - 24() . Gtt"4t/ MA.8 _. ]4p- ]I~ Jtfii/J ~ J

~ ...-- C(,/, 1'-f""''"ff ~ > 222 !<AI.~ 'l 0'--

'---""0> I ~

@ (E) ~ @@ 0 -ze~r ~ZCJs" -z.or "''"r -~C>.i' ~z.or

-21D ~l.~~ -z.Jo -1-Uo 0 Q

'l-117 ~ 0 - ~7 - 47 - ss-0 >< +ftJ -Z4 >< 0 -z? ~ .. z4 0 ><:.. ~7 - ·7 ><.;6 ~6 ~~7

-4 0 -rJ -4 ~4 ~.s +I -I -I e:J C) -/

-)Z./ .,t. 4!'6 -4t/f -119~ -Z7o ~ 14~

A c

Zl. ..J.£ - zgs- ~zr;.r ~2t>.r

~t -2$0

a,-,d fp; (&t) · . 6.!2 ~~·

4-o c....,~J ~6 L :/'.,.. .M t? 4n>

..;.s;r >< .rS.) ~ za ~ zJ> ~li C>

- tP >< - 7 - 3 - 3 -4 (:>

l'v113/C o:- .?Zb Jt4~J2- 4/o

:::. 242 RAJ ,.;., . ..; I ~I ()

/)2.. .,t.J?f -411>

Ju( t L~f,_ * )41.r Jz6 ·I

r'ZtJ -II -Z22. 346

MaA -:;. ¢f.r- , .l4~~~1lJ'

Page 36

•!o W! { /- .!.£) z ~ •lo .rC.rz .( f' (i- ~s-) ~ ~t z~/

::: ·/o J(' 6.rt < J> {· r~ 2. =- "'~o k.AJ. ~

~H14 ,.; rq./ J'#lf'~ 'l P,r;~e,/J- ~,. 0/e .1'1'71'1 .. ,.

M /) /) g. .£~ii ~ '71 r~-1!:[ ;:. St 7 ,t"'AJ. ~ ... 2. ~

=- ,f.rs -1- 242. = ..> 97 k..-v. 4-. ---~>

t// w/J,e-/J · ~1'9 > /V7 o e>~u?f .f'Q~./'/~cl'ol"-f. lfo,.,4~f..r ~>,-e hD w . ?jo,. fin11'PI ,t; ,4', C:/..,""',., l--1,4 .rf,.;/.r · rt>-JI. 41" j. II• w .r 1

-

~ ~ ~ A ~ · e· ~~ :;?' ~

~ A? A/5 .BA 'B{C '

~ t\) %M 7! sr 7!" SA " ... '()

~ M -lt6 -1- IS'S -2b( -1- /JJ ~

A! 445' () lllrt '&; F /tJ o 5 4£"() ~

5 'f!;-0 ~ ~· QR.. 6 y ].C) ~

,, 7'1-z.o 13 y '2.~ // y~o ~

~ 7y l.o ..; 21) yao

~ %.1'1 cr ttr · 2S"' ".r ~ ~

-s-6 ~~ + toe; 't ~ M .,t. ll. s- -/S'O..() c. ll.r .J 2. 01-0 -e /8--Q Z}.ro

~

~ ~

lie .I '(~c> · 1~ y2o .( Y•o 7 yZo ~ ( ., ·~ jy/' ~

~ le .. R e'"'/"""ee.-, e"' I.

' ¥-''""" C' ..... .,../ ... 1?- ¥' £,~*''""'"'~ ,/,~qJ"; ' $/l- C:, JJ.,~. ~ • 2b6 RN. ,__, IU/a'~ I.: .?ot#-tJ c/.r ?.!'"P#' ¢<J

tl. t:- ?S ft-tflA; c::. Z.l ~ :!:x.!. c .j s.r Nl',., .:; 2/P-.._. ~ 3 $ ~

£ J'.-4 3 .r .r .J X b >t ::{ l( ..J... I?( .:. 2 () J' J t:( ~ N. It-t~ . I ~ z 9- ,

::: 2,P! ~ .!(>"~ Jt' 'liP""~/()_, :;:. Z7J" A"'N. ,.,.

lev-~, ,,./IV) /. ~ 0) ?J' fr J Jq .,.,.,., ~ ... z /l> .,.t( r'""-#.t! :: M c. 26{, x IP ~ ~ J> IP () ,_.., ,_.

fr l( .1 ~ o< q, 1.r J( ~/() x zt v >

~/13- Ct. J;,.~ ~::- /~J eAJ. ~ ;; ~??A~ , IJ.r-1 :. IS3 =><It? /(',I'R K 2.1'~ ~"lltJ ;:::.:. .3 CftJtJ ,.,., )..

Page 37

c F C G

t c

(t) £ fl !¢S"" i4~

1t6 i f. f Jo7 .?o? ?(/7

~ c ?t~s"'

~ s"r

(c) J f tG .?•? ~07 :;>o?

.& b ..... 6., c c,., ,r 'I! 't ~

" " ,.-. z .!'1'~6. :: /t f 1 Yt t J . z. I> /Po 1-z.""' ~(J/)JI' trfJ .. E'or1~

/l 7"""' f;./ Ca/ :/),J'fi',J e, h~;~ (c)

n )f et?i E,p~ ~""'"k :-

;:;, 1'-(.,..lt /).~ .~

r-;c.

/'t~, lt-(q.., ~ ~ #1/

£) &/P:J C/G'; G.

r",. N~..r- d.M ~ r: c

"'

k': ~ ~ 1~ ·~$$ r (;~

lJ.e.Qt:l . ftJcut M ~ 3"7J( o/tz ~ IS£! KM "-"

f.,t~.t Loa&JI /Lf ~. J 4.!' X ¥2. .. 173 eN. ,_.

7le H c>-, ~ <? ~ .r t::l"'$,.

'" n~ ;. ,.,f> .,.,~,. t7krf,..,6 c.lee:t e;~ · 1_,/u re r~t.,/fi.,'s

e:l'tt/ M ~ b .,.,~/..r. •'-

Page 38

N""'~NC'Q/ .r(;f,. ,r l>ttJ,.,~~~.r 110 ff r oe: It;¢ ~ Uo ~ Z..IJ-6

-'f* ~

fr eft'I''J"" .'-

• .I C) t K .V. "-' __ ...... ,.._

In r c :; 2.4..6 .., li'j ' ::... ¢--JS' K~ ~ ,..

1,1~ 'f w~,&h a,-, > lvfo ~,.,J ~..er-' fr.e, .J'Qt.r.f,l~. %e.r..e fQ"e/ 1'-fo~e,fJ t:~re ~'~"~ t:::~~rft~,u~ ~ .7'4 • C~~t. a,.~ ~vt rf,f!l.r ec,,.A; /:;e re .r~//;7 r~,.,,.:.,. sf~e/ lf.reo,~.

~ E# £/F FE- r(e-

~ ' %fv7 '?S'" s-r 7!" _t-,r'

~ ~ /V1 - 7l, + /J..o -lf'r + /t:>¢.

c.; ' lis 22(')-() ] 4 fJ-() . ~?~ 2<j'tJ-O '

\l ~ I< t:?'YI.& /l'y/6 C/YI.& t.r-y/6 ~ ~ .,J 4 yl' r IIY/6

%tv1 2~ 4.!" Z!" tl.!' ';)

/Vf -2! ,_ I 1:1 -o - b/ ~ I'.J ~ ~ ~ ~ As 7D(') £ tf o-e> /Jo-o 24~-o c.;

~ I< 7yt& 14yl' "?y/,& /2yl6 ~ ' ~ r7YI2--t u ~ I •

lk f ~o~! ¥' Pe~{oree 141tl'kf /or ~ jull ;a,e/ r.fr'l ,,., I 1:> A? e:;~,.,., eo hDI'IJ' /J .r6'vV"' ,.~

~9 /~ n: /e,dt .. J' ./"hrs' o,.(}"/ k,Jts ~ q/1 Re 6&1,.. &f"r e11ltf 6 R-ef" CD, rf ~/ ~~ t::~,? J'.,b .r"'J .,,,f .. ;J,,., e:,lt..e ~"J'n.l A .. w/ ~ ...... ;:H .. -r' ~ f'e,h6 16e r.c.Jt-tll'd'~ ~;..,t.r p...,~ a~ eCC~I?c:>lf.-11~~1

1/t;/e,~t? ¥ r~, .. /o,.t'l'hJel1f. ~b./t'J et p.,f ~9"1~~~tt,;,J.f w,l/ "' ~ne~ 7 1/Q"'./'7 ne i'/e,~,.q~.f ~,q q,aMe/e,-.r aj" /1Je Veu·n,.,.r ¥.1,

/i,. ~.. Rb ""' P.-r:J" . E I J i-h<~ o/ '""""/orr.? '14 P~ 1,., etc, ~,.7 1/;.e . A~t:t?- /;oa4r foRt?;, t/1)?;- · t::P//

lofq/ ~~:r~.t Jl.rq~vr A'/ Jfi,p{

~~~ .. , .( /.1' .·-

.

~~ ~~

~-

Seqre ~

(()OO

I I i . I )

- ....... -1---

·~

~ (;

I I t--l-

' .

-

F ''}--: -f---1-- .. --1---!-L •:-1~

~

. '

l

W{ 7S

S'::>cfl"t)n I~ I ___..

l btJpo

. I \ Paf'ie 39

. ~t r 7/.. r., 1 D I ... _ r- '""' I I . --

tl <:) '--1

~ "" c . >.. ()

' '\. ~

-~ ...... "' lb<=t- -/$6 -lt>o 1 k-rCj .... :23-o 1 ~ l l

a a ~ ~ >-..

I I

(~ c- ~

l

rv....... -t-

·~ • ~~ ~~ C\j

• ' c 't!~ • ~ .,

• "' LJ I

•5e- b:;} Zod~?O;o .. :. 1 I

I I

"-, -.-1 () .T- Y!k:> ) ~ __ ...:K...;;._-_Y;..;,I_2-=--

-r '+ I ! .

·. !

i I I

I I ! I

I I I l

' -t.- ..

G ' I

r-1--

#-?- y, ~ tJ.t'" o I

l./o~

1 I )" -.. f1

' :h~ y 16) l ~- • ~ .. "'--i'--.~~,7~·-_>1_~ __ 1---1

'\.

~ )..

II c .. ZJ.) r t:0 Vnd"""· l

~ ~ ~ ):.,

~ \!

,c /- y l't'>

r~-r A 1 I· I

..... ,_ ...... ,

·~ t\: \.,_ ~-·

~ ~

..J f-

-

t;;oot> l~D

t--

.

~ -;or Re/nj_t?r_ce_~_~?_e_,_r __ L_q~o/~u-~_.f_- E /q.r/,/c Me&" a' - ?rv J:/~.

H~ No l};r::t

C\ 24 yzo 6 22 yzo c 2o y~

cl 4 'f2C e IO Yt6

;, 12. Y/6

' J2. YIG

h 17 y/6

:r ]( yt{,

K 1¢ ytl-

t 1.¢ yzo m f YIG

;:, 2.0 Yto

/2- ./6 yto

?age 40

t.~~ 8~na''"J fel 1.!"~ IJ

?.,S I \(7o •

b btl-() 7..1'(1

/C) I ~Zoe> 2}c>~ 'l.,;o

"" 7o s-r~r "' '

4<f S'ntr " 4i /1.1"0 . S'~r I

6S ~ 41'f"o tJo "' ~1 46Do Z.~r>~ IJo

$3 J17!T I

J6 J~ " .t' J~

z.r~ l.!"o r t~oo ~~ tl'()

" 2l!' l,ro I 17So.., ~~ IJo

6 0 . ./ J~ K,o , J~

/l~w~ fl~ c~ ~--t£1f/T

. /.f'~ Ji' ISO ][

fhe.a;.·. A~~-,--···

34-2.11~1 :::.. /()27Z

.:;::. I 7.$ 0

'nJ r ~ N?~~?.t .t t' K,) s:s I z IJ o -e

/2eJ~/tJ!24 ~ Z~R ..<"':;(...,)., ( .r: 7 16(/Jj

o;h,_,~_, Jl~ ~,.-ci'ne.t.l' I :/,., ora',;- f'q c::faf4r~ ,.j,.e Ide #IN! e&-tJnqnu t-q( .r/a-6 a4~~~J'f

J

ln.e n~t:~.a '( ,e,~;-~,,,,f ~,. vo,.'(Jqt tJit,,,.. · .r/Q6

kt&K ,erl'~.f all JriiRfP; /hQ,., /he JM,,,4#..,~ r 2S"o

we,~ e.rf,-. ~I ee:f}l a~~# /6e re(e;-bve c().rf- i eo~ .r/~6 W&'lf qJ'./'c,,.,ft.t::f lo ~ /~e Ct?.rl- y t:Pn~r4'M e::;o,t:(

,.a,,~r~e~e,f ;..er """''r art'&~. 7he c,J',& ~ der~'"'7J cct4'~ , L' elt'. ev ~:u 4J'.r~P~f?et 1~ ~ c",.rfo,.f- ;;,. Ql/

. .J(Qbf,

ne. un;f k-}t:;.f'.f

k q.rJ~:~~efl/ I" {otead + 4v.e.)

tj' .rff1.,f l'~li?fr~tP#'Ji'hf w~.r prej~~";l,..~>h Q/ ~ /he /e,IQI

CP""q /1? 1/~r.i~/j j r1 orltt~n 41' fo

Page 41

.ej/e cltva, di lh o( ~e re,~jCJrce ~ e~l dtr, rft" p, •

i/.r.t"it-?e4 Vn,f f'qfer

. Co,., crelt ~~ Sicr6 (l.S' Ntlct}

Sftet f'e,,(e>r~ 44ft'nf &:0 Rt.ro ;u­H?ef..r, ~ h,

. .e If I&, ~o je,. ntef,., 1

~ /( ~ z.r r ~,.

>

flte/ M.-1&/.ff "' IJ]tJ~Ztv -1- l()l/DJ(!,!_ei 1/ !!J_4;:. t::f,7~t; tt7. '2epP . 2-~" I~ b 2Z ., h _/ -a.

1l,,e ";"

. c:= "'~ 1{~,., ~

t/ Ate. /ha,e~, _. h4t:i&fl aM t4Kr.,,-/!.d ,_, n.,ve,./11

/~'"/fl,. ;,~', :h> /$'B ,~ t>ftue 4~ J, ¥ 4t~ .r!R6

.,f.;, lfhl '") .

0

-:::. If t''J/IM"" >-

~ l{,j~ ' A/o J"heQr /'e,,.;fJ~et ~'"' f IS re t:jr..tr~t:JI.

St;r1$ .. f '2 s t) lo() 33o 3Lo -# 380 R.~l.e. Ill CCJn&l'ek 4, 0 () 4 ?o S, Jo !'"(o G.,.·to f tbj,.,].

c~ J '

Sft'el 7, 0 () 6, zr ~ st" r,4'j 4,So zre /k9 ~~ Tt;rn-z.._ II I " (')

1/ 1 OJ.- /() ~.! II, 0 J /D 'e> ~ I

~ lte nttJ.rf ~ C'&~nOMI ("&~! f/qf f/c,k. flu e-K'?;!,f,f II" Jit).,_

~o-jQ,.,tl It> ~ ~tcine.u f 'ZSo,.,,. wlut>l-i .rQh.r(u h4 ~~~~t,~~~tc.- .d;f~ Q,q . le,~,, f'eiutre hiPnf.l D/ C.~//;/ •

;::i,, ~r.w u~'~ lfu. tt.-.(kd~'ti:lf w,/1 o6v,~J'~ le neylrjt6!e 1" C",., j etr I .I'll#?,

.L · ji"Gr/ue. iu~ver Ol e,,,fo,.~ ~"t:t-'r l'"rfre IJ' n11f

e.rt.ttn I;'Q( (vr W~Y't"~./4 /,4$(,,..,,. J Cind Co~./''7 4-l"h~ 16c. ~".rl econo,."t'~l .r!R£ e.u/1 i.e ot ZSo Ml- /IQI .r/Q6 ~~~tf'"'"t;t lo .l~o ~__.. ~, ~e t:'r;t,..,.,.r ;.;:,.~ .!/~t:, drej.r t>f CJf ftt9.tf- !; ::.. 2oott..f" ZtJ~O qf .,~f,,.nt:/1/ C~. )(" · Jhc~,. ,.,.,.,../or~t'n, e/'1 f /f ,4l"''''e:!J JJ~ CtJplf't'nfr.4ftlln

Page 42

y tem jc,.te ~ l'~f ,., Me CD!u~,-,

w,l/ 6e. red, ru ~ Me c;,4 fu, A~I'M Pile cltjfr c-fr~>I"'J·

jtctf )lqfe OW'HJ' oj ,,,,.f/Q& oWr

l1f/~1'" 16e Co/,;~~;~./ ~ {fe rhw .-'pi~

;t.f.t ~4 .. 4 /'1 ~ r-4! qJ"ePI'

Ct:>k~n.r. .

/.r no /ur;..,.,/Q... II' reeo .... IHI/',..4"~ ,~~ t:P 114 "r /Jcr 31d" ... 6)

~r (!Qf jfq/U J ~4 .;:lfu w,;,, &f//tt'XI'W. o_.4 ltl,/tl>,( /J

.r~.rkA ~ 4e. ~~-~~~ JqJ.u/ ""' ret"p~..,~ q~~l#?.f

.- .~jer.;,.,~.r I~ ~3~ Q,e;l( gr&~'-'.f~n; hr...,..,/~ I~ .f~,r~nt'e... "I fr c~l# 1,1? c., pe.,.l . £'. C?. b.e&~~J' ,~ px,r-('. 7he. 1?/?_,~/,PY? Llw 1.r ~"'i ~.~,~ t~l MtJ t'l'tnlre )"'~-'~/ w of lu e~l.er~~-tq( I &11"1e I ti#'Pt:f'.,r kt~ ltf)at:tf, ... , .

C un dt INn .!hewn :-

t o-- -- ~-

. I I

\ r;,. 21 !

W- ee.,lre- / o.,f cf 'J>c;o,.tJ I ·

f,j 20 - (ccu;(,..,:l q,,-47 11,.., ,,., ~ 2 lJe/tttfPn )""'/ IV

QH&( ./'.,6 dtvt.Ut~n ;,.:,~ . <f£-q~ Ek~e;,/.r

I.

Ref. 31

Ref. 34

Page 43

From Figs. 20, 21 = where

deflection at the centre of the beam element in

the long direction, of width assumed equal to the

column strip, with respect to the support ·columns.

deflection at the centre of the beam element in

the short direction of width assumed equai.to

the mid-strip, with respect to its ends.

The choice of the widths of the beam elements is arbitrary

but should nevertheless be made so that the distributions of

B.M.'s across the critical sections are both nearly uniform

and their total value can be closely estimated. In references,

14, 15, the ~1ll panel width is considered. In reference 31,

a smaller width (0.4S) is chosen in the long direction for the·

calculation of EI, 1)ut the resulting B.M.'s are grAater than

those :i.n the Column 1drips using CP .114. In the name referc-mce

31, the deflection Ab was found from exact "finite difference"

solutions, to be very nearly the deflection at the centre of a

uniformly loaded rectangular slab of the same size clamped at

all edges at the same level.

centre deflection is

=

it is

0.00126 qa4/D

0.00406: qa4/D

For a square clamped slab, the

and for a si-mply supported slab

.The centre deflecti.on of an interior panel of a square slab

on point supports is however A 0.00581 qa4/D which is

nearly 5 times the deflection of the slab having line supports.

The writer proposes to use the Moments calculated from the

Elastic Analysis and to apportion them not in the arbitrary

proportions laid down in the Codes, but in the proportions

determined from the "exact" analysis of Brotchie and Russell in

Ref. 4, Table 2. (See Elastic-Plastic Analysis). Another

solution will be obtained later using the deflection of the

Inner Column strip of width s; 4

calculated in the same

vla~' from the B.Jv1.'s determined by Russell in Ref. 20, Table 8. For Rimplicity, the rigidity

P11ge 44

h.e~~ elc?~.-nl /r~~- !I.e ~- ~1 4e (?c;f. ~ /iJ /ai'P ('J ( c7 :- -a) ~,// k jnot'~ b~l /h/.1

0:::,~-o k f.,,t...,,.., ,.,/~ t:trr~:~t.~,.,/ tj' ~/;ru;t, 7le ~~~~~

/'dfql,~',f Con le otRI~r,.,;neP' p,_. 16e . "q/r.,/et/.es:t'

h?~ ~ ,.,., k o,., of ~e /i- .rfl'/j"hefk .r. fi7. ZZ

IJ.?- dB l

L . . :~

n~J-'1 .1C\. .. {)I .J- I) "-l tN/, er.e

11, s ()(</! fthlll? . rj ~~ (f- c) ~a/ c~l Qle..P /rtJ-. , 1.11

,e,q 1L1~:~n,~.., h /'-fAJ He ~~ L~~e t:>f eo/~ •

Q., t~ fv1nJc · It, e. M~. MPI>H ,,..I hlt:~r ~e

ce~ 1-l't ~r . lhe rjQv,

L1'2 . ;. J_~ + 1 [ .£.. (0 A -1- &a) - > '2. z. B 4

I / . I A D A, o. 2' J.· IJ(.c;~ ete 111t, q . ~. '

:

H" 1'-f ~ '!-1 rt ,qB B/c BA fJq,.,e/ ~., ,,) -.34-o ..J-'27! -4ZE

Cv. ;;.,P t~~ 67/!, .rrt &7Z · (!,.I> I" t,:.e) :;-22!! ~lr3 -ZP7

7

fLe !t<j n It-( -141 !--IS" 3 - 2o 2.

/

Page 45

f ~ $4 , 44-o }.H. : .i; () /l.( ,P~ ~

E.r .:::. /O -Ec

Jvf 4<-A~ : i.r.f > IL(C-4-

f J:; .J~e:-o • ~ b2 1o J ()~>D Jt "2./o

~/11 H ::. •/lo ~ ltJ '-jpt 1 ~ .... e ~,. fO

. ::. 1/t:? X It>?~, ¢ >-

~f/4 _z,. :::;/ · t/• {, ~ x 4J .t" q 2- ~ /P J X /t# ·::~ ¢--

~/19- s,~J- ~ i:t/1.; "(-(;j:JJ.lc.. "~~: l" J~"" ... (!- ~;:lfJ(/P~ :: <:::j J I x /fir +- 4; .f 'JL 10 a> .

Io ::; 17 6 ~ I() pAt-, ?-,

.f..lj,,f 1-}13 ,._ .['1/ ·(·q4_) 1)(1j~ ttl I' r}iJ- (94Jillt~ .r'~ /Pi

llJ• 44S()u,ltJ . 14-et;l 1#-9-J.

. ::! /D x lb tf + 7; 4 ~ IP J!

.:t; :::.. 19 If/,)/.. lop- ,.,.,.., ~ > , 3

Itif • (~' J(...l~~ /oF -r[l-( <74 )~12IJ!IPJ ~,J · 2u~ J

::.. ~ e=, ~ I(JJ' .,l. 2~ 7 X !P<f

.z;_ ~ 2/f 6 ~ lop ~uw 6 __ .....,

17vu-a.r jo/1• ~J;.J- ~ .z; + ~ I 2

:::. .f!at t tJ x I() P hf,., 4->-

A.8

Page 46

4 J'J"~' /he. ~jfr"6«PIIn tJj' .B.~ Q(on:J *e .ij!CJ~ 48 /.f

jqrt:J&ot-". 1'14 ;. 01~"" / e ~f f~u,/- "-'" ,,, /.f

:::. 2'2 8" f- z tf7 .:: ZSJ K'A( 4v

2

o .U-11? c/~jt:Jr/~ /3. N .::s

:. s H~L.z.- p,L 2

4g- £I J' h

Ec :::. ? >< 1~ 6 ,0. J. ~ .:. ~~ oJ "(IO~ Jl~ l..

~ .::. 2 0 X /0 R 1"111,., 4 L .:= J' Ot) 0

G'S ; ' 1 J L'-• ' .. LJ- - ~ ,.,_.tt?x ftJ -¥ 2S"'7x/P. -.._. .,. 4t! - r /' h

"' 10. 6 )t /IJ ~ )( I' z.;( /p""

~ P? JC iu 4 .M" Zo ~lo;p

----):1-

M "/vfEAJrJ kr . .lv/)flr C'£A-~rR~ /AlT. tP/JT

Po,n~l H ·-33J' ~ IS2 -JJ~.

N, I'! lrn.t 7o lit 29fo lifo ( 8r11 ft'/,,J-t.) - b/ .,_ 44 - 6! ZJ~Jtq_n lv! -37' +-44 -.J9

"'

::

.. .

1~6 z, ~

12.!' /(A/.~ > /vf~ S 2 x. I v ~ '",..., ~ f.i =·

s- Jt j 2. . ~~- I 2.. .:: '7(JL _ ,.., 4? Ef ?H . '2

:../S" )( I06XfP '- .!.. < ttKIP-6') -( 4s tf J Er

:::: 31.f" ~II' t )( b 4

Jt'IP 6

~ oJ .< /t) .¢ ..t f).A' ltJ I'

::. ~ 2 """~

Paee 47

.ne a-,Jf,,6 ~I,~.,.., D/ 8."-1 o,ft;,, boll? Cot. SJ.,.,j QM ~ U&~- ..rl-r'} wqr a;r.J'u~eat 4 k j&~,.Cii o tc · 1;, ~,.,0,_., l"err1 Cq/ fp qd,.H/:, ,, . t:J;ete,. -lo ~.rl,-. Qk .L1c:t, a,pt d.( /1-.eJ.-,ur e:r iH"~ qct'~,. Q,k 4/"J(}f.J'~e,f r; ( ~.e ID q (if/ C4~ Oe h1 eu;:Z.) jr,""' wt, cA /:tc. Oil fo ell;, Ct:1;, i:J. Q'IJN,. ~II") etfl t:-;J' r 1/111 N.r ... -

1/.rt.,_ 4P1 t;,-/, CA./

h,et:f'rl c:t'.,t' ~ b ou"' IX&~')' /~p _,~H.

tln/tK..,7 . &~,.r/,,6*/u;l .ry~;- ~Q(/f c:: K-l/-z

. Lt:;qd,7 'JJ~. ()'I ~t. Ji,.1 118,

~ ~ 't2 G- .rlG 7 ~ tri • 4/()RA/. ._ 2..

\Qt I I llfF(I II I I [lJJV

N~ ~ !!;!.l!.!::::. + ~ )( ~ OU/ L 2.. i 4-

:: O,OJ¥1' ~

~ c:, 71r x. 6!''2 x ~

:: 41o ~#. ._

J.~ ]),~ et~~:Jo ~IJ·},~-'~9 /L(t,~,~h. ~ c:,,J'/a,l,

tJ~ :(.:E J( t.f2~f 4- ..!. .X. 34 4i /6 ?

; ~~~r ~ !6 t' _!_ '2.­

u ----::::.-

II

Page 48

L ()"'.£~ Te,.."" ZJe /k cf,. tJ~ fh11rr /e,-_., !J. L. erlt'(le~t'*"

e ... ~ e1nd ..l'hrM~,IZ i ~,. 1~,_, d~/f.,~.h~~~- -=- 2xtP - 2o

~.4&>,./ ;;;,._, L. L et~ /!,(liP'? II

T;rm. L~:J /er., ~;(~h~~ ::: -===~

EE.2.

2~(}1) X 2J>o R~!"' ~ 6, G k~j, l-

,t;,,.f~ ; l..r hve £ t:)Ot:Jf :> ?2 /pf~l t: 14.3 k#/141 l,...o-

- /4$}( {.Jt:f X. -~

~IS 'Z. ;. C}/P /<:'41,

.· /.6 X CfJP = I tt.r~ I<AJ.

.: . I 4ro ::: 4 [St."> "1- (tS'q-Io J]z]u

;: t/ Jll f J / .; ¢ ;-j--IJ_ti-D _ __,., '= '21 o ) H -: ~ $"2,/fl' A-

1/r j re VIIJ&~.r" (/LTE~N/9TE~y

./;.,c,.~~ue ~t /; G ~ /() $" D .r /6 1'0

- / .s-3 Ml'~ ./ VULT' - .I

I 6 J'"o 4' [..Jt:;t> -1(1!'-o-so)jt.?-CJ

Ht;~f;VrJ' bv LoA.J a

/Yo .:: O•/"~ 6J'Cxt! (!- •()4) 2.

; ..rs o k N. '-./ ------1>--

Paee 49

AB AlB BA BIG Q tMo 4o 'Z8 So f?_

~ '> .. N /VI -22. 0 IS"4- - 27.r

~ /21

\ -~ /.1; .S Zoo j'.Soo 6 ?o o 2700 ()

!?. 6 Y2.• II Y2o · Cf y 2o . q Syzo '-J ~ \;· .. " l/)y"U; IJ ylfj "()

/

~ %"tv !0 2o It? IG ~ 1'\l /VJ - SS" //0 -cr:t ?~ ~ ~ ' 4.f 12 ()-o ~4-~ ?'2t;t> 2o o-(;)

.Cli t 1Y 2P !' 1 "}." 4'y l.o ~ .. 7y2b ~

~ .. .!'Yt6 ~

T~, ('~ {?qi~ .. /Qit(}.-. ~1 tf~,,;: 1/r~J · B /1- Col. fl,.'/ li....t ~ 27.r k' A.l, t.e-

R. ~ (' C::~..r,,., &Jt~'..e t:'!? //4) .;: Z: o P 6ct ~ • l(o kN. .,. .

./•.. ~Po ;; :~ Z.to l"'f r'""' . A . A.A · &, l-

17 J' r. '"I . • 2J.J X /() ~- b ~O() _,__,

/.r .1( /." ct o.·d?:J .v 2tfJ~ z.~

IN

P o,!~ .J( b J-t K t (I It"- !J!::!!) . ~ b~

X {1- ..L)z. /tf .

a: 4oo I<" AJ. ~

\)~ Er ~~~ F-R J:-(c-

~ ~ \)" %'~ (-;; 2?' ro 22---

~ ~'I pJ ~ M - I~ 1/ 2.,. - 2t>O

"' ' ~ A"' ]J"H 21b-fJ 4 Pf>.f/ 'Z..-/6--0

-..:.· \}

~ ... £· 7yt~ ~ ¥ytt 14yl6 7yt6.,.'7Y/6 II Y/6 ~

~ 'lo~ /f) 2o 13' IG ~ ~

/VJ 4o po ?Z 64-~

~

~ .. 41 lo~-o /9D..O '7 /') t:;} /..!'"D-0 ~ 00:.~

II)

~ \1 I( S'yt6 /4y/t .f'7't6 ?yt6 ~ .. ~ 4yl6 ~

~/~I"~ ~,h.t ~ 3/4t:J ~ .s : 9 420 4 ,. ,, 1.1 o .J( /.f' o ][ ::. I 7 :3 0

5"4e.~r ht'Ci P/ 1'

Tol~t /t1 q.rf (k,) = /IJ IS o {/htf N C!J.l ~ II !.!'""t~ ::: 2G, 0 ,1('7/ 1¥ 2.-

ltf".¥ Pr

~ 0;; 111(1 f4., 'I'J'

lvh~ e4 ~ e,~ fle

/"Q7e ¥ f/~6.

f_e,,f,~" At .,,/

C~~~.u.e.. To I at

t6 o ~ tJ 2s- : /(' 6-So J I

J'~(;) .)(. 16~() r: ~ ¢-..ro I

E1 c 2 . re.re,/f /"? a'.e~;,.t J'q'>~e ()~ Q/1 Co .rJ ;;, ~ /e;-,.jll

~ ... c,r,e.r.r~..r

C/.-~ !'/q.r~~ E./ C~tt4 ,E.,f"nc~ c. 2. .4-C.I f.- l.rv ;, 21'0

£.4-,.n&l'/ at 17Z. ~ -'""~% :; .]Q - 'Jo !PJ

I ~ ;,,,4/ r" '74 ttfl xf! ... ]~3K<f - bo/ . I 4~ I

1.) llJ /,A It~ !/e;Jhc tYe~,t:Jt ai'Jn 16e E;o-.1;,.;"~/ /t1t?$~>~ /1/t;/l'f ..(!1'~'.-~j',l?;t t:lt'/''lh.J",~ lh~ lcttf.er Nt~c;,4 /.f

. n t'o M ~ Rn u:!.-61 lvh (!r..f e;{ll.tc~ 6/e ; q.r I I /J f,. r/ cker.

l} n~ ~~/'??v,-; 4)/ eK;pc.f'f ¥ .r/e,6 "~ #., fur .

~ve?q/1 .ec~>n~>~ ap,t;;( c;c"ejft::th/e 4~/.i?t:/t41"': >:r r,... ~ ,.f?a .kr /1, q,., .Ito Pr;""'t'H ,~ lnte-K11e..r ..1

r.er ~/rut ;:,.. ~ n ~~ y Q;;, 1:.() •

3} !J.e:Jn e;f "*e .1'/e,t ~~ &K'?o.f'.r ~ .fq~,.r~ 4-e. e,, kr,.""' f fun !'h1;,7 .!'heq,- .r~rc.r .i . 1(1;/1, ~~ /'

fht>&'l,_. /"'t!r~?rl"e(! M ,h~ II) '*/J e~PM/k:/ ~ (An"#

jrt) ~Hra ~.e. fh~uP-1 J4& /n_,..,.;; ~-~~J'.f'.

EE.3 YIELZ> L INc /V1 E THO./J

aj' f!.Jtjfq,n ed /.., a,., eql' Iter Jet'f'on { 8 ) .e.<;>ct, · P q, et /; '1? Q,., f/!h,.., qnz !. oq « jo"" .tX;>c4.

Cltr-t cluJn~ a,., ct !fJ,,.,fr..e H,tt; JIJcJ~/4 k. ~~q(IJIN:( few .et'oH-D~J . 71,~ Ll;f,.,., Q/e !o &:~ el II? a-, J' ol/l"t't'~•n If )r'/01""h',.., q/

fu f6.12.. hrAn, er/ C't::t! r"'~ CJ/ ~..e. ?t,J',h&;(! Q.., &(

AleJalt~ y1t/ct ~Jto#-Jenf.r 4CI-6./".I' l6e -t';.,f;;-~ t<.,;, c;tk, ~ JJq,.,ef al 16e t!hfrt>e,/ ;o.r,/,,.e q,d

ne.;et f~rd- h1 () ~n ~, f /12flf,"" J. ·

Ptt~r ~ MocL M, +Hz:~- /t-13 o~-H4-I~ • ftt'dttl

"'htr.t.. M, /t-fz 4t~ 4e. 11-l!.J et ltt..e ~ ~()14-f-'n /-.f Cot . .rfnj t:t~t:?f. Mtt:?/ .. .r/,,f '"44'/· and

II A It A b I ~11!/1( · ..J.-1"'1)) ,...,, f e:~,e rne )o!'tTirAt, IJ.tt~i~W~ ,,1-..r ,.., 1 "-<

C ~ .tfr'l . q, t:t mt c;t .rl-ri;6 re.tf. No /I· /t,qf ~ 11-z. ....! .f.e. C'a, k Ch~J'.,,., q,-!J,/r~r/fy. lfp ~.e(ler /6-e r t:rt h() N, : /tf z •· ~ .. If-f 4- w;l!

Con fr~l f6t. d~th,n f.eh C~ utt#~r "/ ~~ .J'q, t:r-1

t:t( f.tr u.Ptt~ .. Jjr~ cr&:u c '~J hqf tJ('t:4 r/.f!..(;}( q.r w~l/ q.('

hie V'vt,..,., 1_ J'/ut re, .. fr«:.-.,1' -fr tl J'_., o/..6\. 1 .f(a6. ner~ ;;.~ 4e jo#'f/1-'Vtny . ~.f/l'tf>1.1hPII? f ,A(()

11 rec r; ~-H~ l'n Cf'.e.d :- ·

. -

" -6o/, ~ 72t>~ -6o.Y0 ~let -~ - /oi'o .;.lrfo

~ .... +-JoZ ,r sstv .t 0 -1- z.ot 0 D D

flf'/ t:;r.r 2Kc.L >~..r ~I /c- ..5/r<,., &tv Cot. /: ane.l

.E.

t%n: ,. 1 JVo r-Rt~t?re "'~"' f ;.., tY~ 1.-f ;., /l;_e ~~d- .r/ry:r z) p,/ f,~ a; .I 1~/6 ..,/'""' o/ ll'tY~ ,,., ~.f. M r:Jtu;J./,

.· '!) fJ r(J ~ ":IY Aie. i &1-qt:f te

fQe-/.",. "/ ..Gje~y /r/(e ~~~~~ tt/h_, ~ f:e:,e~ t.I H<t fi:l.~e

J/Q6 ~~C~"'JC.fJ /rf,IINI fi-t.,.,.. c;~/-~,.;~ = 3?0 ~"" ... J.eQ&t i fJQ&t S/ ~ :: 24 t>" X fPO ~~~~~~

:;. t?,Cf I<A.Jj"" "Z..

Jf ,~..r

" 7Z. .. 16~ b ~/<1 ; ....

l--.... 16 .b < 6 ~ c? tfpo KN. ._..,.

" PL - P,.,.b ? 7f

~ L .:- R.... ~"' .6 c. ~ z tt .r -1-J q .J~

z...

CAc:::tf ~reo....

AB A/B 134 13/C

~·.J. %No 3"o k ~ '2.o

'

''"'\ tv'/ - 2o~ f- lut" - 4to -J-1?7

~liS. 4s ]2fJ() J' 2tJ-o b¢t>D 2./ ,s-t:) ~I I

~~~ I( II ylA) II YZ...O ~OY2<> // .. Y16

\) I~

.:. %Ho () 3-o 0 'Z.o

~ "1 rzor p o~-tl7 t l'wl r)

~ t1J 0 .12. ()-(,) 0 ZISC> \.,,

~ ~ { () ''Yl.-D () /1- Y/{:, .....

-<. 1t '~;)

Page 53

T:tjtt' 41 c?t:Vc .. jq/-;,,., ( ,(3;:; _ e~ Jf;-fd M :-

Re~~fr~ ,..,,,_,·r .#r~f. 411) /~N. ~ t:/.; 3¢-o /·~ Cl· 9 L.,

/.r ~ 'ZI'o H/-'~

llJ #- /vf ~ 4 I 0 Z:::. b 4 H) ~~ l,..

