120
T T o o w w e e d d A A c c o o u u s s t t i i c c T T r r a a n n s s d d u u c c e e r r P P r r o o j j e e c c t t F F I I N NA AL L R RE EP PO OR RT T M MA AY Y 1 1s st t , , 2 20 01 12 2 M Me e c c h h a a n n i i c c a a l l E E n n g g i i n n e e e e r r i i n n g g D De e p pa a r r t t m m e e n n t t U Un nd de er rg gr r a ad du ua at t e e C Ca ap p s st t o on ne e P Pr ro oj j e e c c t t 2 20 01 11 1- - 2 20 01 12 2 A BSTRACT : This project was born from design criteria requests from the University of Maine Marine Sciences Department. This project aimed to design, manufacture, test, and deliver a towable submersible with a split beam acoustic transducer to study the effects of marine life around tidal turbines off the coast of Maine. As it was necessary, a towing apparatus also was designed and built to allow for a fishing boat to tow this project’s submersible off its starboard gunwale. This capstone report encompasses work from project inception to project delivery.

Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

TToowweedd AAccoouussttiicc TTrraannssdduucceerr PPrroojjeecctt

FFIINNAALL RREEPPOORRTT MMAAYY 11sstt,, 22001122

MMeecchhaanniiccaall EEnnggiinneeeerriinngg DDeeppaarrttmmeenntt

UUnnddeerrggrraadduuaattee CCaappssttoonnee PPrroojjeecctt 22001111--22001122

AABBSSTTRRAACCTT::   This  project was  born  from design  criteria  requests  from  the University  of Maine Marine Sciences Department. This project aimed to design, manufacture,   test ,  and deliver  a  towable  submersible with  a  split   beam  acoustic  transducer  to  study  the effects  of  marine  life  around  tidal  turbines  off   the  coast  of   Maine.  As  it   was necessary,   a  towing  apparatus  also  was  designed  and  built   to  allow  for  a  fishing boat  to  tow  this  project’s  submersible  off   its  starboard  gunwale.  This  capstone report encompasses work from project inception to project delivery.  

Page 2: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

2

The Towed Acoustic Transducer Project

Team Members: UMaine

Senior Mechanical Engineering Students 2011-2012

   

  

Thomas Clark Sanford, Maine  

1st  Iteration Sub Designer  Fabrication Assistant  Capstone Report Writer 

  

Troy O’Bar Corinth, Maine 

2nd Iteration Sub Designer   Fabrication lead   Tow Boom Designer 

 

Brian Porter Holden, Maine  

Welder   Fabrication lead   Programmer for Arduino 

Controls  

Scott Kelley Corinth, Maine 

Fabrication Assistant   2nd Review of Designs   Assistant for weld fit‐up 

  

  

 Campus Facilities Used:

University of Maine, orono

Crosby Lab Machine & Fabrication Shop

Boardman Hall Computer Cluster

Aquatics Research Lab Tow Tank

   

Page 3: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

3

Table of Contents Glossary .................................................................................................................................................... 8 1.  Project Introduction........................................................................................................................... 9 2.  The 2012 UMaine Towed Acoustic Transducer Project ................................................................. 10 3.  Requests from UMaine Marine Sciences Department: .................................................................... 11 

3.1  Design Requirements: ............................................................................................................... 11 

3.2  Our Challenges: ......................................................................................................................... 11 

4.  Design Process & Notes .................................................................................................................. 12 4.1  Introduction .............................................................................................................................. 12 

4.2.  Control Surface Design: ........................................................................................................... 12 

4.2.1  Forward Control Fins ........................................................................................................ 12 

4.2.2   Aft Control Fins ................................................................................................................ 12 

4.2.3  Control Fin Design Study ................................................................................................. 13 

4.2.4  Topside Fin ........................................................................................................................ 16 

4.3  Hull Design............................................................................................................................... 16 

4.3.1  Hull Shape ......................................................................................................................... 16 

4.3.2  Hull Capabilities & Construction ...................................................................................... 18 

4.4  Internal Hull Component Design ............................................................................................. 19 

4.4.1  Internal Configuration ....................................................................................................... 19 

4.4.2  Actuator & Control Fin Linkages ..................................................................................... 20 

4.5.  External Hull Structures Design ............................................................................................... 21 

4.5.1.  Structural Support Tubes ................................................................................................... 21 

4.4.2.  Nose Cone ......................................................................................................................... 22 

4.4.3.  Tail Cone ........................................................................................................................... 23 

4.4.4.  Simrad Housing................................................................................................................. 23 

4.5.  Cabling ..................................................................................................................................... 25 

4.5.1.  Simrad Electrical Line ...................................................................................................... 25 

4.5.2.  Auxiliary Power Line ........................................................................................................ 25 

4.5.3.  Tow Line ........................................................................................................................... 25 

4.6.  Electronics & Control ............................................................................................................... 26 

4.6.1.  Sensors & Controllers ....................................................................................................... 26 

4.6.2.  Depth Control .................................................................................................................... 27 

4.6.3.  Pitch Control ..................................................................................................................... 29 

4.7   Towing Apparatus ..................................................................................................................... 32 

4.7.1  Tow Boom Design ............................................................................................................ 32 

Page 4: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

4

4.7.2  Boom Configurations ........................................................................................................ 33 

4.7.3  Platform & Mount Design................................................................................................. 35 

5.  Scaled Model Stability Testing ....................................................................................................... 38 5.1  Abstract .................................................................................................................................... 38 

5.3  Theory ...................................................................................................................................... 38 

5.4  Procedure & Construction Methods ......................................................................................... 39 

5.5  Instrumentation ......................................................................................................................... 41 

5.6  Equipment ................................................................................................................................ 41 

5.7  Test Apparatus .......................................................................................................................... 42 

5.8  Expected Results ...................................................................................................................... 45 

5.9  Uncertainty of Results .............................................................................................................. 45 

5.10  Results and Discussion ......................................................................................................... 46 

5.11  Conclusion of Results ............................................................................................................... 55 

6.  Final Construction & Assembly ...................................................................................................... 55 6.1  Construction of Submersible .................................................................................................... 55 

6.1.1  Overview ........................................................................................................................... 55 

6.1.2  Fabrication of Control Fins ............................................................................................... 56 

6.1.3  Construction of Control Linkages & Actuator Mounts ..................................................... 56 

6.1.3  Fabrication of Topside Fin ................................................................................................ 58 

6.1.4  Fabrication of Hull, Simrad Housing, & Structural Tubes ............................................... 58 

6.1.5  Fabrication of Nose & Tail Cones ..................................................................................... 59 

6.2  Construction of Tow Boom ...................................................................................................... 61 

6.2.1  Overview ........................................................................................................................... 61 

6.2.2  Pre-Delivery Assembly of Tow Boom .............................................................................. 63 

7.  Conclusion ...................................................................................................................................... 64 7.1  Summary .................................................................................................................................. 64 

7.2  Delivery of Project & End-Use ................................................................................................ 64 

8.  Recommendations for similar future projects ................................................................................. 65 8.1  General Recommendations....................................................................................................... 65 

8.2  Recommendations for Future Towed Body Projects ................................................................ 65 

9.  List of References ........................................................................................................................... 66 10.  Special Acknowledgements & Thanks ........................................................................................ 67 Appendix A- Plan of Work ...................................................................................................................... 68 Appendix B- Project Milestones ............................................................................................................. 70 Appendix C- Simrad ES200-7C Technical Sheet ................................................................................... 72 Appendix D- Arduino Control Programs ................................................................................................ 74 Appendix E- MATLAB Analysis Code .................................................................................................. 82 Appendix F- Final Budget....................................................................................................................... 84 

Page 5: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

5

Appendix G- Design Package ................................................................................................................. 86 Appendix H- Installation & Operations Manual .................................................................................... 112 i  Installation ...................................................................................................................................... 114 

i.a.  Tow Boom ............................................................................................................................... 114 

i.b.  Submersible-to-Tow Boom ..................................................................................................... 114 

ii.  Operation ........................................................................................................................................ 119 ii.a.  Stationary Operation during Slack Tide .................................................................................. 119 

ii.b.  Operation while being Towed ................................................................................................. 119 

ii.c  Extending & Retracting Tow Boom ........................................................................................ 119 

Page 6: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

6

Table of Figures: Figure 1: Tow Boom and Submersible 3D Rendering. To scale with itself. ........................................... 10 Figure 2: 2D Rendering of FWD and AFT Control Fins. ....................................................................... 14 Figure 3: FEA Analysis of Control Fins.................................................................................................. 14 Figure 4: Lift force generated by a single fin for a given angle of attack and frontal velocity, (a). ....... 15 Figure 5: Lift force generated by a single fin for a given angle of attack and frontal velocity, (b). ....... 15 Figure 6: Comparison of Hull L/D Ratio between 688 Class Subs & This Project’s Sub ...................... 17 Figure 7: Hull Sketch, Dimensions are in inches. ................................................................................... 18 Figure 8: 2D Rendering of Internal Configuration ................................................................................. 19 Figure 9: Spacing Dimensions (in Inches) for Fin Linkages 1 though 4. ............................................... 20 Figure 10: FEA Analysis of Shaft Coupling Link ................................................................................... 21 Figure 11: FEA Analysis of Bottom Brackets ......................................................................................... 22 Figure 12: View of Hull & External Structures ...................................................................................... 23 Figure 13: 3D Sketch of Sub with Simrad Housing (Underside View) .................................................. 24 Figure 14: 3D Rendering of Simrad Housing ......................................................................................... 24 Figure 15: 3D CFD Velocity Approximation of Flow. ............................................................................ 24 Figure 16: IMU for Testing with Data Logger ........................................................................................ 27 Figure 17: Watertight Electronics Unit ................................................................................................... 27 Figure 18: View within Electronics Unit ................................................................................................ 27 Figure 19: Calibration Curve for Pressure Transducer ........................................................................... 29 Figure 20: Free Body Diagram of Submersible. ..................................................................................... 30 Figure 21: 3D CFD Approximation of Flow around Submersible. ........................................................ 31 Figure 22: Representation of Towing Configuration and Tow Boom ..................................................... 33 Figure 23: Tow Boom in Extended Configuration. ................................................................................. 34 Figure 24: Tow Boom in Retracted Configuration. ................................................................................ 34 Figure 25: Free Body Diagram of Tow Boom. ....................................................................................... 35 Figure 26: FEA Analysis of Boom Locking Bar. .................................................................................... 36 Figure 27: FEA Analysis of Boom. ......................................................................................................... 36 Figure 28: FEA Analysis of Hinge Bracket. ........................................................................................... 37 Figure 29: Construction of Scaled Models. ............................................................................................ 40 Figure 30: View within IMU Capsule (end cap removed). ..................................................................... 40 Figure 31: Watertight IMU Capsule ........................................................................................................ 41 Figure 32: IMU Final Assembly for Testing ........................................................................................... 43 Figure 33: Tow Tank and Trolley Apparatus ........................................................................................... 44 Figure 34: Laptop Controller running LabVIEW for Tow Tank. ............................................................ 44 Figure 35: Viewing Window in Tow Tank. ............................................................................................. 45 Figure 36: Short Scaled Model in Tow Tank, Submerged before Tests. ................................................. 48 Figure 37: Long Scaled Model in Tow Tank, Submerged before Tests. ................................................. 48 Figure 38: Pitch Data from Short Model at a 2 ft/sec Test. ..................................................................... 49 Figure 39: Pitch Data from Short Model at a 3 ft/sec Test. ..................................................................... 50 Figure 40: Pitch Data from Long Model at a 4 ft/sec Test. ..................................................................... 51 Figure 41: Pitch Data from Long Model at a 3.75 ft/sec Test. ................................................................ 52 