/J' ~ /~" e tt:J .x o, 9 .J( J~

I.N

?a, e/ LrJ qq ? =- Roo KAI,

Mf) r: 'L - fJ,.b L t:. {,,.., 'h : 'j 4PJ -;;- 7T

> ?or;Jl" - !-oi!J x. o 4 so == ( kJ- i1S'

a> 7T.

::: 4 i> .r K /tJ. '-"" z::::-

tr- c/;: t:G- r/c. ~ a h/1/o So ]o 6o Zo "-\

"" ~ ~ IV/ -146 146 -zro fD r:> ~

111 /,{~ ~ 2¢~ 2¢-u 4?(j,l.() .J ~ \,

~ R. /2YI6 I'Zyl' 2ifYI' 11. Yte:.

~ ~ k' ·~. v ?o () u f /'I

~ "J 146 /D-O ~ l.;J () d

~

~ ' 115 I) z.~ I) lt~...o ~ ~ ~ l r) 12 y/6 f) /'Z. y/6

1/.e fqo/~~~ ~1 g,~~,(.,i. 1.! _. : . .s,,,/qr It!> F't9. I~ ..M and

/vf. ,; J;4.o/ ,.~,.., j.re~~ ,~1 ~ '2bHlf i, 7 J-o..;;; R~.

11,,.., 1.! .e"'.Q~/y ~e ./'4;tne k4 e;,.rJ' q.r er1M4 q/;u;t

.;."' I sr. ..ltPo ,.,_ t-t./1':1 ~e. E1~!:7.tll~ ft(,~Dt:f', ~ l!..>tc/e,ctm '} k,.J a) b) ~ 'J > I111N ~f/'Q,7t.f.

Co, c/11 .r1 (;),., S" .:... ~._ 1) //o~-8 o/ fi..ec! ;-e,0,cetA?,,., J e:tef.t?r~u,.;,d 67 etf~J>

:;(.etd L/~..t -thep'Y 1.1 jr&J,;, c.e..y l"¢f',.,.h·eev ;4 '/t;q,~ c:reiR,_~,., ~ /r,,_, .e~l6~r- /1~ E/9.r#e ~J' ~.e Etwj1r1 c~ H.e~C)t(. f hie J"~"'e ..r~6 ~rcKnt!'.tf.

z) Cw;,.,! ~ /6e /';;'hctlf f 1f.r o/jfiCCJ>friJn J Jt.eiPI J/#7~ Ntt~~4 ~,tf' k jr.e(~rul ., /4f)#i! t::te.ty~M

~..4 hqPe ./q.f/te/~1 ~,qe,.-.rfQ,.,dh'/7 f j/ct~ ;0/q/e b.c~J.::rvn,e,;- ~ k e;¢k .lo ;,are /~~t~ch#!! .rhel' ~~.1'~~'-'~.l.r.

Page 54

f. ELASTIC-PLASTIC ANALYSIS AND DIRECT DESIGN

F 1.1. ELASTIC-PLASTIC ANALYSIS

In the range of reinforcement ratios practicable for

slabs, the moment-curvature relationship is shown iri Figure (23)

below and is conventionally approximated for analysis by ~he

idealised curve shown :-

cl4f'~q,. .. ~ ;> (a) Actual

_L ;; ,. ~I

(b) Idealised

Figure 2! - Moment Curvature Relationship /

If Mp is the yield moment of the ·slab per unit width

i.e. the internal· moment ·at the start of yield' of the

reinforcement, it can be predicted with reasonable accuracy

by

Mp = pf d2 y ( 1-0.59 pfy

. 1 fc

) ........ •.• ....... ( 45)

As the idealised curve is similar to that for a

homogeneous plate, the solution obtained can be extended

to reinforced concrete slabs using the above equation.

Two-Dimensional Solution for an Internal Panel

Consider a uniformly loaded reinforced concrete plate

on circular columns at regtilar intervals and unbounded in

plan. The solution for this ~late can be considered to

apply to an internal panel. A substitute problem is first

introduced. An auxiliary elastic supporting medium is

placed in contact with the plate and all the column~reactions

are applied as external forces. When a single unit column

reaction is applied, the slab deflects into the medium which

exert.s a reaction on the slab for which moments, shears and

deflections can be calculated by the solution of the modified

biharmonic equation for a plate on an elastic foundation i.e.

D \/4~ + 6W .c:::::a t:t ..................... (46)

with appropriate boundary conditions, where the notation is

conventional and ~ is a small term representing the reaction

modulus of the medium.

In the Elastic range and beyond but provided yielding

is confined to a line around the column, the surrounding

plate /

(R20)

(R4)

Page 55

plate remains elastic and the solution for the deflection w

is given by

w +

in v:hi.ch Cl a.nd C2 are constants and z1 and z2 are tabulated

functions of the radial ordinate Hhich has its origin at the

column centre. cl, c2 are evaluated from the boundary

conditions at the column edge. Cl depends on the shear

at the column edge and is proportionaU. to the panel load

throughout. c2 is determined from the degree of rotational

restraint at the column edge and therefore varies after radial

yield. At any point the radial moment Mr and the tangential

moment Mt ~an also be determined as a ~motion bf the radial

ordinate alone. Provided yielding is confined to a line

around the column edge, the total moments Mx,My at any point

x, y in rectangular co-ordinates· are then given by the

superposition of sets of axisymmetrical components resulting

in the follO"Iving :-~

Mx = ~ Mr CoS?. -9-- ..J- Mt- $r., "2.~ ••.••••.• ( 48) L.. Y".,ob

(jO -My L M..- S"h. 1, ~ +- Mr c()s-z.tf- ..•.••••• ( 49)

r:r h

where {j- angular co-ordinate of the column from the

point referred to the x - axis, b = column: radius.

The uniform-loading on the unbounded plate produces

a rigid body translation and therefore has no additional

effect. Figure (24) .shows the moments in the component

problem - a single axially loaded column on an elastically

supported slab at various stages of yield. Poissons ratio = o.

Figure Z 4- (a)

f·o Mp----~-~--

(1>~?0 'Pt

~'Pr

M? ( 'P ~ '2. 11) ?'P, . '2. PI

Figure Z4-(£1 Pl maximum elRstic load = load causing radial yield of

isotropic reinforcement with yield moment Mp.

The /

Page 57

In the case of a ,-,quare panel

pl = -1\T M-p ................... (50)

L • ., rtyt.. + f.~ I p2 - 4'il M ~

Lo~ rb/t,.. +-J.lt .................. (51)

p3 . = I<O Mp - ~rb~ 'lrL.

.........•........ (52)

p = I~ M~ 4

(I 2.t'b/L..) ~ -.................. (53)

P 3

anct. P 4

are determined from statics and. Yield-Line theory.

For a rectangular panel Mp is non-uniform over the columns I

and is given ·in each direction at.~he load P2 , by ! I

Mpx • :lf [Lo~ ~~ -t-1• ~~~ J ............ , (54)

Mpy L rLoj .!:h.L +'2..310..:.. LL~l ............ (55) 4·;r L x ~J

Ly Long\d.irection, Lx = short direction

A summa.ry of the :=;lab behaviour is presented. below

under load incre~sing to the Ultimate :-

Panel Load

P2-P3

p ~ 51) 3 • J.l

(Ultimate)

P4 : 5.35P1

(Collapse)

r'[

Column Edge

Mr

< Mp Mp

Mp

Mp

Mp

Mp

Mt

0

0

Mp

Mp.

Mp

Mp

Behaviour of Panel

Elastic

Elastic-Radial yield at Col.

Elastic-Radial and Tangential yield at Column

Elastic-Plastic: Ta~gential yield spreads outward

Elastic-Plastic: First yield pattern complete

Elastic-Plastic Modified. yield pattern complete

The Moments in a uniformly loaded square internal panel

at various stages of yield for constant Mp, rb = 0.05.1 is shown

in Fieure A.Fl4 of the.appendix.

Panel Moments at Load P2

At P 2·, Mr Mt Mp, hence constants c1

c2

are known

and the moments and deflection are readily determined throughout.

The /

Page 56

The behaviour in the region of any intRrnal column

of a flat plate under ihcreasing load closely follows the

hehaviour of the slab in the component problem. If the

slab i~. ·completely restrained by the column, maximl.im momP.nt

occurs a~ the column edge in the·radial direction i.e. Mr

is the maximum moment. Hence yielding commences when Mr

becomes Mp ,where Mp is the yield moment in all directions,

at a load Pl say. Up to this stage Mt = o. A yield

line forms about the edge and axisymmetric plastic rotation

about this line allows radial slope and tangential moment to

increase until Mt = Mr = Mp at the load P2 = 2P1 which is

the maximum load for ~hich yielding is confine~ to the column

edge. At greater loads than P2

, tangential yield spreads

concentrically outw·ard to cover an increasing area of. plate

with radial cracks. When the load P3 is reached yield

has occured along all sections of principal-moment i.e. along

the column axes and the centre lines of the panels. Since at

load P3

the yield. pattern is completed the ultimate load. of

the panel has been r~ached. The collapse load Pu is reached

soon after with a modified yield pattern.. Figure 2 5 shows the various stages of yield.

(c)f",.-sf Y,efcf. t~-ftu..-.·

Co"'"rl efu~

I -p 4::: 'PIA.:::- S"· ~~ Pt

j

--.. -J-~t ( ot) Moe{, fred.. ?attet~ c()"' pf.c,fu<.

. ~f Col!a~re Lo.,.l(,

--- ....... .._....

In the /

Pa.g-e 58

The distribution of moments will be considered as a.criterion

for optimum behaviour for the following reasons :~

1. For any desired ultimate load P3' the sum of the

yield moments at the critical positive and negative

moment sections is given by ••••••••••.••••••••• (56)

Mo ml + m2 = P3L

-8-{1 - 8rb ) and is therefore constant.

1'(L As the area of reinforcement is approximately pro~ortional

to the yield moment, the total area of reinforcement at

the two critical sections is nearly constant and can

be calculated from P3

2. If Mo is distributed amongst the Column and. mid strips

of the critical sections in proportion to the integrate~

actual moments in these regions at P2 , which moments as

stated can be exactly determined, it must follow that when

the panel load equals P2

, yield moments will be reached

and hence fracture lines will form simultaneously at all

critical moment sections. The lengths of fracture will

be limited however as it is not practical to vary the

reinforcement to fit the moment curve exactly. . Before

P2 is reached, the behaviour of the slab is elastic with

minimum deformation.

3. For loads greater than P2 , yielding spreads rapidly

causing plastic deformation and P3

is soon reached.

4. Hence the Elastic Loading range_approaches a maximum

and the plastic range becomes a minimum for the given

Ultimate Load P3

. This is illustrated in the following

example for an interior panel of a SQuare plate.

rb From Table A.Tl ·in the Appendix, proportions --·- = L of Mo are as follows :-

I Negative Moment Positive Moment

l 1 Col. Strip Mid Strip CoL Strip Mid Strip

Hidth L/2 L/2 L/2 L/2 % Mo 45 17 23 15

Recommended Mp J l.Om j 0.38m o.sm 0.33m

Total M 0.5mL O.l9mL 0.25mL O.l6mL

Mo I mL = mL ( 0.5 + 0.19 + 0.25 + 0.16) = mL x 1.10

But Mo PL (1 8rb ) -:-8

1JL Therefore p3 10 m --

From ( 51 ) p2 -Llfr'm . 7m~ -·--· • LOO' rb + 1.31 oe

L Therefore p2 70% >

p By I 4 ';)

J

Page 59

B,y comparison Mp was made uniform throughout so that

Mo mL x 1.10 f6r ultimate load P3

Therefore Mp

From (51) P 2

0.55 m

3.85 m andP2 p3

= 38.4 %

At the other extreme the ratio P2/P

3 can be increased

still further simply by subdividing the column strip into inner/

ancl outer strips of width = L/ 4

and. JJrovid.ing 50% of the

total Negative yield moment in the inner column strip as follows: '

N A:'sative Moment

Col. Inner J Col. Outer Mid Strip

L/ 4 I L/ 4 L/2 lhdth I

% Mo so% X 62 I

=3lj 14 17

Recommended --~

! I

Mp I o.62m 0.38m

I M

Mo

From( 51 )P 2

F. 12. SID1MARY

= =

0. 345m1 O.l55m1 O.l9m1

mL X 1.10 as before

9.6 m and P2/P

3

Positive Moment

Col. Strip Mid Strip I I

L/2 L/2 I 23 15

o.sm 0.33m

0.25m1 0.16m1

1.. If a sq_uare slab is reinforced isotropically to provide a

given ultimate panel load equal to P3

say, then plastic

deformation in the panel will occur at loads /' P2

which is

approximately 40% of P3

• For a load-factor of 2 .or less this

represents plastic deformation within the range of working load.

2. If the slab is reinforced so that the- total yield moment in

each strip is proportional to the integrated moment in the same

strip and the moment in the inner column·strip is proportional

to 50% of the total negative moment which occur at the load P2

co~responding to yield in all directions at the column edge,

then P2

approaches 96% of P3

so that the behaviour will be

elastic for almost the complete loading range. In this way,

the behaviour of tbe slab will be optimized at working loads

and large overloads. By minimizing immediate deflection, lone

term deflection due to creep and shrinkage will also be minimized.

3. If At represents the constant sum of reinforcement required,

the distribution J, :t'l:\.. r •1-n .. 'f ·~ -t

of steBl and weights per :panel

f t {'L. t ·l..!'L.-f ~, t). I rt.. 1" .•l:.l.A"I •~oA-Tj I· • f

-I Pi.fS. 26 Rll.cow....,.e .... ~.tet Mp 1

s -r '- 'ih..- cf_ A.,. .I.. (o. ? g-+ o. 3 0

will be. as folJ.ows:-

r 0..1 {" (....... r

Page 60

Using the recommended values of Mp, a saving of 75-69 8% of reinforcement will result. 75

4. Although P 2

can be made eq_ual to P 3

by f1~rther concentrations

of steel over the Colum~, it is desirable to maintain a difference

so that collapse does not occur suddenly, but is preceded by

large plastic deformations giving warning of ovuerloads.

5. The above procedure recommended is the same for rectangular

panels.

6. For design, external boundary conditions or changes in span

are met by simple moment-distribution of the fixed-end moments

for the full panel width. The redistributedmoments can be

distributed across the panel width in the recommended proportions.

7. In the case of slender columns, their stiffnesses may be

neglected i~ ( 6) above. · \-There they may not be neglected, their

stiffnesses can be included in the moment distribution, but they

must be modified by the factors given below owing to the

difference in behaviour between a slab to column connection and

a beam.to column connection. For vertical loading the full slab

stiffness is assumed but the column stiffness is multiplied by

the factor A.

0.15

.125

.1

.075

.050

.025

0

Factor A

+.23

1.11

1.02

0.91

0.80

0.67

0

12 is w·idth of

·the panel no:r;-mal

to the direction

of span.

8. The effective column radius allows for the effects of plate

thickness and column shape. Square columns may be considered as

circular columns of the same area and the effective radius taken

as column radius plus half the plate thickness.

F;l3. DISTRIBUTION OF MOMENT ACROSS PANEL \HDTH

(R20) In the Appendix,: A.F7 - A.Fl3 which are reproduced.

from Reference 20, show the distributions over the panel widths

of the critical positive and. critical negative moments, as well

as moments alons the column centre line, for panel aspect ratios

of l.D, 1. 5, 2.0, 3.0. By integration, the average moments

in the-conventional column and mid -strips of width equal to/

..

Page 61

to L are sho>m in tables in the Appendix as follows for an

int~rnal paneL

Table~.Tl - As percentages of the Static Moment Mo

Table~.T2- As percentages of the Critical Moment

Codes of Practice Distribution

For a square panel the actual moment distribution is re·placed.

by the step function shown belov1 in A.C~I. 318. The arbitrary

proportions shown are used in the "Empirical Method" and. also

the"Elastic Method" irrespective of the aspect ratio. The

tables above show that the codified step-function may be only

applied to square panels as for large aspect ratios the variation

is too laree.

E.G:j(..lfl/o.l-t ~

S~tr 1w~~~

4. ~:.----:---~---:::;::7 · A c.t c.t'lf ~ o .....,, .. t

c1, sf-r,n ... +,a"". """ 0 """ e."' f. .-=:;--~ -t--;;--;~"'7-1-"­

o{,;f-,. b .. huVI Mo""'.t"'-H.

+IlL- 1'1o w..t "'.f..:t

Fig. 27

'For example for ~ =· 2 and rb = 0.05, the distribution of

negative moment k€t1veen the ~;glumn and .the mid-strip is 57 : 43

in the long direction and 91 : 9 in the short compared with the

recommended 76 : 24. For positive moments, instead of the

60: 40 recommended distribution-it is 51 : 49 in the long

direction and 86 : 14 in the _short. However if the panel is

partitioned·differently so that the width of both column strips

is equal to Lx-.~y_ where Lx, Ly are the panel lengths, with the

middle strip1t6~));ing the remainder of the panel width>the codified

step-function distribution will closely resemble the actual

distribution for aspect ratios from l : 1 to 3 : 1.

Alternately the· conventional division into eoyal widths

may be· used. provided the division of moments follov;s the

recommendations in Table AT2.

As there is a high-concentration of :negative moment as the

colnmn is approached, it is desirable to subdivide the column

strip /

Page 62

st~ip further in to inner section of half the column strip width.

The moment in thA inner Geotion shoulo be 50% of the total pa.r1el

moment.if the ~eoommended partitioning is used or 67% of the column

strip moment •f conventional pa~titioning into strips of equal

· i>tidth is used.

The h<o alternative distributions in Fig. 28 are therefore

preferred to those recommended in the Codes.

I

(-}¥e. M ~,,,.,,

I r, I I •

r-p

, ... ( -l:)w, M I ·~

4.,' ---- __ .,_

z...,/

(-)~L fv1

r:~(28(b) flt. T~/?N //TIIIff

Cotct_,,· J).,.t

~ire cIt~.!"

---- --- z,.., , IJ•66P, I

% ~,7,, I ?c.

p,% :-f

" .., /DO% Jti32 'Tq 6/eJ

I ;r,. ,q ~"~ I

.: Pa·~ r .

--,., Ly,

. .2) ,.rf-1~, 6 M ~~"~ q~ t?#? q"e~

.::: L.x . L v / Lx + L Y h? ~~

Par;e 63

F 2. DIRBCT DiiiS:WN FOR O?Tirv!TJM CRITERIA

In anal~rsis, specific values of slab thickness and

reinforcement are assumed and the corresponding slab behaviour

in terms of stresses and deflections is determined.

The concept of direct design reverses this procedure.· A

rational and desired behaviour is selected and the slab thickness

and reinforcement areas are determined directly to satisfy it.

If optimum behaviour i.e. minimum cracking and deflection is

'required direct design will produce ·minimum material q_uantities

also. This procedure is applicable to both reinforced and.

pre-stressed flat plates and is illustrated below .bY application

of the results of the Elastic-Plastic Analysis.

F 2.1. DBSIGN PROCEDURE FOR R~INFORCED PLATES

1. The pla~e is divided into strips in each direction along

the panel centre lines •

. 2~ Each panel strip is considered as a continuous beam

supported at the column centre lines and.loaded with its

full load.·

3. The beam is analyzed by conventional moment~distribution

assuming the columns to have zero stiffness. The columns

may be included in the analysis with their stiffness modified.

4. The critical negative moment is'at the column centre line.

and is reduced by the quantity Prb/~ to allow for column

and slab sizes.

5· The resulting moments at the critical sections are

d.istributed across these sections according to Figure 28b or Table ',A.T2 ·.

6. The reinforcement is distributed to resist these moments.

The above procedure will now be utilised. to design the

previous example of a flat plate in the following Section F.2.2

Page 64

1="2.2 EL.JISTIC- ?L/IST/C :DES/GA./ E)(A/v?PLG

The. prev /CJu r exq_. jle · ( h1 I~) wtl! no..v

re-ct~.rtyne.d oltrecly ~J It;,,;· Jre:;cr;d~r~. 1 6.e.

~n~ S/Ze L 1 .:;: Fot~o Z}~c;,d Jl~t Llllt . t OQd

L 2 .:: 6 oo o 71uci'nerr .#" ?~o

=::.. /~ C !<AI/.., z.

Vu~or ,.. Put.r- ::. /300 '=- 2JZ MfJ-., 6

1ot 4 [".roo ~(z.ro-~1Jz"o. · ;

M~ v"'r ~ 4/j7,.r., - ~rz M~-.. (n.~.r) /i.r ;rl11-"tul!'/y > refq,, lhe .rep_,e r/t::~~ /h., ~kn eJf

btv~ )r•t~~d~ 5heQ,.-/1ee::utr qJ .riJtJ&~,- r"tn(orce~"~'~-1.

Z. VtvN;te '"" ~~~ .s-1-rt~ r ,,., fle f'lld() a'tr.t eft#, Qil'f4 , a, ~:rre jir L"'/1 oleo~ ,PI"i /,ve 4~&1'.

n~ hfpt:f,jte~ Col"'""~'~ .rh/fnerr~ r .riJDu/a' k la-,t'~;, i.,h

~ ~~(1t.tlfl;. bwl en /1, Qre o~"~,Y . .rhy~.l~ , flC:t'"' e./2 t>(

~ /a~lorf lha · jrllil '""J' ~.rf,., 6 "'/"' 11"

F. E. /VfPMenff ::;. 6.fZ Jc! ;?. .:1

IZ

,$2 kAJ ~IS' xJ>.:.&s1. RAI

A t Bt cf .. 3,.., .. g-,_

It "1 'l "

-.fl.l -14~S -4JS"

+l!fl ~ S"1 t>

-7 -I£~ - 7 .r- Z. --?> I •

l<.n/1 k t:; J' (Jt:(' . 43.!' RN .... . . .

,:. l U' (A?'~ 1 , '.rz ~A) t:~~ Jq' 1 ~~·

]b'

lv1A(s:. JP6x!:_E -122 ~ Zs-JkN.M. "2

/V1 e(c r:. J 2 ~ ~,!. _ 44 2. .. t..t oR u. ,___ 2

Page G5

I

/VIA~~:~ Jzz- ft;6 :x.o,3KO . iT

~ ?Jf KN. ~ ~

MBA:. 48'o- 6?'2x o_.3Ko 7T

:::.. J g 4 k AI. 1--1

. -2J8'

'

A8 A/13 8A 8/C

~ () %/VI 44 *2~ 44 23

'

~ t· 1\,) m -12Z. lo -- 16 'l bO II

~

"' As 1 too /Koe> SD~-() lSD.() ~ ~

~ ~ ~ R /() y'2• . t Y2.D I& y~o Sy2o . ~

' \.) \1

" . %M

() 2Z 27_ ?Z 27 ' .\; ' """ 6! 70 - s-.r- 6o

~~ ~ -"' t.. ~ A.r !6oo /J'()(;) . Z S()ei~ IS'" tJ ~ . c, te\ ~ " ..... Sylo 6 yz.o ?y7..o .Jyzo ~ ~ ·~ 'q

() %Nf 34- 4.f' 34 4r ' ~ ' ' 1/..J -122 '77 ~ ) H"' - 1 S'"

"' ~ A.r 24co 290-D 3 3o~ ZSot:>

~ J>y2o ..... ~ I< ?y2.tP /P y2o I/)' lD

~ .. "'Q

4. S"tl.n::ttv 'f tPH

oft.rfn 6 "tfl'_,

ti? I o .rfrtj11" q ~cQ,. .tf,.., ~ ~P IIJ -1! r ..

( ft>t! /q6/e A- )

)t 41f. ;A"

),; 661.

~

*

Pag0 66

,,

1 I

t c

1. ..5:.6 oil 111../'lp,. ,.., ;/,. .1'1,., .r eu:eor 41#"1 fo ~e

&~'(, i-fr,6~1~~~ {fee Ta6/e /f )

r:-~'7· G.rz~ ~2 ·

... .? 2 6 It' AI. """'

__ :,----:___ [

... s4to L

/( ?o ,0

" C~i.. I'T~I/' ~;c..· -~--=---;I.J~----

~~---------------1' f ;'"DOO ~ /#t:l fo'. "[

eF r/F r£- r/c Q

~ XA1 S4- JS S4 3S

" ' ..... 'I 14'6' Sl:> ~~ ) ,., ?6 7o ~ ~

() 4.1 2 1{0/) 1 r.r() /12110 ls-.ro ~ . ()

' " ~ 0 '.R. 12. yt' /Oyt6 Zt yt~ ?yt6 \J H ~ "

(I %M 2' Js- Z6 3~ Cr-.

'\\_ '- s& ' 'I 4l 7o 72. ~~ ~ ~

~" () 1/J' I 2 o o 19.!'0 "Jt>t>D 1.r.ro ~ ... ~

... ~ ~· ~

t. Yl' ~YI6 \) ~ '4 R. It' yt' /() yt6 \) ~ I

~ ·~ (oM 2~ 3o 2o 3o

.... ,, bO ~ 'ti- 14-? ]Z.. SJ- 42 ~

..... c:. lis ~()0 '7"0 I .CoD /).)0

~ ... ~

~ •• f<_ Sy ;rs, t?ytb 3 yl/, 7yl6 '<:l

Pag~ 67

1S .r;.,., /qr J, Me . / QJ ".,,t. ,., h J. I~ jpr !he C/q.rhe · a'~.rlj,., £E./. t?,y ~e Hu_,kr.!

of re/n for("~~ l'#?f . IJqrf II? 14.e J Ct:J(~.,,., <:J.,,f

MiA .tfrijf nee.P( fo J..e c,!/~re;f lo JQ/!Jj/ Me. /1 .r re~ ,.~~ ~ ""' ,/J II? 4) q,,. :} rrtJM ~e. r~J'.,;Jtl',,. /'~~4!a'~/-e 16~ ~'9h,l-. ~ he re,...,/orre ,.,I!, I- tJ :- /

Wa/4 ,t. ~1 ·~...,~/ - .:i ~op .>t' 3 - 10 "ZQ() ,<' -. Jheetr hflqlfll' f .c: / ?.5o

ror4l- A4 ,q .t.f - II CJSO K~ -

C,..,IQ"" ..- tv/ &j.{J· tJ/ ~I 12 ()(7() £, evtft? I o.fet/ --

9 ChecK fJq#?.tl../ ! (;);, q /or tj;el~ ~~-- ~lw-., ~~Je .. "

1"'1 Q// t:f,re?c ~'t.JI? f.

f . .:. JOOO

/SD() Y Z!O

Page 68

M4Je, r /tAHJ 1/~l~e.r ? =- /250 KIJ

Ct:)/"I''.JI ()~ df

ref,cfed 1-~J.e. · lo~ a· P 'Z ) r~ tnt~~rfy

qr et. · e r/fe ,..,~) So !h e;l- lvt,P vqle-(-(!;1

orf l~e. e l"i f, C&:r I .re ~ f, P,., .r a yfJ ,_, q "'.e } r o J or f.ttJ,., 1&11 I

De.!- / &In .e./

1:~. Pen.r

R e~~,...~.s .·.

:;.. P.r .X. / Of:?d r;,~fQr -= 6s 2 .x. ~ C)

:::. /3 04 K N.

The /Jt.:ln e/ will jail qf- P~~. r ~ 13 04 kN 6::1

/DIO/'VJ7 ,.~ !he S"horf e::t,.recft""' Lx. &?l~e fP S'11w ~tf"e~,eo~.r yielct Q} lhe.. crt/ice;/ .rerf,~,.s:

Be f(lte. P .::. /2 .!"o kAI J , lh.e tt.A CJtNe>~r w;# k e/t::~..rhc UNit, ~/I?,.HitU#fi'1 def/ecf/(1'?,

/(). Check 2Je,lkdn~~ f .

. /",."_, ~J "ZI MJI er,f~t~l,~ ¥ ~e /Q,e/ c,,-, I-re i J' YN''I'? ~ L1"" z:. L1 cv -1- Ll&

wher.e Llct..~ ~t c~- k eJ'/;_,q/Q~ D;t ·~e / r.e t/,.e~~J ~ e ~ t:~~ ~./""'J l»e c ok~+~,-, Jl-n} 1\-7 16e 11)nJ olt,-~ef,t:J~"~ · t:lniPI' /he ,.,/t:f-sfr;; In 16e .rhorf.

/-lf /~e. lf.t~ ~t? _., t'~~..f are .1/~,'/e:n- '" fce,/e

lo M~ j r.e "' P~J H'f o ,._,en :I ..r 1

.L1 W ltl;~ Je .rhy/,//y ler.t a'.,, lc;> Me h'}he,... 11dfq/;v.e

JY!(}M en/~ . O;,e?(' r&~~/frt't£7 ~ {)~" qr ./h,e /#"J/.e~~·Q,_

.!'t-t/jtJr,L t#? 16e _foi?.J .q,.,.."c//p,.-, > UJh/ch

Jt..?e::ttf'e.r ~e JrRe;-le.rf CD~f;-,t "'/,.eJ,., lo /IJ11 ~e'foc/io,.

PR.ge 69

F. 3. BEHAVIOUH OF A PHE-STRF.SSED PLATE;

A pre-stressed plate has been found by experiments

to behave essentially as an elastic plate provided the fnd.on

and concrete stresses remain within their Ela~tic ranges.

This elastic behaviour will continue 11i th increasing load

provided. that plastic moment or rotation is confined to a

line at the column edge.

1h th unbond.ed tendons, the internal moment reaches its

ultimate or plastic value Mp through plasticity in the concrete

(at a strain of 0.34%) with or without plasticity of the steel.

The expression for Mp is a.gain given by

Mp ~ pfsud2 (1-059 pfsu ) (A. C. I. 318-63) d2

where fsu = stress in.tendons at maximum moment

Conditions at TT1tima.te Moment are

--+-t--J~'Jr. _IL-r.r O·I"S fc 'i; sbo·wn in Figure (

1 29 ) •

~ec O·oo34 (. M c:t,-)

F1· rt -25l q• -h c.. ~t.

~--~-+--~ I~A,fs~ ( f~e.lt:. s • es.

~-r-~----1- e.,~; $ reef 'Sn.Q :"' - - ---·- -- <; "('"~ e. ss E' s ST,eAt'NS.

In addition to 'the external tra:nsverse loads on the

plate and the internal moments produced thereby, the effect

.of the pre~~tress is to superimpose either :-

(a) tendon reactions on the concrete caused by the

anchorages, curvatures or changes of slope

or (b) a uniform compression together with internal moments generally

of opposite sign to the moments caused by the external

loads and equal to Fe (See Figure 30 ). I

The purpose of pre-stressing flat plates is the same

as all pre-stressing, namely to reduce internal moments,

deflections and tensile stresses throughout. Figure ( 3C> ) shows the end span,of a continuous plate, ·with cable position

' ·I'.\' ;·~

and the resulting C 'line (Centre of Concrete Compression)

due to the cable force F and the external Loads. This C

line is obtained from the Cline due to the cable force by.plotting

a Mx F

at every section where

a shift in C line

Mx = B.M. due to external loads including d.ead load

F = pre-stress force

a is above the cable if Mx is positive (sagging)

Al t!"lrnately the C line can be obtained by an '!'Hastic

analysis/

e E~t

!. 8

./vf

a.f

x.x

= M

x.}

tt )( ~

c..

C\.

1

e-z.

·t

_ ,

, F

> ~e

.r

ZJp

t;t;

( -t-

L ,~

=·cz

)

t "fx

• J

""-.. =

Fe

, r

Fez.

Non

: C

.,,.vt:tf~re

q.,.

ct

e'l'

~/kehP

#'I

~1..

~

ct.

~ c.,.~

( C'

~(~

/,.-,e,.

) a

.. d

e

... /,_,e

.el

~e

1-~

F

,; ce~~/£

~~

co,.

,~c:

;r&f

q,. f

Bc,.

;M

Ct.

E v

,tt/

7 /

'o""

'-'

·

,c

q.,.,

t:Jt

/oq~/ ...

7 c:;.

C

.'].e

.

e.....

---

,_

-~

a,.

e.. r

e I"

' k G

t ,C

,. F.

p

N =

~ ~ (

Nr .

.Af.,.

.c,_l)

~ f

1 t

t 1

t 1

t _ tA

1 t

1 1

t t

1 :

1 1

; ~

1 1

1 f

F

J, FB

FR

Gf!

... 4

,()y

~~

CDAJ

CR

ErE

I

rt:}

rA'-t

. r-oRc~.r

,&

JeO

I'-f

C;

rt~B

'~~

&>

N

c e

NvC

RE

Te

/?N

tJ

Cdd~£

p,

G:

3o

ro

p (lq

(D

-..3

0

1 ~ ~

t: "Q

" ....

"'

Page 71

(/

analysis of the slab carrying the external loads and the

cable forces shown, from which the internal momentR M are

calculated. ·

l'oo

1410

ll,1o

lo~o

Zoo

= M is then plotted where F

= distance of the C line from the c.g.c.

~00

4oo IJ/1,_ Qk l.rfr~.t.r ,1 It Sfra;,.,

. .

leO I 0· rg loo 14.

0/o c;; T" ~ Auv t.r

Figure 31 Typical Stress.:.strain curve for pre-stressing steel

DEFINITION A Concordant cable produces no external reactions and

therefore its compression lirie coincides with the cable.

NOTE

1. Any real moment diagram by any external load system to

scale, is a location for a concordant cable •

. 2. Any C line is a location for a concordant cable.

3. Linear transformation of a cable does not change the

position of the resulting C line.

4· A parabolic cable produces a uniformly distributed reaction ~

on the concrete = 8Fh per unit length where 2

h = total drape of 1 the parabola (Fig. 32)

Fig. 32

(R4)

Page 72

By the methods of analysis previously described using the

-auxiliary elastic foundation, external moments Mx, internal

movements M anrl hence deflections can be calculated as before

for any axi-symmetrical loading system. The uniformly

distributed loads Pl > P2 on an internal panel correspond.ing to

radia.l yield and tangential yield respectively are related to

Mp as before.

Using the load-balancing concept, it is obvious that the

cable profile and tension can be directly determined.in order . ,, If

to balance the sustained load QS exactly. As explained later '' II this is a desirable criterion. At this loading QS, the

internal moments in the concrete are zero anrl the centre of

compression is everywhere at the middle surface.

As the loading increases, moments are produced and the

centre of compression is displaced. The maximum moment is

the 1 radial I ,moment at the column edge where the centre of

--'

compression is furthest from the middle surface. As this

moves below the mi~dle third, the top surface moves into

tension and later cracking. As the crack progresses downwards,

the centre of compression drops to reach an extreme value.

The internal moment F x a has reached its constant maximum

value Mp at the load Pl allowing plastic rotation of the plate.

·Thus an effective yieid line forms around the column face and

the tangential moment increases-with increasing load until it

too reaches Mp at the load P2. vli th further load, Mp spreads

along the column centre line and then along the panel centre

line parallel to it.

When Mp is reached along the entire critical sections,

for both positive and negative moment at the load P3, a complete

yield line pattern is formed representing the ultimate flexural

capacity of the plate.

Hence further desirable criteria would be that . . ' Pw where Pw working load so that the plastic

moment is not reached at working. loads, and also that P2

approach P3 (P2 ___.,.. P3); By realising these criteria

deflection and deformation at service loads and overloads

wbuld be a practical minimum. It ~ill now be shown that all

these criteria and others can be achieved by direct design so

that the behaviour is, op.timized at all loa'ds and so that the

cost of the structure is not affected.

BEHAVIOUR CRITERIA I

Page 73 .

BEHAVIOUR CRITERIA

The tendon pattern in an ideal pre-stressed concrete

flat plate should satisfy the ~allowing criteria :-' .

1. Ultimate load should be attained with a minimum number

of tendons.

2. Deflection and cracking should be minimized at other loads.

3. Deflection should be zero at sustained loads.

4.• In plane stresses should be a minimum

.5• Tendon profiles should be identical smooth curves.

These criteria are desirablB for obvious reasons,

but criterion (3) is desirable for several. As the concrete

is everYi-1here in pure direct. stress, no bending and no deflection

occur. The deformation due to creep is uniform over the depth

arid produces no deflection either. Hence long term deflection

is a minimum. The slab is also crack-free and water-tight,

brick partitions are crack-free, the elastic range for lateral

or dynamic loading is a maximum and overall maintenance of the

structure is minimized.

A solution is possible by the following procedure which

satisfies all these criteria very nearly.

F. 3.1. DESIGN. PROCEDURE

1. The plate is divided into panel strips in each direction

2. The panel strip is considered as a continuous beam

supported at the column centre lines.

3. The plate thickn~ss is determined from the ultimate

shear or from the deflection under full live load.

4. The beam is analyzed by conventional moment distri.bution

carrying the full load assuming the columns to have zero

stiffness. This assumption is allowable·since at zero

rleflection no moments.·will be transferred to the columns.

Negative moments are reduced by Prb to allow for column

and slab size. I1' " ,,

5· · The distance e of the cable from the middle surface

is made proportional to these adjusted moments M. At " , the columns, e has the maximum value of half plate

thickness less the req,uired cover, and the cable is rounded

over /

Page 74

over a width from 0.31 - 0.41 to reduce friction losses. .. If

6. The total number N of cables per panel width is determined

from the Ultimate panel load and the correRpond.:i.ng numerical

sum of the total ultimate moments at the critical sections. 4 II

7. The number n of cables per unit width is made propo~tional

to the distribution of critical negative moments across the

panel width at the loa.d P2. This distribution varies with panel shape and is approximated by the bands shown in Figure ( 34 ) . For ratios of L greater than 2 . 1, . adopt the latter distribution. s

8., The effective cable tension To (after losses) is determined

to balance the external moments at the sustained loading

and is evaluated at the panel centre giving

To = M Ne

~t 1 ~eJ::.: ·I~~ 23

. F!9 33 L ()~t~a'""7' H()WI ,, ,lr , calk 7-J,.e.e

r- .. 7S?o _'£D~ -- •w l

o/'l,. C= LJ<S L ~s

-% ~,. I I .r, .. .,,q jt:~t~ e (

34

'RecfQ~., ..,/.,,.. 'f.J&~~,.,e,; v

(R32)

Page 75

REMARKS

1. ShAar StrAngth

Little consideration has been given to the shear strength

of pre-stressed slabs beyond a limited series of tests by

Scordelis, Lin and May from which the following Empirical

aq,uatj.on wa.s derived :-

Vu fc1 (0.175 1 0.000020 Fe )p. s. i. = - 0.0000242 fc +

bd s ••••.•• (57)

where v ultimate punching shear load (lbs)

b = perimeter of the loaded area

d = effective depth of slab

Fe effective total pre-stress in each cable prior to loading (lbs)

.S = spacing of cables (ins.) 'in the zone of critical shear

Although logically speaking, pre~stressing should

increase the shear strength and. estimates vary from 0 to 30%,

it would be advisable to ignore the extra strength until more

exhaustive tests can be carried out. At p~esent therefore

the formulae for r'einforced concrete s·labs recommenried by

Moe, Tasker, Whitnef or the A.C.I. in Section (c) should be

used.