Page 7: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

7

Figure 42: Pitch Data from Long Model at a 3.5 ft/sec Test. .................................................................. 53 Figure 43: Pitch Data from Long Model at a 3.25 ft/sec Test. ................................................................ 54 Figure 44: Final Assembly of Submersible ............................................................................................. 55 Figure 45: Mold for Control Fins ............................................................................................................ 56 Figure 46: Control Fin Removed from Mold .......................................................................................... 56 Figure 47: Assembly of Actuator & Linkages ........................................................................................ 57 Figure 48: Installation of Actuators & Linkages ..................................................................................... 57 Figure 49: Top fin Cast over Hull ........................................................................................................... 58 Figure 50: Installation of Structural Tubes onto Hull ............................................................................. 59 Figure 51: Styrofoam Layup for Tail Cone ............................................................................................. 60 Figure 52: Final Fabrication & Painting of Tail Cone ............................................................................ 60 Figure 53: Final Fabrication & Painting of Nose Cone. ......................................................................... 60 Figure 54: Assembly & Welding of Tow Boom Mount .......................................................................... 61 Figure 55: Welding and Assembly of Tow Boom Arm ........................................................................... 62 Figure 56: Welding & Assembly of Winch Mount ................................................................................. 62 Figure 57: Towing Apparatus with Sub .................................................................................................. 63 Figure 58: Assembly of Tow Boom Mount & Arm ................................................................................ 63 Figure 59: Computer Rendering of Boom Assembly ............................................................................ 115 Figure 60: Dimensions (in Inches) Separating Components ................................................................. 116 Figure 61: Image of Tow Boom Mount (This End Facing Outward from Boat) ................................... 117 Figure 62: Image of Tow Boom Arm. .................................................................................................... 117 Figure 63: Tow Point Locations on Sub ................................................................................................. 118 Figure 64: Boom in Extended Configuration ........................................................................................ 120 Figure 65: Boom in Retracted Configuration ....................................................................................... 120 

Page 8: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

8

Glossary Absolute Body Pitch:   The attitude, or angle, which the nose‐to‐tail‐line of the submersible 

makes with level ground. 

Aft:  The backmost portion of the submersible. This coincides with stern. 

Aperture:  The degree and span to which the Simrad Transducer may gather 

data. 

Arduino:        Computer with I/O capability with C‐language derived code.  

Ballast:   The arrangement of lighter or heavier substances, with respect to 

water, to provide desired draft and stability. 

Composite:   In this project’s sense, a combination of materials consisting of fibers 

in a matrix, fixed together. 

Corrosion:   The oxidation of metals in the presence of a medium by an 

electrolytic process which degrades structural integrity and surface 

finish 

Dynamic Stability:  Stability and damping characteristics of a body when disturbed from 

its original state.  

Forward (FWD):   The forward most portion of the submersible during operation. This 

coincides with bow. 

Free Flood:   The ability for water to enter and leave an open container or open 

hull. 

Hoop Stress:   Hoop stress is mechanical stress defined for rotationally symmetric 

objects being the result of forces acting circumferentially. 

Inertial Measurement Unit:  A sensor which is able to read angular velocity and linear 

accelerations in multiple degrees of freedom. 

Linear actuator:   An automated device which may push and pull in a straight line. 

Port:   Facing top‐down looking at the sub, the left side of the submersible. 

Relative Fin Pitch:   The attitude which the direction of the oncoming water flow makes 

with the chord line, or midsection line, of the control fin. 

Simrad:   SIMRAD is a company that builds and sells commercial sonar 

equipment of various kinds. In this report, the term Simrad will refer 

to an ES200‐7C acoustic transducer built by SIMRAD that is to be 

housed in the towed submersible. 

Starboard:   Facing top‐down looking at the sub, the right side of the 

submersible. 

Static Stability:  The stability of a body during an established state; need not be when 

a body is at rest. 

Submersible:  In this project’s sense, an unmanned and self‐controlled submarine.  

Topside:   The top‐most surface of the submersible when looking top‐down at 

the sub. 

Transducer:   A device which converts one kind of signal into an electrical output 

signal. For this project, acoustic signals (sound) are converted to 

electric signals. 

Page 9: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

9

1. Project Introduction The Towed Acoustic Transducer project is a design project for senior mechanical engineering students as part of the University of Maine MEE 487/488 Senior Design Project curriculum. From the request of Garrett Staines and Dr. Gayle Zydlewski from the UMaine Marine Sciences Department, a portable unmanned submersible is needed to house an underwater acoustic transducer for marine studies around oceanic tidal turbines. This project is accomplished to assist the Maine Tidal Power Initiative (MTPI) team.  This project encompasses design, testing, and construction of a functioning unmanned submersible that will be delivered to Garrett’s and Gayle’s marine research team. The end use of the submersible is to be able to observe marine life with the highest accuracy and precision possible from a dynamically stable submarine platform housing a Simrad ES200‐7C acoustic transducer. Operation of the submersible will be along the coast of downeast Maine, in the Eastport region.  This report documents the entire process undertaken to complete the Towed Acoustic Transducer project. This includes technical specifications for the project, the design process used throughout the semester, scaled model testing, full‐scale fabrication procedures, development of the control system, and development of a towing platform.   This report is written in such a manner to guide the reader through the process of design, development, testing, and final end use in the same order as this team underwent throughout the 2011‐2012 school year. Appendices supplement the main reading with additional technical information, project budget, and scheduling detail.  Project planning is given below on a semester basis: 

The 2012 spring semester may be summarized into several key events which lead to the final construction and delivery of the submersible and towing boom. These events are given below.  

Write Pitch Measurement Algorithm 

Test Scaled Models in the UMaine Tow Tank 

Construct Final Submersible 

Design Tow Boom 

Write Pitch Control Algorithm 

Test the Sub’s Pitch & Depth Control 

Construct Tow Boom 

Deliver Final Sub & Tow Boom 

This 2011 fall semester may be summarized into a few key events which eventually led to the final construction of scaled models. These are given below:  

Determine Submersible’s Design Requirements. 

Determine Towing Requirements and Towing Configurations. 

Finalize Design of Submersible 

Construct Scaled Models of the sub for Stability Tests. 

Develop Inertial Measurement Unit. 

Page 10: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

10

2.  The 2012 UMaine Towed Acoustic Transducer Project Stability and depth control was integrated into the submersible to allow for better data to be taken from the Simrad acoustic transducer. Pairs of forward and aft control fins on the port and starboard side of the submersible were designed to be self‐controlled via an inertial measurement unit and microcomputer to accomplish this automated control. The acoustic transducer was designed to be mounted in the bottom of the sub facing downward to avoid induced turbulent flow from the nose cone and to allow for an ideal orientation to observe marine life. Auxiliary external surfaces exist to increase the sub’s dynamic stability while also allowing structural mounting, tow, or drag points for ease of use. The internal configuration was optimized to reduce as much volume as possible. By doing this, the overall size and weight of the sub was reduced. See Figure 1 for a 3D computer rendering of the sub, with a view of its internal components; see Figure 4‐07 in Appendix G for callouts of these individual components. Section 4 within this report gives the design process and design and manufacturing process of these parts in greater detail.   This project also incorporated the design and construction of a retractable tow boom in order to properly tow the submersible alongside the research boat. The tow boom was designed so that it could be directly bolted on top of the starboard side gunwale with the only minor structural modifications, such as adding pressure‐treated wood to the underside of the gunwale. 

Figure 1: Tow Boom and Submersible 3D Rendering. To scale with itself.

Page 11: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

11

3. Requests from UMaine Marine Sciences Department: 

3.1  Design Requirements: Project requirements from the UMaine Marine Sciences department are outlined below. This is a brief discussion which will be further discussed in this report in Section 4. These requirements must suit an expected life of roughly 10‐15 years of both the submersible and tow boom.   Milestones were agreed upon as a group the first week in September and have been established to help guide this project to completion to satisfy these requests. The milestones were moderately ambitious; however we were able to achieve these throughout the 2011‐2012 school year. See Appendix B for milestone layout and timeline.   The Towed Acoustic Transducer Project must have the following functional qualities:  

Is easily transported when out of water 

May be loaded and offloaded from a fishing boat 

Is durable and will not corrode 

Allows the Simrad sonar device collects acceptable data 

May be lifted by only one or two people 

Protects the Simrad device and ensures it does not become thermally overloaded 

Must be able to be towed by a custom‐built tow boom that is easily removed from the boat. 

3.2  Our Challenges:  To meet the requirements listed above, the team will need to ensure that the submersible:  

Is a stable platform to allow for repeatedly accurate data. 

Maintains constant and controllable depth. 

Is corrosion resistant for an extended lifespan. 

Is easy to use on the consumer‐end. 

Achieves minimal turbulent flow and shedding vortices around the Simrad and control surfaces. 

Is operable underway behind or portside of a surface vessel. 

Is operable during slack tide nearby a surface vessel.  

Contains an onboard Inertial Measurement Unit and control platform 

Provides secure housing for a Simrad ES200‐7C fish‐finding acoustic transducer: 

 

To be able to tow the submersible, the team will need to ensure that the tow boom: 

May retract into a compact configuration when not used. 

Penetrates below the water’s surface. 

Be easily removed from the boat’s gunwale. 

Is corrosion resistant and will not fail under extreme loading. 

Does not interfere with data gathered from the submersible.

Page 12: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

12

4. Design Process & Notes 

4.1  Introduction Design challenges associated for the Towed Acoustic Transducer Project are for optimization and construction of the submersible, design and construction of the towing apparatus, and cabling from the research boat to the submersible. The sub’s exterior hull, internal components, and tow boom apparatus were designed from the ground and built in Crosby Laboratory at the University of Maine. This submersible is a novel design and to our knowledge, this concept specifically for its use has not been attempted before. Towed sonar devices do exist for navies across the globe, but they operate in a much different manner than our towed submersible with a different objective.  The following sections give technical detail and design considerations for the project to satisfy the requirements and design challenges identified in Section 3 on the previous page. 

4.2.  Control Surface Design: 

4.2.1  Forward Control Fins Two forward fins are attached to the submersible in the midsection of the hull just aft of the nose cone. These fins operate in phase together to simplify the control system and allow the depth to be controlled via a linear control scheme. These fins are also operated via a simple 4‐bar mechanism located within the submersible’s hull structure just aft of the Simrad housing. A linear electric actuator with a maximum operational force of 250 pounds powers these linkages to translate linear actuator motion to rotational motion of the fins via a driven shaft that penetrates the hull and mates into the fins.   The shapes and sizes of these fins are identical to the two aft fins. They are 7.5 inches wide, 8.0 inches long, and 1.0 inch thick at its greatest. See Figure 2 for a detailed image of the fin dimensions. These fins have their mean camber line coincident to its mean chord line, and thus no lift or pitch moment is generated when the absolute angle of attack of the fin is zero. An absolute angle of attack is the angle when the chord line of the fins is facing directly forward in the same plane as the oncoming water flow. In an ideal situation at relatively low Reynolds’ numbers, this direction is parallel with the submersible’s hull structure and is in plane with both sets of forward and aft fins at level pitch attitudes. 

4.2.2   Aft Control Fins As mention in Section 4.2.1, the aft fins have the same characteristics as the forward fins. These fins however, are designed in such a location as to control the pitch (trim) of the submersible when it is underway. Of course, the pitching moment is a coupled effect from both series of fins (the forward and the aft fins) however the center of buoyancy (CB) of the submersible is designed to be as close to the forward fins as possible so as to reduce the moment effect from those fins. Thus, the aft fins have the greatest effect of pitch control onto the submersible.   The aft fins are controlled in a similar manner as the forward fins, although their linkages are respectively longer and the electric actuator is located near the actuator for the forward fins. This space‐saving design moves the CB further forward and allows the ability for air tanks to be inserted 

Page 13: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

13

into the submersible further aft adjusting the CB further forward if necessary after static stability testing when delivered to the marine sciences research team.   A two‐degree of freedom pitch control system was originally planned for this project, but deemed unnecessary and impractical as phasing issues would come into play and the benefit would not be significant over a single‐input degree of freedom control system. The two degree of freedom scheme would have consisted of the set of rear control fins, as well as a controllable ballast tank with an air source and electrically controlled solenoid valves. The fins have a much greater inherent response than controllable ballast tanks, and they act as pitch dampeners when used correctly. Thus for cost, space, and time constraints the rear ballasting system was no longer pursued. 

4.2.3  Control Fin Design Study A lift force prediction analysis was performed for the control fins. The lift force was plotted for a fin absolute angle of attack from +0.00 to +0.32 radians and for an operational speed from 0 to 6 knots. This analysis applies to each individual fin, since all four control fins share the same geometry, this analysis also applies to both the forward and aft set of fins. Note that for the total lifting forces generated onto the submersible from each forward or aft set of fins, the force is twice that of the resultant force read from figures 4 and 5. This analysis is performed using the control theory outlined in section 4.6.3.  MATLAB code was written to generate the plot seen in Figures 4 and 5 which is the result of this lift force analysis. Two figures were used to represent this single result due to the complexity of the nature of this three‐dimensional function. The figures showing the fin’s lift characteristics are given on the next page.  Note that the relationship between the angle of attack until 0.22 radians and the lift force is linear, when the relationship between the frontal velocity and lift force is exponential. The lift force as shown in Figure 4 exponentially decays after 0.22 radians of angle of attack.   The geometry of the control fins is shown in figure 2. For a detailed drawing with multiple views of the fins, see drawing 1‐01 in Appendix G‐ final drawing package. The fins are symmetrical about their chord line, so that the lift force prediction results shown from Figures 4 and 5 will be the same at either a positive or a negative angle of attack; the lifting force will keep its magnitude but will only change its direction.  Finite element strength approximations were also performed on the control fins, as shown in Figure 3. This was performed in SolidWorks 2011 using the FEA toolbox with a corresponding sea gauge pressure equivalent to a depth of 2 meters, with approximate drag forces representative to that of a 6.0 knots operating speed, and resistive hydrodynamic forces on the upper plane of the fin from an angle of attack of ‐0.22 radians. From this approximation, it was found that the fins have a factor of safety of 2.67 when made from Bondo®, excluding the steel insert.    The following 2 pages give Figures 2, 3, 4, and 5 with regards to this section’s discussion. 

Page 14: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

14

Figure 2: 2D Rendering of FWD and AFT Control Fins.

Figure 3: FEA Analysis of Control Fins.

Page 15: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

15

Figure 4: Lift force generated by a single fin for a given angle of attack and frontal velocity, (a).

Figure 5: Lift force generated by a single fin for a given angle of attack and frontal velocity, (b).

Page 16: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

16

4.2.4  Topside Fin The shape of the topside fin contours the top outer surface of the hull to give a larger support area for the fin to attach to the submersible. The purpose of this fin is to dampen the body‐axis yawing effects. While the sub is to be towed, inherent disturbance torques will result onto the sub’s body that will induce yaw, roll, and pitching moments about the center of buoyancy. The roll is dampened from the two forward fins and the two aft fins; and the pitch is also dampened and controlled by these fins. Without the use of the topside fin, however, there is no external‐hull surface which dampens and corrects for yaw effects.  This fin dampens yaw moments as it acts as a relatively stationary control fin with respect to the sub. That is, as the yaw increases, the righting moment from the topside fin onto the sub also increases. Thus, at higher yaw angles, the righting moment is stronger, thus reducing the yawing of the submersible while the sub is being towed.   Only one fin, the topside fin, is used to control the yawing effects. This is because if another fin was symmetrically placed underneath the sub, this would interfere with loading the sub onto a boat by means of being dragged. Designing a bottom yaw‐rate‐reducing fin would not be desirable as it would be much shorter than its topside cousin, and it would be wetted to much more turbulent flows induced by the structural support tubes. These are placed for reasons discussed in Section 4.4.1. See Figure  1‐02 in Appendix G for a detailed drawing of the topside fin.  The topside fin was fabricated from fiberglass composite layers woven over a Styrofoam top‐fin mold.  This is discussed in greater detail in section 6.1.3. The negative fiberglass mold over the Bondo positive mold provided the initial contours necessary so that additional fiberglass layers could be added to the mold as it is laid along the topside of the hull. This fabrication technique was chosen so the complex contours required by the design of the top fin could easily be formed by hand.   

4.3  Hull Design 

4.3.1  Hull Shape The overall shape of the sub’s hull including the nose and tail cones, as shown in Figure 6 is an ellipsoid and resembles the basic shape of a naval submarine’s outer hull. Unlike naval submarines however, this project’s hull is not atmospheric‐pressure containing, so no pressure differential results from within the internal and external surfaces of the hull. The free‐flooding hull design will essentially eliminate any hoop stress across the hull, and greatly simplify construction requirements since air is allowed to escape the hull.  The hull for this project’s submersible is also much rounder and wider proportionally to a typical naval submarine. This is because length and overall size is of greater concern for this project than for modern navies as this project’s sub must be able to fit within the given research boat’s aft deck and must be small enough to transport by only two people.   

Page 17: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

17

Figure 6: Comparison of Hull L/D Ratio between 688 Class Subs & This Project’s Sub

A length to diameter ratio (L/D) of approximately 6:1 was chosen, as discussed in section 6 of this report, to increase dynamic stability about the body as it is towed. This ratio relates the overall length of the submarine from nose cone to tail cone to its hull outer diameter, excluding the fins.  A hull diameter size of 12 inches was selected so the Simrad acoustic transducer was able to be mounted within the hull with is flanged face as close to the outer contours of the hull as possible. That is, the larger the submersible’s hull diameter, the less aggressively the Simrad’s housing flange merges with the outer hull of the sub. The shape of the round hull to the flat Simrad housing is seen in Figures 12 and 13. Reducing the curves from the Simrad to the outer hull will reduce the turbulent flow around the Simrad and allow the Simrad to collect better data, albeit increasing the total size of the submersible. Once a hull diameter of 12 inches was found to be acceptable, and given the 6:1 length to diameter ratio requirement, a hull length of 72 inches was then set.  To accomplish free‐flooding capability, holes were drilled in various locations about the PVC section of the hull, the straight portion seen in Figure 6 and given in greater detail in Figure 7, so that water and air may freely enter and exit the hull. These holes were drilled along the top, bottom, port, and starboard surfaces of the hull so that no air pocket is entrained within the internal non‐ballasted volume of the hull. Ballasted and weighted portions within the hull were placed during submersion and buoyancy testing so that the sub will not sink or float uncontrollably during stationary operation.   These drilled holes also serve two purposes: the first to allow for free‐flooding, and the second to secure any external attachments. Care was used to place these holes so that flow over the Simrad and around control surfaces would not be greatly altered.   Schedule 40 Polyvinyl chloride (PVC) was chosen as the material for the hull as it will not corrode in 

Page 18: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

18

salt water, requires little fabrication to meet our design goals once procured, and is strong enough for our application. The other option for hull material was a circular fiberglassed encasement; however the PVC option yields a more perfectly concentric hull and is much easier to work with than a fiberglass hull and requires no fabrication. For these reasons, the PVC option was chosen.  

Figure 7: Hull Sketch, Dimensions are in inches.

4.3.2  Hull Capabilities & Construction Free‐flooding the submersible simplifies buoyancy control, provides cooling water to the Simrad acoustic transducer, and reduces hoop stress along the hull. The PVC hull is not able to withstand larger sea pressures unlike that a thick fiberglass hull, however since the PVC hull is free‐flooding this allows the sub to operate at deeper depths without the concern of structural failure. For practical purposes, a operational depth of 6 feet will be programmed into the depth control of the sub. This will augment the submersible’s fish‐finding capabilities and will not stress components within the hull since 6 feet is a very shallow depth. Due to limitations of the Simrad, the sub cannot operate at depths deeper than 65 feet. The depth capability of the hull and its internal components far exceeds the depth capability of the ES200‐7C Simrad.  The PVC hull is approximately 0.50 inches thick all around. This allows for bolts to be secured in place to hold external and internal structures to the hull. Appropriate placement of PVC‐to‐PVC and PVC‐to‐Nylon epoxies allowed for components to be plastic welded to one another to the hull. The majority of the external surfaces are both bolted and epoxied to the hull which greatly increases the bonding 

Page 19: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

19

strength to the hull, when the majority of the internal components were only epoxied to the hull. This was decided because the internal components, except for the actuator sub‐plates which have additional reinforcement, experience low loading forces and require little reinforcement. Gussets were machined from PVC plates and bonded with epoxy to hold key internal components to the PVC hull. 

4.4  Internal Hull Component Design 

4.4.1  Internal Configuration Once the 6:1 length to diameter ratio was selected for the hull, the internal components was then sized and designed to fit accordingly in this size hull. A set of forward and aft control fin linkages, electrical linear actuators, acoustic transducer housing, air‐tight electronics box, and required electrical wiring must all fit within this designed hull. See Figure 8 below for a layout of the internal configuration. Green represents the actuator and control links to the fins which are shown. Red represents subplate mounts for the air‐tight electronics unit and linear actuators. Yellow represents the Simrad transducer housing, blue represents the bottom tube clamps and clamp bolts, and purple represents the air‐tight electronics container.   All items were drawn or imported in Solidworks to check the clearances between each of the components. When the design process was finished, material was ordered from the design size specifications such that it fit inside the given size of the hull and Solidworks drawing.  

Figure 8: 2D Rendering of Internal Configuration

Additional volume existed in the nose and tail cones to support room for air tanks and weights that are able to change the buoyancy of the submersible when need be. The cables, as will be discussed in section 4.5, are run through the nose cone.   Taking dimensions from the Inertial Mass Unit developed for the body‐pitch stability tests, discussed in Section 5, allowed for a rough estimate for the size of the air tight box shown in Figure 8 in purple. Enough room was dedicated for this box such that all wires and any accessory amplification devices may also fit. Unlike that of the stability test IMU, the IMU used to control the pitch runs off power supplied from the boat. It was thus necessary to make several small holes in the airtight box to allow the control and power wires to enter and leave the electrical box. Potting compounds and epoxies were used to seal this wire‐way hole so that water may not enter the electrical box.   