2. Cable Profile

From step (5) in the design 'procedure, "e" will not

have its maximum value near the mid-span section of the external

spans. If the maximum "e'' is used at this section as well as

the first internal support, the total number of cables can be

reriuced from step (6) by~20% as maximum cable eccentricities

· are employed. This can be seen from figure ( 35. ) • . I h

The respective eccentricities near mid-span are i • • • j

and

·e. » ~-<:. h :and for the same size of cable, the ultimate

approximately.: I

loads are in the ratio of ~2ih·: 2h 7/,eorehcqf Peq_t

:r.~_tv I

_Ref • .A_ (b) · B_ecommcmrl erl l':ocentrioity

(R32)

Page 7 6

Unci er sustained loan., moments near mid-span can be

exactly balanced from step (8). However due to the rounding

off of the cables for a short width (:: 0. 351) over the columns,

the effective drape of the parabolic profile ~f the cables

bet1-1een their end.s and the commencement of the rounding off,

will be reduced so that the ·net upward reaction prod.uced by the

cables is also reduced. (Alternately, the cable.moments are

reduced a~out the c.g.c. thereby reducing the uplift).

Furthermore, the rounding off of the cables transfers and

distributes the entire sustained panel load to a small square

over the column of side ! 0.351. Due to the aforementioned

reasons the panel deflections will be slightly increased but

may be compensated by a small increase in the number of cables.

Con~equently the writer considers that the use of the maximum

eccentricities is justified in view of ~he ove~ali reduction ·

produced in the total number of cables required.

3; Tendon Distribution '

A Tendon pattern may be also simply d.etermined by beam

and. slab analogy. . Assume imaginary beams between the columns . .

of stiffness equal to the plate stiffness. The slab between

beams is balanced by uniformly spaced cables between beams

each set carr,ying one-half of the panel load P and transferring

their load to the beams. Thus each beam carries one quarter

of the panel load on either side and requires the same number

of cables as the full slab panel spanning in the same direction

i.e. 50% each of 'the total cabl eB for _any panel. If the beam

is aAsumed. to have a width equal to the column strip and. its

cables are spread over this width in addition to tho~e re~aired

for the slab, the following distribution will result in a square

-I "';i~

_, ~-

1#J1 . AreQ J: z.,x'l'z.. 8 ..

=.so% ~,

li

WI I llrttt:~t • ,_,~t. =- so Yo I .r:

L

?S% N .... j

H-,.r 'JO. '( t:*a~/e.r ~,. e.-,,;1 t<.~,d/,o... N • /, rql n •. ;; .. ,. _pet, e/,

. . . ......... . • • . ... -....... .

FJ.g·. 36 Cable pattl'lrn from anA.lop;y to two-way beam and. slab

"

Fig.

(R40)

Page 77

This distribution is identical to that recommended for

square panels,, and oan be applied to rectangular panels using

the width of oolumn. strip determined from

c - L X s L + S

••••••••••••••••••• (58)

4. St1dden Collapse after Cracking

The oraoking moment of a pre-stressed section is

the moment at whioh ft • maximum tensile stress • modulus

of rupture (f ) r

f r is gi van approx. by ~-3_0_0~0~~-3 + 12000

p.s.i •••••• (59) ·

fo1

Cracking will continue if the tensile stress at the top of

the oraok is greater than f • r

In slabs or rectangular beams

with unbonded tendons, F = pre-stress does not increase

significantly and is assumed constant.

M

Slope dM do

1 3

~ 0 for stability at cracking

for -- _.c = o : dM • - l rbdf · - F] >: do 3 L r

If F < bdf dM is < 0 and as soon as the r , do

oraoking moment is reached, the seotion continues to oraok .. and becomes. unstable, leading to sudden collapse.

has been experimentally verified:

The ..... theory

Hence as the tendons in slabs are not usually bonded for

economy, it is necessary for the average prestress F to be bd

greater than f • . .r This requirement will safeguard slabs against

sudden collapse due to overloads or earthquakes.

5. Effect of Rounding .Profile over the Column

From the analogy with the two way slab and beam, it

was shown that the sustained loads could be balanced everywhere

by the oable reactions exoept in the region of the columns.

In /

(R.4)

Page 78

In this region the cables have negative curvature and the

load iR transferred from the cables to the slab. If this

transfer is axisymmetric about the column and. is concentrated

at a line of effective radius rt' the concrete slab is acted

upon by Z. ring loads of magni tua.e P, upward at radius rb

and downward at radius rt.

The deflection at the panel centre

The

·uniform

is

ratio

. =

of

load and

3

0.019

this deflection to

zero pre-stress is

•.6(rt 2 - r 2)

b

Hence To should be increased by

. the

L 2

this

which for 0.125

6. Effect of Partial. Pre-stressing

••••••••••••• ( 61)

deflection under

proportion

is a correction of 5%

This can be achieved by the addition of non-prestressed

reinforcement throughout the bottom of the slab and'over the

-interior columns, being desiened for the Ultimate Load a~

which they will be fully effective.

However, the non-prestressed reinforcement will not

retard the onset of cracking but once this has occurr~d, it

v1ill reduce the severity of cracking and increase the resilience

and ability to absorb impact loads.

Where the ratio of live load to dead load is high say more

than 1•5:1 and where only a small proportion of the .live load

will be sustained for long periods, its use is recommended

as a replacement for some prestressing steel, but further

research is necessary.

For all other flat platf?!s, a small amount of non-stressed

reinforcement is recommended say 0.15% of the gross area of

the slab in each direction, as a supplement to the prestressed

tendons.

The previous example will be designed as a prestressed

plate using the procedure outlined.

Paee 79

F .3. '2. ])~SIGN or

.. L t/: . ? ()OO .S:: t OeiO

/& L =--4t~ 1Jee:t#l L1:1ti?t1fll •• .FIRt .# Z 1/QI l(" ~~IJ .:. ~ 7 KN/~ 2..

I. . lhtl('~ ""1~ tp,.

!V/odH ~.r. { ,f 7INA3

.. /2 4- " .. ;

0 ' fr~~~ fi* (r1) /r .; J 4 tJ IJ c. fZ'D} J)

.3 +- I Z 1111 o

.i#f/1111

(R40) Prp~,qfL tp IAJ,..·

,..;_,. a.-~r'j" jr~.rlrer/ • fiJD /· .r.' .;.-J.

(R32) ·"

(R32)

hiJ'AA .. · /~ 4 ~ 6 ~·I' J1 ~IJS 2

• ~~I> KN. >-ErA, {.rl) . . . . .

Y~r ,. /~: 'Jpt ~·'J-'"- u. ~"'oo z.t~z/t:" ~ (),,,,~ z 6! J . ... 24 .., -~ " .. , .. ,; ,. .r· r o. , ~ ~ Q, ~""() 2, z. .., 3 4:o] . · l_+- /). ()()~~ l J( JiJP.J( 3

: 7 2"P J( (;). /.)7

c /26, K'AJ. .....

F ~:u,l"p,. ¥ J eYe~ /t:l~ .r~ ./Jeq,. je,, ~~~ .:: /. '7 u> J,n"4 /J

~, /1 -ie ~h,r,f~ ,q,;,. t-41 ~"""'

/,e:rv,.e k,#"' C1'4fer~"#.~-t.

'·· :.-z

Page 80

16~ <fOtiO dtr~ c./,,,., qnc:( 2. 7) tt.~,cr'e ~ ... f~ Srr').r /1?

· <=ln etty.re jtJr j.,l/ ctaaR /oqd }l~.r t~.e ~q~ . 76.e. c "I"'_, 17 s qy(!. CU.I'1~e~ .J.D h~ve zero

.r/J/1, e.rr t:l;oq ~~ !?":/ erlt"" 1-t-t ~ ~ "" l.r w;' k re q., cee:t by 'Prt, F. EH# bf)fJK~ ,~. ~11eJ ..t'N.--.. ,-,-

iS'~J'. (,U) .t~K~..; 6HJ

AJ . J'., gl ?,.., cf ?""- t~ •/,D •ct-.

f-4/HJ. /If><) -(~

~~-,... _.... 2 ~ I -/ '2.0 . - S"'o .

~ . 0 .-12<> ,-4h .

~ li

~~ j 4

-~ -~ ~ ' ~~~--~,~~~~~~~~~~~~-+! I~ . I • r. "i~ C'! j.ll

8. /t-1. . ·ZJ,&-f'q_.. ' J

3. Ca6k .. P,.,(f.e_

1"1 '

?he cQ61~ ,.,.,.rl le d'A/,c:t .rD ~q/ ~~~ ·~~r,,l,,.t,f,:t "e • . . kl~..u .f!,e.. 11-fl 4~/~ .ru, I 61C~ ; ~ ev~'Y IVI,f?,-e 1/"Y)I#I,.pPtl"tq/ . fo ~t.. ~ /~,-,.; Ql IJ.ID~l!# h a;, 4~ .Ia&:( 4/, IIW',

/f~,., (e M~ t' t:J6/e. . /1' llttr7 ,_,Q,.~ ~,,., t:'t~r e/4,f,

/lf- -~ C::. q#o"fJ ~e, ,.,qx '"'~~~"'~7 -f',- /t?t'J-.J,r, 6'~ e1~e11 rDt,~tt:t Y/ /Je, . je~rr ~ c:t w,.q~ffi P;J' . ~ o. 3 t ::. ~.5t?() ~.

IJI- .fhe · . .le~l~~ /cr . /t.f4-< jp.t,h~ nt#H#',,c. ~'~~"~ #/.> · e ::::- b.r ~ .J J> 4=: =- 6 o ~..,., _. _. ----~~---

.42-P

Pa~e 81

. (//ft., ~1e. fcn::t~ "''~ P~,.-~~1/ f~>q~ ~~~ • /. P . P ~t.r , I. I· ( 6()t~) ~ to!'{) /~AI: /; f•t /?:;.~,I /1-f,~,, J q! 4'//. t.~tll/

H. " p r _f - ~ l :- I08'ol1.- I? J.ril., <fbO ~H.._ ~ ~l ' ~ 7] ~

/.j ,..,.,.. {(). 6 :J a',q,_,, l w~~4'!' .q,. .. ..,t ,

e,, 6 .,.,",~ co~le.r. tit¥;,_ .,.,4. d,y-Hr =- '2.f"D k.-v.

4/k,. ;,, ./U #• ,t,t-4 /wa. ) .1• if~ . ";.r.r y l.f"''

. 1/f 11/l/o~• .,,(e. .(.,~ c .. ~H ~,e ;et:l' /. lf X /17 .:::

.::. /17 ..t'AI,

/-- #.t

h-~~ c. ,P. //.j - .313

tt //;~,.., 4lt k /Vfp~ ,, ;.

{,() he,..e AI .::. , ~ .

.6,~ ~ 4Qi'f :

H,,( ~,..., : M'~ ~ ~ /

... ~ ..... ...Y/- #J ~- ~-4~.J

"/ Ca ~ /.e J.. ~~ :::::. ()...;Itt/

~,::71 ( /bt7- o.-tx !.f")= ZZ"' N ->U7t ( lt.r- "·"'"'¥) ,.,. 72-.0v /~

I - 3.$ ._3 N = &f 6 C) · ,l"Q.-.. -

=- i'Z C 'kJ .rq/.

1'7 ~ JZ. ~ ,. 2 ~. /. z. . .J, ;(:? ~I '2.o 1.1.

1 z~ 1. z JC. /J7 (tz#- ·z.t~ x/l..e>) .:::. b t>-t:J K N. 4....,_;

::::. J~~ t..J :£ IJ7 ( ~~r- · z. x 11r)

7S'o ..k~ ~· --

A/=s JZ

I,. .,t::f N I' <.A'

Pa.ge 82

I

-- J!x 117 c. ~.l.tJ ,1~ x. tx /(~

&, j.J

/e

IV( #t,l · ::: .? 2 11 /. J xl-17 ( /trJ- ~·l/J~ 1/0 .,.:. 1/() ~.~.~. ~ .

H. • N"; +- Yz M.,_z .. 7lo + ~ j( 7J'b ::. 112.!" I<A.J • ....., >! q Go kN. .._.

nt:

z:: I'

c ~ tu1art t c~! .r~,.~ L Jt s ~~: ;,(6 L+.f . er~ &

'C

1 tlfz ~ /l?i. t r •4

r-' ?.)D •[

r(?..j' Sot> 1 .$.: 611ll D

--4-

~-~ft-,.,_ .. ;.~ .,4 ~q/q~~~ ~ .l'~f&tl';,~ .

~qA'. 6 t::?/Q~t",~ f:?tJ~t't;6~) ~/" ~ ~11M?t'H/.f 17 /6"..,· ( ~~~~~~"~/;.. 6-,/q,.,,,~ t:'"~e~.;_)

gA-, Cp, t~j4h /rtu:~.,~e "' C- ~~~ ~ ~,,{11'/e 4'f"'q('e /-t'.

H.-'~;~ c~~r,~

J",., ;..,. (I II¥ ,,.,k ett'/k~~IP#t.l. ~,...~~/t,,Hf.

Page 83

O.eP.-:t' '"~ • . ./:.~/ .. _...., /.., ,.-• J t.L

/;..f~ J;.tl~~ut' . hq.lf '

,6,4 ~ .,..., : lvf &fx j, rn"t.e. "' ".._ ""' f . qti! .li..tfq,..,_, 4.,d ::;.. ~3 84. X ~ 'l: = Z3S A'"N. ......, >

. /2 4 ..

~ jr'f;r h,_. /n..- ~ l<fQ~~/ ~~~.,!,_,, 7; .: A4 .r ~e,..e

N X. e:. lvfJ• 41,A,,.#II/ "'~ .!)(~ r~ k ~

...r~J ,t-.., u( /.,q .{ AI :. ,.,. . •/ Ct:~6/e.l q~~

tC r:- (!q//e '4t't'",,~,.,,7 ~ fl"';, a..,h:, .

7; = 23~ :;: /3.3 A'~ . ;/Z X (). 'JtJ

4a~L ~.r.ld .r:: . /~ '6 J'S

.... /7o R~ >-

bJit, 'I 4e R//. A,.~

n.L o#lt4~ ~ ?_ /S" ~ ... tl ~~ 6~~~~~UJ( Cte:tt/u

, l"~e.,u·~ /J .3o ~c~I'/A. Q_., ;..,,·h .. / h~.ho.-, t>f !?S K ~. = 74% f Af4 1111. Sf,_..,1 .«...

?l-t! CRI/e /,.0/e /.1 ./~e.-~ k 1.~ ,_ · , .. Z4oo ""I

Page 84

N.:: /o

.. 8. n.s. N ~.~,.., ler /)I' ~~' te.r . ~ n . Per ,.,,~I ;,~7 A.

. -o., .r ,,r I""/";;.,, .. ,~ .,~ r-;;t , 'uR. c. "'~ 4.)

/O .

. 7le _fo,t~ h~>. i CR4/u ,~,, 1//p-.qj, £Qe1 ~ 24 b.,l ~/J · h~.r ~ 6e. '""re~.r~ ,t" Jo

.I

.r" ~ ~f lie ~t::ll'~ 7;1-1.1'/,~ 7; er/~ kJ~t.f (A.h# ~ f.rt " t~ it '/ ~~ P/f,,..,~k ~tie ·j~''/ ft.. n,.r /I Cht~l'!-ul 41 ;, 1/tJ~.f . . /-

..e;, f1041'1

i-t.: Jo

ILfet )t. ;~r,f,~ ""() ,.. ,, I ~f rf ~ 6 k,vj., ,_ . M.s ~ ( t ~ '!II/( AI, WI ,

/2 '1 <I

7; • H.r 6 IJJ J 0 Jt ~.04()

177 KAI. ""~· >

·:::..

• S!.4 ~ till /lr"7 ~

/J 7; J:( .

/,,Itt:~/ C:.tk ~,t'e

_C_CI_b._le __ !__,~·~~

1-~1 ,{;tAl

/.f ./'h~,v #'? ,_, A:"'j' ~ C:#?~,.ele a,~ aii!J' /J' ,(' (1-S"o ;,_, ~

Page 85 ~----------r-.--------~-r-----

1

I " I ' ' I ' I ' I . ' ''I I I I I'

1 ~ I , : , I ' I I

I 1 1 • I I I!' I

I' t I' It 1 t

I I I I j I I

I: I I :; I I I'

I I:: •!

I ''

1-:-:-:-~f''l . ' o ' ' I •

."'-l~ .. n~- ~ I

- ·~4 • I. I , '' I

'! • j

___.~~ ~ ,........,~~-~-~- \S. (.)-~ - ~-:-:-

I I j t I' I,·, I I I i l .I .,.,.~-I .,, .. , 1•1 ~- ~- - .,

j f ,j 'I '' I'

I i I ~ It t : ! 1 I I . I ''-= 11 II, I t I ' • I il't,.'t•l I'·· •L___._ ''I . ..l 'I I 1.~ 1;"~: .... ,.j ... 'I ! l, I: I "\

I •

' ' 1 • I r-' ' ' I t ',1_ I 1-t ,., II t ' ' r ,,.., I I I' t C , p •

I I I : i' I' I " • i I I' I c:...-:: ' ' ., I I I I ~ ~ ' '· I I I 1 I I t I 1 ' I t i I i I I I ~; I I j I I I I t I I I I ""i

I' I' .• I. I '' t'

I'.

I I I I • I l I ~ i 1 I I ~ I I t I . I ~ ~ h. _;,_;..,1 ..,.·..L 1+-1 ..!.1-l---1 -'--1--i--·'-·-1..,.1 -1-~ .__: __.J ~· -~-,,___...___,-,_..--II__,_._ ~ l..,.--....... -f--+-..,--,_,..__.+.._,....,-,_;::-r--'-- ..--. . I' . i' I I I -

I j t" ~ t I I I j I I I I I I ! l i ~ I 1 I • I ~ I I I , .. I ' j I ' ' 1 I ; :. '

.• ''; I '' ! ·,; '' I,,. I I I . iII 'I '' tl 'i !l·j I I + .. I • t- I I I I t • I I ~ j I .,1·. I f • . ·l j I I I • I I I ~ I I I I !

I I ' ' t 1 ' I ! f t I i t t : I I ~ ; I : I I I I ' ; I I I

t' I

' ' • t • I. I t I>

'' I I I

I ~ i I

• t • It t •

·· 'J,,:i;~ '1:,. I• ~1:1 1 'il 1 ~1 !J.I ~;! :; : ; : : r·, , 'I' 1_- ~.~ ·~~ :,~ :1 •. ~~~ i' 1-i 11: · __ {\ '1 ! i I I, , I

I ' ' \) I I .& I ' I I I 1 t' ! I ~ ao· l i • I • I' . , " I l1 -~~~:H.~. -'--,--'-+--it-,__..1+-

• ' ·f Iii ~I 1 ~ j; ~ i I! ' ~ ·,I·):;: o t ,1 'I! I

' I t • i I l I ! t I !- ' ~ I I I t ! t l I . I I i- t 1 ' t 1

'I' 'I

_;_,_-' . . '

-- [~-• • t 0-

~:. --

I' I : ; ! ! j i i 11 :_ ; ~ f ' l j ! ~ -: ! " ti.-i j l ~ : ! : ll I : ;: 'li _'.:1. ,l,· ; : I I : ' : : : I 1' ' 1 t t I I I 't ,. ... j t t ·t ! I I ~ I. I· t • t I I ' . 1 t I ~ ' t ~

t- I f I f I I I f I "". .._ : ~ l- ; 1 1 I ~ l • I I ; I f . j I I

------~~~~~~~~~~ ' ~ 1~~--~~~~J---~~-1------1---- 1-----, ! . -II t I i . i ' • ! I I . . . i ' ' I .I ' ', 'I l- . . __, '-- : -- -

• • I ~· _. ! i

', '' ~ .. ~ ; ... -~~r~ ·I .-

0

• I ~ :: : ~ : I : ~ 'r' : : ·~~: 1

' : ! t 0

'

1

• ·"1 a l • _\..}--.Iff,_ "'~'-' ' ' I ! I ' I : ' ' ; ' I I I~- I I" ; ' I' I i J, ~:: 1 - '__.;r- ~

:. -::::·,·I ... ::·_-.: .. ' I :1 :: ·r::- , :; I.;:.~ ::. I. :1.:::, l':t-.... 1 {): . ~ ~ I ,. . ~,·-. D~~~- "-:-:-l., -:--:----. ~L ~ --~ !-If-:-' f

• I I j 1 J

:c.,. J,net.P : 1~~b~~ ... r· :·· .:1~+1S:;;;- . :::·.·: ··! ::!~. · · ~~ L.· .J.rD--O ZS<-f) lcr~ lt;-.ro' ~~S:~~ZS"oD!! J.~/.r 1f12f ~ ~~- " 1 '24 · · , ? 1 .:: )4:1_ ·/b· ~I.¢' 3 I' -14 ·;o! -:-lfi-- -I~

· «/Ito '/Z'Z.D av ; 1 .c:v . ; ~: • 4tJ· e:V iV t:1V 1' \

. : ~; ·:·.-: ~~.·---~--~---~---~ -!-:-~_to_.; _____ -+-.2-2_o_·._._~;_"l-o-:_iz_2D__._· I o ~.3~'-o __ · f--";l~z.o--'· :,_~._'/a-+-+--a-=-~-_· ._.~ -'-!--<-.! L·A·-+---~ •jl ••'I•• ,, I< till-()$ ''I I< ,...r--

: :. I :- : i ; : .; t t : 0 : ~.:· 1 1 1 : til ; ~ I ·I ; : ! ~ ! ;. tt I -j t !

1 "1 \:__- I j t· t • j ; :· ~ I jl :: t1'~ It' I

l I t "'- ~, j • . R t- t j • I -l • . ~ -f I f l t i 1 I· •• t· It· I' ll, I •• ~ , ~ t II II ·,· . I ·I t t ' ' I ~ ' ' I . + ,. - t ' ~ I I I ' I I 1 ' t ' II 'li ' I . ' j ~ • -f t- I ~- ~ • I I· • ·, .,_! i. ;. !. I ~- ~- ...~· ~ j. j ! .... · ~ ! !: j • i I I l ~ t I I I ~- i + I' I· l J I •

1 0 : : ; : : ~ ' '·; ! • ~ o ' 1 1 + j I L I· ·I: _;1:J -~: ,1~ t __

1l· tl:.· .'

1. o ;- ; : -: ;. i , . " , ,

1

; ; : ; 1 ~ ; : : ; : : 1 '

_____ ··-·-·---·-·~---~·~·--11~·-·~-~·~i~j-'~~~;-_,~·~~--~·~+~~~~-~·-t~-~t~t-LJ~:-· ___ • - ~--~1-rl~·~~~~~~·~l~i-;~f~t~-1~ ~ -----~ t : ', 1' I . ' • ' ' i I t ; j '·j j ., t + I ·I ,. + j____; H i ·- i ~ l i ' . . ~ lc- ' ' I ~ i ; i ~- ~ j I 1-I- . •'-..JI.-' I ·t I 1 ' -1- i" +- -I ! +·t t + ·t .. 't : 1- t· I ! 1 t--·t l t 11.- ~ ,-1 ~ t ! . ~- . .,.1 I I+ t I I

• t + • + • I I f • I --j ~ ;- ·l . t ~~· ,· ·,. ~· t ; ! _,. t L . t- I I I ~- j I t J., I I I I . I t- t t l ~ t '

:::·11:: .!~.:: ·- ~~:~ -:t -~:;rc~·;:~: ::n~·t::: ~~~- ~;: 1,·::-r:f:':: ;;;~ J:_ :;:;: ::~ ·~:~ .·.-.-~--·~~~-~~-.. , .. , .;·o ·~~ ···tl :r, w.. .. -l

I I ' I ' ' ~ I I A • I ; I ; ; ~ : . -~~ .... rt. ·~ ri·· 1 "·· -~;-:-c; ~ :;: :~·~ ~~·~·~-

• 1,. • • 1,., , 1 I I :::: r; + 1·ltfH; ;.; :: 1· '1::; · _CV)

1

. ~. 1 :·; 1 i i J •·. !1' ~: -.. t\... o· I 1 . I t I I I I i 'I •,· t 1, ,, ', ... L ~.·- ~.·. •l ~ : I I l ' ~ l f ! 4•; ' I I t f ,~ ~

j j I I. I l I'. j I I I 'l I I I. I' .\J I' I J. I'. t i It i I ~· ~ •• I I ,·_' . t- ~ :.·- 1.· j ~- ', j t: .. t j t •. 1 • ' I I !-- •-1 I t I ' J !- '•' . .- . ,,

't. / • I~ I • I ... ~ I It. j 1 I I -~.·. ! If I. I· I I ' i

~ : . o HtJ .. 1 t :6~o ; f. ; : ! 1- : . , : - tl-00 ! t ' i I , • : U ~" ~ ! ~ t 'i 1

'' -1. 1-1 1 f -1 ·-t 'I'!. 1:1:;

'.' i I

'. '' t

·. ... ..

0 I

. ' 'I

'I

I

'I

:.-----L -

• I : ''I- ZSD ~ : 'I

! '

t-+ I t- ·i·1

I I • I J_,. ~ ! 1

• I

Page 86 ·'

I -

G • j FINITE DTFFERF.NCE MP,THOD I

G. j 1. The Elastic Method for the analysis and design of

rectangular flat plates described in Section FJ.l, assumes that

the slab may be subdivided along the panel ce~tre lines where

shears are zero hy symmetry, into frames- consiFJting of strips

of slab supported b,y columns and that each such frame ce.n be

analysed independently to determine the total ela~tic moment

at any section. Tests on plates have shown that these

assumptions are reasonably valid. However the variation of

moment along the chosen section cannot be determined by this

mA"thod and so step functions are chosen only for the critical

sections to repref'lent the integration of the moment curve. . .

In the Elastic-Plastic Method described in Section F, the

step functions can be sketched by means of a simple formula

and rule or the use of Tables (See Appendix) to represent the

moment diFJtribution at prescribed boundary conditions.

The areas of reinforcement are then calculated and result in

2 reinforcement ratios at mid-span and 3 ratios at the supports.

To achieve the most economical and safest riistribution

of reinforcement however, more variations are requireri in the

reinforcement ratio.corr~sponding to the actual variation in

the moments. The exact unit moment at any point can only be

determined by the Elastic Theory described in Section 2.A.

using Fourier Series and this is known as the "Classical Approach".

Difficult boundary conditions have prevented the tabulation of

solutions for all but simple standard oases such as square

or circular simply supported. slabs.

Fortunately the differential equations

~~ ?}~AJ :O~w -~4CA) ~4w ))(.. .> o x'Z. > 6~3 > · ()')(4 > ')l(~d .... ~ etc. at any point can be

., " " approximately expressed in terms of the values of w

(deflection) at the point and at the neighbouring points.

For example

(~)o \\ /I

where a is

in Figure 42

= __!_ ( t.03 +W..,- .d.w -.4w + 6 w0 ) . 4 . ~ ' 2 Vl .

an arbitrary but small parameter termed a

"finite difference".

Fig. 1£

Page87

Any rectane;ula.r slab may be then arbitrarily sub-d.ivid.ed

into a sq_uare or rectangular mesh and the intArsections thereof

(nodal points) numbered. The governing biharmonic equation '

-- •••••••• ( 62)

r ·~· . . . . .. *·· . ~· .• • ~ ·- - ~ .. -. --- -

at any nodal point is then expressed in terms\ of the deflections at: L . .

surrounding points, the mesh size and the average loading at . the point.

For example from Figure 43

1 where w 0 - w12 la~~---! the values of w1 at J?Ointf o - 12 shown

ltJ

~ .. r s

Fig. 43 IZ 4 0 !z lo ~

7 ~ ~ ' ~ II"

In operator form, the ge~eral operator on the deflections is

-~ ,,.._, ll ~- ..... ( 64) _,......_, -

J)

At points on or close to the slab boundaries the general operator ·

can be adjusted provided at least two boundary conditions are

known e.e;. a simply supported edge·has

:-0 ) and

a clamped edge has etc.

:=.0 )

In I

Page· 88

In this way the biharmonic equation at each nodal point

can be replaced by a finite difference approximation.

As many simultaneous equation~:can be set up as there are

unknown deflections. These are represented in Matrix Form by

[VJ· [w J - ~4- ••••.•.•••••••.•• ( 65 )

D [L l [V]

-'

is a square matrix n x n

where n = n'umber of ·unknow·n deflections and row "J" represents the operator pattern at nodal point "J".

[w] is ~ column matrix 1 x n representing the

unknown deflections

column matrix 1 x n representing one of any number

of loading patterns

is a constant representing the maximum loading at any

point and. the slab and mesh parameters.

The "n" equations are rapidly solved by electronic computer

for each loading pattern. Having obtained the deflectiom

at all the nodal points in each case>the unit values·of Mx,

My, Mxy etc. are then calculated at each point by finite

difference approximation using a different computerprogram.

For example

I

where -t)-" ..

D = Poissons Ratio

Eh3 -.,-;- 1 12~1- "\)""")

Flexural Rigidity of the Plate

Page' 89 L

FURTHER ADVA"NTAG.ES

1. Provi.ded D is constant th~oughout, ·the Moments are independent

thereof. The values may be used to determine whether the section

is cracked or uno racked a.t the nodes and then the effeoti ve value

of D calculated • Ey introducing these values into the equations

. a new set of moments can be calculated and the process repeated

until the moment variations are relatively small. In most

practical oases, these will be no need to proceed beyond the

first set of calculated moments.

DISADVANTAGES

1. From the values of Mx, My determined at each point)steel

reinforcement can be provided for the full width of the grid .

.. (half the width.on either side). Less steel will be required but

·the extra labour for detailing and fixing will only be justifie~

in the case of large numbers of similar large paJjels with heavy

loading.

2. Column stiffness cannot be taken, into,acoount directly

unless the columns are so stiff that no rot~tion is possible

along the column centre lines. Such oases are exceptiqns.

In all other cases, the column Moments. and rotation l~~ :=: M j 4~Kc must first be calculated from analysis by the Elastic Method.

E.l)so that the deflection~ of the ~lab middle surface directly

pver the corners of.the columns (e.g. Points 1 - 4) are known and

can be used in the· difference ·equations· at adjacent ·nodal points·

in a finer mesh which picks up points in line with· the column faces - .

(~.g. Points 5, 6, 7 and 8).

lr Cot..

M,e(G(f~- ~ .. f~c~. @@)

, I 2. 7

e< ~ ~ / . ·t(; ~

3 4 ~tj

8 c---9.)(,

• 5 ~ ·er

b

' ' <t;.

Sec.T,oAJ

Fig. 44

..

:90 Page.

TbiR finer nat RlAo on~bloA the determination of (Mx)5

(Mx) 6 eta.

whioh are diffarant due to the column moment.

In general hm.,.ever, the method is best sui ted to simple

column joints or slender columns.

APPLICATION

The use of this method. will be illustrated in the analysis

of a ~cale model in the following section •

--

Page 91

H. EXPERIMENTAL FLAT PLATE

1 .. DESCRIPTION

An experimental slab representing a typical flat plate

prototype to about one-third full aize, was designed by the

Elastic-Plastic Method in Section F 2.1, construdted and tested

to destruction. The model consists of 4 rectangular bays

each measuring 2,085 x 1,440 x 63 mm (aspect ratio 1. = 1.45)

ff'Elely l:!Uppo'rted. ort 9 co1umrts, 5

2. DESIGN LOADING 2 .

A uniformly distributed load of 2.5 KN/m-, (50 p.s.f.)

toeether with line loading from 115 mm x 900 mm hieh brick

walls along the column centre lines in the long direction and

from one wall on the slab edge in the short direction.

Deta.ils of the slab, supports, design loading an'd reinforcement

layout are shown in Figur~ (. 45 ), (46) and (47)

3. SPBCTFICATION

(A) CONCRETE

Strength

Aggregate

Slump

30 MPa average at 7 days

12 mm and 6 mm in the proportions

of 30 70

50 - 75 mm·

(B) STEEL REINFORCEMENT

10 mm and 8 mm Mild Steel Rods with a minimum

yield stress of 300 MPa (44,000:ip.s.i.)

ERECTION PROCEDURE ----------·--The slab was cast on. 20 mm "plydeck" formboard and

approximately 150 x 150 x 10 mm thick rubber pads on mortar

beds over the 9 columns. ! 8 _mm cover to the r~inforcement w~s [ _____ ---

provided by placing short lengths of this size of reinforcement

under the bottom layer and 40 mm wood blocks und.Ar the first

layer of the "top" reinforcement. The position of·the'slab

was cho!=>en so as to be centrally below t1.;0 suApended hydraulic

.i a.cks each ofiOO KN capacity, which could then be used to apply I '

the loarling to thA top of the slab.

5- CONCRETE SM~PLE TESTS

The f~llowin~ samples were made for testing at the same

time as the loa~ing test :-

(a) . 4 cubAs 150xl50xl50 for crushing

(b) 2· cylinders 150 diameter x 300 long for tensile splitting

(c) /

Paee 92 ··· , -- -. - · · · ----· ·-· ,- · ; .. · · · -T' ·· · -~ · · ]-- · · · · ~ - · 1 : 3 ·o o r; r :·· · " · · · · - 1 : · -··- · ~ · ·

. . . ' . :

. i ' I I I I I I

: · · · . · · · · ~ ! 7 'Z.o ~ s Go

~--· r/Q-::~~ ) 1 1 . .. I,,_

360 1.· ' .. 1 !

720

I' o o' '

: ' . . . I / /I ~ / ' -~ / A N.l/ . / [I .I ·/- / bll'~ . ' ; : ; ' . ' . . . . . . . . --: j . I -"- ,...... . ,_ . : : ; 0 : : • : , . . .. : ; : : : : ~ . : V : :.. . ~ :. : : , . ~ :.· : I . . ·, . l/ ·~ ~ ~"- 7d,.,h / ~ . .. .... ~ .,_!.. ....... I~ .. I':.' I i

.·:::;;_·:· :~::.<> ll (~~ .. · .. _ 1 (~ ~,, li 1~:~~H 7:::~ H-~~~ ---~~·~;;:;::·'"····. I I I /$() J(! 7$ I': . ; . ' I . ' '

I J?; 1 ·,~~1 , ... ,1 · :.:.: r~··.'·.•• · ·~·· :::~ ::::!:·:: 1\1\ ' I . I ~ i ; 0 • 0 0 + ' ,} i

~ :.: . ~.--· i- • 'I . ~~ t- ·::.~;;,,, 't- ~ ... ~ ·--1 J~·:f'· ~ -

1

,-J ~ I .. ~ ' ~~ .••. ~ I" I ~ - •••• ' • I I

; 1,.~ ~ ::; ~ ; :.~~ ;; ·:: : ~ <";:< ~.· ~-.... ·' .·l (lr" ' ~ '.: (ti: ."' ll . : l 'II -~ LL . I ' ::; ; :::

-"-: • I• III/ rr ·.. ' ~. ~- IT rr ; . 0 ~ .: • .. r• ·-~··-. ~ : ' ' ..... : I i ,". : ' 'j ·>:-. ; . 'I I ~ : ' : )( ' . I~ '/II) ' ' . ' :

N ' ... o - lf' · •:· 0 - I---"· : ' • 0 l- ft\ J d, ..,h ~:.. : ~ I ' ' . ~ ' ' ' , , ' .

"1 t-a [_# I"': C'& ; ·. ; · " ) · : ·

~~ ~ r-..., I· "t~r-.~- i. ~- rl ::; :; ' · ~~1\ ; .. : :I' :: r~ : '-\\ · :" '~ J ··~~~ll·. :; ::: lY ~ ···::;I. -p\~rl :,, ; .!·.:::. _:. ~~ - I· ·.' . ~ · ' l/ L«HHl !P -.;-·~: · :i i: ·: i ::: ~ 1/tJ;t ei"o'IJ,-L

.. ' ' • . . ' (\J . ' • ' ' .. ' I I 7-.., ' ,'' ''" '"l!.~-' 'I '• : • - l : : ; ; : : : : ~:~~ [I ~(IT~. : · : lr (ffD~r) ~ ~_:_> 11 , ~- L ~ .u .~~ =.r. -~:;~~A _,i : : : : : : : . . . ~ ' : II ... \1:.~· If I ~ . ' 'r:t . ' . .• [I ' ' . . \.,; (r;;e, r~Hedj .. ::: : :.· : · ~ v:;: · :; > : :; ; :v·. ~ >. ·: ::: ,. ·:: : ._: :.:·:.: : ::: i j: ;].:

• t ! • ; ' ; I . I ""\: ; ~ ' . I I ' t ;. ! • -· l t • I •

• • : : : : 1

: o• IV) 1

0

:

1

° ~ . ' ; ' I ~ I 0 • ! f ; ! : : !- 1

· · · · · · · '1- · .;.._;__;_ l/ · · 1 0 ~ :.t.· .. :_;_TJ ~ ~-r ...: , . . ~ 1 . .:.._ _ . : ; :. : : : : : · -u_· ; : <:\ . ' . (.: - . ' I ' ::: If. I~ . . . '..._ . . . ~':: :':; . ::

; . : ! . ....... :: I h 1/.fD~:,.r. :nl :! ::' " ; :I ; r r:; I::: :; ; . ' : i 'i ~-.; l:f . ~" I ' .,. • : ' • I ; : I ' ~ ~ 1 • .: • i ~ : ' ....:_..!J: ; i

:' 4 ~. l:. j. t ., I . ' I ' . t t·t . j· 0 I ,j f I.. • 1' ~ .. ~ ~' t! l' ', L-,. ·•~I~ ·~ • ·.~, ~ •{• •j"t~4~,1~ I> ,,O~Ilo.J

... ': ..... · ~ : ·: l!-~ .. ~([ 1

.';;:!::: ~-(~D-; 1.:~·: vI-~~~ ::::::.:: I' ·~.: - ~;:: ~: ~: ••• ,· • • • • ~ I • : 1 • : : ~ . ~ ' t • • I ' • •• • ~ • ' •• ' • -:· ·_.,. 0. • • I~. . ! t ;_ 01 I '," , •. . . .. • .. . . : : : ; ~ ! : . . . . . ~ . ,- . I ~ · .. ~··· ...... , .. ~ · ttox9~~-,4tq/, ·: .. '~· :~:>: ::.;;;:.· .. :::i;: · :::;;;:~~ • •• • • • • • 0 • ' • • 1-t-:-:- I ' It -.. ' . . : .. ' . ' ' .. I ! •• ~- .• ' i ~ t . i .