Page 20: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

20

4.4.2  Actuator & Control Fin Linkages 

See Figure 9 below for the physical dimensions of the actuator and linkages. The actuator is roughly 5.5 inches by 7.3 inches by 2.2 inches in size, with a maximum linear pushing or pulling force of 250 pounds when energized with its maximum amperage draw. As shown in Figure 8, the rear actuator and linkage set is mounted on the bottom of the PVC hull tube when the forward actuator and linkage set is mounted on the top of the PVC hull tube. This is to save space within the hull, and allow the Simrad to be mounted in the bottom face of the hull.   Both actuator pairs have rubber tubing that encloses the linkages 2 and 3 in Figure 9. This helps to reduce the chance of corrosion and leaking in the actuator. To do this, the linkage pin joint connecting links 3 and 4 was built up with a stainless steel section that matches the actuator’s pushrod casing diameter.   Each linkage set from the control fins to the actuator is a 4‐bar mechanism with respect to the actuator (being the ground link). This 4‐bar mechanism translates linear motion into rotational motion. A maximum fin angle of attack is designed to range from +/‐ 21.0 degrees. The actuator has a maximum travel of 2 inches, which leaves 1 inch of travel in either the push or pulling direction which correlates to the lowering or rising of the fin, respectively. This correlation holds true for both forward and aft sets of fins, given their internal configurations.   

Figure 9: Spacing Dimensions (in Inches) for Fin Linkages 1 though 4.

A structural simulation at the expected weakest location in these linkages was performed. The analysis was run given the scenario that a maximum loading of 250 pounds be applied from the linear 

1

4

2

3

Page 21: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

21

actuator, which corresponds to 65 ft*lbf of torque at the welded joint within link 4. This is also the location where the linkages is the thinnest and is welded together. A threaded rod is welded to a shaft coupling that connects the port and starboard fins. The analysis is given as Figure 10.   

Figure 10: FEA Analysis of Shaft Coupling Link

The analysis done in Figure 10 resulted with a factor of safety of 5.2, which suffices for our design. As shown in this figure, the maximum stresses (red) occur near the weldment between the rod and the shaft coupling.  

4.5.  External Hull Structures Design 

4.5.1.  Structural Support Tubes Structural supports are placed on each side of the sub’s hull, two in total, beside the Simrad acoustic transducer device. See Figure 1 and Figure 13 for detail. This allows the submersible to be hoisted by theses supports, or dragged by these supports onto a boat. Two supports are used so that the sub is stable when resting on these supports, and thus does not have to rest the control fins.   These supports are placed at an orientation such to prevent the Simrad from scraping or impacting against submersed objects, or against the deck floor of a boat. The angle between these two supports is great enough to allow oncoming water to flow around the Simrad Housing with little acoustic disturbance.  

Page 22: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

22

As the seawater flow moves aft along the hull, the boundary layer will grow and thus the turbulence will increase. This is another one of the reasons, as argued in section 4.2.4, for not having an additional bottom fin to reduce body yaw‐rates, as this fin would interfere fluidically and structurally with the bottom tubes.   These bottom tube supports are made out of PVC piping and are bolted onto the larger PVC hull with fabricated brackets as shown in Figure 12. Potting compounds were laid over the gaps to increase hydrodynamics and reduce shedding vortices that induce downstream turbulence over the Simrad. The forward and aft end pieces of the smaller PVC pipes were left to remain open to seawater to allow for easy ballasting adjustments.   See Figure 11 for a finite element method analysis of the force resolution when the submersible is laid on ground while, statically at rest, with a total weight estimation of 125 pounds per support. This weight estimation is much higher than the actual weight of the submersible when dry.  From this analysis, with the excessive loading, a factor of safety of 2.3 was found. 

Figure 11: FEA Analysis of Bottom Brackets

4.4.2.  Nose Cone A hyperbolically shaped nose cone is the forward‐most portion of the submersible. This nose cone has a traced radius of 6.0 inches that gradually increases to a radius of 9 inches, which is then tangent to the forward most mating surface of the PVC hull section. The shape of the nose cone was inspired by some of the older nuclear submarines that have an axisymmetric nose cone. These submarines are known for their great speed while submerged due to low induced drag and low skin friction 

Page 23: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

23

coefficients.  The nose cone was made from a fiberglassed mold over Styrofoam as discussed in section 6. The Simrad power cable was run through a hole drilled in the nose cone on the nose cone’s upper surface so that the cable interferes less with the sub while it is being towed. This also is forward of the tow mounting point, and also does not interfere when the sub is hoisted for operation during slack tide. Slack tide operation refers to stationary operation, when the boat’s engine is shut down or idling and the sub has very low relative velocity with respect to the seawater.  

4.4.3.  Tail Cone The tail cone resembles that of the nose cone, but it has a more aggressive profile, tapering from 9 inches to 0 inches diameter from a distance of 20 inches. This is to reduce drag and any associated shredding vortices that may result when towed to help eliminate pitching, rolling, and yawing disturbance forces onto the submersible. Basic CFD calculations in SolidWorks 2010 verify that a longer and more aggressive tail cone is much more desirable than a cone with an identical profile as the nose cone. The tail cone has no protrusions through it unlike the nose cone. The tail and nose cone are made from the same material and manufacturing processes. See Figure 12 below for a view of all external components on the submersible.  

Figure 12: View of Hull & External Structures

4.4.4.  Simrad Housing The purpose of the Simrad housing as shown in Figure 13 is to enclose the Simrad unit and attach the Simrad to the sub’s hull in a downward facing position. Since the hull is free‐flooding, cooling water from within the submersible enters through holes drilled in the Simrad housing to cool the Simrad. This is done as the Simrad’s transducers operate at high temperatures and if not cooled with ocean water they have the tendency to overheat and thus damage may occur.   Figure 14 shows that the Simrad housing consists of a bolted flange that locks the Simrad unit in place against the innermost housing. Corrosion‐resistant hex head bolts (6/ea) are used to lock the flange to the innermost housing. Epoxies and small corrosion‐resistant brackets mate the housing to the hull. The housing protrudes into the hull at the heel by 3.1 inches, which allows for sufficient room to not interfere with internal components. The Simrad electrical cable was oriented within the hull to avoid 

Nose Cone Tail Cone Structural Tubes

Bottom Brackets

Page 24: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

24

the control links that connect the two forward fins.   The outside surface of the Simrad housing’s flange does not match the contours of the outer surface of the submersible’s hull. This is acceptable as these angles are small, and will not alter the flow in direct view of the Simrad. Flow as laminar as possible is desired directly over the Simrad and Simrad housing since turbulent flow is capable of distorting data collected from the Simrad.  

Figure 13: 3D Sketch of Sub with Simrad Housing (Underside View)

Figure 14: 3D Rendering of Simrad Housing

Figure 15: 3D CFD Velocity Approximation of Flow.

Page 25: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

25

4.5.  Cabling 

4.5.1.  Simrad Electrical Line Three lines are needed to power and tow the submersible, two electrical lines and a stainless steel towline. The Simrad power line is to be hoisted within the hull and sent outside of the sub through the sub’s nose cone. This line will be connected to a computer located onboard the boat towing the Simrad allowing researchers to gather their data. This line is not capable of withstanding large loads from being dragged at the design operation speed of 6 knots, and thus this line is hoisted to the tow boom discussed in section 4.7, and a separate towline is discussed in Section 4.5.3 transmits all loads applied from the sub onto the tow boom.   Any disturbances on the Simrad’s line may alter data from the Simrad, and thus it was crucial to maintain this line as slack and vibration‐free as possible. 

4.5.2.  Auxiliary Power Line A separate electrical line is required to power the electrical linear actuators that will power the actuators controlling the forward and aft fins. The Simrad power cord cannot be spliced into two separate lines within the submersible because the actuators have different power requirements, and also splicing the Simrad cable in this manner would introduce a significant amount of electrical disturbances into the line.   This electrical line is much thinner than the Simrad line, and it will enter the submersible through the same location as the Simrad line does. This auxiliary power line will run off the electrical power generated from within the towing boat. Conversion to DC power for the electrical actuators was not necessary as the boat produces DC power, and power for the actuators is readily available to be taken directly from the fishing boat. This electrical line enters the electronics & control unit, discussed in section 4.6.1. 

4.5.3.  Tow Line Upon speaking with Simrad representatives, it was discovered that the Simrad is a sensitive device and thus no tensile load may be applied onto its power cable as mentioned in Section 4.5.1. This will require special tow points along the hull of the submersible and a submerged two boom so that it may be towed while relieving loads from the Simrad’s electrical cable. A single tow point for towing through a current is mounted forward and topside of the hull and a second tow point is located on the aft and topside portion of the hull. The aft tow point is to be used in conjunction with the forward point during stationary observation, while only the forward tow point is used when towed.  Tow point locations are critical for efficient operation of the sub. If the tow point locations are not correct, then constant fin adjustments will be required to maintain a level pitch and constant depth while the sub is underway. Experimentation was required to determine the most desirable tow point location, which was found to be topside of the submersible just aft of the nose cone. This point reduces rolling effects when compared to points located near or on the midsection of the nose cone.  While the sub is operating in slack tide, a single tow point is not acceptable as forces from this point will cause a moment about the center of buoyancy. Thus, two tow points are used during slack tide. 

Page 26: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

26

These two tow points will help stabilize the sub from disturbance torques from a cross‐flowing sea current. In order to achieve this, the sub will need to be raised to the surface of the water so an attachment may be placed on the boom mount with a yoke to the two attachment points.  All towlines are 316 stainless steel cables.  

4.6.  Electronics & Control 

4.6.1.  Sensors & Controllers A five degree of freedom IDG500 Inertial Measurement Unit (IMU) with a separate hull‐mounted pressure transducer provides the means to measure the depth and pitch of the submersible. These devices send an output signal to two separate Arduino Uno F3’s which contain coded C‐derivative Arduino language to return signals to the electrical actuators to control depth and pitch. The pressure transducer sends a voltage signal to a single Arduino which controls the forward set of control fins, when the IMU sends several voltage signals to a separate Arduino which then controls the aft set of control fins. Each set of forward or aft control fins contains a separate control system with a uniquely coded Arduino microcontroller.  The IMU senses both gyroscopic motions and translational motions by measuring the translational body axes accelerations and the body rotational rates. Through integration schemes from measurable time steps, the rotational rates may be converted into an angular range traveled, which directly corresponds to a change in the pitch of the submersible’s body. This data will be used to tell the Arduino Uno if actuator movement is required to adjust fin angle of attack to correct pitch. This control scheme is automated once pitch read from the IMU is calibrated.  The pressure transducer senses sea pressure with respect to atmospheric pressure and converts this reading to a single voltage output. The depth control scheme requires a depth preset in terms of a correlating voltage. Once this is integrated into the Arduino language, this control scheme is automated and self‐governing. The depth preset in terms of voltage will correspond to the voltage value returned from the pressure transducer; if it is too high then the Arduino will command the sub to adjust the forward fins to a negative angle of attack and vice versa. The pressure transducer will be used in conjunction with an Arduino to control the pitch of the forward control fins when the IMU in conjunction with another Arduino will control the pitch of the aft control fins.  H‐bridge amplifying circuits were developed for each Arduino microcontroller since the actuators required greater amperage than the Arduino F3 controllers could directly supply. One H‐bridge was made for each Arduino microcontroller. The H‐bridge amplifying unit, increases the amperage to each of the linear actuators in both circuit directions so amperage is increased in both the extending and retracting motion of the actuators. The two H‐bridges utilize the electrical supply from the boat’s batteries to amplify the power supplied to the actuators from the Arduino microcontrollers.  The H‐bridge units are the white breadboard units seen in Figure 18.  The controller required assembly and strategic soldering as all original parts were separate. The fully assembled IMU with Arduino Uno v1.0 and Adafruit Data Logger for the scaled model testing, discussed in section 5, is shown in Figure 16. The waterproof electronics and control unit for the pitch and depth control is shown in Figures 17 and 18.  