-r·~::~l!t'(P~~·)·: ~ t' .. :'I'"';:::.:~.~,~··~·····~ .... ·,, .J. ' . ··.·· I' I I~ .:: :· ,, .... I .··::·1:!

f •• i'

1--..1......0.._..._ .... ,

I.; l

: r

<1-

!I ..

T

11

:,

I .I

I ·-

·-il

ld _l

t:/:

;>~-

-:.L

.c.l

:·.

=--

---·~::.::t~-·-:_:::~1-=--

-~ ·I:

~.-.::

: __

:: ..

:.··-=

-~1-=~

~=~-:l

\ .·::

·:·~--

!----:

:.~=:-

~ .::-

.::==-~-

= :~~

-=:-.-

~ ·.·

.:=··

::<.

: i ,-

I •

;-1:_

~:"-;.

:• ~:·

.

/1:/,.

'rQ~,-

;~ }ic~/

:-~,-c

-.::~-

~-~-:~

~ 1~--~-~-:

~~-~~~:i

.:.~~-;_

.~:~-~~~

~~~~~-~

~:--::

~::,

:~.-

.--_

::-.

..1.

-.

lfJ

IJ"I.

:.·

:::-.

:.:

.:.·-~:.:

~""'~'

----

-~-~

----

----

--·~

.

---~

--:.:

::--::

.~~-=-

-=-.::

--

=-==

--:·/

_1/

,;/-

.. -=~---~

-i-·

. __

··r·

... --

--~~~

..... -=-~~-

:.:-_

=-=-

·=-=

t .

·=~-=--=

-·r.:::-

::::.: .~

-~~~

~ ·~

...

:.:·.~-=

-.._ -

--==-~-=

---=--=-

=-= =-=::::..~ ~-~7er:r:. ~

_-l

.-::

:::.

:_t-

_ -:

,rl·

. 3/_~·

·.u

. --

-_ -

-:

--··

·:·

. ~

~ . .::~.--ltJ~-,~~,;,r-

· --

, ~-

-·--

--·-

----

---.

L~·

.. .P

I-·

· 1 '/

'...::

-:-:: _

-. ; ·

-_ -.

rr7 /

~-~-l(

l._

1t.r

~..-:.

::. _:

.. · ¥1

-:. · :·:

f: ..=

-:-_:~

-~.--:

:I::-.

...:: ~Ri ..

··:~

~~I.

:=~-

~~;~

·r-·

;=~ ~

. c,

~fr~

-? n~

K/o_~~:

. --.

:: : t

zzzz

zn-:

" . .

. . .

: ~-I

~ . I:

::c:.

; .i1

~:::.

: .. ~--

=-_q

.r '(

. /!!:

' ..

:::

. i;

;i .

. ----'1

19 R

.. l

j

-. I

--< .-

:[-: : d

. -::

:· v I~.

::> l ~ :

;;:: j:i:

~~: (_7"

~ : -

-. (

~ [ ?-Lb~-; ~ ::

:: .

---\U

:~:-::-:·: ..

·=::

::~<

=~:

·:~:

::.

~:'('

:.::[~

:;~--=

:~·:·~

··

:. i

::·-

:~~:

--.::

.::=t

:::-.:

.}\1

::=--=~-t=-=-~J-~ ./

.. :.-:--=

.. =~·:

. :::

.::..=

.: .

.:::.:

.:~.~

~ ~~ :::

~ · ~ ~

_:~~~ ~

-~~~ ~-

~~~~--~

~ ~~--~

~~/. ·

: · ,. --

~ --~ ~

~: ~ IJ~

mn __ :

:: :·I :

· ~~

I =

:: ~:~ ~-}t

~~ · ~ .m

:]m.

-: ~: :,

-~ ~ )-

~~-:E:

V L ~-~i~

=. ;~·:

= ~: ~

~ ~~~-~-

-~~-~ _::

~ =-=-:

: . ==-

~'fl::_-

-+_:: ~;

_~~~·:

_?-.. --

~ :·--. ·:

-/ :

9 J(

~

. r

7.:-~

:./ w

_~-~--

·-=-~:

. :::

~j· ::

:-..:. :.

.:.· .J

r ~-:·'\

':": ,r.

==

. l ~.

<. :: l

. < ~~-:

·:~ ~ :

:_=•~. =

:: ~ J

----

.fj

M,.

..,

'P-t

f-1'

". ~~ ·-1-

I ---·

.

' ,_

\

p.:.

...

-II

' ~-

-...

f ...

· ...

-

-· .

· ·-

-1--

-.

! ...

·--

-·--

' ..

....

.. 1

..

·--

--. I

•.

' l

. tid

!.

j .

. ,..

. '~=

~' t

'C)

,,..

~L

1----

---.r.-

-·'· ....

.-----

--....

.-{:.

;e]•

r-

, .\

·v

.. ··f

.. ,

... i·

ir

...

!---

:. -

,·_~ .. :

::.

:'""

~ ...

. ,._,q

,o.e

r-_

)}j~t~

E:::

_,,~y

: T.;

, :q

:,\-

.i~ :

E

-~ -rr-<

:I ~I·

· ( ~

!:-:

;::~

~-t ..

"'f :-...:

. i

---

--..

-j

-~---

---

t.--....

.j

_

; --

. ..L.

. ..t.

t

. .-d

-. L .

......

[:/

. : ~. :

--.!

I~-

=-~-=.

I i--.

' .--F

-::.~ :~

-. :

~~,.y_

~,. p~

#f".r.

--

---.

. ·--

-~·

· · ·

---~

· '

I '·1

• ·\ ·'

·; ..

'

• ·

• •

·/.·

• ·

•• ·'

• •

• ·

t •

• •

• ~ •

• ~

• ·

' ·

••

• •

..;

I --

-'-

-(·

j i~:

~:~.::

:L~~=~

~=-~~~

::~~

;~:· ;

.:~L.

:,·-.t:\

·:~r :

=·~·:j

d~::':

:·:·;·

i·_·: __

' :·.:~

6~~-~l

.~---·

-~_: ..

·-·-~

.-~: -

~--~.-

-:. J

-.:_:-

~~--::

:~:_~~

--ji

:::~~:~::~~.::-~~.::~.

::. __ ~·

J~}:·_

:.;:·

·:

i ... \-

LJ

/ ;;

! -

·-·-

-1·

-· ::

~t::

::::

-:::

·:.·

:_:=

t-:.

: ::_:--:_::f._~=:.::.: __

.~:L<:··==~-~=:::-

~

....

P

·-·,

· --

----

--..

....

_t

_ __

_ ..

... /

P,..

_1Cu

~~!.

_4if

".f

. t

4,n

,_

..

----

--·.

-··

---.-

---

---·r·

-------

. -~

..... :.

--·j

~~ :::: :

:0:b

:: : :-t

::

h ~~: :·: .

. ~{~·« J

t ~· ~ ~

~ f0 ::

.; : ~~:~

;f~:~'

" d'1~~

~/.r

: :-:

:·= =1

::~: J ~

'1-1 -:

-: ~ ::

~ :=IJ

--~-

.. ---

.,--

....

... ~ ..

. ! .

. ___

_ ..

... .

,, ...

....

.,. ..

i .. ,

~ --

--..

... "

"'~

....

...

·---

·-:.;.

. ··

·---

-~·

----

· -.

....

....

----

· :: ~:

:~ ~ ;~

~--~ ~

~ :~: ~

~ r.

A .

~ · >

· ; ·. ::_ ·

·> ·. · ·

. · ~ ~ ::

.. : ~-. : : ~

: ~ -; :.

; ~ . : ---

: >>~:

~ ~ · · ....

~: ~ ~-~

· . -. :

: . -~ .: ~

_: ~ ~:

-~ ~ _.---

: : _-} ._.

-~ -: ~ :

· · ~-·

· : ~ .: ~.

:~ -~ ~ ~

~ ~ ~-i

::-

=-~::·.:

. =:-= .

. =~:=:

.~: -

-·-31·=~-:~:::-.-~i.';:_:

::::

(~= .,

e'l'

-~2>

1:.:

~-~-

~#f£

1 -

--

.. ---

·---

---~

----

----

---

---

---

·--

·1

:Lc_l,:

. -_" :iJ

tf f-~f:

-,;J~+f~

_ !.f/ill·

: (~-:~::

_. ~:: "I

i;~J~~

~:, 1;: ·

·~ :~1.8~

~-=f~~;

~-~ ~;:-F

f:_)~_

; d _::~ ~

:; •.. -' -

-:;. :·

·:~:.:

::-:: ~

---~

= ::·: :

.: :td-r-~~-?' ~;

:..;.

.:-~ ~

EC:TI'oN,//L ~ .

.... -"E

:.£-

~P4-

iYoh

_ ~-EL-=?:_i(~~~7:E .

.fr·

-. .ii 4

&

. -

....

.

-,:~==:~

~ :~~r

:n L:I

:t f:~:

L~:: ;t

ht~~~I

IE ([d

~: _f;

l· :1~)

_: ,~ :;:

:_TI~:

-~ ~\EI

~ 1'\;t

.j t n==

~:L :I;:

lU~=~~~~

~~:n·F \

:~ 1

·-·-

-···

•·

···-

....

. ·-

-·--

-.··

-'

....

....

~---

--•···

-;-·•~

------

~·r••-

1-.. --

--•~->

-•·•

....

...

: ...

.. .i

.-:-

----

-.. •-······

·· ·--

----~-

--·t

·--~ .

......

......

......

. ··

·.

Page 94

I '• ·--·-·- ---~~ 44~-;-, ~~~-~~,·~:-:-~---~ r;· I i

.:·.~ bO' ' 0 I .I' ' • :

I . : ' ' '' I 't:;::\D· ': ;:j· ~~·JrB:A·<:_Ivlv~. ~ .. ; ·.· .. 1: ·;' :;:·1 'tV ·:~~.;: 1_ I ·, _ ; 1; i;

1· i · ..:~ L,.: 1~ ~~-: :,0 · I' -=~t-- I· 1 1 11:; f,. . ·,,o- ~I':

• • ' ' ; ;~ 1" ' I I ' . . !·' ' ' I'> .. • I' ·,· •• ' ',·_ ,' ~~ I, ,, ~v 1- .,o l I I ' • I ' • J ' I I I I ' I ' ! ' +· . I i ~ 1

1 I ' + . • . \"7 ' l I I l I . ...-::: ' t I t • I ' ~ I I I I I . tO I f • I I : ' • i I I ' I I I (I ' .

, , ~ .... 0 t- • ' ' · 1 , , I , ~ • • : 1 , , ~ ,....,.. • , ' J t t , \'::» t 1 ! , • 1 • ~ I , ' 1 , I ' , ' t ~ , f : ~ , . ' ; : ;· ' (V': ; : i : t t I ·, I ' ~t ' I ' ' ' " ~ "' I I I • I I . I ' I I . I I ' ' . I I ' I I ' II i I . !t I I I ; I .

I tr I I l I i I I I ' I , .• I I ! I ' I II I I ' I I ! . • ' ' . I I I I ' I I ' I ·. '1. t' ', II I I t I.... ~ t l I• ! I I· l· I ! I t ,. ' ~ I I t "' ~ ~~ • I l I I I : I . \J I ' I t- ! ' ~ l i . '

1-- , I,. I • •. • 1' I • , , • I • • 1 i 1 I •• ~ -r. · 1·,:" ot 1 r 1

1• 1;; · ;~ ~-;,.....:_. f~,_.;..j-:--1!+,._ ..... ,1.-:.1·_:·,-:-:· •. :-~.+.._, ~~-~-,-,-.--,l ;-

, :I;.!: . .. , I I., 1 , • , .. r .. I 1 , . . • , . 1. 1 'I 1 I . I'' 1 , • 1 I 1., 1.,. 1 • I I t i f I t • : :J ; l ,. i I n I i I ; I ! ; 1,' ! l : ; ...ll.o.' I J : I t ,,· '. : I I J I' I ·_ I ; ! ..l.,_· : i ,, ,,. r I II I ! : 1!' f n ! I ! • , •• I • , , I 1 ~ ~ ·r ' 1 • 1 ~ ~ 1 I' t 1, . ~ 1 1 "I·. ~ . 1 1 , , • 1 I . . . . . . -.

1- I 1 : ; , 1 . : 1 I , ,

• Ill• • ''l'' ·I' I] II~ tt! I jl ·oil 11 I .·• •' 11j ff'l ·· ''' l I ,_, ' I I ' I ' ' ' t ' 1 .. I l . I It I ' ' I I ; I I I ' ' ' I I I II I I ' ' . I ' ' t I I II I I ., I. II ' .· I • -I.. I I I I I . I I • I ' I II' i_ I ..,..::::r-·' ' I : ' I I I t ' ·...:L.... I ' I l i i ' : I

·-- • ; I ..;_~_; I I I ! : I I I . .1'. _LJJ_:_;_ '" ·"~:._:_1_W-W-J- ~_;_j-~t- L.L. I'~ ~-.L: -'--l...!.l...w..i .... '_._l_._l_.l...!-.'-1 I •• ' !

I \ I ' " I I I I I I II' ,· I ,. I ! I I fri ' I j I I \:.;, : I' l II ! ' I I I I i I : ' . . I ~ l I" I I i I i I l i I ' I • I' I . ,. • 1 , . : " 1 1 • 1 1 1 , , 'l_ I , I I , ~ . , 1 , , , 1 , 1 , . ' , , , . -.- , 1· jl 1 , jl ' 1 1 1 ' " r j II' 1•11''•· ··l-;j I I I •. ''Ill''' '4'~ '•.' ~'! ., ",• jll'>i:.'' • l I I I' I I I! I ' I ' ' I I I " I I ' II ' . ' ' I I I . ' ' I .::.0 i '. ' (lo' I I I I I I' ' II I I I. I

I I; 'I I I I J ' I' I I I I' I II- I I I ' i t I .. ~' I I I I I ,. I I I j i I I ' '

: : ~hi ; 1~ ; : ; ! I : : 1 ! ll 1 1 ! : : ! II 1 : ~~ · · : c ~ ' · I : : 1 I : 1!:: 1 :'1 : r 1 : 1 I : • , '; 1 : i : i. 1 1 : ; :

,_, "'f'ti' I '·'<tlj jl~-~~·~1 llijJ'~) e_.o..,.., 1111' •'' ~-. jtt]il·!li t~!-t!ll•' ~ J f t ~ ... . , t , ~ , ~ , ~ , , 1 I ~ t ~ , , , • , • • • • . . • • • ~ , , • , • t , . f t , i 1 r 1 ! t ~ ~+ 1 ' -. t ! : ..

tx> ,. ; .I I I I I ' I . • . ·c,·- - " ; : ! t II I' 1 I ~\...- I ' ' I I ., ., ~ f I I j ·' ' . ,. -,_J -~ ~ i ' i I • I I I I I ! ! I ' i ' • ' I ' ,0 ~ + I ., l i . I ! c . I . • ; 1 I . ' t I I ' ;- l : I ; ! I i . ~ ' ' - ~ \. ~ .I t L :- ~ l : t· : ~ I t ; I ! I I ~ '

N I : 11 n : · .. · ~..., · ' · 1 I · • · · • • · • • • • . '-J

.,.. .... ;;:r()tJ~i;l .. ~::;l;· ·ii:l··,_:;\ :;ilij''l:. ·,:,·ri·;:'rJ ,,~ ··~·~ ::j:~~,~: :~t:J:J;: ' . : l tl i ; I I t ' ,' • " 1'/. I ' " II ' I I -r i l t • I l I t-. I ' ; . . I t· I I " " . I_ .I ,' I il I, L r_·· ~ I t I ' l l I • -l t i .. ~ ! • ; ! " I t ! I ' I I ••• ' • I ' . -, I I ' ! I jl''-1 1' l I !-'· ., t ' \J ! ' t • I d t ' I ' ; t 1 • • 1 , .. ; • 1 i ~ ... 1 1 • • • • , • . : • j - 1 1 r 1 1 , , . . t 1 ~ _'_'_._' :-t -1-:-~-!-t-1' ..;.''"--+1,1"'"1:-'+· ~· ..... : .... ; ..._t_..l...!t...;1_;_ • ._1

" : ~ ; ~ 11

l ; ; i ,: ; : j 1! i · ~ -n-. -~. . : ~ ·: t ·

1; l 1 1 · : ~ i 1

1

r1

;, r ; ,: ·,i ; t j 11·--~; li

11

1

• tj '1 ~ : · ; :

1

1 1,_ ~,'--i: l t,·_ i.J_ tt 1~·- I n n ! i ; :

" ,. I ···t , , , , I • I _ 1 .. • -li.:- {f) n . ,1

I • ~ : ...l !c" ·-1 , , I I r _ . _ ,....; ... ;4 , ~ • ! i I I ••• t ' ,. ' f I •I • f ' I ' ' I I t ' ' I' ' I " I ' I I ' I ' ' I I ' 1 t j . ' . l • ' I I I I ' I I I ! ;. I i ! i • ' I • 1 ' ' ' ,. I ! 1' ! ' 'I 1 I ' : I f I ' . . • I " ' I t I • ! . j " ·f l' . I " t I I 1 • ; j !· I I t • I I !

•• J : ' I t ' I I ' I I J • ' " -~ I ' ' .I ' . I I I I ' I I ' I t I ·} ' I • t I t •· ' I I I I i ' t + I II ' • ,,4 1,,:, '"'J·I· ·r ... 1 .-IC""·-t-'~·•1' !l 111 •. -=~~ 1 ..;.!_' ••Jjl ,,,~, ~- ,. I·.. . ' I t I t I \ ' ~ ...:. ' ' I I ' • . t ' i ' I • . I j : . . t -j I · __ '_:t_;_t,-;-· H-1.,....,...' +1_,.1_.•_.·-..;.L.I:.....j-.!...1 .;..' ..... -~-~-'-'--1

; . ; ; ~ i ~ ~ ' : Lo ~_. ; : o -~ 'f l i ~ i-/~ l.. ~. i . . - : : : : : )o' ! l' ' ' i ' t 1_- t' \ t ~-{ ~--j I +I j

:.::·:; · ... o+'i:i 11 '~~.,.~ '.l·,'f~;(, ~:0 :~~o~'1~i,:l r·~ ~~~~.- 11 1-,:·Jf-1-H -.,r.::j:: .. :®++ , , , t \.. • • i . 1 , : I -~ , , , , \E.) " t 1 . 1 . f , r:. - 1 , l I I' ,.

. • . , • • • 1 1 • • '<l 1 ... ,., I I i ~ ~ ,_ • • . • ,. ., 1 ; r i 1 " ~ , 1

, i 1 1 ·. , •

t-~. ~ • : : 1 - I :' ' J • i ' t' ; ' : j l . VJ::V/ : : ! t I : ~ : . ' 0 , I ; ' ; I I ; l1 f ; • . ~

. ; ~ : ~ 1 ~- : ~ : ! J : ; ~~ : . . ~- ; ~ ~ : ~ l!.J r 1 1. ~ ~ I·; ~ n-j- 1 i ~ I : · -~ ~ ; 1 J 1 1 q r : : : ~ : 1~1.; ~1: l56-li: . L Jo~ Jb~IP L:: Ll:: 11°6~ 7J-:!! ri ~ 1 L: :s-6-~/.f"~:' ! I L;S"i .. J.r'L

~ : ~ ~::I J.(-1)~-' - -11- -- - .C.-r~~ ll~~o_get_ ~ ~~_:_~.:Jl-ill~ I I' t /7')' ~I : :'1 (-r-' ',_ • I i . • • . ' . ' ' I i I I . ' . ' I • l . ' I • ~ I ' i I II l . I ' ' ~./. 1 ' ,-j' t ~ I ' ' I ; I l:: I I 1 I t ' • ' ' ' :; ' ..

, :~t.J;:; ;·:::l:~~~·e -1 • tlt''i:·n.~l~~~~d~-l~ :J::jjli-{1 i'i7~1 .. ,;-J ,\J!l tJJ ,.1:_·,:11:~: •• _t,,.,._i',.-· •. 1.' ··l•lt ~~ ... w . Iii!•' 1!-•f··· lit! ' tl' ''"I' I''''!'''"'

, • • •• , I ~ • I· . f I + • I , " • I ~ 1 r 1

. 1. , I· 1 • • , , I • , 1 f , 1 • l . , 1 ,.J. , .. , ; ! ! It I : • ' . • •. I ' r--tor- . ' . I I I ' f...;~. ' ' f I I • • ,. I -~-t t 1 I ;...;,~ I I I I - I I l ' I ill ''' ~ 1 ._ t ' • • • r I • 1 t , , ,_ • • ' ! , t I I 1· • 1 i I i l l ·_ ,. 1 1 -t. 1 ~ I · j t I - t 1 I t t 1 t 1 1 ! I ' I f ~ I 1 ! • 1

• l-t-1 ,., ; '.I ''I I ' ·_u .. :'I • t I'\! I· I. 'I rj I i I t I' I '.,, r I I I! I' I I I I I I I ' '-'1 \ 1 1 1 j ~ I I I i I • ~ ~ ~ ·; ! t : : ~+~ I . j . • I ! l I ~ l J I t I I : '·' t I I ! I I

Oo -li;:•: A ' I ·:l·:; ,.1;:/':1 ·:·~1;;;· ''L' :~ l~~:;:l·l: ·;.,··· ' o ........ ·t~·t"o :L:·SG?.IP · ·· ···hCJt..t- t~-til•· ;; wa r-.~v.. ,..c:::t.·/C1•l t'J ,:;;~!- 1/ .. ..,_,.LJ~ ••:1• It ••tjt;'l,:l1•ti'~ ~~~jltj+ 't/1 o t•ij:1';,! ! .~f.

:l:.:r: ,..,. --- ,ii::.1~:l. :;;,- 11:· ::1;:,;~. ·ifJI~-t~ :~t· · .! :~r:·:l~: ·;::r~:.': • • ; I i . . . I 'i ' I • ; I ~ ' I· 1- • ' ' •• I ·I I I . ' I J I L ' j I I· . •· I . i . I t ; "'""" ' I J II I ' ( " 1 1 ·t I •• 1 1 j· : 1 ! I ' ! 1 1 r I f f t· I t- :· ! ~ t • . :- ~ · :- ! ~ l 1 _ j f. ·: !. 1 ~ i t ! ~ ~ t t l ~ I 1 ! l f· ! I I 1· I I i 1 I

: : ; ! ~ U , 1 ~ : i ; ~ i ; ~ : ~ + llp H : : ·r 11 , : ~ t : I 1; j-1··' '

1 1. j tr tll1j ~ r S : r: jl ~ ; : ~ J : i ; : · : : , : ' ;

+ 1 • ; , • , t r t 1 •--+ • ~ ' l i I , • [' 1 i ·t -t I .j j , · f't ~ ; I II· · j I :- i j l' 11 -- • t ', ' I J ' " " 1- • ' ', ', 1 ' 1

'. J 1 ' ' '1 '1 +- + • •. j ' ' ; ,. I_ I t ( ; I I • I I • I i ~- . ,. ,.,~ . -~I . i I '_ , ; 1' l I . ,. ·t • R . ! ! ' • • ; :. : 1 , 1 1 11 , • , ' • ! 1 • 1 1 t 1 j,, ' t", -, f 1 . i +,

1 1- - r 1-1 1 ' \, ~. , • •

' .. 1 .. I I ·i 1--,l ~ ; ! . . i t I I I ,.+ ' ;_ "i +·j' t ~ 1'- • I I ·-.'I I· ! . ' t 1 t 1' "-- ' I ' < • + -;· ' I • ' I ..• I ' ! I· i I I· I + t I t•.· 4 + I t {;: • I i ' I f I ·t ' 1 I I j·-t . 1'1' \. ~ • I ' ' ' ), • I ' '

: ,: 1 :·1:~ ;;i:;1;,, n:~::.;: :i1·t:ll:-.J ·:,;~·1 :1: ::iiL~~J!,:;· "': L,;e.:~'o:;t?~·:.·· ::·:r:~ ·,; ;::': ;~::Jt::· :·r:t.:l·_;J.;~~J~il'lir·l- :jH~r~,H~ .:;.! ... ~ . ·I .0 .. ~-

' + t- I I . ' • ' I ! I t ' + , .... ' ' ,. ' t I I ' + . +I ; I . i I-I ' I I 1 t I . 1 I I .. ! I I ' I + I : .::t. 'z ;5: *'AI ,.,· . t -~ -! ~ .. , , r , ~ , , , 1 .1 , i , , t • - .1. ~-1 ' . , r ~ 1

1- ·J ~ 1 ·1 t· ·1 ~ 1 + ' t- t· -1 1 1 .. 1 , • ' 1 ' • , , 1 ' • • . , •

~ 1-if f ... I+~ +-~J t!+J.ftl!• tf:t·l•• fl-;tt·r'"+ 'j' ~If , , ., .._ 1 , , ••. , ; 1 t "t ~ , , +. : 1 ~ ..:.~ t I , , • , , ~ , ~ , r, , 1 r i. , , ~,. ~ i I , • i '! t • 1 ,

, ....•.• ',f tJ·~·-~·~· 1-i-•·•-· •. ··14+fl .•••• _1

1 f-l~~·~·· ,,. 1 .. , •111 '1'1'

.. ~ l .... ! , • , 1

• i t j I t , _ t .11. ~ . , , t l 1

••. ~ ~ ; . ! 1· , 1 _ • , i ~- j , .1

I , • t-t ~, ·~ .,_ 1 •1 , , • ;_ ~.- •. 1 , .- ~- + 1 1 r I j 1 1 1 1 •

I _,_,_._· so . t t l ! .. · I ~ 7'\B. ' '- ' ' ' : ' . : ' : t ..:' ..... 1-+-' ~...:..-..... 1 ..,..' ..!.' _;_1_:1_;_1;....' _,. -1-~~- --• ._.\ •• 1 , 11 ,.,,; [.,,,,. 1 •. "' . J,.,.,, 1 ;,X ,,.,., .. ,;.11 1 1.j,. 1_

1,-

1,,_@

I . . 7' •• '. '. I I+ •• f I I . ' •. , t- I \.J· 'F. ' t I • " ' ; I • I j t t ' t • I I l ~. t t I ' ' ' - 0 • ' • ' 1 f t • " t I 1 '_ j. I "_ (\. ' ·_ ' " t· ' ; : ; I • 1 ' -\, t I· t-1' I I . I • L I I I j •

, ... t .. • • , \v ; ~ -· .. ~, 1 ~- • , ... t • t ,_ .. 1 J t t ~ • , , i , . 1

, • ~ J : ~ \.....- , , .. 1 : t . t- ~ . 1 ~ ., . VJ . t • ~ .. I j . .I f ' 1 I l ' I. l I + I 1 "" .... f - . •· t ~· I I ~ I I t i I I I· ~ I !· -f.. t .. ~- .J. ; 1

-(' ~·©-c ~-; ,1' ':· • ; ; :; : I " : : : : : ! : • , ! :. fi t' ; : f?~'{o'~ \, I ; I : ' ' : : : 1 ; ; ~: ; : : ~; ; tj.; ~ f ... I I . ' : I ' • I ~ t ,;1 1 I I i ....... I ·I I t + + ·i I

i t I ~ • I I t j I l'j I : 1 I I I r/ i t ,. f t I ' ! ,. I .i > I I ! t f j t f .. 1 t- L .. t '/

''

11 .. ·t·· ..... l·jtj"l ... , ~~ ii'··. jjl,.j

111 .. ~~~ .. , , ... ~~~ 1-. ·-·tl·r··~·

• t • f •• ! t ', II ',: . . ~ I ' t • ' i- I ·.· t ' ; !- 1. 1 ' ' I I ·_ • ' ' I ' I 1- I ~ 1 i .. l ' I I I t ' I i f t- I ~ I ~-I t .I ~- ~ ~ t I I I t .. t I • • • I I • f ~ : 1 I ; -~ ·~ ·: : ' ! t !· l ~ j • : t ~ i : ' I : ~ : : : ; : ! ~ ; : ! l ~ 1 I ~ ! ;- ~ f l ! ·t ~

I :;;;·::; ,,, .. r ,.-.(47) · --n-L·A'Jo.J-_ -·-oF·f-1--1· f2EtiVJ::o~ce.Lo\IE.IvTft~t ···:'''~!1 t t .. , , , • , , l 1 t 1- -r-\ 1 '-1:::1 . • ---· r4 . .. . . ' 1 ·• '· ~- ~ t_. • • 'i · l!i;. • ·'~ '; • ·-r-+--+--

1 - --t~-r-~-lt------'1 -

i t: : ~ :: ; : t ! ; t ; • • • " · : 1•. · " • ' 1 1 ' j· c t <- o + fj. • ,. ·I < j I 1 11 ! ·I ' t t ' " t i ' ; ~ : :: lf~ ·j1· -~ 1 n l J ""' .l : • t .. • ~ .. J t ! ' t t ; ' ' I ~ ' l ' I ... 4 •. : .. ! ~ ·t ,· t· t t t 1 "; t ! t ! 1 ·1-j I I j .j 1- ~ + f I 1 ..... ,. 1 , .. 1 I t ·--4 ' t -I ... • .!

Page 95

(c) 2 bea.ml'1 400xl00xl00 for measurine· jthe Dynamic Mod.ul11s

followed by bending to d.eterrnine the moriuluR of rupture.

All samples were demoulried after 3 days and store~ in a we.ter

tank under sta.nc'l.ard conrii tions. till they were tested •

. 6. CURING

The slab was covered with black p61ythene sheeting

for 3 riays after casting, when it w~e removed to permit th~

building of 115 w~lls on the slab as shown. The w~lls were

completed 7 days after the slab had been cast. The formwork

and props were struck 21 days after casting.

7. LOADING ARRANGEMENT

The load frpm eaoh jack was applied as a central point

load to a 230xl00 RSJ spanning betwsen the centres of 2 adjacent

panels and distributed from each end th.ereof through a grillage

of short 150x75 R.S.J. 's to the one-quarter points of each panel,

. to simulate the effect of a distributed load on the panel

bending moments and deflections as 'nearly as possible. As each

jack could be individually controlled, it was possible to load

each half of the total slab on ~ither side of the long axis

separately. However it was decided to always load bot~ halves

simultaneously to simulate a uniformly distributed load over.the

entire slab.· to mm rubber pads (75x75) were placed at all

pressure points between the steel girders and between the girders

and the slab and glued to one side to allow for the relative

rotations. To check the distribution of the load from each

jack, "load-cells" were inserted between.the rubber pads on the

·slab and the girder ends only in one half of the slab.

As stated pre~ious~y 115 x 900 high brick walls had been

built on the slab as sho1m in Figure ( 46 ) using stock R.O.K.'s

and 4 .: 1 cement mortar (N~ lime) and the effect of the weights

of these walls would be additional to the effects of the loading

from the jacks. Half of the walls were reinforced with nbrick-

force" galvanised reinforcement and half of the walls had 12 mm

vertical expansion joints.

It was expected that at the beginning of the loading test,

t.he walls would "arch" between supports and that the vertical

loading intensity on the slab would be concentrated over or

near the supports. ~1rthermore, this distribution of loading

would probably alter with increasing slab 'deflection after

the wall had cracked~ For desi~n purposes however, it was

conservatively decided to assume that the weight of the wall

was uniformly spread. over the entire panel width.

s. I

Page 96

8. INSTRTTMFiNTATTON

Dial gua.e-es were clamped to 50x50x6 mm steel angles

i.nclepenrlently spa.nn:ine the full length of the slab and about

100 mm above it. These aneles were stiffened by clamping them

to inclined. hangers suspended from the heavy steel cross-head

supporting the jacks. Slab deflections were measured at the

centres of all panels, midway between all supports and over the·

centre support to make all01·1a.nce for the compression in the rubber

pad.

Discs were glued to the outsicle of the external walls to

measure horizontal strains on the centre-lines of.~he walls at the

top of slab, top of wall and midway between the middle.surface

and the outer edges. Horizontal and vertical strains were also

measured on the intersection of the face of the supports and the

middle surface. The guage length was approximately 200.

Dial guages were placed on the tops of the walls over the slab

corners to measure slab uplift and against the outside face of

the short wall to measure the wall rotations corresponding to

the rotation of the edge of the slab.

9. PURPOSE OF TEST

The purpose was four-fold:-

(a) To verify the elastic behaviour ~f the slab as designed by

the Elastic-Plastic method for loads approaching the

Ultimate Load.

(b) To verify the Ultimate Load in Bending predicted from

Yield-Line Theory.

(c) To compare the measured deflections with those predicted

using the "Finite Difference" approximation to the Elastic

theory equations for uncracked sections and therefore to

check the accuracy of this method to predict both the

deflections and the moments throughout.

(d) To observe the behaviour of the brick walls under increasing

slab deflections including the strains at which cracking

if any occurred in both the reinforced and unreinforced walls

and to determine criteria if possible for indirectly preventing

cracking.

10. "EXACT" ANALYSIS BY FINITE DIFFERENCES

Each panel was sub-divide d. as show).'l in Figure ( 48 ) . ·

into a 4 x 6 grid giving a mesh size of 1440 x 2082 4 6

i.e. 360x348. The mesh size was taken to be 354 mm square as

the actual./

' . . ' 4 • 1 I

t •• ! t I I

~ I I • 1 ! . . ~ ... -A· t' t ' I'

'. ' . . . t I I I

'I' +·t j.

'I' ... ... ~ I • ' ' .. () 'I'(' It

: . 1 ~ i

~- -t l t ' . t' .. . . -.:~' f .... t ·t.

f t I

' I II f! l tt • t f I ' ' I' 'I'

't I t'

Page 97 ' I 1 I ~ I I

I ~ I ~ I : ! I I I J I It I I

I I! I! I I t

I I. I ..

It ' 'I

I • 1 I

. I:: i:;', I;;! t: I

I ~ I '- I I

If I I I I

I+ +I .. i: iII t;: j

':~~~I~ 1, I 1

1. I I I

l I It J t' II I I I • t t t I I I

'

I I Ill !It I

ll; 1. I! I I I I I,::

:! I" .. I I I'' .

''I I' I I I I j I I I

::I,H: I It It

I I I' '. '

i; I 11 ; : I ' ' : I : 1J1 ~ i : t' ! ; t 111 1, !' : : :I . . '

!J· 1 1;;:~ 'tj::.!~l l,' . :llj·A)(£S::of'' I t " I I -~,_,:..... __ __:1_1 -1--, -,--~---, --~ -J-_,.-j'-----f-------+

;j:'!!:ji i·!i::!: ::i!:::· :1::~;"'(M~-E~'( ~ 1----:~~

• .•• t•'o<!fl jt•fft-tl ltlff ~~~ • ~ ' lj Ill • "t I I + I I t : '- t t f t i I I ; • • f 1- t I I f l '

t ~ : t i, ; ; ~ .•• : : ; 1 \ ~ .. t : r t t j 1 ! · ~ : : : C'\. -= 3 ?4 I : : ~ t 11 r . I I I I I It If I 'I

t! t • -f 1- i

~ I ·I t ' ·t t j t1 t • It-·

... l • t ... . f· I ~ ~ 1 .. 1- t I I • I t -t f ~ + t- t t:.. I t t I +•----.... ~----....,.---+-------lf-....,.-~---+------1-.j 1-11;:! ·•lt~~it+~ f_r;·~· t-~;: :., ~~~~ ~t;~:tlJ, ... J:t;:~~ l"'t•·tl ~~J~!~:-;:l t~t~tt!t;, , . ; : : ' · : !~.: ~ ; .; · 1 : : : j : : • : ~ ~ • : ; j ~ · 1 1 : : t : 1 I • , ; t l : • f 1 1 : r: r · : · : . : · : . : : · ? • : 1 ; ; :

~~;-:--·~:-_-:.~.-~--.-:-t·,-,-,-:-+~~-:-t-:-~-~-.--:-~--.-:-.-:-·~-:-·-·_)~.,.i-,1-1·-:-.:~~.-:~.-~-:-. -;-,-l-1-.+-.-;--r-~~r~-;~,,-1....,..~-:-,-.-t-;.~.-~-:-:_r_t_l~-~-:~:-.~.-;-:-,--;-.~---:-:--.-.--.-.-.-:~ ~~·t:•·l,'1 ... ,,:-~++ t+l"''l .'l ••.. ,, ,., ... ,It• 'll~ I I' lil~llt'l ;,:,''jl' lf•tt••

: ·: ... I • : : • : r; ; : i: ; : : ,·, ~ : :, r ;1' ;1 1 ' ; :1: r: " : d~ i

1• • • r • I : • : : : : 1 1 ~ 1~ • : ; : :r. : : >

1

1 ~.: i .1 ~.: : • ,_ i • '.It. '. r·l' 't '' • I I'. -t t j ll 1 :::,I~. ::: r 11

I' I' t t ! ' 'tIt I • : 1 1 t t ; ! ~ t ; + f I I • I ! I I : I ! : I

1 1 : ! t ~ : 1 I I 1 < I I : I !" : ! ~ I ! • : I t

1 ! ; i t : ' t I

T ~ 7 I I t f t r ~ I I • ~ t t + ,_ 1 I t ! I

: ~ . ~ . i : : . '

t· t- ~ ~ t 'I+ t t I

~c-tIt.,

' '. t If I I t

t t- I t 1 ~ t I

I ~ l- i ~ -f t t

~ ~ t ....... ~ t· t I ~ I t I I t

, • i, r 1•

i ~ f r ~ · t.'

f 1 : : I t ~ 1

1 + i •· J 1' I I t t I If It • I

t- I I\ I ; -f I t I J.- '

I.:::!; t I

t ' '

l -t , ' ~ r· I , t j-" ~- , • r -t i

l•i t I· i I l t f f' ,. f I ; ! t • t I

:! ll fi!ll

if t j t I

0 It i 1 I I

' I t I t 1 ~ 1 i t- t

! f ~ ; I

I t I I ! t fIt

I'

t I! I 1

f t '! J j.. +-.!

I t ~ I l I 1

: t : : i ; ! ! I I I I· I. I. t!

I t I ~ t I f , , I I l I

j ! t : :- l ~ l

;;:!:Hn ; t:::! l'!

It. I I

'' .

-t i 1 f

;· i l- ~ : . : : I I i '

·-~-,·r • 1 t t t

! J!: ' .

It ' I , •. ' : • i ' ., ' I t ' I I I I ' • I " • • • l . ' ' I I :', ': ' ' ,. • •• t1 11' :,· t ,· ', ,' I I I I. ; • 'f t I I : t I,, I' It ,' f t I I! ,' i

I t • ' ' ' '4 8: I~' ! I • I t ' ' I ' : Ill ' " ' • ' I : : l : IF' G . . I • I : ! : ' ~ 'N ·' T ·~ : : 'J> ·, F.~ ~ f E; ~c.~, ! M ·' s ~ : 'I i l : ~

~~~~~~:~·~--·-·~·~:_1~~~:_1~: ;._Lj 1~:-~-:~~.~·~:~~:~l~J:~I~~-~~i_i~;~;~l~I~IJI.~!~:~I~I~. t~'~l~;_:~: ~~~~-~~:~;~;_;~· ~~~i~l~l~!~l~i~.~;~! ~~~~~:~·~:~;j~'-J~J~~~~-~I!_:~:~l~:~:_f~j~i

Page 98

actual lengthR varir-?.d. only_£_ i.e. 2% from i;he·chosen 360

size and therefore was unlikely.to affect the accuracy.

"PoiEisons Ratio ~was assumed equal to 0.2.

As the loading would be symmetrical, only 31 nodal points

were required. The various operator patterns then reduce to

the following :-

G e.-. e-re=- f Opt-n::tf-o,.

l

-------~

.,

The Matrix equations for the deflections wl ;_ w31

for the following loading conditions, are shown on pages 99-100.

(a) Unit Loading at nodal points

5, ?, 10, 12, 20, 22, 25, 27

to represent the equal applied loads at the

quarter tJOints.

(b) Unit Loading at ~11 nodal points l - 31 to represent

the uniform dead loading and for compa.rison with (a).

" ~

i-

---·--------··-- --~- -

Page 100

·-- ' -r-

i ' '

I

I

I ,_ ./

.I

I .,

I I I •,

I I '

I ,_ _1-7 i·h I

. !I·? -f 2 ·; - ! Z. -.f 2 I .

I z. -8' z i

I . I

1 4 :-8' j

lt¢.2 •//.2 z. i 1-7 J.b ! . j .

~'. t<t -i' 1 I: ;;.p .-~ 2- .I \.

;wl i , ,..., z. I

I I

. IUJ i · ev.t I

I w.f' I

W1i

I Ado! ! I ~~,,I •tMt'2.-o I

!wiJ

lu;l4

X. [wt( I

WI&

ltv'7 IIVIJ' I .

. '~'7 ll<llo

/ -8 2oi-,f I II '2 -~ 2 . . I I I . 'IV l.l

/ · . lwz~ I _;f 2/ ·-8'·1

2 -? Z. I z 1·/,. Zo' 4 -r,

1

·-7 f·' I /.).2 •//.2 z I ].{,. j.;.cr -! 2 -.r-·G~_-e 1 -? z.. I z - .r z I i-tl21 -i I ' '2 .-8' z

2 -? 'Z I I . -f-)22 -f z -K 4 -K : 2 :-/6 Zl ! 4·

3-b -IG: 4 · lt1 ! -i' I : 4 ·-16 4. ~!! 2() ~

. ---+--- l 4 ·-lb l 4! _/ 1~! ~/ ' I z. ___ L.~~ .. ____ z~ _

. ~ .

r . ' 'wz.J

1

lt~~u I ,..,zs-:p, 2.{, I . . t:.~ZJ

eu21l I

w"l.'fl • I

'~t~ttJ I I I 'wHI

I 1

I . I

'

0

0

v 0

I 0

I I 0 I

0

I 0 !,

I i

I (}

f I

' /

I 0 . I 4 = 0 ;~~ -0

I ~. ·o

I I

0

. 0

l

I~ 0

0

I I t) I

I o . . ()

()

0

1 -/.-

i ____ l_ __ ·--·.I I ___ j , . I . ~

..

Page 101

I ' I • I ! ~ i ; I : 1 I -~, 1 t ' t ~ j i l 1 t I t • I 1

1 • tll + ! 0 • ~ '!" t t I ~ 4 1 .,. ' :: ·:···.: , .• : :::;~ '"' ill' 't ., ,, ' ' !'"''''' .. . .....

0 ... I • • ••• ··cv· ..... li.!~:!;

I I I j I I '"' I I j • I ' I ~ I • I I I I I I ! j • ~ ; I ; : ',' I 1 I I t ' I l

.. ~ 1'1. ' - ' I . ' 1-{ ' t I - • I ' I I J) I ' ' ' I : ' ' . ' I I I' I ' .v . j I' I j t l 7 I 1. 0 ! I 't t I I I I I

I I i o • I ' t • I I - I · : ; : : • ; : ! ~] : ·:-; r ;· · '• I •

"-"- "-"- ~ I r- - · · - - - I -~' "-"- ~- '- ~•'""'·__.,_,_....._.---i

:;i<. ? '::; ·; li!::: :!:~.··; :j' ~, J! :::!jll~jl:i;;;j: 'i:::!:i ,;:i:;:l: ... A .... It .. lti•t•l ,,,tt, .. , I I I'' t •••• ,, ''''I'll' ·lilt::: ~:l:'t

• 'I.'.' ~ .. ''I.' ''!''I''' I I'' t' I'' I I It I I' )1 I I I t I ''"''I 'I; I·· I'! ',~~.·-~_·::: I~ ':·~. :: :•.tt::: lti;::~: !i- ~ I 1::,:: ~t !':/l~lili '"" 1

1 ;::,::tll 17 I • ' • • •·. I ' I ' ' • I I ' ' I I I ' t l I I ' ' ' ' I ' . -. I I I t I . I I ' 1 ' l

' ' . :1'\ I ~ . ~· . ~·,.'l . ...1..:. I I ' . ' ' Dt~t ' ' ', I ·.'7\' • -1...!.. ' I I I I I . • • I ' ' ' ' • • • I I I ~.v 1- ~--....... ~.-~ . .;1-T.-;-:-: . ,

1• · ~-. --:~~.v:ti-~t.. 1 1 1 1,

1· I,, D2o 1 _, 1 , •• , ; • , , , •

~1 t·. · ~ 0 ; : 1 I :. i:::: ·a 1 : : : : , ·1

: ' • : J'11ll't:: : I : I ! 1 ·~; ; : 1; :.1 .. . . ,· ·j f ·1· ' ·':::::

H . @ I ..... ·-' I . ' ' • ' ' 'a . . . . ® t I ' I I I I ' fl.)' ' • ' ' ' ' .• ' ' ' I '

: :-:. . ~ . ~ : : • . +: .. ~ : . : . . + e·, . : :; . +. I ' : ' . ; : . ! . : ®I I ...... : : • ~-; ,

1

' \ ~ ' l r4- '-~~----bib 1 • (()

1 I i , ~~ ~ ,

-l-,. .r. // L 1 • 1v // .. · · 1 · // • • ·f" ·, · ·/}' ~~ ...;_:... r-LAN oF i ;· '1)\ 7" . / ~ ~iD· 4-•. + .. -~~ .. -~:.:, ~· " 0- -~- : . I']),. -L~,: : I /r·,- ·,/-,. : i--~~· ® ~ i 1: "PL. ATE I ! 1 ~- ~ I~ :': 'I :'; 1

1' :: l: I~~ ; ' I! ! .~~I l : I!! !. ::' • I'' I.''

:t!j,; •·"J ,j. ''''"''' ,,,., •. 1 'E I i· ·!·''lilt ·J,It•il· '"' ,.,;!,,., t I I i I !:.t . "' •• t· I ·' • I t I . I t I I ' t I t • 1 I . I t I ' I j I' l I I I I ' l I I l t I • I I ' ' !- t I t I tr" ! I I i I • t I . I I I I. . I I I I . . I • i ' ' 1 I I • 1 • • I I I ~ t I l • I I I t • I . I I ; I I I

, I, ; , , , +~ . 1 1 , , :j_ 1 •'1 1 1!, + t • I • I, • jlf 't' •' It' I

TI~-1 · -l>t r:- ·:T1 ..... , ; ib3~ .. ; ; . --~l>s trr;·~ Di . . t'--'-11 :-.,,, i, . l>l~ -:-:;1

-~~ I I i .. I' lA ' ' I 'I ' ' ; I 4 I ' ' 'I 4Z. ; I ' ' • I' ! I I - I I I l I ' ' ' I' l . 1 I ' ' f v ' I II I I II I I /() 2. I ' () • • I ' ' ' I I I I I ' ' I I' " ' ' ' I'

I I I t I ~ I • I I I I I ' . . I I ' ' I I ' I I I I I I I

f I . I ·t! l ' I . I 'I' j I ' I! I "I i 'I j I I I I ' I I ' j I ' II' ' 'II'' , I I I 1\.. I . I I I . I ' ' . I + 'I ' f i I' I I ' 1/ ' ' f I I I I I ' I ' ' ' ' ' I I I I I . I I I I ' : ' II I .... I " I ' I ' I ' ; I It : ~ : 1 : : : : v . I . I I • • • I I t I I I t • I , I I I ' + ~ I I I I I I . ~ I ' I I I I I I I ' I I I I ; I .. • • • • I I ; ' I • ' j I ' I j I • I ' I ' I . ~ • ' I I I I I • : ; :

_ _._,__,_. -·f----h"~·-/··1--§~ -/L- J9'-"-~~..J -·I J~ ~-"'··-' '1 '''----.J.. .. ~_.__.

I It . I I I' I ....... ! I

:; ::; :: · . - :--:-:71-:-~-: ),_: :T -1" 11 :-,T~ a\' r :-1-1

: r: ·::: n·7:,: : ::; ; @.;, . :, · 1'(\ ·: ,_

: ~- ; 11 : ~I : ; '! : 11 : i U· ' ' I f It :_ : i II : : l ® ' 11 I ' ! i i ; I : I ; .. ) : ' j

1 t' •. : ; I G:.. ; I II' ,. ; A ~ : ' : •t·····~tl''ifl j II !11 'I' l' ·•I 11 'I ''l'''l't I· ,,, . '1'1 t' '4 •• ·-'-·~····· •I ··•t- I I. I lit l"'i ·It ,, it •It ,,,,,, .• ,, .• ''I ........ ,

t t I ' t t ·• t · - • 1 · • • I · i r ~- f 1 I • I • ' t f 1 1 I I j 1 1 II • · • " t I I 1 ' ' I ' ' I - ' t 1 t t t- 1 t t .. ; I I • ; ' t. I ' . I I I 4 I I I . + I I 1 -i I ' I ' ' ' ~ t -! i I t ! •· I . I I -- ll\ ' t ! , .... ,,, . , ,;, 'V~8 :.:li•' ® ,,,,:it•' J)~~-:--.-r,--;-:-"'l)3o ,;,:i•1· {J, I~ . ,. . . . .... :r·Dl7· .. I I, ~ __ • _, +- ~ f i I a..: I i .. ,. I . , . ~ . I I., I. _, I I, I,,,, . I I , . .,., •• :., ... ,. ' . ~ •Ill .. V- ·:Ill I' .... : .,,.,. '''''I 1·, I •II

~ ~ ; ~ : : • : ' • • ' ' • • ' ' ' ' I . ' ' ' I • ' ' . ' ' ' ' . . ' ~ i : : ; : 1 : : ~- .!.. ' : ; ! ~:: ~:: · ~ ~.::.: 1 1 ss.-;. : ·; ;_; ;·; ~-- T s': 1. :_ ; ! ~, · ~·:I: 1'::: ·. ~ : . . :: 1: · ~ \ll ·;; ····e· Vl··i···+ .. -o%. :t:~:·.:' 7,:L·~~ c.;. -.ti[:to:>'~:+.s::~ ·©· :~·:) .. ~~-A-:- r.-~ic:TI- ~.~:~ .: qj,sr- 1 .. 1 j, ~ .u-:- . ,. sf:--,-~-C~<t ---1~ ~ --t -t ·t • t I 4 ~ ; ~ I + ._, ~ ! • .;_. 4 • t • ~ I · f • - s~ t t t- I t . • --S14- t • t • i- l t 1 ,t· J ~· n ! t

~ .. 1;:: · : ·:;::: ~·: Si _ · :: · ~ ·s,o J._ · . ·::::: .$,$ ___: · · :: ·::: : ·::::: t: ·v · ~ · ·: :;1~:~t; \"·· ~--~·~····· •t '''" .•• ,.,, •• ;,,~~··· •••• ,.,,Ht•··l; .:'lf1:j rn ,: .- r -t -1 , , t ~ I t • : -t L + · r t • t t ~ 1 , t ... , • -1. i. +- ll t , , ~ J ~ • 1 ' ' t · t ,. ~ , • , • t + t + + t rJ;1)2. S' ~ . t • J '-;! • ' '

'~;·,'t,1',"-l~•~ ',l,!l•l<l'''.:'.• '','','.,'~ !ft·tf-.,,1 •tf!,!~ll ·~•t •·t tlt·rtlt t ;I .~~•· ":> '1' + t t' 1--0 1-- ~I • I f j ·o t •.. f •' "~ If of I 0' j l 0 ·0· f"~ • < t t" •

1~. 'll;i;'• I _, - -<( I-'-:-. l .. . .. .~ ... I !""'' ' ' ' I ' ; I . C)Q '0' . ' ' ' ,. ' ~l.\ . l t t t ! I • ..... ' ' • ' " .. 1 l"\ . ' t

1 t- I - , , "l ; i , , , .... _t"" • , , , l .. liS -~. , 1- • 1 + ~ 1 _ s .... · 1 1 , . , • ~ 1 • . • t , 1 . r .. I\ , t .. t I J I· I \I' •• . 'I • I • 0)11 . ' ... ' \1\ Vl .• ' t' 't I •• ' • ~. I ' ' ' ~ '®' -t 'I' \;J 1!-; ~: (V :.. _Ls~,:..:_:_.s,d..-~. , . S" , _:_j ._~sre.~$,.~-:-~·. ~~ .. s, '-L , .,.. : lr ~: ; : ; : ' ... .v I. .»' l I .-' t:_ • '1 ,, ~ .1, ~--~ t 'I' ';. ~ 'h 'Q~ I T"" . 't.. ' ' .. ~ L ' 1 I I t t ~ t ! . t ~ ' - ~I, I t I I t f· t -t t • t. I 1 ~ t j J I .--.. ~~A t !" i ~ ' I ' t 1 I I· . ' .. ... . t .. :- ; -r , , 1 , 1 , , t 1 1 , • 1· S . , 1 ; t " . , , , , • 1 . l , S . . . . ....,.., . , , , • , , , j' . , j :- ' , 0 ~ . ,. ! +-·4 • I t ,_ t t 4 '" ~ • ~0 ' ' ' I ~ • J ' • I I • I t· ' ~~ - I . . I t • t • ~ ' t t I I • I . ~ ~- ' ..

I . . I - . . l ~~-+ t ·'·I .. i t t . ' ' . I I t • • ' . ..,.. ~ ~I . ' ' II t l . - . I • I ' ' ' I ' ' .. ' ' ' ' ' ' . 1 ' .. ' ' - . ' '

• , • t . • , , 1 , • 1 ' • ' t 1 , . . •. • vte w-r , , . , .. + j· ' , i , .. , •• , , t , : , , ' , 1 1 , , • ~-~ i . ~ , J r 1- t .... 1 ~ t- I f , I , + I ~ -+ ,· ~ • t + t .. • rO' .~- . . ... I -1 ... ~ . I . I •. t ,

1 , • , , .... I t t • j.. • • -t , t , t" , • • .... . ._ • __ _,

-i-t ~ . t t I ! • . < l t • ~ t I j • ' • + ' t ' I ' ' I • I I I I I . t • ' +- • I I • - ' . l . ' j t t· ! ~ • ~ • t --+- t·t ~-- . . . '~ 1 t I f: Vl f t +-"··-1· .. ~ •• ,J,."'l' ··l''"''·j .oo,,,t't'3t· -1•' •·1· -o , ..• ,,.a ·•1· ,_ ... , • • • ../) ••• 1 1 1 :-

1. • ,... • • , , , , 1 • . ~ •••. r· ~1 • . s., , . . ... '"'" , ... t ~ • - • , . ,

' • I '®' I \I\ .. I • ' I . ' ' - i:) 1,.:7 ' ... I ' • ' \1\' I • ' ' ' ' I :-- OJ 1.. I ' ' ' •• VI . I f I .... . . ' ' ' ,j,, .•• ·~ ,, I ''l__j LC''·''S ·I . ~··~ ''-1 '@ !- ., .~ ~- ·F;-- · r.-s,J~~

1

1-e---:-:-s 1-:S'"~- ·r.;)"7-~, 1 ~1~~--;:::s-' ~?,,- --Dr :--:-.....-~ -A'--;-:--

, ~ .. t- • , • I • , , • i _ 2.9 1 , •• , 1 1 • , : 1 1 It • I - ~4-, , . . , j •• " ~ • r 1

·t-'"'"t· ~· •.• ~.,~~~s. l'''lt-:1, .• ,,.,.,,s,.. . I,~,, .. ~,,. l·t· y -< ··~ t -t I ~ I I . • • . •• I • ~0 - j I I I I -1 ' I j. ' ' I I • • ~.;;) - I • I • • • • i I I I t t • n__ ' . ' I 'J 11 '. . • ...I,J,,Jf, \ ., t 1 1 ' .. ' ... , .. I ' . " ' i I " I ' ' I ' ' . I . I ' • I ' ' II ~ ' ' ' ' • ' ' ' • I . I " ' ' . I ... ' . I ' j ' ' ' I '

t•lt•l··· ~2.. 'I I 'l,~ 1 •.••tlj lttlltttt I··~' .,1, ,. ' :::l..__A l .,.,.,~ ., , 1 " .. , " ... , • • • • .-- Jl ~ ~ . ~ .. . • • . , • 1 •• , • • • • r .b ~ ::>. • . . . £r.1l ~ , . .....:-..... ._ ,

1 1 ••.•

. I ! I I ' . ~ ' ~ ~ I , . I .!.. . I : .,. • t .:.._' : I l I t I ~ :..__._ !I I ' ~I .,. --t· ~ ~,. G")--. -~ I ~ I t

t • I ~ : ' I ; I : IJ' s' . : I i .;}41 : I ' s ' I : I' I 14-" $ ' ; ! ' : I ; ,.. . : ; ' : : I :"'it : : ; : ; : : :: : ~: V\ ~· ' i : s : :-:- -17 : I : 1 s ' . T' 41 "L: . I ~ : -:- ~-r ; s ' ~ @G . I I : ~ I : ' . ' ' .. •\t..J· r:-tS7r .. 1 ~e-5 ·: •. ~!..,.< 1'17487~ 1·:.75~1 . 1:: ~ ::,·::: "' ' ' 'I I ' . ' I- 3~ '. '-'-~~,.,_,II 'I - l>AO. I!' ' I ' I'' I ·- . 'I I' I I l. ' I , ' " ' . , , , . <-- - I , , . S I .,..,...., r '"'l., . " ' ' . ' , " . ' ' ' I I' I ' , . ~~, •. , 1, ··.:>t:~-o- . ld.s----~~ ,,,1 -;;,$ 0 _ ·~~~,,, . ....,_·I , 1

r-;-;--;;;n; ,,,,;'''·I' . I''' ''-1'''1'1.''1 " ... ,,.,,II' ~.·,-r-1~: :· ~;.~--;-. I I 1 I i 4 I I I . . j I I • I I ' ' I I ~ I ' I I ' I I I I I I • ' I I ' . ' I I I I ' I ; t f 1 ~ ' f I I '. I' ' I I

'lil·i'•· I' •"•II" ti ''· '[ ;, '-'1 Ill'''· •!' ,., i•lt l''l!jl' •"I' 'JI ;:!!:;;:; f•• "I' '•" '' I., t" ' 'I .:; ~~:tl I:: 1: ";:·;:,; : :, : : ; : ,: : ; ! ; : : . ; : I : i ! : i l>ZI. +T .... -~ : : ' I ,. I Iii ! :~. J)"24-: ! J,· i : . : ll' I ~ ,, ll : II : ! ; : : ; I ! ~,· ll :::;;; ~;; ;~ .@1 ~r~l· :~~--t-,·::;~~ :: ., ~, 11 t:t~T~~~t; .®i:;; 1

[:; I i; i ; ; :;jf1 t~; • 1 • 1 • t- •• • , • " , 1 • , . . 1 v~~ . I'W\ . , , • . t ' u '-0 • 1 , , , I , , I 1 1 I !11 1 j • jt l 1 1 ! t I : · ~ ! ;. ~-i : : !f ~ ! : : i ! ~ 1 : ; : . : • : ;

1 · : I : :: : : • • :.1· ; · : : : 1

: ~ : ; ; ; : ; ; i i ~ l : I ! ! 1 H · q t : r: ll 1 1 ! i !-::~:;~::~ t:;it~;~-=-~tfV"A-:T;TONS~ c:>F' (tS,._~~~''"< rvALL..S·j jjl ! 1~1 ; n11;11

Pc-,.ge 102

The equai;irms i'lere solved by computAr using both the

· gross section stiffness A.nrl the cracked section r-;ti ffnees.

The folloNing Load versns defle'otion e;raphs w13re then plotted

at the nodal points oorrBsponding to the poei tion~ of d.ial guages

Dl-D5, D7- DlO, Dll - Dl5, Dl7- D20

(i) Tha oalcul~ta~ detleotionA due to Alab dead loBd

and the superimposed loads - using the gross Aeotion

stiffneAs.

(ii) Ditto - using the cracked section stiffnesA.

(iii) The mP.8.tmred. deflections due to the brickwork, slab

and applied loads.

11. EFFECT OF t<TETGHT OF BRICKWORK )

From the above graphs, it was hoped to make some

assessment of .the following :-

(i) Distribution of vertical load from the walls to

the slab.

( ii) ·Additional Moments in the slab due to the walls.

(iii) Additional Deflections in the slab due .to the walls.

12 •. PLATE FLEXURAL RIGIDI'l1Y (STIFFNESS)

Dg = 3 Ech 1. 12(1- "V""" )

............... ~ ..... (66)

where Dg

Ec = h =

Flexural Rigidity of the uncracked section

InAtant.aneous Elastic Modulus = 57 ,'6o~ p.s.i.

depth of slab

"\1' = Poissons Ratio - 0.2 (approx.)

Dcr Espd3 (1-K)(l-K ) 3

... • ..................•..•. ( 67)

where Dcr Flexural Rigidity of the cracked section

Es Elastic Modulus of the Steel

. n = . F::s/Bc

p reinforcement ratio

d = effective depth of the reinforcement

K =

=

depth of Neutral

Jpn (2 + pn)

For the Test Slab Dg =

Axis

pn /'-..... . - .

6.7 X 108 - 2

1 N •. mm per mn

a.nd. Dcr = 1.4·x 108 '' (tong Direction)

13. I

'

Page 103

13. TESTING PROCEDURE

The numbered I)ORi tions of dial guages and wall strain

guages are shown in Fig. (49). '

Immediately before and after stripping of the slab,

the dial gua.ges were read and the wall strains were measured.

Equal loads were then applied from each Jack up to a maximum

of 60 KN per Jack (6o% of full capacity) in steps of 10 KN

applied at the slowest possible r~te, all dials being read

after each step. Each step lasted approximately 20 minutes.

At the end of loading (referred to hereinafter as the first

loading) the average load applied was 10 KN/m2 • This load~ng waR then sustained for a period ot 40 hours after which it was

removed. Four hours later the dial and strain guages were.

again read and the second loading was commenced.

During the second. loading, the loads from each Jack

were increased. in steps of 30 KN per Jack (5 KN/m2 ) to 60 KN

.follo1ved by 80 KN, 90 KN and. then to 100 KN at which load

flexural failure occurred in the two panels B C I H (Fig. 48). Where possible dial readings were taken a.t the end of each

loading stage.

As wall strains were not expected. to be large, readings I .

thereof were only taken, where possible, during the second loading

at the 30 KN and 60 KN stages.

Page 104

I.; R"RSULTS OF TF.STS

(a.)

(b)

·c a)

I '1. TESTS ON CONCRY.:TE SPECIMTt:NS (See Section 5)

The follm-tin:~ average rAsul'ts were obtainerl after 28 days.

(~ay of slab test).

Cube crushing (6 Ramples) - '5150 p.s.i. (35,4 MPa)

Cylin~er splitting (1 sample) 420 p.s.i. (2,9 MPa)

D;ynamic Modulus (3 samples) 6•

- 5,4 x 10 p.s.i.

From the above the Elastic Modulus 6 Eo = 4,4 x 10 p.s.i.

(30 000 MPa) \ .2. T"R':·TS ON 8mm DIA.M~TP.R ~W~"<:li:J, ROD SPECIMENS · -

Four specimens were tested and. had an average breaking

strength of 65,000 p.s.i. at a strain of about 20%.

Yield appeared to start at.:!: 52,000 p.s.i.- (360 MPa.).

and this stress was used in the Ultimate Moment Calculations

although it may have been conservative •

. 3. PREPARATION OF LOAD-DEFLECTION CURVES

Due to the large amount of work entaile.d curves were plotted

only for the following Dial gu.ages.

Dial Corresponding Nodes N Fieure

D9, Dl9 Average of Nl7 Nl8 50

bB, Dl8 Nl6 51

D5, Dl5 N30 52

D3, Dl3 Nl6 53

D4, Dl4 Average of Nl7 Nl8 54

D6, Dl6 Support E 55

DlO, D20 N2 56

Dl?· Nl4 57

Dl2 Nl4 58

D2l, D22, D23 Rotation wall D-G 59

·As the dials placed together in the left hand column

represented. similar Nodes, straight lines with the closest

fit were dra:wn through all. the points plotted for the

respective loadings. In general, both sets of points

were very close together in the first loading test, but

deviated slightly in the second loading test. It was

preferred to draw the graphs as a series of best fitting

straight lines rather than curves.

Only /

•' I

I'

'' 'I

I I I I

• I

-~:.7]· t • ; : ; ~ I ' .,

-·-loot-----+·-• l "1

'I ; ·f I ~

•·• I. I 11 t t ~ ' t ;

I' • I it I

r!.: ::. 9o -t· t i!. t • t t • .. ., .. t. t1;

+ ~:r!·

"' 8o I ~ t ~ I +I·.·

.J f. _J t·•., t I i-: t ..f f

~ t + , f··t 'I 1

~ 1 -'· . • .J •

~-7o· ~ + • I 1 ' t _, t· t-' .....

' f I t ' ! ; ; ~

HilJJ-i:;.~ • "t- _._ ~ j t ... t 1' .. t j :&g ' J .. i l +I

--~ -t-i- i t· ·I

t·· !_ ~ t t· ! ~ -t- t ' • I

: t ·;_ i -~- .; :!. ~ : ·ttt~~1~· ,.. 1- i 1 ~ i .., ' • I I ~ ! t

~t~~.to I f j I l I •

~ ;- r : ; , 1 f ~ ~ f f t .. :

~ ~ : r ·: ; ; ' ~ ~ f I

: ~ : ~ .: ~ '4o .. +- -i ; t ~

• t ! { ~ ~ '""1 " t t J ~ i t t i I

• 1 t J: L

' t i~ t I·

• ; rl-:--·~-·--'2.-

, t J I- .. IU ' 1 I ,_ _.1.

I I t-1

... t--+· t t. t t' ' ' . ' -.-;-..,.,...Jo .• r •. "

I,

''' ; -! t ,_ t--1 "'t 'I

• '' I I 'I

t I

'I I'

t.

•·

t I

I' I' . I

'.'

I I

'I

! I

, I

. '' I • ·I

'' It

. '

I I ~ I

I I ~ I

! ! I I I I

·j I

I I

1 I I

t j I! j I I I

I I

I I I 1

0 I

I I

'.

t /.;I' I 1 ,.,1.1 H I ~+ ·j· I

~ ~ : : ~· ! ; ; -~ I l!!

I'' 'I

I' I

I I' I

Page 105

I • I I-:--;;-:-.- -; -,7~-:: I I t I I I I

I I I I

'I 1

'I tIl I

I ! • (

11 I I

• I. I I

! • i j ' • ~

It 1 i . '

'I I I I

I I

I I I I

j

i'

I I I

I I If I I

I I J I I I'

I

I I!-.

'I t! j ,I I' I +" I j · l- I I

I I !

• -f I' t I I I

' 4 t'

'' 0 I

~~, 'I' I I I' I I

I I • I'

I I

I I I I

! I, I 1 I • I I ! I I

' ' I I I I I

If f I

---l I I I.

• I " ' '

I' I 1 I I

I I

I I ' ,, lltl liD

J t I

I' I t j I I I' t I I' I i !

I

I j If' I I

1 fIt t I

If jj! + ~ t ! ! ;

~ i ! I· I

t I I-

I!

I I I ~ ', 10 ! I I

i I I i I I I J I 1 I j l ' ' I

J!. l! ~:!it' 1; l!l; !· :-~. I i .. I' I 'I i ·+ 1·,,. I ' I I I. i l I I t ·i '

I l 1 J· 1' I I j i l i I ~ 1 . f I ! i ·

I' 1 i l j

j! I i Iff j

''It I

I I o

'I'

I I 1

~ ' I " i ,_ 1 1 I t i I · i ~ t- -.!

111

' ·I I t 1 ' I • j I

+ j l ~ ~ t

t f 'j t f

! • I t- • I 1 It

'

t -!I

'_ 11 i ' f 1 ~ 2

It': I t f

! ' ~ t ! t ~ I j t t t j

'j

'l '''

r---:--.-0'

'• I .. t

t I

'1 ; .

f-.

I'

o I

I 0

I I • I

'0

'I 'I

I •

I'

1 I

I I

Pa.ge 106

I'

- --- ---r'T ~

I

'0 o I '0

t I·

I i I o I

I l I o I I

t-! r! t

\ t I t" ~ t f I f. I I

0!

I l ! : ' :- ; ~ f f I 1 I It

t ~ t • I ._ 1

1 r • I I I. i: 1 t +

'"-j I

f'' I'

I''

f I j '0 1 I' t + 1 t

I' I

I'

'I

o I I

t • '

t -11 1

I· I

0

It

L : I

t I

1-' -,- -- -- ~ _ ... _ ------ ~.! -~-- ~- -- -

'I ' I t I

l·t I'

' ''

t I

It I I

I I I '1 I;. t

. ' t • I 1 I I

' ' j I

I • f I •

I' ! t ·t I It

.J ~ ! I ~ I i t t!' I I •• ~ t j I I j t

I I

J 1 I t t' t I , .. It I ! i.

• I t j I

I ~ I ' ' I ' l

t I< I l' t J ~ t

t '

Pa~e 108

I f; I I~~ I I r J I I I

I I I I I 1 ' L 1

I.

'''

j'

I

'' j

11A •1

I 1 I I I I

~ ljllj

'I' I I ' l! f f

' ''

--- --ro

·- · · ·- · 7o

-- . bO

-····So

· - · · lo

Pa~e 109

----~---(1-!J~~,.., Qlt { tJeul-.-~:,-2_..._ __

~--- .. ; ....

'-...J '.

~ i

" •. I

~ I

: ' ~ (J ';)

"-1

rs-

~~­

:/

....... __ .,._ -·

. y( -. .. . . . : -.. -.: -- .. ~.- -·-- ... -+-- -.

...... ~ .......... - ·f

I I •

L,.vl ¥ ;u /DqQ',...S' ------- --------

. f.Ir . -- .. ~ - . - -+-- - .. - . -,

. . . I . ><

,, ~

J . ·• ... , - . - - - - - - . .....~ --o -- · o · l> r &t · · · - • • • · -- · - - - ~ -----+

I ' ~ I Cre~~~c,~,. ~~~} { ---· --f-74:..----· , _______ ___;,_ ___ .. -. -·.. .. '

1 ---~~~--· t•• t- ...... ~ ... -~~ -~ ......... ,-~·- •• ( I

0

-7)4 . ... . . . .. - - -..

I - ........... j

--·· -- __ ... ___ ..... _._ .... --.. ·------------------ ·----

.. _~ ... --·- --~--··-..-- . ·~-------:----: •• • • t

·,

. i ·j I I I •

\ •i

I

I I ' I·

I ..

-- ----~----------- )

'I

'I t • t t ~

I •

, I

I I

I

.. I

I 1

I'

1 I t. I

t.

1 I I ' It I

'.,_I l'

I' ~ t •

'I! t It

I' I

I •

• I

I' I

,, t l I

I I I

I • t I I I' t

I • I

't

I j

f I 1 ~

'.

I I

1 I I J ' j • ~ :

f f ;. t

t ~ t t I • I

I j i I' .. '

I I

I'

. ''

I •

I I t I I

' '.

• t

l)/0 I I

• It f I •

I I l t I • I

t. 't I I It

f f I 1

3

..-------- ..----·-----

. '. i'

I ; I I I

I I' t

I I'

i 1 i 1

I I I+ I' ! I r

't f I

I I

! I

I I

' It I • I

'I

I

• I I I I I

I I

' I •

I • t j.

I : I ~ II

I I . '

I I • I • I

'I . ' • I ' ' I

I

i l f t • I

I'' I'

·I I

'.

('.'

• t I .f. f-

'I I I i i ~ t ~ i t t i It; I

' • t ~

;. '. • r

'I

• I f ~ r I • t ~ I t

I ~ I I •! ~ 1 : : ~ I : t -+ ! t I

'. I I I •• t 'lj

I I I I

:1: II ~- t : : 1

I. t I ~ •

j I I t -t t I I t 1 I j I f It 1 I

+ ~ f t t I f

1: t '. '. I I

1 I I • • t I

I I I

' :I , I I I 'I '+

I

!I 411. ;(,_S II c; : ~ : : : • ; I j • f : I'~ ! ! : : ~ : ! : I : ::·?J~/_&d}~ tr~? ::

a,.t:(: • z>: 2o :f: {lfve.,..,.~~J '' .. ! t

t I I • f. t i

I j I 1· t I t + It I I If

:.1 I"'- I I t t: I

i i i f 1' IJ I

i j ~ I '

I I I I I •

I ,.I' 1 t r t j ~ l t I I I

+ t t I I 1

I I i I

1 iII I I 'I

'I

I t ~ t I

t'

'. • !

' ~ ·t

I l- ~ t t I ~ I f f I f

I' i 'f t I

I' I If I I I i

, 1 I!: i 'f . jl

'. t. i I

t I If

I I I

I I I ~ I ! ! I

! I

'I (I

'I • I I I

I' I ' .. . '

I'

• I l I I ~ t

• I t • I • t-' t l I

>- 1 I I ~ I I ! I It •.

t t 1" I 1 I

i fIt

I t .. I I I ' 1· I! I I I

I • ~ t t- •· I I

I I'' I I I t

I I I 1 I

'I: + 1 ,. ' I i

I I I·

I ~ t t ~ I t t I t 4 tIt- t

t' t I I I

• t I f t t

I I -1 t I t. t,.. + t t t

I ! I ,t f ' + t t ~ I t + I 1 I

1 It f I If f t I I t--4

t t t j '-t' ' ~ 1 t • i • ~ r

-- --·----- --- ____ .._--.... ~-----~-·---- -----------

\.

-- ·~--.- -----...---'- -~ ... --.,....._.--.-- ...

. -··---· ---:-----.---------,·---·-·-- .... -- --- --""'!" ___ ........

Pa~e 113

,.

I I

·I ' i I I

'

f· '

~

-!

I . I

I

I

! '-· I r i. I I. t

. I

I: --- ----~ ~-:---.-·.------·. -----.,.._-~- ~·------------ ------ ·' . .. .

~...- -·· ..---.--~--·- -~--­. . .

-~-------·~·-------'---- ----

----.. ----

I Paee: 115j

Only incremental deflections due to the applied loadl'! from

the hydraulic jacks were plotterl, no account being taken of

the effects of the slab dead load, walls and loading girders

under the jacks.

From the computer print out of deflection in terms of

aa.4 the load versus deflection straight line graphs were D

drawn for both D e~ual to the gross section stiffness Dg

and the cracked section stiffness Dcr respectively. In

calculating Dcr, the average percentage of bottom reinforcement

in the entire panel width in the long direction was used

viz. p = 0.008. The ratio ][ is nearly e~ual to 5· Dcr

4. CORRECTIONS TO MEASURED DEFLECTIONS

(a). SETTLEMENT OF SUPPORT E

As shown from D6 and Dl6 (Figure 55) Support E settled

due to compression of the rubber pad. The settlement was

linear up to 60% of the failure load when it reached 2 mm: ·

AR the nettlementA of the other supports were small by

comparir:;on, the true ·deflection at any node, say Nl6, for

this load, would be less than that measured, by the deflection

of Nl6 when the node E is displaced 2mm by a concentrated ,

load applied at E to the panel supp.orted as before but not

at E • .- (See Figure 60)

Fi.c;. 60

Therefore apply /

-•

(b)

Therefore.apply unit load at E, calculate the relative

d.eflections everywhere by solving 32 Finite Difference

Bquations and apply corrections at all the nodes in ·

prot;ortion to the known value of WE

The steel ffirder supporting the hydraulic ,jacks as well

the ·steel framewol;'k to which all the-centre dials were

clamped viz. D3-D6, D8-D9, Dl3-Dl9, is a 18" X 7" R.S.J. with A. welded. bottom plate 11~11 x 1}" and. spanA 11 1 0".

(See Figure 61 below)

-,

~ td,

a a

t J:.i t ;2. cstQ"'e

'3!.t" ,:.,0 .. .~ &1 I II 3~ I " • l. , ... \0

()0 (J\

A _j p

~0' •ll)

~ -Oo ., - -· f ~ ~ Q Afl\

"" ~ x A

,_ .

RS.1 t'f J 1•

1. u~·l( 11-,; --J~~

se c.TtotJ.

1>. Fig. 61

Th1e to the jacking loads, an upward deflection was caused

at each hangar position which can be calculated. Hence. all

the dfal guages deflect upward by the same amount which should.

be deducted from the readings • This correction is also .. p~oportional to the jacking load.

The total correction to ea.ch dial rea.ding is therefore

·proportional to the applied load and if deducted would

only cau~e a rotation of the grap~ about the oriffin so as.

to re~1ce deflections. However, the graphs were not

corrected as the corrections were small and a.s the shape

of the graph was considered to be more significant than the

correct position.

,5. CRACKING LOAD

The elevation of the lonffer spans and the cross-section

at L/4

Page 117

at L/4 where the positive moment reaches a maxim1m, i~

shown in Figure 62.

p T/IC~

/r----------~1'~--------~

Fig. 62

If the Modulus of Rupture is taken as ~ p.s.i.

= 510 p.s.i. = 3,5 ,MPa

Mer = fZ =· 3,5 X l X 1440 X 632 = 3,34 Kn.m. 6

Less Moment due to slab dead load at L/4 = 9.Jj7 __ _

Net Moment = 2,77 ~.m

Moment <lue to P o, 18 PL

Therefore P = 7,4 KN

Cracking Load P = 4P = 29,6·KN = 30% Failure Load J

Similarly the cracking load at the support section is

approximately 14% of the failure load. The cracking

load for the bottom of the slab is shown on each graph

to a.Rsess the slab behaviour for loads less or greater

than the cracking load.

6. SLAB BBHAVIOUR

(a) FIRST LOADING

Out of the 14 central nodes investigated 50% deflected

according to the slab's uncracked stiffness for loads

up to 20% of the Fa.ilure load a.nrl 50% of nodes for loads

up to 40% of the Fai.lnre load, or nearly 7KN/m2 • The

changes in the slope at the 20% and 40% levels a.re due to

the spread of cracks throughout the slab particularly

near mid-span.· At the 60% level, P = 15 KN and the

total slab negative moment is

Page 118

M = 0,282 PL + 0,125 WL

= 0,282 X 15 X 2,085 + 0,125 X 1,5 X 1,440 :X: 2,085

2

10 KN.m

From the reinforcement provided

- Mult = 11,2 KN .m

Similarly the total slab positive moment ifl

M = 0,18 PL + 0,57 = 6,2 KN.m

and + Mult = 8,9 KN.m

Theoretically therefore, the steel of both Critical

Sections had nearly reached its elastic limit. This was

confirmed in the test as the slab had deflected elastically

at all the nodeA up to the 60% level (10 KN/m2).

(b) SBCOND LOADING

On removal of the load and re-loading to failure, the

slab initially behaved elastically at all the nodes, with

a constant stiffness at any nod.e, so that it reached a

.slightly SMALLER deflection than before at the 60% level.

In all cases except Dl7, the effective slab stiffness was

greater than the cracked section stiffness for loads less

than 75% of failure and in all oases for loads less than

60% which _in fact represents 75% of the design ultimate load.

As expected, for loads less than the cracking load, the

gross section stiffness can be used to predict short-term

deflections very closely.

With the load at 80%, deflections had increased non­

elastically due to yield of ~he negative reinforcement

so that visible cracks occurred in the top surface over

the columns and parallel to BEH, and wider cracks in the

bottom surface on either side of and parallel to the

loaded areas nearest to supports. CFI. This concentration

of cracking in the region of the section having the maximum

positive moment, was accompanied by a concentration of

curvature, so that the slab distinctly folded in this

region from one edge to· the other. In other words,

a positive yield line had formed at this section.

A crack also formed in a wide arc around side column H.

At the 90% level, deflections increased further without

noticeablB increase in the ora.ok widths. Some of the guages

e.g. :D8, D9, DJ8, Dl9 lost contact with the slab and could

not be read further.

At the 100% level, fe.ilure commenced by spalling of the/

7

Page 119

the concrete in the top surface at the section of maximum

positive moment where the slab had earlier found a yield ltne.

A few minutes later a punching shAar failure occurred around

the rubber pad at B accompanied by a sharp crack.

Detail~ of these and other cracks in both surfaces which

occurred just before or at failure are shown in Fi~1res 63 I

and. 64. Note the conical or near conical crack patterne

aroun~ columns A, C and H.

For some inexplicable reason, deflection and cracking

were far more severe in panels B-C-I-H than in panels

B-A-G-H. This may be due to either variations in the

concrete quality or bond slip. Despite the heavy cracking

over the internal supports, the slab curvature was not

excessive and so a yield line had not yet formed there.

Consequently it would have been possible for the slab to

carry further load if shear failure had not.occurred but

this additional load wouid have been small as .shown later

iri the calculation of the Ultimate Load.

YTELD OF REINFORCEMENT AT COLUMN EDGE

This was· expected from theory to occur when the pane1··load

p . = - 4 ~~_y_:__ Log rb + 2,31-~

e Lx Lx

••••••••••• (55)

Mpy = 2 p.fy x 0,9d where p = reinforcement ratio over

the column.

Mpy = 2.9 X 360 X 0 2 ~ X ~82 = 10,4 KN · 75 X 48 )( 103

From (55) p = - 4,.. X 1024 ci 54 KN _§5.

Loge 2000 + 2,310 1,4

Deduct:weight of slab and girders = hl_ Applied Load per panel .

48 KN = . ,. . Although.Atrict speaking equation (55) only applies to

a uniformly loaded internal pa.nel, it was used as a

r6ugh guide to show that yielding at the column edge

would occur at loads ·near to the design ultimate load.

It was therefore anticipated and confirmed by the graphs.

that the /

- -..... ---- -·- -_ ... ,. ----- ·---·- -· - --I

Pago 120

. . !_; ~ , 'r' I rl , J 1/-' I ' f I , l''ll , I ' • lljl r~·TP Ill ! ..-ll I ,_ I .1' l . Ill I' I 11' ! ~ -~ \ \ I \ I t \ !.fi-Ut)! 11)/!11!: l,\1 1illfll!liil!i ''ll:!1! . ,J, I ,·IIi ili!H '111\ii : f_ I - L ;_ .1. I ! I I I ' I .. -I ' . . ! I . I I ' I ' I • I ' I . I I ! . I ! I I I I 1 . ' . I :i)j:i-Y:fil !:tdllliliLill]ill !!l\iii!ilil!i_;;:9?,~\1\l /illfllit I ~li!l!' !ll!t;Jtj

:.-..J.! .. J1·'+r' j'l··'.l··i.lll ~~·,lt·ij-1' ,l.1J.I'{.1f. ,.,,r.t:J-1@: 1.:-~~-,l·.~~ IJ''j''l:''·' IJ'III-j'· ,·!iJJI+: · ~.,. · .. n ~.. ~- ' 1-1 · · : ., 11·1 · t · · · I· · 1 • - · · -II · ~ 1· 1 · ' ' I · r 1 1 • lr! ·1-'···1 J::l!~-i-l~h LJ: :J-t~. j, .. ,: t j l l·j rl i ·.· ; i 1 ·.I 1._ r ,,_. -]~ . : I ~j I I!= ~t·l- J -~~,~ ... 11 l.l.l·jL~ \. t I· I ; ! !'L'.·.:=l.i I -· .. j ... l J·j- . _,_, I ' 1 1-1 .• ,I. I ljj 1-, . t I 1 ' . I "I -, 1 I. I·· I .... I.J I . ' ' . ··H·j . ··jJ· -1- -1-l-,- - . I .. •• I i • . I . ! i . : I : ' • . . . I i j ' • ' ' I ' . ! • . I ll L .• . • !. • ·-~-~ ~;..!.... r--

J .. ,-'-+1·- ,·+4)-; 7 ' . I l''ll' Ill' 'j .,!. I @U±LLJ .I . ·-' ~- 1-! I -1 -r · · · I : i ! · • I I • . J. I , ' · · I · · · · · ·· · I · · · -H·I H-=[-:,-: ·:-l-1' A . f I 'II: l i! I ! I I. ! II- 'T li I II!. I .jJ ,. ·1- . I!- j. i· .I,,-! ·! ... ~ II

ti-l-!-- +t-'- -~·-~--I l i J • -j ~-1 f '1'-l%lffi' , . . .I ,. t .1.1 .. ·u ,,,_ jl I ~- -,-~,- -~ 'I ·-11_,_, t ,_L- -~-~.,~-· II ~~-~-~ j.L! ..l.Li. __ 1_.J_ ~. . 1 .

1~ 1

1. .. . . I ~., .

1 _ . .. . . I . __ .. 1. __ .• _j_ .

1_ 1 , ~-~- +I r··i' +j+- -1- -' • - .. I I I .. j - : ' : I l ! I . .. I . '-1 . - . - . .. _, 1.. - ! I. .. _, .. I

I I . . . 1- I . . I ' . I . . .. . - . ' . . . - - . - I I ' ~ .. -+!-jt u.~ll .. j--~j--:-1-1 I· :1

1· .l:~illll [i ! ·I ·-t· ,.,1.1 -li-- 1,·11 .. 1-1'' 1··--j:J-I-1 ~-· ·- -- -~- -l -~- . -.- ~·.- j: • . . . . . . I • • • • I ~ , • I _,_ - , ' - - \ I j·-. I. .,., -L - . J .- - .. - - - - l I I I I I I . . .I - . ·I ' - ... ' .

- • - ! '· - - .• - . . .. I I • • I • • I • I· . ; 1~: j I _I . • . . I ! _,_j L -1-!l:· I. . I 11:..~ l ~ I I i !Ill: i ; _Pa.Jljjj_ I r: m ~-'1 Ill I i_~ I I :·1·'1 i I. r . f I i !

·lti.~~=~~=~~u t)ll·'.-~' i-J' IJ!.i~:i~,~~J-u H.i1lll!ll' 1'1lll ,.~,-~,~ .. In',,~''''". L·I'.,J--!~~1'' i-!-ll}l'--1'' J.,J _ _jj_l_ 1. ... 1.-·j- ~~- ··,· IJ 1!/:..._..JMJI.: ~-~~ ~~ ~~ 'J'~I. ·J'I !! I , .. IJ ,, . ---- -H- I .. 1.!. -- . .. , I 1 ~ ~· • Hr--.-T~: tl,, 'o 1 ~IQ6' _ • ! . , , :-: :i:-1+ ~ 1 J: - 1- J~-~~ -1· ··::11..- = j ·I 1 1-1 . :f. : 1 1 ' , · , ; i i l · .

1 . ·1 . I 1 ·h 1 I~ J f. 1 I I .

1 r: 1 1 1 : 1 ·1-l-~- . ~l - - -· .I I .. -.. I I I . - I . II ' I . . .I I . - .. I I . . J •. I I

,-,,h-1-H-1 il+1!dli ,lti-IJi, i,J/iJ[~ ~_,ll,d li ,JJil) +-1-1-I_UJjlllll I liH!'l -~.J'_I,_t.~'j_,_,t· :1 .. ,.,,,,=,~~~~~--~ li'll~-·~~~~~·:1~ J-ttliB,-,-:_1_1,~1-~-r.l,,~~ J', ~ 1·-!i·'·'~-----.~~--f~J-J,~-'.J'- ~~~.'; ,.,,.l··J·:,'!o~ '-- jji_l_ .. , ---~---·, _J ····-~· um'I''XL j:j. ~~-t ~ -- , ·'--··t-1 . --II - ....• I ~ + t j - I . -,· .. . . : .I . ·j- .I t -j-1• .. I I -. . . I· . . . ·I· - '+ . . I I I . ' I ,. - . 'N ·1: i-jl.: ,·.! lji,i:-!': .. 1 -Jt :11.,~ .. -~l=l·j·l·.,·t 1:1:~[ .. 1-.--l~lj-.t,l ·),l~-j ... :.- 'I~- It r.l:l_!-1-1:~

.. • . I I 'II I 'I ., .. J llllJf' ... , . ·' I - lill' I • .... ·j·l -., : . ,. -- .,. ' I ' l l.. . \ ~ . j • I • J 1 I . -~~- j ' I ' .. . . . I . . - - . • . • • • . ., . I I I I ' - I ,.. ~~-c;6~~~~ ~: ~: : . 1 -1-· ~ l+~!., J_~ 1' 1 _L~~m I . 1- -1. ~-~~~-~~-ill-:, H l ~ I • ' ' • ' . I . ' ~ I . I • I I .. I I -. ~- I . -··· . i . . . ~ -'l i I _,_ -' J I • . .11 I I I +j . I I ~~~.;:/~;.~~~~ !l1l~i·l::l!'~j-1--=1-~~-~-J:jtJ.l ~J-I-1J-j~~-==-I::I:':L':~ ·!· :·~J.L..~,, ·!lt·.EIJ· 1 --· , ·-· 1 .rc . ! .. . I 1 1. J .. . . ___ -1-'- _ I . _ . . •. __ . _ .. .. 1 .. _ . . 1 _ 1 • .t. 1 . _, ·l !.!+1-1-+ .. 1-~., 1. ! : ! • ~; ·-r i·' ~ ,, N'~- .t,. -~_1 1, f .,.1 .

1 , .. ~ .,. +L.f -!.·, J.-.1-t- __ ! 1 . ~,.i ..1 1 , ,, L , -.1~-~

i:1J±ITH+·:i_il~-l!·:l~1 :;;1' lit· I '*j~l++-ll II-.· II ~·=t-··+ ·tt .::::·11, l':·t .!il !.ll:j.j·. ·J~t=~j:t-i~J~: r-= -i®'-~ ~b.ilUJ I flt ~d l- J@'-~ :lt:n .~J.,- t l ,, .. ~ ~-i-ll i ; r i !_E .... @)'I ITI ;-;-.:i_ +J-L~-L I.-~ , B. . P) ,, f., . Irf-l- -~-~-, .. 1 .I ". J. I W-LU 1-:~i~,l- -t-~~~-- ·j-'-jl , I ~.,. r . . i ~-,·-; ---1 ..., ... _J_- .j •.. J ·I I V(: . . l" - -!- - -~- j . . . . I . - ' .. j I ' i I ,_J I +I++.!.~.~.-~ ..J.LI---r'·t··~ !·! : ~ 3; .. ,~-- 1-+~-- ··J I: r: ·t I ,_ I j t •...•• ~-~ , . I J , :I ' .... i ~~.: ··-·--rr--L J. ·t±t-J- .. -·, l- j ~... • . • t± -~-~··J- - f·t· - -.I . - • 1 . I . ·j -~ ·- l .. . , I h L I '-'· ... - ·I~ :+- .. t'-' t· . -,- .. . . . _l : ·-- ..... -- ... 1.. • - . -. • • . I : J. 1-. -·. ···i . I i ' : j I _LJ 1-1" .. 1 -;- ... L I ' ·1-- _ _j_l . - . -, I - -- + -. . I L,_ .. . . .. I J - • ·t - I I -· I. - I - _j_ .J. j ~J!:j)Jt ~+=l::':1JiJlJ ~f]~ l.! L' l-~l:l:l:lj.~h· _,:I·Jit~b-J-1-Ill.~·l ! I . -11-L J~J3J ·I i u. t·l_lj. ;I! ~,J,J ' .. !J:H+ .. \ + 1• !JJ-\:1~1·1 td 1J. 1 i-'1 1-i j • .1.+. 1 1.1 .,.-r --1-. +· _. , , , , 1 1 Jl1. 1 ; 1 .. -1- , 1 t i_,I_J 1• .i

I I ! ~~f!-t-~-.1. ! I ,·r , I I I I . i . I ! I I / . . ! . .:_t--:~' • I ~ I ·--· _1 I I I . I I 1

•-1-j-H-iiL + ·1-!i· I..!J-j-l-1 1-'J t-,·-1 ~ ~~~~! 'j'i l..t +- ! ·.~ I I !J I J'' : f. 10f.;-I I !'1'l f'-lj' I ' I ! II I I!· i I! i·' II +- ±J·- · · -r- ··l- .--1-- ··j -~- z. , f- -·-h·'· ·'-·~·- . I .t . J!4-7 . . - .. ' , '·, 1 .. 1 +·· ... I .•.. , ___ -- --'-• --1-1- ---··J .1 .. __ ,_.1_1 .. 1. --! --. - I•. •· ·- · ·~II -i · ·-1 tr-ffb-. -~ ~::1.- ~~~-~3. JJ l:r --1-=d.:l.l:li\! [I -j:J:!=tj.: :tJ :f-·t~t 1 .. ·j·1Jj.j·l·tl l.·j J-jJj,, ·;,. r.J 1 . t=! l~H-.t+t qlt· bf f' -1- ~+Jt· f-l_,_ --·r·ll I, t -1-- -J-J-1]- =!.} T'-f- ·I . 'I I r., I I ~I r •+j- ! ' I q! I lfi· i~l-t Ill

t'::i':1j :d:.cj· t :JJl- -j·-l -~-~~~ tj·lt·j tj -,It~~. ~i~ ~ t ! ~~h;t;=J' ;.,; .. , Jlc; l ;: f I'P.Vc. : I '·. i-!-- ·, : : : ' ' ; ! ; i.::- ~-iu~L. ;:! - - .1.1.1..- ·I -1-1-1- . ·- . -· . ...l.j. -1 I i -- - L. I I ,. I ' ........ ~~- • ..... .. # '-t··· I I I I ' • . I L ·I 1-,""-' I \ I I I I 1 J I I 1 I I I j I 1 1 ~ ...,..,.._., • j .... ,,.,.. I I I I , I 1

Lj-Llttt·\1- ·j·~-tH·J-jj· H· -l-1-lj ~: r j.l i I l·j·l I!\ .I ·t·t··t·t·j l .. , rm·-1.1 1.1 ·I 11!·J··I'_I.-t·l·· r j' . f. J ;-; I ,· -~ lttl·! .. H· .L '-t"l-l . .L .. -- ···--- t·j ,-'+'·-· ll]'l!··l·' Lj-jl.--. T't K -{····I ljll,,. ,j__lj" .L ~;-:-!-·'-=t··r-~--j·jt j··r'•··l ··i· II ·t·j·L-j-··· . 1 .. - ; .,·t 1-~ J! l'l!. jJ·I-' •... J. :~-,~·- ., - -·~.- -,-,· -~J . ·I ·I ·I . ' • ' . 1 I J! I . I I I ' . r· f I . . • ! •. r· I ' ' . l-'-1-' -, .. L. I ---_--···-----··-- t ,, I.·:-..: .. '~· I .,,. I 1 1~·-· 11'1'''1'' '+f-t--.-~-----r -·

11:--· ---1 ~ +·' . --': ........ ,,. .. . ..... , .. -. l'··I·J· 1 .... , ...... .. 1. . -r _ - - . -' ... L. . 1 . ; ~ . • : , 1 1 1 , , . . . 1 ; 1 , , , ~ 1 . r. i ;. . . . . · LJ-f-t:H.,+~· +-- f*t~-jl-fj K. : B I · 1

' • • '1 · tr;t • 1 1

1 , ~j-r I j· ' ' 1 llliill' j·li ~d I 1 ! ; · llt~ 1 j Jj ·-~ -·- '-ri- ·j _ _ . , ., . • ~ . j I ~ I r l, J·H .. t 11a :, , . . . . I •. , • • , r r . ,. 1 r I til t\1 1-.. ~ .. I .111 I lo I 1. ~,• 1

1

rf=f1±U-L ,_J 1-L! ). ,. , """"- . r'-J~-:-i!l-; . -. x· ·I J . • • ' ; i I J;ll.l I I I t I~ . ~ I : : ·'=f . r-~~±t:l=!·\~= j~-f ··-! ~ n t I If I . ' . I C\" i 11 ];(i'll"f'l~ =1- t-j~:J I~ !.L d ~'t.J i-B! ~; ; I j I ~~kj~ a~d~-I:i~.LiJ ~.~~t~·.lj:l.-1·1 n i1·; i-r-~ mt~· : Lj. i.1 :_ :l'·j=l=f=> ·I rtf: .:j~J··J·lJ ~I-· ·=t-J·J i i. Jl IJt=J]~~J~~IIL_,-_11 r I::J,i1IJ-,i_ I ~~J:~it.ll·t-1 ±_ -1-JJ ·1·1·1, ~·~--· ~ I ~~-------·! ·j .t ... ···j-··-. ..,---- t·-. 11~-~Jw···· 1--•-'-- ·· 1--'· 1 rl, ' .. ;f_ · .... } 1-· ·-------- ·I -----···- · · ' -•--tl --l-'J.L.! _ -·'r'' I ,, 1

1 l tj. :. !_f ... ,_1 . 1.Lf- .~l-··11. ... _-1 .. 1• __ ,J .... _, ··1,!, ,®. j, __ ,t I I I I I I .-!....., ~~ . ~~ ! I I I' ~ I· t 1 r I I I r I I I

LJ .. ! Ll .I . • I- ·I . ' I I . r- • • • I ;_ ' .. ,_ ,_ . ' .I . I I . ·H I j I i I .. J.J_; II I • • .!.1 j J:li1 : 1 1./-1-tjJ1@ltn~. ;It: It!!\ l:hj.jl ll·ll·l:ll l~'ll·! ·! !-!llt!l· ,T.I£~1:..~ LltlJ-11 ... 1-·1·1-·I·t ..• 1t11

r •.. ,,1. 1 r·~ .1.,,.1 •

1 .. 1t1J1· ~. 1 .1 .... ,M ....

1 .. ,~1=~J-1 ~ 1_,_tl-1 -~ -1~-th- -1-J-jt-·TL. .:,~. li :-·11 ·-~~-~--- __ , _, , l l lt. _,_ -'--- ·lj' J -j- .~_ ··-

~+j:li:ljj=C :.:i~ I~J·il,tl~ 1fll J,~l t t f!-trJ~l-,L~iJL •. ,-tJ. j= I@ 1:'1~-,~ lij··- ~-~l,-.lh~- ::j:l~,+~~i-j=~~~ ~. Ji~!JL~IiJ ~-! .. +. 1i-. ',h- -~-~--,j .H-,! -~~ ·1 !+ fl -~-fll .. tl· --H-.- .. :-,-. -li~rl i·l--~-~=~i-Hl-+ H+:·'l'=! 1,.!.!).1-l-j-'J- ,,~t··ll·tl·rl1!- 1 1 1 ,t .. l.

1

.. r 1 ~~~~ rn~ ~-~~j-1 1. i~~~~-·.1., Ll 1·-~~·,·t·,-j 1j·j·-1-t-~-~·--f:~

-;-f•-1·!1·· r!l.·'-!·t,-1 .. 1-t·.rj'·t--.J'I·tl· •-·- ---···.J--·' I -f·J- .i .... ~~-~--- ···j:·l·-~j .-; +·$·--~--) +j·J ! J , ' · ··- + 1· -··- · · 1 · I · • j· ~· · · · ·j·· · · ·1· · r· - I · 1 1

· f · · ··· - -- · · · · · · ·r· , .. - ··J· 1 - - T -- --- .:. L ;ttl .. , l-1··- -~ . .!I . I- I.- . -f- .. , ,.. . .. -- +-·· --'- ·+lrr-----J.J'1~lt--11j.1!11tl.J ::ll~!.\; 1• 1· •1· .. d~.l,' ., ,·:-1',-~!jll 1 ... -~-1 11r:· 11., -=~I· r,,,· ,r). 1-p.,J;=·t:~-:~~= -lJ-1-I 'I ·!r,l':lr ·'~'~" ~ .•... , :· ·!. ~~ ,, . I, ····~q ~~·,t·J:•· ·.+·r!-·--,+