Page 27: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

27

Figure 16: IMU for Testing with Data Logger

Figure 17: Watertight Electronics Unit

Figure 18: View within Electronics Unit

4.6.2.  Depth Control Depth is measured by a pressure transducer Keller Acculevel Water Level Transducer that measures sea pressure and converts it into a linear electrical output. This signal is sent to one of the onboard Arduino unit which is able to analyze the actual submersible’s depth vs. a desired depth by reading the voltage output of the pressure transducer. If the sub is too deep, then the forward fins are adjusted to a positive angle of attack, and if the sub is not deep enough, then the forward fins are adjusted to a negative angle of attack. This is a linear relation and the angle of attack is proportional to the variance from desired depth to actual depth. Once the desired depth is reached, the depth is maintained through this control scheme by constantly correlating pitch angles of the forward fins to the slight 

Page 28: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

28

variation in depth. When the actual depth and the depth preset are the same, the forward fin angle of attack is zero.  As mentioned in section 4.6.1, the desired depth is preset through the Arduino’s code, which may be adjusted if necessary. A preset of 6 feet was used for the control system for the final sub. Section 4.6.3 describes with deeper detail the effect of pitch and depth from each forward and aft set of control fins.   The pressure transducer was calibrated from a depth range from 0 to 10 feet of pool water in the Wallace Pool at UMaine. Three runs were used to gather data with these depth ranges, which the submersible will operate within. It was found after analyzing the runs that the root mean square (R^2) value was equal to 1. This indicates that the pressure transducer selected for this project is highly accurate and precise, having negligible output deviations from its readings.   

Table 1 Calibration Data for Keller Acculevel Pressure Transducer

Depth (ft) Run 1 Run 2 Run 3 Average

0 0 0 0 0

1 0.825 0.87 0.87 0.855

2 1.55 1.58 1.59 1.5733

3 2.23 2.27 2.27 2.2566

4 3.025 2.98 2.96 2.9883

5 3.67 3.67 3.68 3.6733

6 4.35 4.39 4.37 4.37

7 5.02 5.07 5.06 5.05

8 5.7 5.78 5.79 5.7566

9 6.52 6.49 6.48 6.4966

10 7.16 7.19 7.17 7.1733 Given as Figure 19is the calibration curve for the averaged values taken between the three runs when taking data from the Acculevel pressure transducer. A polynomial equation with a fit accuracy to the 6th power was used, and the root mean square value returned through Excel was that of 1. From this calibration, it is apparent that the pressure transducer will yield accurate and precise depth measurements for the depth control readings to an Arduino microcontroller.  

Page 29: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

29

Figure 19: Calibration Curve for Pressure Transducer

4.6.3.  Pitch Control  The submersible’s pitch is affected by both the forward and aft set of control fins. There will be inherent secondary pitching effects when depth is corrected for, and so the aft fins must always work together with the forward fins when depth is corrected for. As mentioned in section 4.6.1, an IMU in conjunction with an Arduino microcontroller and H‐bridge amplifier controls the actuator for the aft set of control fins. An aft fin angle of attack is adjusted in direct correlation to the submersible’s body pitch.  A control theory has been outlined for the forward and aft fin control with respect to the effect of pitch on the submersible. Lift forces and pitch torques are a function of fin angle of attack, given as Equations 1a through Equations 2b on the following pages. These equations assume that the forward fins move together, that the aft fins move together, and that the forward fins are independent of the aft fins. Phasing effects—the effect of pitch, roll, and yaw, from a pair of fins working against each other— are also included into these equations when these equations are simulated in MATLAB. The equations take into account the center of buoyancy location about the submarine, which is the free rotation point about the submarine’s body.   As shown in the equations outlined on the following pages, there is no lift or applied moment onto the submersible when the absolute angle of attack of the fins is zero. This is desirable such that no change in angle of attack of the fins is required when the submersible is at a constant depth and zero‐body pitch. When the fins are held stationary relative to the sub and the relative velocity of the oncoming seawater is not zero, a righting moment results that will bring the sub back into its set pitch. The submersible is a statically stable control platform for these reasons.   

y = 0.0004x6 ‐ 0.0085x5 + 0.0722x4 ‐ 0.2953x3 + 0.6111x2

+ 0.8159x + 0.0006R² = 1

0

2

4

6

8

10

12

0 2 4 6 8

Test Depth (Feet)

Output Voltage (Volts)

Pressure Transducer Calibration

Average

Poly. (Average)

Page 30: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

30

Figure 20: Free Body Diagram of Submersible.

1

2 Vrel

2 CL S

1

2 Vrel

2 CD S

Euler's Equations of 3-Degree of Freedom Rotational Motion:

= EQUATION 1A

H =

: External Torques

: Rotational Rates

: Angular Momentum Vector

Equation 1a reduces to Equation 1b below.

= EQUATION 1B

This equation is used to relate external moments to the angular rotational rate for the body axis of the submersible.

Dynamic Forces and Torques:

Lift = Lift applied from a single fin.

Drag = Drag resulted from a single fin.

M

I w w

H

Iw

M

w

H

Mx Ix wx Iz Iy wz wy

Page 31: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

31

=

=

=

 It is apparent after analyzing Equations 2a and 2b above that the forward fins due to their location with respect to the center of buoyancy have a much greater influence to depth control than do the aft fins, and that the aft fins have a much greater control over pitch than do the forward fins. Examples of this are airplanes and naval submarines, which control pitch in a similar manner to this project’s submersible.   Figure 21 is a SolidWorks 2011 computational fluid dynamics (CFD) simulation of steady flow with an initial velocity of 5.5 knots over the submersible. Ambient pressure was given at 15 pounds force per square foot absolute (psia) and at 60 degrees Fahrenheit. From this diagram, it is apparent that flow separates from the submersible before the tail cone section, and that the incoming flow over the Simrad is accelerated. The flow over the control surfaces however are not accelerated as much, and at the zero‐degree configuration shown, separation is minimal.  

Figure 21: 3D CFD Approximation of Flow around Submersible.

MT Mcgt Mcgw

Mcgt Lt cos wb lt Lt sin wb tt Dt sin wb lt Dt cos wb Zt MACt

Mcgw MACw Lw Dw w h c hACw c Lw w Dw z c

MACw0 MACt0 0

Pitch Moment = Pitch moment onto submersible from single fin.

Total Moment about the Center of buoyancy:

Resultant moment from forward and tail fins.

EQUATION 2a (above) above is contribution from tail fins

EQUATION 2b (above) above is contribution from forward fins It may be noted that since the fins have their chord line coincident to their mean camber line, the lift force and roll torques are zero when the absolute angle of attack is zero. This gives pitch-axis stability when both forward and aft sets of fins have a zero absolute angle of attack.

1

2 V

2 Cm S c

Page 32: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

32

4.7   Towing Apparatus 

4.7.1  Tow Boom Design The design of a tow boom was necessary to pull the submersible alongside the research boat as there was no available means to tow a submersible given the design characteristics of the submersible with relation to Garrett’s and Dr. Zydlewski’s research boat. The boom design took advantage of a structurally built‐up gunwale on the starboard side of the boat so that operation of the submersible will not interfere with other existing stationary acoustic transducer units. A boom off the starboard gunwale of the research vessel made it possible to lift and lower the sub from the water with a winch while standing on the boat’s deck. The tow boom assembly is designed to be serviceable and thus is able to be removed from the gunwale by removing the bolts which secure it.  The design of the boom is a strength, size, and orientation issue since part of the boom is required to penetrate the waters’ surface to tow the sub, it must fit given the gunwale configuration, and it must be able to configure itself so that may be retracted out of the water. By submerging the tow point to the submersible, this eliminates much of the stresses on the towing and electrical lines and reduces any induced oscillatory force from the tow line to the submersible, which will help maintain steady control of the sub. This also allows for direct underwater connection between the boom and the submersible, which also increases the body‐pitch stability of the sub and the pitch orientation recovery from the pitch control system. However, by submerging a significant portion of the tow boom, large drag forces resulting onto the tow boom will give high loading stresses on the boom. Because of this, the tow boom mount was reinforced with numerous stainless steel box tubes welded together and onto half‐inch thick stainless steel flat stock. All boom components were made of stainless 304 and 316 steel components TIG welded together. The selection of 304 and 316 steels is to help reduce corrosion on these components.   The tow boom as shown Figure 22 can only be loaded on a single surface on the research vessel so bolts through the gunwale will have a combined loading of bending and shear. All loads onto the tow boom, with the exception of a weight force, will transmit the gunwale through these bolts. To address this, the load is distributed over a wider area and numerous bolts are used to give additional strength to the tow boom mount. Gussets are placed to reinforce the loads in the directions shown in Figure 25.   The reaction force on the boom from the net drag on the submersible is supported via the locking bar member shown in Figure 22 in light blue and given in an FEA analysis in Figure 26. Due to the planar attachment limitation, moments and lateral forces exert a higher stress on the boom apparatus than the linear drag reaction force. This is unavoidable but is addressed as shown in Figure 25. 

Page 33: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

33

Figure 22: Representation of Towing Configuration and Tow Boom

4.7.2  Boom Configurations The tow boom operates in two positions: locked shut and locked open. In the locked shut position, the boom is tucked towards the boat and pinned securely in place by a stainless steel 2” box tube locking bar. A hand‐winch is used to pull the boom arm out of the water and hold it alongside the boat. A reinforced winch mount is cantilevered from the starboard gunwale behind the boom arm mount with sufficient distance so that the boom arm and winch will not collide. This configuration allows for a compact design when the boom is not in use.   In the locked open position, the boom extends forward of its mounts and the support arm slides forward into another locking position. There are locking bars both forward and aft of the boom arm which keeps the arm from moving around. See Figures 23 and 24 for a diagram of the locked shut and locked open positions. 

 

Gunwale

Tow Boom Retractable Arm

Submersible

Boom Mount

Winch Mount

Stainless Steel Cord

Page 34: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

34

Figure 23: Tow Boom in Extended Configuration.

Figure 24: Tow Boom in Retracted Configuration.