~~~!,€t:..~Ji~~: 11 C::~1't:i:r ~ ·P4~t=tl'Aitj_lf4J: i dtJ7o7tJM l i_()/i; I I' J'~-~~: \:1 I l ~,-!= -~-~ I • t 111 ., 'J' i . I • II . . , ~

1 . I , . ,. 1· 1 • 1 1 r 1 J ,

1. ~~ . , ; , . ~ El ~~ 'j ,~*·~ ~- 1 ·- 1 -·- · I ·1 I ' ' · • • I '·· • r · · ·. . ' ' ' ' ' · I · · • · • · . · - t· - · .. - - ·· · · - - - ··

L ~p d! 1 r:J:t Lj. :J' ·t· ~! I r ;}.; -~ ~ i..-9 ,~! I:,&": ,4/i.· v:.P £_ ' . I ~·~ ~ L:l . ~.:-j. . T.::.: :L· . :j._J=d= =:=~=~= .= - _JLJ.L ..• L~ -j--1-l-t__,_J ---1 ... 1.. ,t. -·1 ... _r ... I-· _j_ -·------- LJ ___ ::j -

JH¥'-1. _ Lfi- .1 r.l_f .. 1 ~. 1- ).~. :-d-~. f ~- , .. t. , 1~. i , • .~ . ·'j;1~.~-J 1 . .~ ~.-- t -~ ~- - .1

...

1

. tl1.-l~-~ 1~.~ ~~~ - 1~~ f- -~-r-t- ~--1+J~J~ j~_ · t 1 c! .. - ·.Il-L- ·j ~- -~ /11 -1·1 111· II' 1 • l·j 1 · ~n -~-~ -1= ·· · -- - -- ·- · + 1· + -· !:!- -~-~-'--- 1- -·- -tl~ -f, ~-l \. ·n! t: t- fi-1-l=t -1 .~ :..fl; lrLI--.-1- ~:f :,.--j.:! -i - -~-~-- ·j -~~~=+---H~. ·t=!==f-i:T,=I· .=;.~-.= ·1+r. t-t-ll -. ·tJt:J=I.J. :'- 1-H=! +.1

1 ~-1- tl-lJl~· -t ~ +l:j~:j=.Jtl. ~J:- . =j-1= ~- J ~Yjtt~r-r t~':i=:fi:L{· ~~l=jJ~I='=H$ f~f!I~ J )_JJ~ t :.f= ~: f=~ _:!:..1':)- ~ =ti_~!-"1:- . Jl: :-- :1= t ~J ~ J -= :~:- = ~j= :}~1~=~~~ :1: ::.. ~1 ft~i~ :t: .1:ti ~~::!~J: ... 1_ ~-1·.{J_J 11 +- 1- .. [:tl + :ic;_- _[_f,+l1 ~-1-1-Y- d L -1+-' J H- 1 --~i= ~~- ll :r-iTij; l:i- J:l~::i:l1u l1-~--A

-: .. , ~-~-~l- :rf-t-1:,,. . .L lH-t=l. :L I '-t 1+!+ . -~- +.+ -.- -rt -1-- ll-H-H-1+1· Jfh:l~+ -1- .,.,.~= - t,-J.·:'JiJ' :_.J_: .L-. :.._: ____ J: ···:JT~J-~::..j·-'-~~~--= .1.:----.-:tt:.::t:::..~: :_c~.J.:1-- _-.:-

\

.;

r I

~

. I

-· - ···-- -·· .. -. ·------ ---- ------ ___ _:_ ____ --------· j . .

-- ____ r_ .. -· .. -·---------..---~----~-

Page 121 '

-H.-' +~-~--~+J-1. -~-~~--_,_J·_·J·j+~- lj_'_··j-1_~._,,_1_., ._.,.~.!- j·j·m~-j _l_j -''i_·J·-,-1 -~· -~- -~ - . -. -'~--~- ... ,._. 1'·1 .,-j, ']·~-~~-- -~-~-~- +1-l-lJ., !:It!·· -1:1-·J'--J-··t·l· ., -,I l·t--1.-r ·'. __ ,- ,_ ... , .. -·-·--- ·-----·,--,· ·····-,- ,----~-~--,.

=I~EI:,:,~f'f1 ~ :r h Tf(t -I- =

1·-,=! lt1~~ : = * {j·. -~11 ·"J ~ t(r · . ·. -= : ·: . : _ -·~ · . >- = .l--1 < ~ ~~ l :, ~ l)=l~ : tr

-j:!l'~tl ~~r ·J1:lt!Jl:! l~j'- "i"i'~)j·~t,= [-· ·!,ll-1-!J ~ 1 .- 1:: IJ1

1I·(.tl>: · ~ ~ .,. l -- · llJ· · .'{iTI ! ·~:,·,.fJ~·.l~ t 1:t: i

... u J .• :r.-!. .,~., 1-1 1+- . -,-'"J.:L±L .. , .. ·1- -.-. ,:u_ 1 +I 1 · · ' ' LL IJJJJ-lm _;~_,·J __ ,_+I ~-~· . 1 ~ 1 .: 1. :r-u

1·._,_,,._,,,·_;_,

1

.,,1 .,1

-:

1

--1 ... 1

p-r-, 1· ..... ,.~ _, .l.l' !l'lr~lf-ll 1 '!~.'~~1-'-' -]-1- -··-1-;·_J ··j·'- I ,,,,.1-·1-' .,.I . . ... ®I I I. I• - 'l· I 'I I 1'1 I' . - ' ' - ... - ., ·1 - . I· . .. I . . . I . . . . I I I I I I I I L. - - - - . • • . ·- f ,. I . -I . - - . - .. ! • • I ! I • • ., -):I:::I~:JJ {, !l!jjl.!i.l-1 i.ll l\l· .I,-, I .. IIi il .I !- -.. l!l, ,!\,-,!1;!. I ·jj·+ -l-1-'--·'1··-'-1 t+,~AI'!; J:illl 11 'j-!Jjl·i·!·i JJ"I"U 11 111 jll 11"1' -II .. , U.lUl_:l,· ;@~!'1-:-·-t+.- H, h·I\2./~-.J.~ · r _:1 ,·1· lj·1 1 . •_:;- JJJJl.~l • · ·- · · _ · j~ .l...:'='ll1J+ =J=l-~'-=j':l:l···_!~ J ·j:JIJ~:i.rl._I·.J j_·l· rH·.j:.l,-Lll_ : ~l~ :Lj ~ ·-,'+IJ -~1:1:_1 ·I:!:]~ .... ~l: .: : ·J· I' )- . ~~=. +~·-~: -1-_·J·- 1"-)-1'. !' II. 1,_ ... ' -f ·j:! ··~!~!---1---~---,··j· ·-~- I··-! ... , ... 1 .. --]-~- ·J···I- ....... ··- -· .. -il ···--· ........ , -·rj··-····j····-,---···'--·-·-!-1-1. u ··J-!-11 ·-····-- 1""1 , •••• ---·-·1 I· Jl. ----, I· .. I·- I·-·-···'-· -!- ------·-1--J-LI-,- -jf-·- !_~ --· ..... ,J ... :··-+--·-·-· . . --·-··-· +- ~----I·-'-· =~~~~,:I~J~·J.J :.\'ttl:l:l':l:l:l JitUI'··~= .. :t !+it I :·~~-~~-~=-!: =1--:t~~j'· .I i J:~-=: :c · -,-:-:: 1 ' I . ~-:- +r· -

1 ,ill_ l_=i_· !<:=!:~II: :11 -1--t-Lt--l-1-J •.•.... -.j-. -·-·· ILt-··----,-·j-·11•· --·J:l' ·-····- ,1! j·-, ~-, ~~~~ j_ l ..... Oi. --1· -;-h·J-,--,-J+- -···til'' - - ·- •·• , I'·· --+ !m, : ·· :· i ·1 , . . , . _ ~rfa-· -~-~- --mm ~l..r:l:i=l=': 1 :ttiJ··':'--'~U ·i:L:d·-~:~- :J::'.I.1:.J .1~: .. :_ .. :.1~ .:, 1 ~- • 111 ,' 1·::-! J=~=':f-1.:

:1:l:lj·':/:: ~~~ :!- =!=H:J:i, ,j :r_l.l: -l:l+j + -j-:IJ::: :j:':l: JI_L +: I~ IJIIIII' i tll,l: -! I=!= )1~:· j~11~J~~-~l: :1: :j= = 1

1'-J- =.-i l=IJ:!=~J{':!-~.: ~~-= 1~1·= = :1:: ~: --[~1~1:~ =: =!=: ~ ::

1::: ~~-~u1Jt ,,~!, ~ .·11! I· i) ll!.!l !=1 rE~= = ~uJ1~

T -j·LI-!-,-1- .. ·~-!-j· J·1J..·i' 1.11-J·j·[· "j .. _ _L -l··ii· -.-.--. 21·--.--- •·-- _, .,_£.:/)QdaHI fi'~:j/II"J jcol:j=. -L~~-~-1-~ .... L. •• 1- - ,_ .. -! ... 1. I .j. . . - - -'--- --- - -1-'- - .. L -- -j-- + .,. . ·t-,-j--- -l-1-

±·~_; ;_J:_~-l·l·l-··r: ,,: :{1 i_·r·~-! ~-~--1 ;_;_;·J-f-l-+1-~·-j·j~-j--1-I--\-J·~~-'--I-u1_~ __ :~--l-l·t·I~-V3-T-'-'-'-j_JJ .. ~~--~- it·j_Li~,_,_,_, -jt-ll::J-1-J_j_J_,_ :l-i-1 .,.,-,., j I ···1

- 1 ljj·ll-•··1-;-·'·j···~----··- '--j-J-1-. ·1···-···-. j ·--~--j .-'- !---t·'+·--1· , .... Ll.j-~1-J _, L .•.. ~ 1 .•. ; 1 11 .. ,1 ___ ,J. ______ , ____ L-j--··•-. ------·-- - ---- •I ·•·-----1-j- ·- ---'--·-_J'!·~Jl!fl.l)~!.d ; :::~: 1•---l·l· ·j·--'1.---t-- ~. 1 . 1 JuJ ______ L ,-' --lj- ~--.1 -11-j-Jj---' -j---~1+'--···Ye,.ilcN:I.J,i~Rtt~ t',r. ····-·1--J-j----··-· 1 --'-J-1. ---++I-·!--··· · · 1 ---l- -1 ·---·-L-1--.Lt.

1 1 '·I l ,jf'[· ..

1 1 ....

1 !· .:!.. ______ 1! .. -j- -----,I __ ! ••. - l __ L ____ J I .. !.L-t-~L

·I+- · . q .. :~ . 1 : , ·:-1 :-~ 1 .1 .1L -'-j+j-'·i··l- -1. +uli_._r_,_ -·--- ~- f-l-{ j·j-1-Lt1 ~ , 1-l-1-~-l~l~ 1..,.-1-J-'-)-r-LL -·· -0_/'_., .L .1 ~~.,.-·- , I . ·- I .. 1- 1_ ·rL .. --. : I I !- -1 j 1• ·II- ·j- ill· -- j' l.j'-j·· -I' ~ ·, .1.- +I --1-'-,+ -,-1-l-

.J 1..., 'j •.••. ,.,.1 I I I I· IZ1 I -j-L.! -~· -II' I i-: I'-~ l -. • • -' L~-. "' .... 1 I., .. L.,_ -t-1+ I ' , i I I , r f 1 ' ~ I ltf.4. I I I I I . ~- 1 ! '.....1.-+-4- -(!1:1:. l l I r I i 1 ! _ _1_ _! _1

. .LV;' '1,'/ 1_..-'l-t-j·~;-~! Jj' :; . -1: ~'II: ILl f i·lj~ I. j·l' 1.114·1 i! .: J·j ,~.r,_, ·-~-~ ·J-'j·Jj I j-jl I: fT!-l ··i-1 ucL1-j-tj-'-j-+ · t:/tf{Wn- , • . . . ·- I· . 1 . +· . - j . I · I .- . 1.1.- .I - . . - 1 - .I .I .. 1 LJ.-. . --. " l . ~ ·-L;

1

... -~-~ ... \ • . . ~- ! i 1 I ,. ~ 1- 1,·- [ , , -, .. 1

, t .. 1

..

1

®· j -r- .,. t- 1- -~-~-,-j-1 -1-' J. .,.~~, . _,. 1 -~~-~.~ ,_,_,_~_!_ .l·m'-••· T I .. L 1.1 .•. -- -'-, I·' ' . i ' ' . I . I •. L -1-'- . I I . . J_ I· I ' ' • ' '.I .,I I I j ., f! f- -1 , .. 1 •..• I.J- _L J_ +~!il+l .!-.-1-·lL! l -1!·!: 1 ·ii+i 1 l-ll··l· J _, I ,.I 'j 1 ! i 1·'.! ' 1 1,-lj---!--H+t+--r- -q/1,.., .. , ' .•. ·;::l,r ;::·;!,!·•·, I Jlll ,. ljjl 1- ' I. ~It!, ;-l,T··-L·--_. I I .. . +r-1-,1.' I I • • • ' '' . . 'I J -~ .. ,, t' ~·'I' I ••• I' • I:.~ ,_,_ ,,.1.- - -· _j_: '-·-•-!·· -·•· ·• '0' I I . ' ' !~ • ~ I • • . ·• .... ; .. ;1• : l @. I ' • ·•·--i-(+!-H~tl- +-I-!- - L TI ';:.I; I IJll!! 1-]l! I i ... HI :-t~ I' I I! I I H; j l I II::! ~·r-:- j __ · _:_)-4-.:JJ]:l=i-=t='jt r=l:!j-. B: , I ._:.;~·}.; · · ' '·I ' ! 1:1 1 I Til 1 I · ...;-;-.!iJ:'"' 1 I i i i.!. q' 1: 1 -H-'c! :· ,. _ 1 1 i to..~ ! ,_II _ct:l-'c ~=t~l~Jj-~lctJ ~ jj~~tltJ':J·lt%~:1.' ·-~~~j:Eif ::~:J:j·~ ::1~=~~---· _f!J~J-·J'~~i:~~~-=3'= = ~l=Fj~IJJ-j- .---·,~~~:l=j ij: J~~~:-_J, __ j··J:l1Jt!· l:j:J~~~lj-!:1lj:lJ±i: _!jj~+ -- _,_- -i-l--1~-L.~--'-- . 1- - _,_L~-. -~--- -mt·--- _,_ -'-- I+. _tt -~--,.,f.- ------ --1- -- -'- ~-~ ~-.- --- -j- ~ -I+J-~-r.. -[-- ·-- --f . + _u . 1...j.J_ ·t·l , .. - - ~ -~-- -- -. ·-j-- -1- - ------ - .. 1... ---.--. ·I --- :i· -· -- --'-- -- -~ - .LJ- - • - - - .LI.

1• J .. .LL ·-··•- . ·- _f_- ,_ • ~ - . . • - 1. _- - _ _ ·- . _ • - .• _. __ • • ___ • _ _ • _ - - L __ I..L :~H,:tr!tl:~tfl: ::b J:!-i" :!:!-i!i i~::- :.:!:, :~ :~~}!~.: ~JJt~r!--: :I: -.~:.:1=~ l}r"} , lj: :t/Jt

J±I*L:I=r~3.: :1:1~11~:1=1 rtli:t!-~~=' :ll~ijl~~-J: +·=~~··: : =l=f.J~ =1-ijjjJ'jj1=L = ~-tll_J: :jl±1: {lfjl=1~j~ :tJ: --J~:~t~--:1 __ -J-: j*l'~i~~ -?±B~J~~~~=1~:1'fr:E Jjr=,~t~tt Ji:

1

ffi-=J; ;t ~~ ~-1t~1( ~ = j~: ~~ ~~~=Jm. 3: =·: : = ~:~m®= :~:~-J-it!~~ ~J= ~l~1f~·= ·1·--~-JJ_·~---- --L •.. ..L~j-1--~-jj---i-- -- --·- -L-----'--1- -1--- .. .::I __ --··----~'1: __ j :i=L_ -;+~1-Hj~-j- ,J_j_ T --Ei -!+l·i··l-;-1-fJ_ J!- ,-r · +, f- .] -HJ- --l-1- + ,.j., · -t --ft~-lt-1.~- -l~j 1-- +H-l -! tl +1-i -.LH-LLi-H-~·- ~~-~1..1-tfl -1-'-'-l-i.J+i ~ j_~ 1-1-!Jl L'/:-'~t·J_.J~:.J-,-~- .L~--~·-~Aq//,,;.,,· + r-1·_,_,_,]" + '·J·l-ltJ-·J_j +. _aJJ.J_i .!_._._ '-·-·- -~-•-•- -· J.~··h ;~Of"l'l"?" /t:l(#- ··-- --1 I . ---·--'-L--j-----·-- ______ I...J _

tt•±J±u +· _ , -.- -H='- _ .. . t:-l.u.-~. T'-1- .. t ~ .. ' : .·-·· .1 1 .:.j -f·l :- 1 ; .1 . 1 :- -. J. -1- -t -1-'-lj· - .1. .. -1-;.-'- -}

1- -l :J_ -+- '··-+·-'-j -•- ---·-1---· .I:J+'-;-j--1-'- .1-:-! ~U-: -! i-1-'·\-,--., :-1 . "i\' -1-1-- •. .JT -·l --~--1.!--J·•- L -I -_.J ____ --1-j--- -1. j.J.J _____ 1.J_-j- _L, ____ --'--··. _1_1 __ L _ - --·t-------·--j-1- -·- '--H- -L

L 1=Li-J+J:1:1 ___ J_8fl-[ - 1 ~ 1 '-l-j:l.i.j_ .. f]-1~-J. -~-~~~-~lf- +jJ-'-1·]-t-fJ%1 ~~-~ l-_-1-jyl jili __ J_~L~?-1_ jt-J-,.LLLf ·'- -J·tJ~~-

~_.]_tTJ=t_.+ _t, __ ,_l 1'--1 ... ]-L.I ..• -, ·-•- ·"- ·-··-·-1-t··-U{i . ___ 1 - l1- .L J 1.1.:L ·-lj-1 .IJ.LL j-L--....1-LI--_J-J.J_L,_ ·j.::i- . ~-j- -L+: j- - ' .. ! .. -1-L.I _f U. - . Lj- --.!I -·~-,-·j• .. l I . l - . ' .!. I .J., '- .,_ - -L·± _J - .. ' --, - '; • j ! j-·j-1- _j.J_I.J_ -'-t-1-l-t-LL- . - _ _!_I_! _! ~· I : ! I I I .L l .l 1'- -'- _).1 ! -- . I . ! ~~~ ! ' J I I I - _!.._,. - ,' l:j ~· ·. 1·-- -1- .LLLj-j t j I , 1 I I I J I 1 I 1 I, r ! I : I · •• • I I J I J I

I I ± l j j I l I I J I Jl 0

'\o -~ " ' ·" on" -.C: •- ~-,·.. 1 ' 1 j 0 I I :tl=-.. •:;.• . - ' -~~ j~j ' --- ----- ... ----~--- .. '"" rttl-·--..&• _.,.,.,.,,_,.,.,"'_.. ,, .'· ,J '[~"ln. •! -==~-...;;:=-.J-i_ ,- j ___ L., _____ L 1... -'·-'- -~ ~- ;-•-'-1 j ..... -· • I _f.•_ .; ' ••. ! I . •'' ~-- 1--' L .1 . ____ j L1L _,_j ,J . .I_. LL:J--1-:Lt 1-·1+-'-+-1 _; __ _j- -----'-1---, ~~~·1--· · .. 1 . . n-LJ 1 p-~=tt~J=b: -ili~=~t~Lt,:r3. j:j:l:[~. ~~=~=~-~= ::r~Jt,_1 _~~~1-= ~ ='~-:1 ~-J~j: J Jr#

1

:j-l:::1: ~- ~~ :1·~·.:,:l:j='=l- J~-Jl- _ =\=lJ !=1 \=l~~== ±t ~~=rl-'-.. -1-t'- .. J.u 1-~-~-1- ._

1_,_- -+ 1. ~~*··-~~~-~ -!_-'-;· - ·j- 1- ~H,Jr -r- ·r· -·~j'-- -'-f·l------ ~j- -j-;· ·j· -1+ .· . -

1-, i-!-. -r·!t~~-!-·--1--l-- j-- -1- f __ J_ 1·-,- -1..--L ------!------- _J"-- ·- · ----1-·------1-1--·-•- ------·: ,-,-!-. j:J-·±1-·=L,. j- .l-l~r-1-}: I LJ_ . r· . J _~.,.1-1- - -1- .• lH--1 - - --j:j· ~:-' . --j- -~- -[- -f- . ·- -t- -1- .~- + - -~-'-- -- -~ .. ;·: J.J:1-~-J---1-->-1-'-J-·-- ·--1_ •• tl-LJ ·•··. -...l·t-1··· --1-- ----···-----1· I I _--i------- -------~---·-'--'-1·1-· @1 :)_r-iT

'I I ! I '....;.. J I I It' I I l I I'· 1 '1' I I I ' It I. : ~

L I - 1- -l.L ~ .!-1 ' i.! .! "":~. Lj-L!- '- ~ -'- _J_ -Li+-- __ .l ... '- _j_ .. "':i , __ LJ_- -LL -1- _j __ J_- - .. f_ ·- -1- ljl : - .L L ttt±tr:t{t: :r±!(d.-\:1 t-1:-.h; !-~-!-ll-l+l-!-h-1- =l-l-~-!-1-1-1 Hr.! :ll-JI ! ·-+I- -J-Il-J-t-1-- --1-41-1-J 1;1-! j ~~ =l=j= •-t-'+1_-1-1+- J:~-~-1~-I ' -j·-'- -~ -~'·-'-j~· -U·j·-i- j-'-- -jj]-l...L -~-~--~·-~_j_,_, ®: . i ·j· -t-1+ -l~- - ·t· -j-,'-1-~- -1. ··J·j~~- -1- 11j- ·]·j-l·'- -1= ·~. L ._,]. -'-· - • - - -r·j.J-·-[- -·- _, -1 .. 1-·-L -- -- -- -'- -- -~-1.- -1 , --- - -1 • - .. - - -J- --- -- -.. -·- . -- . -·- .. -- -L ---!---·· _ ....!---k- .. 1-L.L-l.!--l-.L H---.J--L-1., •. 1.1 -•j------1--------.:._- ··------·-·L!--·----l-l~~~-:':t:.fj· Jf-~-~--jj=i=J: :JJ~:':' :!:JJ!: J -Jj: :1=!= :1: :j=~~~~':l . . . _·: :j: + .::1:: ::- J: =J=l= .·: ~~-: -·: : ~ .. : J -1 :jJ:j: :j:lJ!:: 1- h-t!~l-l 1 1- -11-. IJi .1- -~-1-l-l !-1 -1- · + -- .1. =i-1· - -1+- - -ll- --1~·,-- + ~i+ --- -h- ·-- · -~ "1- -·- -l-1- ·- +I- .- -Lr 1~-=L:Jtl:l:l:l_ :1=1=1-J=!Jitj: ~~]~ ='= I ·j J_-1_:i:I~JJIJ/:- tj:!~ ··!- ·j'=- =J·: :I::~!,:~~-~- =j= ~ :j~ Ji: :1.: ~ ~~- =j=' +j- :. :: i}: :1: J~ J-j+l..·j~L.,.j ...

1--+·rj--l+-l ~--·11-~-'-ll· + -1--- ----··-· + ----·l-1-j-··· --j·:l-·--+--1--=1~·-

l,:.::l]=f,- :~-11: rt:l=j·j ·,··j= ~ :1 r~,:: .,u :. i: .:,:1=_:1-J -- ~,=,-,: ~ .. -- ~··: -:= .. -,·~1 _,. 1: :~- ~.,:!: =.·- -t -~: ::1:1~: :~-~~:: :-:: =l'=J'= -I- ---- j··· ·· -j--- -·- -1 - J __ - - · l- - 1· -1·· -1 1 --- · 1- · · ·- - · --I·-··· · - - ·· · ···r 1 1- - - ~----- -1- -··· - -- -1 I ,. - --I·.. + .,. .. '.1- ' - ··.- - ·• I -· I· I . - . . ··- - - ... -- - I I 1-11 I -- - - -- .. -,_j_t_ __ --~'·~· .. l/.!,. ~,- .. I. ILl I __ , ___ ,Ill''··~~ , ___ II _j_-1--:.n'l- L.-'- !j,:_:.,_A_..,I -----~--f:L H-H- +.·lni':~J f- 1~~· I· -.-C://?A..C.Ki--1-.PA.E~~"N .. I~ I :r. a,.-IT .~r.1 ~ !;,z. "~ r- · ---- -d- + ~j=~=J~:t:!:i=~=_Lj=i:i=::=l=}~j~ jtb~1'-::i~t-=~~~jj=jj=1 -;~r,·~ ~ ~--i:i;;;--1·=1· :i~ :j.=tt.=i_=~--~ i;=l= t_~=~=~=~--=~=l:: 1~=1·= =j=i~-:1:}~-~!=j=l=: J1:J:1t~tl:= t~r:l-!-t·l·!-j-1- ·~f·-'-'=f:r~-~ ~-l.l-1- -1" ·j-+ ~]_ -1- ±!-• . ·'JI·J-'+ I . l + ' ! I I..L.f- +~'-1-'-f-l-£- .. --1 j=j- -t __ ,_ . -d-1_L,_I~ffi=-t1 -l-·---1j_l_ .J- -~-!Jj_ :t-- j-- -l---.- -'--!- 1)1.;,.-- -j·;&._~• £jV/?~-~ . --- -~-•--- --.- --L- j_t_-- ---1- -t-- --+ -~-1

1- · -j-- ·[-1+: ·- ·- ·-- + -- -· -r • · i ~ ·,-.- -. , +: . ( ! • ···1 I I r· - ---- ·- -~--.-- -j- -r- I -.------!=J=~-,t·-=~j=!= =·If~': =H~-l!=!::t =t'=~=f:tJ.::d.~-j-1= =.~j~~~-_,_LI-tl~-l+H~J ~- ·J~J~- .,_ tl- -~- =1~~-l=rd:IJ-. -:r-::t::l+ =1~ =l='=l'=i=I~JJ!:.t~:~-$-- = .-1_1_ 1.1 i' •. - ··•--LJ. ·•-j _J.,-~-1. -- ·r-!j -·-1-- --. -•-··- - -· -···---L J .. ---1---1-- --. 1-L,_ --j--- .1-LL-1-j-'--'-' I 1 , I I I I 1 1 r I 1l I I 1 I I I I I I I -~ I I I I 1 I I

!-~-H-1·! 1-i·~- +J·t-+_·['-!·H-1- .j.l.l-!-t::r'-l-1-j- .I .. L -1-I·H·~=j·- -~~-~..:I.J~~-- ~- Jj:l -j-1-~-j-'- if'ili3 -L- 1~1-J -r- -tLj·±~-'- 1±'- ±f:.J.Jili+fJ+ 1,-,-l-·-::r---f-t-:- ,-1-,-j __ ,~.J---,+I·j-J·+I-·±· ------- ----·- c..j ______ 3~-------1-- -'-L+ -t- -r---t---~.J-rl ~-- -~-+--~·-, .. J--!-1--· ·- ~_ ·-·--·-' ,--·-- - -- ·--------1----- ---- ____ j ____ J.J.L. ___ _J __ t·±f-· ·-1-·-'---'- -------~--~--·' ---J·I-·-'- --- ±·-H--- ··-- --··--'-- --- - . _________ l_,_j_ L.l- -Lj.LLLf-- ·+·-- ----.l-·-·'·i-·-1- .---·- _,_J_ ___ - .J- _ _J - _J __ • -1-'-- -·- ---l--- -·-··---L 1-~;-~-f.:b:b?~ ~~-~-~1tJ1J-·T~r~ 1= :!t~ftffi= {jj~-1'-'= =~=t=.:-h=ill-- ::1~-'r::~~==rL1 ~-'=·= ~= =- = = = =m= :-i:l:l:m~=J~= T = J~JL1t~~J= ~ :d_: :li~~-f =l= ._i-f:~~-H-1-L ±J:- .J 4-- · -1:.1-L -l-1·~-l-.-J-,- Jj-p:-- · + J -d+ - :i~- -- · ++ ·-!~l*L!- _d:- :b::'cj-l~-H- Jj~j-rt=l~l j· -!=Fr+r-ii-1- .Lr- ~-t.,,- · -H- -n+ ·i- .- -;-1- +I-+ + ·f ·i-1-1· - +- · - -+!· -d:l·+ -F -+H+-i·l-t·i- -!-1-t 1-J~I-1· . -

• ..

1 ~ J

-"7"" ·-----.r--~-----------___., -~---.---- J

\4 do 0 ~

w Co 0 t-)

that the slab t.auld behave elastically up to nearly the

th~oretical failure load.

__ j8. PUNCHING STRENGTH

At column E the punchine sh~ar stren(5th i's giveri by

various investi(5ators as follows :-

A.C.I.

Fe' =

Tasker

= v u = 4b0d~ 4,120 p.s.i. ~= 0,45 PMa d·

v - 4 X 4 (150 +. 43) 43 X 0,45 = u

v = bd;-;;. [2,5 + rlO -] u . (d + 1)

= 4 X 150 X 43 X 0,45 +

=

10 [2,5 (1.'20 +

63 = 64 KN •

43 mm average

60 KN __.,.

1)] At the Ultimate Load in bending, the .reaction at column E

was 50 + 5 = 55 KN which is less than the shear capacity.

-- - ··1 _ _ __ \9. ULTIMATE LOAD .

From Yield-Line theory, a lm-ter bound for the ultimate load

Pu = 2P for flexural failure bi the yield-line pattern in

Fi(5ure 69.

l 'P "P 'P ~

L4

1.08~ 'l.o ll~

"'Po.scfce~t- · Y.c.t ct L,.,..t. (.b) L OQdt.., ;

lq~e cCt~ "'" ~ "'.t X '< X )(

·X -x X )

MCA., Yrefd a-... ct Ne<JCllhva Y•~td L •. ..e.. (e) S ecf,o...- c:rc::tclc:S

. Locttl.ct '"Po,,..ts.

(Q.) Pf~..., j

is given by /

'

\A Oo 0 N

L I

Page 123

is given by thR following Virtual-work equation :-

p r c 1 + 13

) + )2.:.. w r , M co'-. +~ ) + M ~

ul u2

Where oL == 'r;L tJ. = : f;3L '4)1."' 4

Therefore PL (1 - .?.~ ) ::: 4 M + M ~ 3/s WL .••••.. ·c 69) 1r ul u2

+ As = 11 no. 8mm,- As ::: 15 no. 8mm

+ M. . 550 X 360 X 0,9 X 50 X l0-6 +8,9 KN'.m ~\» = ul .

M . 750 X 360 X 0,9 X 46 10-6 11,2 KN'.rri u2 = X .. •

p (2,085) (0,964) = 4 X 8,9 + 11,2 - 3/8 X 4,5 X 2,09

p = 21,5 P = 2P = 43 KN u

Actual superimposed load at failure waB 49KN. The higher

f::dlure load may be d.ue to membrane action after yield or

the steel reaching a stress higher than its yielci stress

when the concrete failed in compression.

144 4-.....,. "Pos,f,re. Yutaf L...,ll$ 0 .J. I -, r J

·'~ ' )< . )(' k "Poc•h : L·~

-•'., ~~-' '

I. -· I Y. ~~ Nt~al,

!

~ L. ...

II t .. )( ' k' I '

- -·

(b) -(, """' I .

Fig. 70

For the Yield-Line pattern in Figure 70 a

the Ultimate Load is determined by a similar equation

·to (69) and is greater than 50KN.

+M 14 x·28,3 x 360 x 0,9 x 44 +5,7 KN.m ul

-M = 12 X 50 X 360 X 0,9 X 40 = -7,8 KN.m u2

This confirms the test result that failure will occur

according to the yield-line pattern in Figure 69.

As a matter of /

(R33)

Page 124

Ar:; a ma.tter of interest the Ultimate uniformly diotributed.

panel load was calculated by the following formula

(See Fie;. 70 b)

m = 2 ( j 1 ~· +1-fl + i 2 ) 2

+ .J.l "' where m = positive 7ield moment = 8,9 KN.m

il = 0 i2 = 112 = 1,25 L = 2,085 8,9

WL = Panel Load = 54KN including the dead of the slab.

load

1 10.. COMPUTED D"BFLECTIONS

The deflections at the principal nodes for

(a) Concentrated load at the quarter-points of eaoh panel

(b) Uniformly distributed load on each panel

are shown below in terms of vTL 2

D

where W = Total load per panel

L = Long Span

D c Slab stiffness per unit length

~n 18 f r h·

.>- 1- 1-4

1"7

'' !O

IS ' .

t1' t -t. J.-:-1 A

L 14 B

.'f'r 8 '-

J:

(a) Quarter Point Loads (b) Uniformly Distributed Load

= p WL2 Node A

2

14

15

16

Max. 17 OIIC--

18

30

(

o/.WL2 D

ol..

0.00337

0.00865

0.0105

0.0114

O.Oll6

0.0113

0.00482·

D

p 0.00332

0.00856

0.00905

0.0108

0.0108

0.0107

0.0044b

Contracy /

Page 125

Contrary to expectation the results are in good agreement

with a maximum error of 10%. However, it was surprising

to find that the maximum deflection occurs a.t Node 17

which is off the centre of, the Panel. The only possible

explanation is that the relatively closer spacing .of the

columns in the short direqtion stiffens the slab so much

that it approaches the behaviour of a slab on continuous

supports along AD ••••• BE ••• and CF , ••• In such a

case, the maximum deflection would be at Nl8 and so in the

plate the maximum deflection will be between the expected I

Nl6 and Nl8 i.~. towards.Nl7 as the resultsi .. ~~w.

:-- .. l , -~ _[11. .:.:M..:..OM~ENT.:;;:CJ .;.:;_,_V..;..;A~R;.;;;I;.;;.;]{~T.;;;.I O..:..N;_S~A:;..:;.C.:;;:R_O~S.;_S;__:;T=H;.;;;;E_P;;...;A.;;;.N....;E;.:;;L;,.._;.;.W.;..;.IDT~H

From the. Finite Difference Equations for the deflections

at Nodes 1 - 31 due to a total of 8qa2 in each panel

(Figure 48), the deflections were solved by the Computer

in terms of qa4ID. These are shown on page 124 -2 I 2 For a panel load of 10 KN, q = 10 N mm q ., 354mm.

The Bending Moments M or M were then calculated by X y

slide-~1le, at the Nodes on the critical sections, using

the following.operators:~

My=

J) --

t ·~-=-o, 2.

~~)(

(R. 4, 20)

The Bending Moments were plotted and smooth curves were

drawn. (See Figures 71, 72). Positive and Negative

moments My were then compared with the two alternative

step-function approximations recommended in Section F.

For the two-span condition below tbe'moments obtained (Fig.73)

were +M = 0,18 PL

-M = 0,282 PL (no reduction)

By integrating I

\.

I I I It

• ,. I I I I

l t''. I j I I I I'

I: I l I! i! I

:I::: I

• j I •. It! I 1 I

' 'I' I 1 l •

Pa.ee 127 . • 1 • I'.'"; I I ::.;. r-:-:-TTT-~-:-: -~-:-. I''.; '1~-~~,-,-~-, I. 'I; ll :liT I II;:: l I. ' •• I.'.

I ' I j ~ I I I ; I • ' I~ ~ I I ' ! I I 1 I f t • 0 I I I . ' •• I I I I • I . I I ~ f 1 I' I ! I I • I I • l I l . ~ . ·• • •• •I•• .... t lit!'j "•llj"' • , ... ''111 1 1 I •l•f''''' ll·'llj• • ,. ' •. " •• ;. I : • • 0' ' I' I! lj' . ! I ' ': '! I I ''·jl I,.,.,' II I :''I' I {. ' ' I • '1. t 1 I.-~ J .... J! i I I It I' I I ' I • It I I I' 'I I I I'' . i I+ l ... • • I • .. ·(C) I • I :"l ' I ,.,, I • I I ' ' ' I ' I • I • ' ' ' ' I ' 'I " I I I • • I • : 'I I ' ' . j ~ I I 0 • • f I • • I l : I. • : • I ~ . j l . I I I t i f I I 0 I i I I : ! . I I I • ! I t l , , 11 : f"\ 'j' •, l !' I . ,,, 1 ,. I , 1 o • ....._. !all lj J 1'1\'•' '''''''' , : 1 , : . , ......, , : I l • • . ; 1 , 1 o I • \ ! , • , • • ; .. r- ~I '~-W- ..J_jj ' : : : I I I I j '

0

. I I : : : I ' ~ I I ' . I' ' 'I\. ' ' ' •. I 0 I~ l ' ' .... I ' ; ' . ' ~ i I I i ; ,. I I I l • I I . I ' ; I I • : , . , i j l, ' I •• , ' 1 I . . ' , , . . . . I • : . ..._· f ~ . . . . . I ' II ' ~ r I I l' I r: I I •• , , , , , IVt.. . . . • • , N· . . '. . , • , . 1 , • r " \ · J' 1 • • • I 1 • 1 , I 1 I 1

" I , .... ,;·t;j·• .. ,:~l'fl ......... ;··•i.·l l ,,.(AI f/ IJ'.: lilt 1,'' II jltjt¥

I •• j I I • • • ' 'j . ; I ' ..... ',.' 'I ' • ' • I ' . ...., "'' • ' t I I I 'I I . I I ' ' • ' I I I " t' I' •• f J ',, •••• ,., ''j ,-1 II. I~ ... ' • I. t I jl I I' I I I' I' jl' I II . j I ~ ·t I ~ : t" ~ 0 • : I 1 . ' ~ • I I I • /· , • '-:. • • ' • ! I ' ! I ' ' I I I t ~ I t I ~ 1 I : I t ' ··--ll•->tl••' ·"·I' II. ., :,) ~. ·~··''''''!I'll'"' '·l•ll II • • 1! ~! 1 • :__tO;)~--'::::_~ , ,i_...._ ~~- 'e \'~-VI lJ. .~ t t 'l, _j_~,:..J.. .'I 1 1,: I • 1

. : I . : I • i '\::..) ' • ' . . ' . '-' \.. "'J ~I\.' ' "'I ' . I ' I ' ' : I : I ' : .. .. . I i ! I : i I •

; : i j' j·: II i.' ; . . : i : .. . I : • : . " - ~-: ~-: \: "":"' ! ~- • : . I I t II J ; 1 i I . I ' i ' . I : . ; ; l : : I ~ : \tJ t' lji .. :.ill • 1 • 11']' li:l ' .. , j1 ''"l' .• ,j,.,,l ! : !' jjll li ' .j 1 • -I .... j • I • ' J ~ I . I I - i l j ~ • I . ., v. : . I • • • ~ I I I I ~ I I • I t ! I I t t ' ''J'f"i" ·!'•• "·I'' It! \,! •\ , I' •' . '•jt'l ~ , .. I• • '''J' ~ : ; j j J ~..J ' !@: ' . ; ~ II : ~ l !. l : i ; : J' " ' ' '.J \ : ; I : : ' ' ·@. ' ; i -1 I I ~ ; !~:' : . ~ ; : t-' : i \ j,; -1 : : l I 1 ' i I l • ~ • I ' 1 • I .. I ' I I t l \r . ....w-;.. ' ' . ~ I I • ' I •• ' ~ ,. ' ' ' ! ' I ' I 1 • "iil\['1-,-• ··"-.;_tli't:-:-;:- j11il !Ji \ "",·-:·t -...._,: ...._--~:IIJ!i-~~---~-l-:-;--~·:;1;;.,_: •.• f'l : I I : . I I t ' ; I '-I I I ' 1 I . ' '' ' .v. ~· I I I I l I .. ' 1 ' I' . t I : :

' : : 1'1 I 11 I ; ; : : i 'j 't! l ~ i ,-'11 1 : l; i \ ( : :' ' . l : i t ' . : : ; ll I : I i' : : ·~ . ' ht ·; ; i 11 ; I

• I! j ,_j 1'·· I.: f I . j. ~. l I : II .. ~ : ; . :. ; I ....... 0'! I': I •I • ! ! ' I. ' I. ~II' J I I ~ 1 1 '-1-j I I • ' ' I j I ·" i 1 l I I 11 '\; 1\ • ' . " ' I I 1' " " I I I ' . • ' . "'' I • ~ ' I I j I I I -~ ' t ; f • • I I ' • I l . t ! l I I I I . ~ I ' . ' ' ' ~ ct N . ' ~ I • I • I . b.. : ; ' ' I I -' I l

~:::;:-:. :®·\\0-~\t~--l·;!: ~~_;_:~'~ ;)_,_'ll! ____ ._:'-11·~: .. ltliJ~.:.~~-1~ 'l!:lJ.J; ~ . I I It I . . ' I J I t'' ' I 1 1'' I I • I' • 1\ • ~-' I I l "' ' - I f I f\ I 'I I ~·: <. I • ., 1- I ·

1 J' • I • ' I . J j I I I ' I f I . 1 I I I I I ' ! \ • • . I ' < I • ' I I ,. I I~ ' ' . . \) 1 I I I 1 I

: : ; ; l i ·f-j 1 I ; ; : : 1 : : ~' l I • • I .. ; () ~ ' : \ ' : I l .... I I . : ; : : : : I ! ; I '": ~ ~ . t ; II ! : I " : l : 11 J I i I : : : : Jj l ; : (~~ I h ; j I ; I • ' ~1\ :. : ,. ' ' I I )..'-; . ; j

1 11 : ' '1l'1 ! ,· ,. I ~ : \\.~. : : '(f Ll:.-,,· I. '! !

~!Jl ·jjl :@ .... j:: n1·.-.· :1::· i::~ I' i" 1: ;::j. @ .. :, 1 !1 li1\'~~ ~ :'C\'.:I:; .. i ' ., iII I-~- I •••. 1\~-~ k+w---- l N' :'1 ..i_;_ ~_._._l_j_ -,9' ~KL .-":._~:_~;I: f I •·I

~ I ; ' Ill I I . ; I • I ,. . ' ' •. ~ I i I I "" I . ' ' ' I I I I ; I I ' I j J I' I ., ., \:. I l kl 11 II I I I ~'fl-·'·1 , .. ,:i · '\.i··a. 'ii/' ''II: 1 ·I.: rl 1~11 1 ~ '' '1,~~:1 ~:~:.u;.'1 .:: 1~~~~ !111.· II;)!':'! ' ;' :; ·.·,,,~,; ,:;1 !j

1' · 1 :. :: ~'1 1;1jl, I\."': . J l ' l j I ' ' • • I ... • ' I t i • • ('If • ' 1\. t I • ' ' • ' " ' I I • I t '11 I I (\ \ . . I t • I j I I .,

I .... i L.' - l' I . " . I~.... ' I :.: ' ' ' • • I' I I I • ' • ' ' ' • ' : : : I ' I . ' "'t : . ' ! I • • I I • ljJI. i ...... , • "' :!' .. ·:.·I'' ,,~, ·m·' .. ,~,~

I t··•·· '® . I J ... ,. '11 ''"'&..'I' ' ' 11 ... 1-•1 -~-· 1·: :! I ~- __ N '-~__:_:_ ~ "~!\-_;_ .)~" t- -- ~-.J-- I I I ll.L..~' L -<- I i : I ' . I I I

•• 1 ' :.j ; ' ~ I . . ' ' ~,-: 11 ' l . \): ; . : \ .. I ' (V ltft i i' I I ~I • A I : '!ol~ ' ' . 1 'J

I t ' l ' ' . 1 , , . . . . ; , , . h ' II I , ' ' ! • t I a . . I I i I ' : ' ! I ~~ , ~ ' I i ~ : • . j ' I a- . I • ·J I " . <. ' . ' I • I I • I ' I ' ~ j ' . i • I • I .. I I &.' I . I CL. I I I ·~' d t j I I ' ' <U I V' ""' ' 1'1 ' ' I 1 I -I I I "· 0' ! • • ' i-' ; ' I : I .... ,I "' 1 ; • ' -~~ • 1 1 , ·':;''1 ............ l'·' ' ,,. 'I"'"''' -,;;.~· ·:. 111 "·•- ,~, .. "·II

• , .. • 4 • 1 • ,'Q- 00 : ~ · -~ ' 1' • • t-1 < I 1- '(' • cw 1 • t I ' • I • 'V I I • • o I j ~·-1 1 •·::•, ,:,· •• ·• ,., l-111-11'- ~ •' "'I 1: lit• · • · ,; · •:: . ' I .. • • ! l • a '~. . ' , I I l I ' / ' I f ' 1 ' • I\.._ I U 1~ I ' I 1' I li J ~ ~ ~ (' ~ • I . 4 J

: ~ · .~ Z:::~ , ~": · ~ { ·" ··' t-1 :~) ; ·, : r .:..~->-i-!-~~"~.:J+ ;~:f•:·;ij' ;1;;;;:. ~-:; ·;:.:i::' i~ ~!-:\ : .~:t;l ~:~ 1:-1

11 ... ·\t: :i ~ :\,~"1Jl l·t t- I I ; j 1 r -1 : : ! 1 " 1 t t-- ' • 1 I

1 L.' · · t 1 1

• 1·1 ' ' ; ..; ! ( t 1· I 1 ' i \- ; I , ' 1 ' '- : ' · 1 i'' ~ J i'

• + 1 " 1· r t ~ 1 • • : " 1 "' • ,~ ~' ~ • ' 11- ., , ~ 1 1 1 • . • , , 1 ·~· ,...! , . , . 1 , .•.•. ] .. '1''l't - ,-1 1-,1 1, .... , '·" '!''i' ·I'·'' to~ '1"1- .,~ 1j:· "j ·. 1 ,· .,,.,, ' 1 " I • I J I ~ 1 j ' t 1 ' : • ~ ,... . ' ' I ! I ' . : ~ "'-J ' 1111 I I I I I I ' . ' I ; ' •• I ,.

-+-~ r 1 -~ -t • t t r " :)/,' , • J , • f\..~ ~ f, 1 -+ • • , 0 1 , ' 1 1 , : , • t t . 1 , ~ •• ,. , : • ,

tl1;•·l1], 11''••'· •:t·~·· 1' \>i! ·'•·•:..._ • • ;.11 :1·· tl·'' .a il ·i•,.!rj· ' ••• • . •- 1 • , • 1 • 1 • ' • "' .•. ~ , , , • (f. , . 4 • , 1 • • - r 1 , 1 , 1 • ' 1 1 , ' • • \) • , " • 1

~.il: ··':Jti .1l ~~~~~--r;-t\.t-~,~ .:~: .... ,. ;. ~~~~~~ 11~--rL-! ~:~~--~~~~"~~t , I • ' - • I ' I ' I • ' ' ' I .. , ... ~ . ' ' 1 . I ~ • -:..J-0- 1 I I ' l . ; j I ' ()· . " I • "· ' •• I I+

J i 't ' .• I J I ' ' I • ~ • : ' I ' \:.:' I i I ~· ' ! ~ ' ! . . • : •• 1- .• 1 . I ' .: ' • ! I . tj: L i . ' . 1 ' i • f • J" , .... i ."' 1 l J •••• .f I , i J + t J ~ , t ~ t • . I • ; : ! .1. ' l. I·~· ! ~~ • J ,. L, , t ! r·1' . , t- j ' ...... , .• . :-. ..ii) . , .... r L ~...., I ._- : , 1'

1 , -1 • : • , . , • I I +- 1 .

1 ~ ~. .- , I 1 • t , .• ,

1 . ! . 1 . 1 , + 1 .

. ;;.;~.l-; :· .!j;-J J:;;;l •11 ~!H. :·1 !; -l-l-V-~]~11--J-ll J.t\~ 1 1.J

1 \t\.1 ~, ~~- ;;!.~'1.·l(;rl -t''' ~ ~·~~~ t.t.~~l·· .t.~~;tt1 i Jtf-f~j·; _\, .1 .. i~ .lit--. tr 1~-~ t Jl~, ,,, I1I'·.~L~.a ~ : .. : ~ ':· ~ 1': - ~ ~ ! I : t I : ' I : : I' :-1 ~ t ~--. ! (f I ; i·i i1 ·H·!-+' j ': " .j i: ~ ~'i.. .. ' : :: t-: ~_;_;L j-' • " .... ' f. I • ~ .•• I I ·1 ; i l ' ; • i J I I l ~ f I 'I'~ I . 'I I .J ll ' 1 ·-I ' . I I . ~I . ' I I ~ ' i •• t I r~•.-:-...:tl: l•,:·t 1·'1·•i•Hl -i--ll ,,. t --H 'i'L- ti 11 Jlii ;.;,;~· -~ ' _r.•·•·•~j+ :r::~:l! ;\lJ ;; 1')\ ::

1

.P 1

1J.::tJ rt--:1~ · 1·: a-

1

·,

1.-- :1·--1•1

1 jj;n t-la lll.l ~ ·K :l ~:;:::·14 ''I''~ ··f !·· ,, ., -· ··4 -]-1' t . f•i fj--- 1-- lllf- l'l'' •1 '<.!' '• ~·· ., ..

1" i ... 1-. ; \t , J--'-1 • • -•.. ! -! 1 1· r , 1 1 , I , 1 . ~-~ , .- f ~ 1 1 . j , , , I • ()! . , . , ~· : .. 1 1 1

;:1:,~11 .•. :1:r: ~-l-1 1tJ! il_lp::~ ' ~~r 1 r'll't-t ~;!~. 1·:1 1:-i''l,:!:; : :~ ;: .::~:11 ' . ' ' ' ' . "\. ' . i '_, i I i.l r I . ! I ·t I ,_ 0:: I r-1 -j J ,-1 I I ' i I r -· . . ' _, I . ' ' I I • ' ' . X· I I I

~~ " . 1 .'- ;.·,· 1- i ! .1 ~I J i I~ t.l . J_;_ : i ""! i--• It i 1 : i i f-l1 j'·~ I i.; i I I i 1 I :1--'-L•' ; I ' : ; i : - ' • ~ .• ,., • . . . *' . I I . ' I i 1 -1-1 ... : 1' J I L '-1· .. i •• t ....... 11 t 'i"1 I· ' I· 1·1-l 'I t I • • ' I t 1' ' I ,...........,._;'-. J j < < " • ' ' ; I t t I _, -1 i 1 1-f 1-; ·. fJ' .,. f !-· ·4 I H·l I I lit 1' I . t + 1- H ' ,. H-: ' t 1 't\. ~ ·. t-! t i 1 ., ., .I j i '. -·· .... I·· , .... 1"' ·• 1 'jt+t •+ j!l •ltli-Jjtl·· H-~-,-t-111- 1 .... ,-•-!['''·" jj• ..... lt~li-:: .. , .•. :· :t ii ''j]--t ·-· 1·- :1-r 1 ~~~-:1 !111·1· -J-+ J-1t·!··1i11 1jl·q I·~·· ,,_) ~~ ·· ti tfi ::::~·:· ·_.:,: ;til:: :jj ··jiJ· 1-il.t~l··· ·I Jt~+~-1·1.1 11·1:··,-~·,- ... ,., ,.t!·.:·!'~:: .. :~,,~~,i~ ·::··~~~·ti·l _, .

1 1 1_· r- J t I 1 I t : ·i ·!·.JJ. ·,.- •. , r.· :, 1 , , . . ~ . I ... 1

""' . 'N : . ' ! . ! . I I' j ! 'I ' I I . I "11 I ' i I I ! t . 1- • . -1 t. II I I ' I I I •. , ' . ' ' I . I . : I • !- . I . .:... t :........ _ _:_ . ! ' ' I I : ! I t j I ' I ~ ! • I . -1 I ·: I 1 j : I I I i I . -! t ti I :·! ~ I ! . + i : : ! ...:...;__ " ! : ! : -. .:. . ! : : ! ! t· ,t .. f •JI 1,i!•·jl

1.t;,,.,l -\ lj•i-ijij, jilll!jtl ''''''itt iJti!Jt!•('--" -lt1'1 )!:' •'·•lji

~- ; -'- f : · 1 :'I I I j ,_ : ! : ;· ; ; ! ' 1 1 1 + r 1 l/"1 1 I r 1 II 1-1 I ~ • 1 .

1 • -1 1 t 1 • 1 , ,. K) , 1 ~ 1 . 1 • I 1 , . 1

·~'-.. ~ : ' i t II I : . f ; ! i j I ' ! ! t i j : ; 11 ·,; ;·; ' -I, I 1 II I j I I l ; j I ! t' I . "l : I ~; : I j' : : I l. ' ; ; : : .~ .. ~ , ~- .. . I 1 , , I , • , , I , I

11

11 :. 11 .

1• _ jl J_ 1 I ,· t 1 I'· 1· l-, • 1 )' .1 1 1 lll , , ; . 1 , ~- I 1 ~ . 1 i 1 ! ,

~- ; : : , : ' , : · 1 I : 1 i : 1 1 1 • 1 . 1 ~ 1 1 : : 1 •

1

. 1 1 i , ' 1 j , 11 : 1 1 , · : r I : : · : : : : " : · : : : 1 I""'' ": •. ijt .• ,., •. ·1 '''I"' I,. '1''11 t:·l:·: ,lj.!·:'' "''jf'l' ~ 11''1 ·~;__~ l:__ ~ ~-i- ; : I • ! : ! : ' I I : I I i • ! I I I i ! .LJ~Lt-4 j_l I : '__,_:_~ ~ I I ' I :-:-~ J-l I ~~-_j~ I 1 .• I '

' ' " - 1 . ' ! I I I : i I' I • I I I : i I I I I ; ; i ! : 1_ ' I'' . . I tt, .. I • I : ' I • I ' I l I I ·ll I I ! ' I I ' ' I j ! ! I, I ' •• ''\ ' ' ~ ' : I ! I • ! 1 I l I i • i I i ! I I ! : i I ! I ' :-, II I i 1 I I " ' ·._ • I I I I I I I I I I I I . ' I I I I ; I' I 1

.~•:·: ~-..\ ,;;:i!i! 1 .i;j:; l'''j''" ·II I !I I' !11!::.· !·;:;::: il:ill'lli 1;:1 1::; ~ ~ \) 60 ... : . ; : : : I : : • : , : : 11 , 1 i 11 : I ; ~~ ; • : I ! 11. .8: i : : t: ; : ; . ~ ,

1, ~ , J , •

1· ~, ! ~· ·: ~ ,·.