Page 35: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

35

4.7.3  Platform & Mount Design The tow boom assembly shown in Figure 22 indicates the anchor plate and mount that the boom arm and gunwale connect to. In this figure, the light‐green colored pieces represent the tow boom mount with its anchor plate. An analysis of these components is necessary to illustrate the force and moment resultants onto the gunwale and subplate as a result of towing the submersible while underway. See Figure 25 for a free body diagram of the complete tow boom assembly.  Note the force from the towline onto the boom arm is three‐dimensional. This is due to the realistic sense that the submersible will not ideally be towed in a linear direction, in the –Y direction relative to the coordinate system of Figure 13. Because of this, three‐dimensional force resultants occur on the boom mount, with moments in the XZ, XY, YY, and XX planes. Moments about the XX and YY axes represent twisting torques about that axis, respectively. This may be visualized as a shaft under twisting. Moments about XZ and XY represent bending torques about the respective axes; this may be visualized as a beam in bending. 

Figure 25: Free Body Diagram of Tow Boom.

Page 36: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

36

The following figures, Figures 26, 27, and 29 are FEA analyses of several of the boom components.

Figure 26: FEA Analysis of Boom Locking Bar.

From this analysis, it was found that this locking bar under a loading in a 2” x 2” square section representing the drag force exerted by the submersible and tow boom arm of 1000 pounds force has a factor of safety of 2.9.  

Figure 27: FEA Analysis of Boom.

 

Page 37: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

37

From the FEA analysis in Figure 27 with a total force exerted on the front surface of the tow boom arm of 1000 pounds has a factor of safety of 5.6.  

Figure 28: FEA Analysis of Hinge Bracket.

From this analysis with weight force of 80 pounds and a force from the sub and boom arm drag of 1000 pounds yields a factor of safety of 5.8.   These FEA analysis of the tow boom were ran with the conditions of a speed through the seawater at 6 knots, with an estimated coefficient of drag for both the submersible and tow boom of 1.5, and with an approximate frontal area of the submarine of 3.9 ft^2 and a wetted frontal area of the boom arm of 1.0 ft^2. It was found that the drag from the submersible was roughly 600 pounds force, and the drag from the boom arm was roughly 400 pounds force. The combined drag loading of 1000 pounds was then placed onto these components during these simulations.  

Page 38: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

38

5. Scaled Model Stability Testing 

5.1  Abstract The scaled model testing was performed to determine an appropriate length to diameter ratio (L/D) for the submersible. The final full‐scale sub must be stable to help ensure the best data possible is obtained from the Simrad by maintaining a stable orientation as it is towed through the water. Size is the limiting factor for the length‐to‐diameter design of the submersible’s hull, so the shortest hull possible which still yields acceptable dynamic stability is desired. This stability testing will determine the minimum ratio possible.  Two length‐to‐diameter ratios were chosen to test their body‐axis pitch performance.  According to submarine literature and common practice a length to diameter ration of 6:1 is dynamically stable and yields the best performance characteristics of any range of lengths and diameters, thus one of the test models has this ratio. In an attempt to save physical space on the research boat’s deck, the other model was made with a shorter length to diameter ratio, set at 4:1 to compare the dynamic stability differences.    Both scaled models were towed by an automated trolley through freshwater in a test tank, with an inertial measurement unit used to measure the body pitch and body pitch rate of each model during the tests. Visual inspection, including still photos and video recordings, were also used as observational data. Secondary objectives for these tests included observation to see if the hull design is feasible and if the chosen attachment point for the tow cable is at the optimal location. Upon completion and analysis from testing, construction of the full‐scale model to the appropriate L/D ratio began.    In summary, the objectives of this experiment are to compare the stability about the body‐pitching motion of several scaled models of submersible. A longer scaled model with a length to diameter ratio of 6:1 is compared to a shorter model with a ratio of 4:1. Stability will be compared by measuring the body pitch and body pitch rate between the two models.  

5.3  Theory The two scaled models were designed to be tested at the University of Maine Tow Tank to determine the most stable hull length‐to‐diameter (L/D) ratio for the full‐scale submersible. Each of the test models has a different L/D ratio, with the same size control fins, nose cone, tail cone, with proportionally scaled topside fin and bottom structural supports. The test IMU & Data logger as described in Section 4.6.1 was hard mounted in an airtight PVC container within the test model’s PVC hull. This will allow data to be collected as the scaled models are towed in the tow tank at a constant speed.  The body‐axis pitch and pitch rates are able to be measured and written to an SD card for analysis from these tests. Once the data is analyzed and compared to one another from the tests done for each model, an optimal length to diameter ratio will be apparent between the two models. It is expected that the hull with the larger L/D ratio of 6:1 will be more stable. However, these tests determine if it is possible to use a shorter hull to save space and weight for 

Page 39: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

39

the full‐scale submersible. A smaller full‐scale submersible will be easier for the researchers to handle and load onto and off the towing boat, as well as take up less space onboard the boat.  The nose & tail cones and control fins for the scaled models are the same size, since they are sized up for loading requirements for the full‐scale submersible. These structures are at a 1/3 scale to that of the full‐sized sub for the test models. The full‐scale submersible’s fins, nose cone, and tail cone have been determined regardless of hull length since these structure’s dimensions are more dependent on hull diameter. Thus, the tow tests will further show the relationship between hull length and stability as this also simplifies the testing experiment since the control surfaces are the same size for each model.  As either scaled model is towed underwater in the UMaine Tow Tank, forces will result onto the submersible in three degrees of freedom. These forces are a result of the towing force, which is not in plane with any control surface of the sub, and various hydrodynamic forces. Trailing vortices and non‐stable flow patterns around the sub will alter the sub’s pitch, roll, and yaw. It is then crucial that the correct sizes of the hull and control surfaces are selected so that these inherent forces and torques are minimized. Comparing the two scaled model sizes will show which (L/D) ratio has the least induced forces and torques; the model with the greatest dynamic stability will have the lower induced forces and torques onto its body.  

5.4  Procedure & Construction Methods The scaled models were constructed using a combination of PVC and fiberglass composites. For the straight hull section as well as the bottom support tubes PVC was used. The nose cone, tail cone, top fin, and side fins were made of fiberglass‐wrapped Styrofoam sections. The forward and aft model control fins were bolted into the PVC hull when the top fin was hot glued and fiberglassed onto the PVC outer surface. For both scaled models, their nose cones were fiberglassed permanently in place and only a single tail cone was built so that the watertight IMU housing capsule could be removed and installed from one scaled model to another prior to testing. The tail cone was bolted in place and both nose and tail cones were capable of free‐flooding during testing.  

Page 40: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

40

Figure 29: Construction of Scaled Models.

The IMU housing was a watertight PVC capsule made from 4 inch diameter tubing with threaded end caps. The Arduino & IMU combination was securely mounted within this capsule from a series of plastic sheet stock mounts that were epoxied in place. The Arduino & IMU was bolted on a plastic sheet that was able to securely slide into place within the PVC capsule. Sufficient room existed within the capsule to allow for a batter pack, the entire Arduino & IMU arrangement, and counterweight ballasting reducing the capsule’s positive buoyancy. See Figure 31 for the IMU capsule enclosed, and Figure 30 of the IMU capsule with one end open. 

Figure 30: View within IMU Capsule (end cap removed).

Page 41: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

41

Figure 31: Watertight IMU Capsule

5.5  Instrumentation In summary, the instrumentation required for the scaled model testing experiment consists of the items bulleted below. The IMU measures the pitch angle of the unit being towed. The LabVIEW software controls the velocity and total distance that the towing trolley travels.  

5DOF Inertial measurement unit (IMU) 

Tow tank & trolley at the UMaine Aquatics Research Lab 

Laptop with LabVIEW software.   

5.6  Equipment For the scaled model hydrodynamics and body‐pitch attitude experiment, the following materials were needed:   PVC: 

One pipe (10 foot sections)  6 inch diameter  4 inch diameter  1.5 inch diameter 

Four 4 inch diameter pipe end caps 

One 1ft x 1 ft flat stock 

Primer and cement   

Foam: 

One 4 ft x 8 ft sheet insulating foam board   

Page 42: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

42

Electrical:  Arduino Uno  Data Logger Shield  ADXL350/IMU500  Two rechargeable battery packs  Battery charger  Power cord for Arduino Uno  Two SD memory cards  

Fiberglassing Components & Tools:  Chopped strand matting  Medium weight and fine weight woven fabric  Epoxy resin and hardener  Paint brushes  Cups  Acetone 

 Other:  Sandpaper  High tensile strength string  Two U‐bolts  Carabineer clip 

     

5.7  Test Apparatus The two scaled models were attached to a boom off the trolley that is submersed in the water forward of the towing platform. The trolley boom moves with the trolley linearly with no lateral slip. This represents the full‐scale submersible towed from the boom by the research boat.   The trolley is controlled by a laptop running LabVIEW so the speed can be preset by the user. The models will be towed by the trolley with the IMU resiliently secured inside each model. As mentioned previously, the IMU will measure the pitch and pitch rate as the model is being towed. The IMU is housed inside a waterproof PVC encasement that is located inside the linear PVC portion of the model’s hull. The models will be towed at various speeds to see how they move through the water through control of the laptop with the LabVIEW software.    The two key components of this scaled model experiment are the IMU and the UMaine tow tank. The IMU was assembled and programmed and the final product is shown in Figure 32.   

Page 43: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

43

Figure 32: IMU Final Assembly for Testing

The red board labeled A in Figure 32 is the IMU itself, which uses two gyroscopes and three accelerometers to measure its orientation in three‐dimensional space. Note that only a single accelerometer was used to measure pitch for this experiment. Port B labeled in Figure 32 is an I/O port through which the Arduino chip on the bottommost board was programmed. Callout C is an SD memory card that is used to write and store data on during use and to transfer the matrix data to a computer. Port D is the power source plug for remote use such as a battery pack for testing.    The following Figures, Figures 33 through 36 shows the tow tank apparatus and the equipment used during these scaled model tests.  

D: Power Plug

B: I/O Port

C: SD Memory Card A: IMU

Page 44: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

44

Figure 33: Tow Tank and Trolley Apparatus

Callout A in Figure 33 points to the slide rails that the trolley rolls on as it tows the scaled models. Callout B is the submersed tow tank boom that will point to attach towlines to the models during testing. High tensile strength string connects the end of the wetted part of the tow tank boom (B) to the subject model that is being tested. Control boxes labeled C contain the computer system that operates the trolley. The control boxes (C) analyze the input signal from the laptop with LabVIEW shown in Figure 34 below.  

Figure 34: Laptop Controller running LabVIEW for Tow Tank.

A: Side Rails

C: Control Box

B: Tow Tank boom

Page 45: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

45

Figure 35: Viewing Window in Tow Tank.

Figure 35is an image of the viewing window installed in the tank. This viewing window was used for visual inspection and video recording while running the six scaled model tests. The window is roughly halfway lengthwise along the tow tank and is near the computer operator for convenience. 

5.8  Expected Results The IMU records the body pitch and pitch rate as time goes on, and from this a graph can be made that will trace the pitch of the unit as the trial is run over a recorded time lapse. These graphs were expected to show an increase in pitch at the start of the test because we expected the unit to tilt up as it lifted off the bottom of the tank. After that moment it is expected that the unit will stabilize and reach a near‐zero pitch during most of the test run. When the trolley stops at the end of the test run, it is expected that a negative pitch will be observed for when the unit dives back to the bottom.    The visual inspection technique gives attention to yaw oscillations, body vibrations not otherwise recordable, roll oscillations, and any other unusual motions as the trial is run. It is expected that the model with the 4:1 L/D ratio will appear less stable and have more vibrations than the model with the 6:1 L/D ratio. The shorter model inherently may be more easily destabilized according to submarine literature than the longer model and thus these results were expected.   

5.9  Uncertainty of Results The uncertainty of this set‐up is not known or determinable therefore it will be assumed that the data is accurate to within 2 degrees given the configuration of the IMU, from the calibration results of the IMU used for testing. 

Page 46: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

46

The IMU & Arduino together was programmed with parameters that may be changed to calibrate the pitch angle reading. Prior to running the scaled model testing, the IMU was calibrated to read zero degrees of pitch when at zero degrees with respect to a level table surface. It was similarly calibrated to read positive and negative 45 degrees of pitch while at those respective angles. Other values in the range of 45 to 90 degrees positive or negative pitch are assumed to have the same pitch angle error as angles between 0 and 45 degrees when calibrated at positive 45 degrees. This assumption holds since those two ranges have the same pitch tolerance and deviation from the calibrated 45‐degree preset.   This theory for pitch angle accuracy was tested by calibrating the IMU for 90 degrees and testing it at 45 degrees and 0 degrees. When this was done the IMU read the 90‐degree pitch as 90 degrees, 45‐degree pitch as 43 degrees, and 0‐degree pitch as ‐4 degrees. It is assumed that the error will be less when calibrated at 45 degrees since if the error at the midpoint between zero and 90 degrees is off by two degrees then the error at the midpoint between zero and 45 degrees will be roughly half of that. This was tested and verified, with a maximum pitch angle error of 2 degrees at either 90 or 0 degrees from ground with a calibration pitch angle of 45 degrees. This scheme was used for the scaled model testing. 

5.10  Results and Discussion Numerous tests were conducted for both the long and short models, but only two runs for the short model and only four runs for the long model obtained measurable data. Both models have a diameter half the size of the full‐scale submersible, but with varying lengths. As mentioned in previous sections, this is done to determine an appropriate length to diameter ratio (L/D) for the full‐scale submersible. These test runs were run from trolley speeds from 0 to 4 feet per second. The research boats operational speeds during data collection will vary from 0 to 6 knots. The unit conversion from knots to feet per second is that 1 knot equals 1.69 feet per second. It is notable then that the trolley cannot reach the full‐scale submersible’s operational speed.  The short model has an L/D of 4:1 when the long model has an L/D of 6:1. From these tests it is apparent the longer L/D of 6:1 is much more stable than the 4:1 variant, as was expected. Figures 9 through 14 show the results of the test runs with the scaled models in the Tow Tank. Each run has a varying time lapse that does not correlate to the speed of the run since the total distance traveled is arbitrary and varied with each run. Limitations on the tow rail, and the reorientation of the scaled model when being turned around shortened the usable length of the tow tank.  The short‐scaled model test results, Figures 38 and 39, have greatly varying pitch attitudes and pitch rates. This is because of the inherent instability with the short length to diameter scale and a high percentage of control surface wetted area with respect to the total wetted area of the scaled model. An optimum control surface area is closer to that with the longer model. The short models on both test runs were towed in a “snake‐like” manner—swerving from side to side rather than pulled forward linearly. One the short model test run at 2 feet per second 

Page 47: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

47

speeds Figure 38, the model rolled 180 degrees so that the bottom of the model faced upwards which is not acceptable. On no other test run, long model or short model, did this happen.  The long scaled model test results Figures 40 through 43, show much less variation with pitch and pitch rate as compared to the shorter scaled model. As mentioned previously, this is due to a longer length to diameter ratio and a smaller percentage of wetted control surface area. At the end of each of the four test runs for the long model, it may be noted that the model dives down with negative pitch before it lands on the tow tank test bed. From these runs it was apparent that the pitch is proportional to the speed that the model was moving through the water with its ballast configuration. At the beginning of the run with a jolt from the towing rig, the model pitched up aggressively and then maintained a small positive pitch that it oscillated about until the end of the run. These sudden impulses force the towed body to pitch upwards; these forces were the result of the motor device pulling the trolley which was unable to operate at a constant speed. These oscillations are able to be reduced with an active control system on the full‐sized submersible.  The tow tank does not pull at a constant force which is shown on the scaled model tests, Figures 38 through 43, induces a pitch reorientation which increases the pitch of the model. After this occurs, the model pitches downward to a more stable orientation as it’s towed. This recurrent motion accounts for the large oscillations seen on these figures. Smaller oscillations are due to shedding vortices, turbulent flow, and slight misalignments of the fins.  Figures 36 and 37 on the following page are images of the tow tank scaled model testing; both images are prior to the tests and are during the purging process to remove all entrained air within the towed body.    

Page 48: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

48

Figure 36: Short Scaled Model in Tow Tank, Submerged before Tests. 

 

Figure 37: Long Scaled Model in Tow Tank, Submerged before Tests.

.

Page 49: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

49

Figure 38: Pitch Data from Short Model at a 2 ft/sec Test.

‐60

‐40

‐20

0

20

40

60

80

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50

Pitch Rate (Deg/Sec)

Pitch (Degrees)

Time Lapse (ΔT

Short Model Stability Test , 2 ft/secTowed Acoustic Transducer Project

2/6/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 50: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

50

Figure 39: Pitch Data from Short Model at a 3 ft/sec Test.

‐80

‐60

‐40

‐20

0

20

40

60

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25

Pitch Rate (Degrees/Sec)

Pitch (Degrees)

Time Lapse (ΔT

Short Model Stability Test , 3 ft/secTowed Acoustic Transducer Project

2/6/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 51: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

51

Figure 40: Pitch Data from Long Model at a 4 ft/sec Test.

‐40

‐30

‐20

‐10

0

10

20

30

40

‐30

‐20

‐10

0

10

20

30

40

0 5 10 15 20 25 30

Pitch Rate (Deg/Sec)

Body Pitch (Degrees)

Time Lapse (ΔT)

Long Model Stability Test , 4 ft/secTowed Acoustic Transducer Project

2/7/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 52: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

52

Figure 41: Pitch Data from Long Model at a 3.75 ft/sec Test.

‐40

‐30

‐20

‐10

0

10

20

30

40

‐40

‐30

‐20

‐10

0

10

20

30

40

50

0 5 10 15 20 25 30

Pitch Rate (Deg/Sec)

Body Pitch (Degrees)

Time Lapse (ΔT)

Long Model Stability Test , 3.75 ft/secTowed Acoustic Transducer Project

2/7/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 53: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

53

Figure 42: Pitch Data from Long Model at a 3.5 ft/sec Test.

‐40

‐30

‐20

‐10

0

10

20

30

40

‐40

‐30

‐20

‐10

0

10

20

30

40

0 5 10 15 20 25

Pitch Rate (Deg/Sec)

Body Pitch (Degrees)

Time Lapse (ΔT)

Long Model Stability Test , 3.5 ft/secTowed Acoustic Transducer Project

2/7/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 54: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

54

Figure 43: Pitch Data from Long Model at a 3.25 ft/sec Test.

‐40

‐30

‐20

‐10

0

10

20

30

40

‐40

‐30

‐20

‐10

0

10

20

30

40

0 5 10 15 20 25

Pitch Rate (Deg/Sec)

Body Pitch (Degrees)

Time Lapse (ΔT)

Long Model Stability Test , 3.25 ft/secTowed Acoustic Transducer Project

2/7/2012

at the UMaine Aquatics Research Lab

Body Pitch

Pitch Rate

Page 55: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

55

5.11  Conclusion of Results These scaled model tests yielded conclusive data that indicates with both visual inspection and the Figures 38 through 43 that the long model with a length to diameter ratio of 6 to 1 is more dynamically stable. This is the scale that the final submersible is to be built off of. All internal components and control surfaces are sized up from this 6:1 length to diameter ratio hull. A hull diameter of 12 inches, as discussed in section 4.3 is optimal, and thus a length of 60 inches, or 6 feet, will be the length of the full‐sized submersible. 

6. Final Construction & Assembly 

6.1  Construction of Submersible 

6.1.1  Overview The construction techniques of the full‐sized submersible mirrored in many respects the construction techniques implemented on the scaled models. Fabrication of the scaled models either confirmed or denied that the methodologies used to fabricate the fiberglass components and watertight housing would work. Those techniques that were easy to accomplish were rolled over to the full‐sized submersible.  The submersible was assembled in modular pieces and internal components were able to slide into the hull and be bolted in. This methodology allowed for easily assembling the submersible. The nose and tail cones on the final submersible are made from glass/epoxy fiberglass made around a foam core like those of the scaled models. The same materials apply for the topside fin, the structural support tubes, and the main PVC hull section. Variation between the scaled models and the final submersible include the control fins, internal components within the hull, the Simrad enclosure, cabling, and tow boom mounts and hoisting arrangement. The construction of the tow boom paralleled construction with the submersible as the tow boom and submersible didn’t share any manufacturing processes. Welding and steel work would be accomplished at the same time as fiber glassing and molding various submersible parts.  

Figure 44: Final Assembly of Submersible

Page 56: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

56

6.1.2  Fabrication of Control Fins The four control fins are all made from the same material and manufacturing mold technique. Fiber‐reinforced Bondo was used with a steel plate insert in the casting mold shown in Figures 45 and 46. The steel insert had holes drilled in it to allow for better adhesion from one surface of the fin to the other when the Bondo cured. Wooden clamps held two sheets of carved foam which inside had a mold for each of the fins; the foam was scrapped after each fin was made, but the wooden clamps were reused. 

Figure 45: Mold for Control Fins

Figure 46: Control Fin Removed from Mold

When the fins came out of their molds, any high spots were sanded down and low spots were filled with additional fiber‐reinforced Bondo. To achieve a final smooth surface, an epoxy was laid over the fin and sanded with 320 grit sandpaper. This allowed for a hard, durable, and smooth surface finish.  

6.1.3  Construction of Control Linkages & Actuator Mounts All actuator links and the actuator itself consisted of stainless steel. This allowed for corrosion resistance, and on top of this the actuator’s steel shell was covered with a thick layer of epoxy to seal any small holes and help keep the sealing surfaces from corroding or allowing seawater to enter. The actuators were rated at an IP‐67 rating, however this process further guarantees water‐tightness.  The actuator linkages run from the actuator with a rubber boot to maintain air tightness around the piston end of the actuator and also help this region from seizing from corrosion. The units were assembled outside of the sub and each set of actuators were attached one at a time into the hull via a bolt with a cotter pin to a mounting plate with a female clevis. The shaft coupling end was then held and the half shafts from the control fins were slid into place and tightened with an Allen key. Electrical connection was achieved when the waterproof electronics box was installed and leads were connected to one another.   The following two images, Figures 47 and 48,  are the actuator and linkages out of the sub’s hull, and the actuator and linkages assembled within the hull. 