' I ' - I • I I 1''' I. ~' Jl II I i 1 I' I I It j,' ! 1 I I; ~I· I' i I' I ! i' I I t I f iII ., .,, .. ,, I·:, : .. 'I :'·'~· , !·''" •lll'l. I I'.~,. 'irl'!·l I 'lr'''l _. _' ~ • : t ·""'- • • ' ~ • i I .' • I : . ! ; I ' • ' • I I I ' I I . ; ~ ' . f ~ I j • t l . ~ : . ' 1 . f • ! I ! I I t I ! : t .

; .: •• ·_ ; :. •• .• .• . ·, ; ,.· :.· ·""' ._ ·,' ~ I • · : • ' · :,i -1•

1i ~ i .~: i ' 1 ! li :~ : 1jl

1 ~ ~ : i ~,. 1 ·1: ; ll ; ~ : :

1

1 : j I r : : ! 1 j i i1 JI : i

• ; : : i : : : ; : I ~ ; !-r I ~ ~ ! ;7: i ; ! l : ~-.1· .: i ; : i ! l I' 1' i 111 r,j ! I !' ! 1: ~j lr: II : ,. II ! 1'1 11, I 'I I I : : ! ! ! : It I l : l ! ;· ~

. I:.'!:! I'\.! •• ~ .. ' '_I· .. : • I I . :. : 111 I I I I~ ,. ~ i \ I I l I I I ! I: I I' I I I f·l' I I i ' ' : • I • • ' ' ' ' • . ;v!'\/ ) ' J~ :, 1._· .l·. :· : I ' ' I I ' I I II I : ' . II ; ' I ' ' I ! • ' I ' I I l I j ,· . I ,' I_ I ' ••

'"'';: ·::;: ..:..:~~· ·~ j;_:_, .:;.:! l; 11 lill'! ::Iii;;:; i~:l:il !1;!;1:;1 S a~'ed

.l A. N Oo N

"' c

- -~ . .

Pa,ge 128

Fig. 73

Mx My

... 2.00 3.00

By integrating the moment curves and comparing with the

total moments above, very ,good agreement was reached for

the full pa~el width taken bet~een the centre lines of

the Rd.jacent spans.

Within thA Column strip, the maximum theoretical moments

were only 10% ,greater than_those assumed, but in the outer

Column strip they increased.to + 40% above. Moments M X

were about double those aAsumed at the junction of the

mid-strip a:nd the column strip·, but· decreased to the same

value within a short-distance of + _1. x panel wid.th. 12

The critical moments controlling slab behaviour are the

negative moments. After reducing the theoretical moment

by Prb to allow for the effect of the column width, _,..;

the resulting theoretical moment will invariably be less

than that assumed.

The points plotted for positive M (in the short· direction) X

along the ori tical section ~-29-1 did not lie .on a smooth·

·.curve due to the moments in the column strip and so the

best-fitting curve was drawn. No explanation could.be

found for this ·irregular moment distribution. · It was also

noticed that in all four theoretical distributions. the ·.moment

at the centre column was much greater than at the egge

column the discrepancy being larger in the case of the

negative moment.

Briefly good agreement was obtained w~th step function II

whj ch is based upon a revised. column strip width L .L X y L +L

X y used in conjunction with convention~l distribution betw.een

inner column strip, outer column strip and mid strip.

12. \'TALL BEHAVIOUR

The '"all from G-H-I reinforced with "brick force"

cra.ckea away from the slab during the first lo~d.ing

sequence at the 20% level. The maximum crack width

was then 0,75mm. The crack width increased to 5mm at

the 60Yo level midway between H and I and was lmm over

Ruppert H. At supports I and G slight cracking at slab

level/

\

Page 129

level indicated some relative inward movement of the top

of the 8lah rlue to its C'lnd rotations.

During the second loading sequence the maximum crack

width started at ! 2mm and increased to :t 30mm at 90% of failure

and 40mm at failure. F.xcept for the opening.of

the wall to slab .ioint, no other cracks occurred in the

wall G-H-I throughout the test.

The reinforced wall D-"E-F, open-jointed at E, behaved

in a similar fashion although the crack widths were smaller.

Hair cracks commenced at the 30% level in the first loading

and increased to 4mm at the 60% level.

The unreinforced walls A-B-C and D-E-F behaved: slightly

differently. During the first loading, hair cracks

opened in A-B-C in the first mortar joint above the

slab at the 30% level and increased to 3mm at the 60%

level. + Also at this level a smaller crack of - lmm

opened at the slab level.

\-Tall D-E-F showed a 3mm crack in the slab joint and a 2mm

crack in the joint I course above at the 6o% level.

'Hall G-A (unreinforced) showed a 0,5mm crack in the slab

joint at the 60% level.

The behaviour of the unreinforced walls in the second

loading test was similar to the first, but the walls

had wider cracks at the same ·load levels •.

Except for the horizontal cracks in the slab to wall joints

and in the first mortar joints above, no further cracks

were observed in these walls throughout either loading test.

After the formation of the above horizontal cracks, all

the walls appeared to span independently of the slab

between the supports, lead.ing to the conclusion that the

wall had negligible effect on the slab moments at the outset

and no effect on the deflections or moments after the slab

cracking load had been reached.

'13. TF:ST SHORT-COMINGS

The loadine system applied 4 concentrated loads at the

panel quarter points to simulate a distributed load.

As a result the total negative moments were 0,142 = 13% o, 125

higher and. the total posi tive;•moments were 0,18 = 29% o, 14

· higher than if the panel load was uniformly distributed.

These /

(R.26,28)

(R28)

-

'

Paee 130

These discrepancies are too large to assume equivalence.

The best methods to simulate a distributed load are to ·

place either

(a) A tank of water on top of the slab

(b) Plastic bagB filled with air between the slA.b and

a supporting frame as has been clone. by other investigators.

Dia.l gua.gep, clamped to a steel frame suspended from the same

steel girder as the hydraulic jacks, gave incorrect readings

owing to the upward deflection of the gir~er, thus

necessitating corrections. The dials could only be read

from cramped positions on top of the slab and it is inevitable

that some would be disturbed without our knowledge. Dials

should preferably be placed on stands under the slab with

sufficient head room to facilitate readings and the marking

up of cracks.

The rubber pa.ds under the slab were provided t<? permit slab

rotations and a near-uniform distribution.of ,pressure from

the supports. Unfortunately the centre pad in particular

compressed considerably ( : 4mm at so% level) although

it may have been less if the readings had been corrected

to allow for the girder's upward deflection. Steel

plates.on.roller bearings would have been ideal.

The dial guages 11sed had ranees from 5mm to 20mm. At the

so% load level and above, most of the 0 dials left the slab

and no readings were possible. It is essential that the

dials have ranges commensurate with the deflections expected.

Strain readings of the brick work were largely ineffective

as the discs ~lued to the wall either moved during readings

or fell off. However, no vertical cracks were observed

during the tests and so readings were not necessary. For

future test~, the discs should. be glued to the brickwork on

either side of vertical mortar ,joints with an epoxy at least

24 hours before the test.

~14. m<NBRAI, TBST CONCLUSIONS

Despite its shortcomings, the test enabled some useful

conclusions to be drawn as follows:~

(1) The slab behaved elastically right up to + 75% of the

theoretical Ultimate Load.

(2) The Ultimate Load in bend.ings was approximately 14%

greater than that predicted by the Yield-Line theory·

due possibly to strain-hard.ening of the steel or membrane

action or /

Page 131

action or a combination of both.

(3) For loads below the cracking load, deflection could

be pred_icted by the fini t'e difference equations U8ing

the gross section stiffness to within 25~ in all cases.

For loads below ~ of the cracking load, the deflections

could be predicted to within 10%. The deflections

throughout were less than if calculated using

the cracked section stiffness for loads less than 75~

of the theoretical ultimate, i.e. within the elastic

range of the slab. The area.A under the moment curves

agreed well with the total moments across the panel

width from elastic theory and we conclude that actual

discrete moments though not measured, would agree with

the theoretical for loads less than the cracking load.

The step-function approximation to the actual moment­

distribution curve was based on a revised width of

column strip. It agreed reasonably well with the

theoretical moments but produced local overstressing

at design loads. In the actual test, no cracks were

observed at loads below 90~ of the theoretical ultimate

and hence the approximation served its purpose.

(A) Solid wa.lls of normal proportions (length:height 2,5:1)

in line with the supports had negligible effect on the

slab moments and deflections and conversely even large

slab deflections from the walls produced no cracks in

·either reinforced or unreinforced walls above the first

brick course. Similar walls in an actual slab'would

appear to require no special treatment to prevent cracks.

J •. CONCT.,TJSIONS

Tho optimum rlesign of e. flA-t concrete plate if3 that which

ensures that its strength and behaviour satisfy the following

criteria at the lowest relative ~oet.

1. (a) The UJ.timate Load capacity before failure in bending

or shea.r should be not lese than the total design load

multiplied by an appropriate Load Factor.

(b) It should behave elastically for any live load leAs

than twice the design live load but not for more thA.n

80~ of thl3 Ul tfmate Sup<'lrimpoaed Load LA. rfltatn no

permanAnt deflection after unloading.

(c) At working load, cracking,. if any, should not be visible

to the naked eye

(d) Deflections due to the transient live-load should be a

practical minimum.

(e) Creep and shrinkage deflections due to the dead load and

sustained live-loads should not exceed L or 8 mm if it

supports brick partitions and L 540

720 for all other loads.

2. The relative cost of the slab is the total cost of steel and '

concrete per square metre. If criterion l(a) only is satisfied

for minimum cost, the slab depth will be much less than if all

the criteria are satisfied, but the relative costs should not

differ by more than 10%. In terms of the building cost as a

whole this represents an increase of about 1% if the slabs are

"heavy" and less for "light" slabs.

3. The Elastic, Empirical a.nd Yield Line methods of design satisfy.

only criterion l(a) fully and this has been amply demonstrated

by many tests and structures in use. The slabs designed are

roughly equivalent in cost as well as performance. The

limitation of the span to slab depth ratio is by itself

insufficient to control deflection and cracking behaviour and

must be coupled to a limitation of concrete strains at 'mid-span.

4· The Finite Difference method enables all the criteria to be

satisfied. directly provided mid-span cracking is avoided.

However, the writer feels that more time is required by the

desie-ner for the various operations F.luch as writing and checking

the equations, calculating moments from the print-out of

deflections, plotting the graphs a.ncl detailing the reinforcement

tha.n in any other method. Furthermore, no allm-fance can be /

Pa.gA 133

' can be directly made of the effect of ·column stiffneases.

As other methods are possible which can satisfy all the criteria. '

the writar cannot justify its1use for·recta.ngular plates.

5· The Elastic-Plastic Method. using unstressed reinforcement

differs from the Elastic in the distribution of moments only, •

the cost being the same. It satisfies criteria l(a), l(b) and l(d) · ;

but ignores the others. However, they can also be satisfied

by the following·additional procedure :-

(a) Determine· the ·slab depth so that the cra.ck.ing moment

across the full panel width at mid.-span is equal to

the positive moment due to the ~ustained loads.

(b) Check the depth for punching shear by the {ormulae

recommended by Moe, Taske.r and Wyatt or the A. C. I. Code

for shear •. If necessary structural steel shear heads

oan be used to spread the.column reaction into the slab. ',

(c) Check the Elastic deflection d.ue to the sustained loads

. and hence the ultimate creep deflection which is twice

the Elastic defleotion,.by the following approximate

·.formula using the gross section stiffness.

b:.. = L (5M1 M2) where L · 48EI

/:::,. .- deflection at mid point between two columns

L = Long Span

Ml = Positive moment in the column strip

M2· = Negative If II II " "

...l .

Eo Instantaneous Elastic Modulus of the concrete

I = Gross Moment of inertia of the column strip

Alternatively the deflection can be indirectly controlled

by making L ~ 32 for all spans where L · = Longer span d

6. The writer believes that the slab deflections which may affect

brick partitions are the deflections in the plane of the wall,

of the panel centre .in relation to its ends, and not of the

panel centre point in relation to its column supports which· is

slightly greater depending on the aspect ratio. In the tests

the walls v1ere a.ble to "arch" between C?lumns independently

of the slab without distress to itself or affecting the slab

moments or behaviour.

The effect'of walls partly inter~1pted by openings in

ra.ndom positions on the slab was not investigated and could

be the /

Page 134

bA the sub,ject of further research. Light brick reinforcement

will con~iderably improve their ability to withstand uneven floor

deflection or movements without the ·sudden formation of large

cra.cks.

DistresR to brick partitions may be due mainly to the

additional load transferred from higher slabs under their creep

deflections. To reduce this possibility it is propOsed that

(a) building of walls be delayed as long as possible

(b) wall8 should not be built hard up against the underside

of the slab above but a gap of at least 10 mm should be

provtded.

(o) creep deflections of all slabs can be reduced by better

curing, longer propping through a.t least two floors and

by reducing water content of the mtxes to a minimum.

Apart from reducin~ the possibility of un~ightly oracka,

maintenance coste will be substantially :reduced.

7• The limitation of the Elastic behaviour in criterion l(b)

will permtt Plastic deformation before collapse for a li~ited

range of loading which would give warning of serious overloa.ds.

·a.· By pre-stressing the plate in both directions according to the

. Elastic-Plastic method, all criteria. are satisfied. Further

advantageB gained are as follows:

(a) Short-term'deflection is zero at sustained loads and long­

term deflections are a minimum

(b) The slab is crack-free and water-tight due to the

uniform compression, brick partitions are crack-free and

overall maintenance is therefore minimised.

9. The tests carried out on the Experimental Model which was

deBigned by the Elastic-Pla.Btio method confirmed the expected

behaviour of such slabs. The. failure load war-;, ·however, 14% /

higher than predicted but this may be due to uncertainty

regar~ing the onset of yield in the steel, which may have possibly

commt:lnced later than assumed owing to the large variation in

the commencement of yteld which is possible in mild steel.

10. Optimum design can, as illustrated, be achieved in the

Drawing Offl.ce but the slab behaviour will not be optimum

unleRs thr-!re iE' full co-operation from the Contractor in

ensuring that the Engineer's carefully prep<ned specification

is carried out to the letter to ensure proper control of the

quantity of water, compaction of concrete, maintenance of

steel in the right position, curing a.nd. the propping of floors.

Provided./

Page 135

Provirled this is done, there can be no rear-;on why optimum

behaviour of flat rectaneular concrete plates cannot be

achieved economically.

11. ThA behaviour of the slab at working loads is largely

depend.r:mt upon both its tensile str~ngth and the tensile

cracking strain. Consequently _cylinrler splitting teGts

to measure and. control the concrete tenRile streneth of

flat plate:::; should. be made in a.ddi tion to crushing test!'!.

~1rther reRearch on measures or additives likely to inoreaAa

the tem:ile strf'lngth A.nd ii0oreaRe tho tenRile cracking strain

of concrete would be-a step nearer the optimum design of

even more slender flat plates.

ACKNOWLEDGEMENTS

The Writer hereby wishes to record his sincere thanks

to the Civil Engineering Faculty of the U.C.T. which placed all

the facilities of its l"aboratory a.t his disposal, to Mr. 1'1. S. Doyle,

Lecturer in St~1ctures at U.C.T. for his ~1idanoe and assistance

in preparing the experiment and to the staff of the laboratory who

so ably and enthusiastically built the test slab.

Pagf'l 136

PART 3. REFERENCES

BROTCHIE 1. General Method of Analysis of Flat Slabs and Plates

J.F. A.c.r. July 1957.

F.A. BLAKEY

,J .J. RUSSELL

2. Elastic-Plastic Ana.lysis of Transversely Loaded

Plates. Trans. A.S.C.E. October 1960. 3. A Concept for Direct Design of Structures.

Trfl.ns. I .E·I Al!Elt:r.A-1 ia. Septemhe:r 1963. 4• Flat Plate Structures Elastic-Plastic Analysis

A.C.I. August 1964. 5. A Refined Theory for R.C. Slabs. Journal I.E.

Australia. October 1963. 6. Direct Design of P~estressed Concrete Flat Plate

Structures. ( Constr.. Review. ,January 1964)

7. On Moments in Slabs (Constr. Review. March 1967)

8. Experimental Study of a Prestressed Concrete Flat

Plate Structure. (Trans. Inst. of Eng. Australia)

October 1967. 9. A Criterion for Optimal Design of Plates

(A.C.I. November 1969)

10. Deformations of Experimental Lightweight Flat

Plate Structures. (Trans. Inst. of Ehg.

Australia. March 1961)

11.· Design of Flat Plates by Simple Analysis

(Constr. Review November 1962)

12. Australian Experiments with Flat Plates.

A.C.t~. April 1963.

13. · Deflection of Flat Plate Structures.

Civil Eng. V.58 1963.

14. Deflection as a Design Criterion in Concrete Buildings

(Trans. Inst. E. Australia. September 1963) 15. Towards an Australian Structural Form - The Flat

Plate (Archi teet in Australia. Se.ptAmber 1965) 16. Changine Fashions in Concrete• Australian Bldg.

Science. December 1965. 17. An Experimf)ntal Study of Flat Jlates. C.I.B. No. 4

1965. 18. A RAviAw of Some ~xperimental Stu~ios of Slab-Column

Junction. Constr. Review July 1967.

19. Lightweight Aggregate Concrete in Flat Plate Floors

c.s.r.R.o. v.rr. - 1968. ·

20. Analytical Data for Direc't 'Design of Reinforcement

Distribution in Internal Panels of Flat Plates.

C.S.I.R.O. Australia. 1966.

21. Numerical Methods of Analysis by Computer.

Civil Eng. V .58. 1963.

22. /

Pa{Se 137

BERF.SFORD 22. TeP.ts of Ed[Se Column Connections of a FJ.at Plate

Structure. Trans. InAt. of E. Australia,. October 1967.

~ .

23. An:1lytical Bx:1mination of Propped Floors in Multi­

Storey Construction. (Constr. Review. November 1964)

24• Experimental LightweiB'ht Flat Plate Structure. C.S.I.R.O.

Australia

,part I. · Measurements and Observations during Erections-1961

II.

III.

Deformat~on due to self weight - 1961

Long Term Deformations - 1961

IV. Design and Erection of Structure with Concrete Columns - 1962.

v. VI.

VII.

Deformation under Lateral Load - 1962

Design and Erection of Post Tensioned Flat

A Te~t to Dl'lstruotion - 1963.

Plate 1963 •,

VIII. Tor1t to f.g.:!J.url!l of Prl'lRtraFH'I~d f)lnbn (Oamhln 1964)

25. ShM,r :i.n Flat Plate ConRtruotj.on undl'lr TJntform Loa,d.tng

(Commonwealth 'Experimental Building Stat1.on-Tasker & Wyatt . 1963)

26. F.xperimental Investigation.of the Strength Behaviour

of Prestressed Plate. Div. . of Bldg. Research. Gamble 1964)

27. Flat Slab solved by Model Analysis- Bowen & Staffer.

A.C.I. (February 1955)

28. Strength of a Concrete Slab prestressed in TtiO Directions

(Scordelis, Pister & Lin. A.C.I. September 1956)

29. Load Test on Flat Slab floor with Steel Grillage Caps

(Meisel, Jensen, 1-Theeler. A.C.I. July 1958)

30. Ultimate Shear Strength of R.C. Flat Slabs, footings etc.

without Shear Reinforcement (1ihi tney. A. C. I. October 1957)

31. Deflection of Multiple-Panel R.C. Floor Slabs

(Vanderbilt, Sozen & Siess). Proc. A.S.C.E. -Structural

Division. August 1965.

32. Design of Prestressed Concrete Structures." T.Y. Lin

33. Yield-line Theory for Ultimate Flexural Strength of

R.C. Slabs. E. Hognestad. A.C.I. March 1953.

34. Theory of Plates & Shells. l Timoshenko, Woinowsky

& Kruger. 1953· 35· Plastic & Elastic Design of Plates and Shells.

H' oori & .Jones.

36. Rl."linforoeo. MaRoney DaEiign & Praotioe. , Proo. ·A. S.C. "F;.

DAoAmher 1961.

37. 'T'hA Intorn,otion of FloorA and. BAA,mA. Nat:i.ona.l Blc'lg.

Studiee. R~eearoh Paper No. 22. -Wood

38. European Committee for Concrete-Information Bulletin No. 35. '

39• A.C.I. Manual of Concrete Practice

40. Sudden Collapse of Unbonded Prestressed Structures

G. Rozvanny & .J. Wood. A.C. I. February 1969.

A P P E N D I X

'· ..

___ 77777/

. I

. MOVEMENT JOlMT. ·

. ' CP.ACK RUWEEN £XTEttiA.L WALL 0~ COLUMN AND IK1E.R.N~\. PAit11TION:

INTLl~\. PAl11TICN.

\

Pn.go 1~8

· WAll CHC~ DUt 10 DEFECTION Ot FLOOt t[NEATU UE WALL.

COU.\DOl.

tmKINIA CAU!tD ~y DUltCTION Cf fLAi PLAT£ ..

. .

nmECTICN

, Page 139

N S~.l~1 _____ 1_5_2~·~5_c~n_l __ --~ ___ 1_5_2 .• ~5 __ c_m ____ ~ ____ l_5 __ 2.5 c~m ____ ~_S.l

,0. I® I®

~-@ . ® . (C) I ~ """I'-, ' · I - .... ! 7.6, ' , 7-. 6--~----~'----· --+-~! ~

-~h(G) ! -~rfr11 . ~l(a) • ~. L f\" . --]. . Lt...l • ~ 'T :"

I ' ' - -·-~~ --+----4--H

· "' symmetry diagonal

® ·1- ·,®. l ! . 0

ll .-c~ 4.45cm slab' u• ,.

J(o) . -~

II

II 'I

~ II X II

Cb@J . " - "--~--~- . l1Q2:J

i _J__':~- -- ! ·~ -~®

E w--::""----+-

·~ 11 .

middle strip column strip mid.dle strip . 1

column strip ·_middle strip . : e_d~e I ..2 ~ l·edge "" · strip .

'I II I

®

:1 . . 1 ! I rigid beam 5·1 x 13·3

- h---~ - -f- ---rl""\._ I - --l- -rl"l--

·® -·'e ® Plan

4.45

· rfr · · :~· .. · J!' ~, '· Section. ,. ~,, i'.: . , •..

'I I 0

' . \ . The tes~ slab., j I

' •

;,

.) : .... : !

, . • ...

Fig. A.F2

-I

: .

. ' ''\ .nr;p I ~ . 1.{)

,-4

~ _,___· '. I

•tt .,I . 4~ .. ,, .. -~ ,1 •

~ : I ' •

... t',l •

-~- -··-- --. ·---------.----··- ---------.------- ...

. I

I

t I •

l l I l I

I j l

\ ·1 ~

l ·I

l

'I l 1

1

I I I

®

G)

-- previous cracks (q = 1,100 kg/m2)

.. . fresh cracks (q = 1,760 kgfm2)

I H. i HI H H very wide cracks

1 .Pattern of cracking on.the top surface.

• I

q ::: 1, 760 kg/m2

Fig •. A .F3 .

. I

11

'@

·-

0

.. '

. 'I

. ' I I !' ' I •

l:i I

Page. 141

0

.® . •.

previous cracks ( -. . . q "'""" 1,100 kg/m2)

-- fres~ cracks ( _ ·

.I . oiiOIIIIO~ ver 0 q-1,760kg/m~ ....

' Pattern . y wode mcks • . - . of oraokin . . q = 1' 760 k-' 2 0 • g on the bott . 0 ••• ,., .., m . . 0 'om 0 surf' ace • .

'. .

6 -

. '

. :

.. -. -

i ~ .~ '

,...\. ' • ! I I

I . ' I

: ....

I I

...

W ., •• -~e,_ .... -:..-

...

r ..

.,.,~

... -

,.,--

. .,.

, ..

_ ..

....

--.:

_..

.,,.

;..

....

....

....

. ---

,.r

.... ,--"W«~'""' _

__

_

,

•,.

l ! , _

_ . --

.--·

,..

· . . p

osi

tiv

e yi

eld

line

s .. ~·

. '

'

-~~ -..

.... '

Fra

ctu

re p

att

ern

, ty

pe

2.

·-··

---~---,.-

----

i

. ~ F

ig.

A.F

5 c

. '

. _

_:_;

_7_:

=-,_:_·=~:-··-

~=~-

-:.·

: ~=~2-~=

·:-~

~==·

~=~:

~~ .. --=~--

~-:._:

:.::_~

:_:-::

_~·:!

~:.:~-

~-:~--

---=--

~~~--~

:=---~ ·

··-----. "·

......

'

ne:g

ativ

e .Y

ield

lin

es

~ -·-

----

. .

'

't:l

~

OQ

(l) I-'

..p..

f\)

l I l 1 1 ·\ (i I :1 .I

,.

1.:,

'.

... QJ c:

-o .Qj ·:;:.

Q)

> ·p ';;;

&.

.•

. . . t -;

I ·.

. I

· ...... _

,. ....• "1

. ~ .. .. . ! '

. ''\ . ...

.. j

\ t . I·,

'

. ; .

. • 4 • ~ •

i

.. i

,L

' ': I

\

\

i \

' .. I

~ '' ' l

'

..... ·.

.· .,_

c ..... i ... ~ •

. \

.. i ·'

.. • . . . .... ·~ : ' ·. '

'... , .. :: ~ .

i ._,_

i ... ;

•.,

I ·~ • .. ~ I

. .,....

"' ~-H Q)

+> +> ~-Q)

'~ ·.+J . o· ~-

lkl

.. ~

! ~ .. i

i ... , ...

I !

'i

. ..

·'•

' .

....

'

_._

Page 144

RF.INFORCEI't1ENT DISTRIBUTION I 'IN INTERNAL PANELS

/ ,.

,. [ __

(Mo)

' . DIVISION ·OF/ MOMENTS IN A SQUARE OR RECTANGULAR PANEL

L = slo.b spo.n; rb = cffcct.ivc column ro.diua

...

Ncgntive Moment Positive 1\Ioment

Pnncl Shape Ratio Direction -~

of Column :Middle Column 1\Iiddlo Lv:Ls. rbfL11 Span . Strip Strif1 Strip Strip

. (%) (%) (%) ' (%)

1: 1 0 50 16 21' 13 0•025 48 16 22 14' 0·05 45 17 23 '15

: 0·075 42 18 25 15 - 0·1 39 18 26 17 1·1: 1 0·025 X 49 15 23 13

y 47 18 20 15 // ..

.0·05 X 45 15 25 15 y 44 19. 22 15

0·075 X 42 16 28 14 y 40 20 24 16

1•2: 1 0·025 X 50 13 2_5 12 y 46 19 .20 15

0·05 X 46 14 27 13 ·. y 42 20 22 16

. 0·075 X· 42 . ·' 14' 30 14 y 39 21 23 17 . . I

1·3: 1 0•025 X 62 11 26 11 · ..

y 44 20 20 16 0·05 X 48 12 28 12

y 41 21 21 17 0·075 X 44 13 31 12

y 38 22 22 18 1•5:1 0·025 X 64 9 29 8

- y 42 22 . 19 17 . . 0·05 X 60 9 32 9 y . 39 ·23 20 18 ,,

0·075 X 46 10 35 10 y 36 24 21 19

2il 0·025 X 66 5 35 5 y 39 26 18 17

0·05 X 60 5 39 6 y 36 27 19 18 ·-

3:1 0·025 X 66 2 39 3 y 34 31 18 17

0·05 X 47 2 46 5 y 32 31 19 18

Width of column strip = width of mid strip = t panel width

Table A.Tl

-·, ' I· :\ (:

i'

.... -·-------·-

Page 145

:REINFORCEMENT DISTRIBUTION IN .lNTI:ItNAt.. PA~l! &.$ I I \ I • __ 1

DISTRIBUTION OF MOMENT ACROSS PA:s'EL WIDl ...

Negative Moment Positive .Mo...,t.,t Direction )ii('t · Conc:e."t,.at

Panel Shape Rat.io Column :M,~Ic. Ol/4..r- (Al ....

L 11 :Ls rb/L11 of

Strip Middle Column . ···-

Span Strip Strip :·Stn~ ~ (o.v.) Pn (%) (%) (%) (%)

1: 1 0 76 24 62 38 0·025 ,• 75 . 25 62 as 1·63 0·05 72 28 62 38 1•35 0·075 70 30 61 39 1•20 0·1 68 32 61 39 ·1·12

I+: 1 0•025 X 78 . 22 63 37 1·73 y 73 27 58 42 1·58 .

0·05 X 75 25 63 37 1•40 y. . 70 30 58· 42 1·30

0·075 X 72 28 64 36 1·23 y 68 32 59 41 .: 1•15

1•2: 1 0·025 X 80 20 68 32 1·77 y 71 29 57 43 1·53

0·05 X. 77 23 67, 33 1•41 . y 68 32 57 43 1·26 0·075 X 75 25 67 33 1•22

y 65 . 35 57 43 1•13 1 .. 3 :1 0•025 X

. . 82 71 29 1·83 18

y 69 32 55 45 1·45 . .. 0·05 X 80 20 71 29 1·46

y 66 34 55 45 1·22 0•075 X 77 23 71 . 29 1·28

y 63 37/ 55 45 1·11 1·~: 1 0·025 X 86 14 77 23 1·90

y 65 35 53 47 1·36 0·05 X 84 16 77 23 1·48

y 62 38 53 47 1·15 0·075 •· X 81 19 77 23 1•29

' y 60 40 53 47 1·06 211 0·025 X 92. 8 87 )3 2·13

1': 60 40 51 49 1·21 0·05 X 91 9 86 14 1·63

y 57 43 51 49 1·06 3:1 0·025 X· 97 3 93 .. 7 2·49

y 55 45 50 ·so 1·08 0·05 X 96

., 4. 90 10 1·78

y 53 47 50 50 1·02 ;

Code requirement (see Table I) 76 24 60 40 1·0t

• Rntio of stool percentage per unit width over column to nvernge p<'rcent.nge of top stool in colmnn strip.

I

t 25% of negative stool within the column strip must. be locnt<'d within t.ho width 2rd+2t.. ~ ~ \J,al"-· of Coft~,..n Strit··::. .,.d«-. o( M:t~. S'tr;p • 12 of 'P~t'\et \J,tt~.

Table A.T2

\

~ ~·

~

~--

" . \

·I

lx I

. ·

lA

JB

_<

:>-

e-1

I

fi~-~-L-,--

-:l

-.-

l . I

Ll

i-0

-t=

l--1

'

.-

Mom

ents

Mx

alon

g co

lum

n ce

ntre

lin

e

'~-·

-·-·

. -··

. --

----

----

-------------~ -

----

----

----

~

,......_

__

-.·--·--~--. -.-

...

\ ·.

M

_,,_

. ib

t"

.

Col

umn

cent

re

.·Gne

o-~

I I

,.....

_

~

:;:

0·1

_:. :~-·~ --~-~.:~

1 _

_ ___

___ --~

om

ent

lll'>

•n

u 1

0n

s m

a

.. _..

un

ifo

rmly

lo

aded

sq

uar

e in

tern

al

pan

el f

or v

ario

us

rati

os

of

colu

mn

.

rad

ius

rb t

o s

lab

sp

an i

.

Cri.

tical

neg

ativ

e· m

omen

ts

My

norm

al t

o co

lum

n ce

ntre

. lin

e

Cri

tical

pos

itiv

e m

omen

ts

My

norm

al t

o pa

nel

cent

re l

ine

---·-~---~---

......

.,.

1

~

·t:;

i .... z ""1

0 ~

a t,:j a= t;:.1 z ~ ~

rn

·~

~ .... ~ .... ~ .... z ~ t;:.

1 ~ t"

1-j

> z t;

1 t<

a!

'---:.

.

~

,,-,

"d

Ill

Gq (I)

1-'

.p

:. 0

'\

' .

B

I~

Moments Mx along column · centre line

Column centre line

0·1

0·1

0 n

Pa.ge 147

Critical negative moments My normal to column centr~ line

Critical negative. moments My · normal to panel centre line

B ...;c ll)

6

Fig. a-Moment distributions over width L., for rectangular panel (LJi = 1·5 L.,) under uniform loading (of. Fig. 16).

The appropriate step functions under this theoretical treatment were obtained from numerical integration of the curves. These numerical integrations were c~rried out on a National Elliott 803 computer for both the positive and negative momenf curve&.

Fig. A.F8

,\

I •

i.

I._

~ ~

.... --~----

~:

~------

.,._ , _

__

_ .'

-~

_, ~-

+:

Mom

ents

M9

alon

g co

lum

n ce

ntre

lin

e

•. ~-·~-'

. Col

umn

cent

re

line

OIA

B

~ ::!-:~

/

-....:

Fig

••. -

Mo

men

t dis

trib

uti

on

s o

ver

w

idth

L

11

·for

re

ctan

gu

lar

pan

el

(L11

=

1

· 5

L.,)

u

nd

er

un

ifo

rm

load

ing

(cf

. F

ig.

8).

Cri~

cal

nega

tive

mom

ents

M

x no

rmal

to

colu

mn

cent

re ~ne

--=

==

==

==

lo

Cri

tical

pos

itive

mom

ents

M

,, no

rmal

to

p'ID

e.l

cent

re ~ne

~I I I

----

~~-

~

t:=.l' .... z I:J

0 ~

0 t:! :s: t::.

l z ~ t:l .... Ul ~

~ .... t:;

l c:l ~ .... 0 z .... z

-"tS

Ill

.... z

~

(!)

~

t:=.l ~

t-' ~

>

co

t-4

I'd > z ~ t-4

Cll

.---~

Moments Mx along column I cen Ire line

B ><

-J ll'l 6

Column centre line

0 II

-.l"' --;::>

0·1

OA

"' D ~ 6

Pag e 149

Critical negative moments My normal to column

centre line

B ..:;c lfl . 6

rb/L = 0

0·1 Critical positive moments Mu normal to panel centre line

Fig. W.-Moment distributions over width L., for rectangular panel (L11 = 2 L.,) under uniform loading (of. Fig. 18).

- · --- ·· -- - ----- --- - - - ···· ---- ··- ·-· - ····· ·--·-__.. ____ ... _ ___ _____________ .._ ..... ~. · · - - - --~- ---

Fig . A.FlO

~

1-'· > . ~ t-'

t-'

.D "'

-.l

lfl 6

Mom

ents

My

alon

g co

lum

n ce

ntre

lin

e

Col

umn

cen

tre

line 0 R

OIA

IB

"' -.

l ~

1[)

1 ...

..

0...

' ~

rb/L

~ o-o

:> tb

l

0·1

Fig

. a-M

om

en

t dis

trib

uti

on

s o

ver

·w

idth

L

v

for

rect

ang

ula

r p

anel

(L

v =

2 L

:z:)

un

der

un

ifo

rm l

oad

ing

(c

f. F

ig.

10).

Cri

tica

l ne

gati

ve

mom

ents

M

x no

rmal

to

colu

mn

cent

re l

ine

D

~'l

0

Cri

tica

l po

sitiv

e m

omen

ts M

x no

rmal

to

pane

l ce

ntre

lin

e

~

J.xj ..... ~ 0 ~

0 J.xj ~

J.xj ~

-tj .....

112 ..., ~

.....

b:t s .....

0 z ..... z ..... ~ J.xj ~ ~ t'

I-tt ~ J.xj

t'

112

'U

ill

~

(j)

1--'

\Jl

0

l•

PagA 151

REINFORCEMENT DISTRIBUTION IN INTERNAL PANELS

Column centre ,.

11ne

0·2

Lx ,ltl- 0

II -+t "' -...1 ;:.>

Le~e-~L.J

Moments Mx along column centre line

0..

0·1

Critical negative moments My

normal to column . centre line

B ..sc ll')

6

~ Critical positive . moments My normal to panel

0·1 centre line

r&!L = 0 ·075

Fig. a .-Moment distributions over width Lz for rectangular panel (L11 = 3 Lz) under uniform loading (cf. Fig. 20).

Fig . A.F12

\_

>xj

!-'·

;I>

0 >x

j .....

.. V

J

D .s l/')

6

Mom~n

ts M

y al

ong

colu

mn

cent

re l

ine

0 ~r-

-..J

cen

tre

-:.:a

lin

e

I 0 ft "' ~

. 1e

()-2

0·1

OIA

B

Q..L

--

~

0·1

Fig

. --M

om

en

t dis

trib

uti

on

s o

ver

w

idth

L

11

for

rect

ang

ula

r p

anel

(L

11

= 3

L,.)

un

der

un

ifo

rm l

oad

ing

(c

f. F

ig.

12).

Cri

tica

l ne

gati

ve m

omen

ts M

x no

rmal

to

colu

mn

cen

tre

line

D

~l

Cri

tical

pos

itiv

e m

omen

ts

Mx

norm

al t

o pa

nel

cen

tre

line

~

tzj s 0 ~

a tzj

~

tzj ~ t;j .....

00

t-3

~

.....

b:l ~ .....

0 z z ..... ~ tz

j ~ ~ t"'

'"d > z tz

j t"

' 0

0

'""d

(lJ

(q (I)

:-'

\J1

(\)

Page 153

~ ·-~

~ 4--" I

-r J! J 4c w "' "' ~ q

f v d s w ~ t ... 1..

0 0

t U"'

w J \1 -Cl

('I ,.n ~ ' ~ . 0 <{ ~

. \:; <! 0

-4- u:

,

Pa ,e 154

Fi • A.P4

lab aft r ailu e, s t· l . upportin ,

wall. anrl loa in.~ ri •

Pa~e 155

I Fig . A.P. 5 - Wall and Slab Edge A-B-C

Fi~. A.Pn - W~l1 ~n~ ~lab F.rl~~ G-H-I

F" • A.P1 - j acks in top of lab and ghear

failu ove B

®-

f' 1

-

• Q.>L

Pag e 157

FLAT PLATE STRUCTURES

L. ·+-i-+ l++ . . .

ALONG COl.UMH C[NTE.RLIN( ( ... )()

.. 2 i COWMNS

+ 0

UOM£NTS NORMAl ·'TO CO\.U .. N

C.(NTlALIN( (My)

.: 2J>,

963

.• -Moments in a uniformly loaded square internal panel of a flat plate ---structure (in which M, is constant, rb is O.OSL, and v = 0) at various stages of

· yield. P1 = maximum el'astic load

Fig . A.Fl4