Page 57: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

57

Figure 47: Assembly of Actuator & Linkages

Figure 48: Installation of Actuators & Linkages

Page 58: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

58

6.1.3  Fabrication of Topside Fin The topside fin was fabricated from 8 layers of lightweight fiberglass woven over a foam mold on the hull on top of several layers of a releasing material so the mold could be removed after it cured. When the fiberglass cured, the foam mold was removed and edges around the fin were trimmed so approximately 3 inches from the top fin to the edge of the cast existed to allow for room to bolt to the PVC hull.  A final layer of epoxy was laid over the fiberglass fin to give a smoother and harder surface finish. Fiber‐reinforced bono was used in several places to fill in low‐sides before the epoxy was laid. Four bolts, two on each side of the fin cast, secure it to the hull. This bolting arrangement can be seen in Figure 49, when two are shown on the starboard side of the sub in the figure.  

Figure 49: Top fin Cast over Hull

This technique proved to be the easiest of those attempted to fabricate a top fin. The gap between the PVC hull and the lip where the bolts were placed on either side of the hull proved to be negligible once the bolts were secured.   

6.1.4  Fabrication of Hull, Simrad Housing, & Structural Tubes The PVC section of the hull was cut to length using a horizontal band saw and all holes with the exception of the hole cut for the Simrad housing was done using a hand drill. The hole cut for the Simrad housing was done using a large enough hole saw, which was ordered for this project and placed in storage in Crosby Lab. The exterior surface of the hull was sanded to remove the surface from imperfections and dirt.   The Simrad housing and face rind were machined from 6” nylon round stock on a horizontal lathe. The cooling holes on the side of the Simrad housing were dremelled to the correct size. Countersunk bores were drilled on the face ring for the 3/8” nickel‐plated socket head cap screws which will lock the face ring to the housing. The housing was secured to the hull using marine epoxy and three PVC brackets machined from half‐inch flat stock. These brackets were also epoxied to the hull and Simrad housing.  The structural support tubes were cut to length and bolted onto the larger PVC hull. The front faces of the pipe were cut at a 60 degree angle with respect to the hull and rounded. PVC brackets machined from half‐inch flat stock were used, two on each side, to add additional strength to hold the tubes to the PVC hull. These were also epoxied onto the hull using a marine‐grade Loctite epoxy.  

Page 59: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

59

Figure 50: Installation of Structural Tubes onto Hull

6.1.5  Fabrication of Nose & Tail Cones The nose and tail cones were each fabricated from 16 layers of fiberglass consisting of 14 layers of lightweight E‐glass fiberglass, with two layers of chop‐strand fiber mat. All layers, with the exception of the chop‐strand mat were bidirectional layers. The 14 layers of the bidirectional plies were oriented at alternating  0,45  orientations since some of the ply had to be trimmed so that no excessive overlap occurred as it was laid over the round Styrofoam mold.   The Styrofoam molds where made by sandwiching multiple layers of Styrofoam on another and securing it onto a horizontal lathe and sand down as the foam plug is spun. A steel insert was placed into the foam to allow it to be turned down on a lathe. The lathe allowed for concentric sanding and easily achieved a smooth surface finish with the correct geometrical dimensions.   Once the fiberglass layers cured, the foam was removed and any high spots were sanded down off the fiberglass. Due to the way the fiberglass layers were laid over the foam, a round edge existed between the PVC hull and either the nose or tail cone. To correct this, a thick layer of fiber‐reinforced Bondo was laid in this gap and then sanded down to fill in the round edge. Once removed and further sanded, the edge on either the nose cone or tail cone closely matched the edge of the hull.   Both the nose and tail cones were secured to the hull by drilling holes through the PVC and fiberglass and placing machined locking nuts on the interior surface of the nose/tail cone. These locking nuts were epoxied in place which holds the bolt as it is tightened locking the nose/tail cone to the hull. This was done since it would not be possible for a person to hold the nut in place as either the nose or tail cone is installed. The next three figures, Figures 51, 52, and 53, show the end result and process of the fabrication of the nose and tail cones. 

Page 60: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

60

Figure 51: Styrofoam Layup for Tail Cone

Figure 52: Final Fabrication & Painting of Tail Cone

Figure 53: Final Fabrication & Painting of Nose Cone.

Page 61: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

61

6.2  Construction of Tow Boom 

6.2.1  Overview The tow boom, as described in section 4.7, is constructed of 304 and 316 stainless steel 1/8” flat stock, 1/2" flat stock, 2” solid round stock, and 2” square box tubing. These components were cut and drilled where necessary and welded in place using a TIG welder. Full length welds exist between all mating joints along the tow boom mount as shown in Figure 54. These weldments are at joints at 90‐degree banks, 270‐degree banks, 180‐degree butt joints, and full round welds at round stock or steel wire to flat stock.  Construction of the tow boom apparatus consists of three main pieces, the tow boom mount, the tow boom arm, and the winch mount. These are shown in Figures 54, 55, and 56 respectfully.  Each component in these figures are fully assembled and welded together.   The 1/2" thick flat stock is used as a subplate for the boom mount and the winch mount; this plate for both mounts have 1/2" holes drilled through them so they may be secured to the gunwale of the fishing boat. All boom components are welded to these stainless steel subplates.  

Figure 54: Assembly & Welding of Tow Boom Mount

Page 62: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

62

Figure 55: Welding and Assembly of Tow Boom Arm

Figure 56: Welding & Assembly of Winch Mount

Page 63: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

63

6.2.2  Pre­Delivery Assembly of Tow Boom The tow boom with its winch & winch mount were assembled and bolted through the headers of a short wall in the hydraulic & ocean engineering room in Crosby Lab. This was assembled at a 1:1 scale to the final configuration designed for use on the fishing boat, and walking within the room gave a representation of the tow boom at an ‘underwater’ perspective. The stainless steel tether cables were connected to the sub from the tow boom, and this represented the final assembly of both the submersible and the tow boom. See Figure 57for this configuration. 

Figure 57: Towing Apparatus with Sub

Motion testing of the tow boom’s arm was tested in this configuration to check for any interference issues. It was found from this brief motion testing that no issues resulted, and that the operation of pulling the boom arm with the winch was simple and easy. See Figure 58 for the assembly of the boom mount and boom arm. 

Figure 58: Assembly of Tow Boom Mount & Arm

Page 64: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

64

7.  Conclusion 

7.1  Summary A submersible with a Length‐to‐Diameter (L/D) ratio of 6:1 was found to be ideal in size and stability and thus was used as a design parameter for the final sub. The depth and pitch control schemes were found to work to a high degree of accuracy and precision, as both the pressure transducer and IMU were calibrated and tested.   We concluded that our tow boom design would not fail under the expect loading conditions being towed alongside a research boat, and that the operation of this boom once installed is as straightforward and easy as possible given our design constraints with the boat. This tow boom design required the least amount of joints to retract its towing arm when compared to other tow boom designs, and this overall design is the most compact form that is still able to retract and extend its arm.   The submersible was designed to correct for its pitch and depth using two separate Arduino Uno F3’s. Roll and yaw control were not integrated into the design of the submarine, as together that would dramatically increase the required size of the submarine to house the necessary actuators and would add an approximate $2000 to the project’s cost. It was found from scaled model testing that the pitch changes much more than the roll and yaw during linear towing, only the pitch was required to be automatically corrected for by the sub.   Final depth and body‐pitch testing of the submersible was not accomplished during the spring semester due to material acquisition issues and design requirement changes throughout the year. An operations manual was written to be supplied to the Marine Sciences Department’s tidal turbine research team for ease of use and installation of this project. It is strongly expected from the scaled model testing that the stability and control of this project’s submersible will be satisfactory.  

7.2  Delivery of Project & End­Use The Towed Acoustic Transducer Project will not be able to be delivered to the marine sciences research team until after May 13th, 2012 since Garrett Staines, one of the lead marine sciences research members involved in this project, is traveling for his work. We would like to give him in person the tow boom and sub as he was our direct marine sciences liaison for this project. For this reason, our team will not have product feedback until the beginning of the summer, and any design modifications will be done, if needed, in the following school years.  All components are ready to be delivered, including the necessary software to install the boom. Only brief assembly will be required at the Eastport, ME harbor on Dr. Gayle’s boat. The only modifications on her boat will be 10 bolt holes through the starboard gunwale. The entire project will be assembled in modular components, while the submersible will arrive fully assembled and ready for plug‐and‐play.  An installation, operation, and troubleshooting manual was delivered to Garret Staines and Dr. Gayle’s research team as a reference for the project’s use and to help guide them if an error occurs in the future when our original team is graduated and not readily available at UMaine to answer any questions. This manual is attached as an Appendix as Appendix H – Operations Manual.  

Page 65: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

65

8.  Recommendations for similar future projects 

8.1  General Recommendations This project started from the ground up, with vague and constantly changing design requirements. For this reason, our group had many design changes and design challenges. This applied for the operability of the sub, the position and orientation of the tow boom, and the operational requirements of both. Having known the finalized design goals needed by the Maine Tidal Power Initiative group earlier in the year, our project could have been completed sooner with less crunch‐time at the end of the year. It is then very important for any senior capstone project to finalize their designs as soon as possible. Our group was able to finish construction by the end of the school year and successfully completed a control system for the submarine given our time constraints however.   This project involved much work with composite materials, including fiberglass and fiber‐reinforced Bondo. The fabrication processes used to make the Bondo fins, fiberglass nose or tail cones, and fiberglass top fin took more time than anticipated and required several days from shaping Styrofoam plugs and prepping for layup. This is a very time‐consuming process, and is commonly a three person job when using mold‐less techniques. Our team recommends for future projects using mold‐less fiberglassing techniques to do this earlier in the year to allow for additional time for painting and project testing. A quick alternative to fiberglass is fiber‐reinforced Bondo, for small components only, since it cures in roughly 15 minutes and is easily sandable. This is what our team chose for the four control fins, which helped speed up the fabrication process.  For all senior design projects, it is always important to keep motivated and diligent throughout the year even if project completeness seems questionable. At the beginning of the 2012 spring semester, our project was flooded with work and it seemed impossible to complete it on time. We however achieved this, given our time commitment. We recommend sticking to‐the‐grindstone regardless of the project’s course as it has a chance to pay off. To fix this, early project role designations among members and a better understanding of planning throughout the year is needed.  

8.2  Recommendations for Future Towed Body Projects Working with a project subjected to a seawater environment requires the use of the best materials to resist corrosion. Stainless steels, nickel or copper plated steels, and Ni‐Cu components were used throughout this project. Because of this, the overall cost of the project rose significantly, and many components rose in price five‐fold, such as Ni‐plated stainless steel bolts. Any project subjected to seawater will need to budget for these corrosion‐limiting materials. A quick solution to use cheaper materials however is to line the metal with an epoxy and paint over the epoxy; as long as the epoxy lining is not scratched off, the material will hold to corrosion. For moving parts however, this is not ideal, and so the material must still be corrosion resistant. For these reasons our team recommends future projects to design components to these specifications as it will greatly increase the lifespan of their project.   For a future towed body project similar to this year’s or to replace it, several different designs should be considered regarding the tow boom and submersible. Our team did not consider a mount at the end of the tow boom with an active dampening system for the Simrad acoustic transducer, and did not consider a non‐ellipsoid shaped hull for the submersible. Both of these designs should be considered if in the future a similar towed body project is pursued. Our team feels that either of these designs 

Page 66: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

66

could expedite the fabrication processes and save overall project spending.   The submersible’s hull could also be reconfigured to allow for a greater hydrodynamics, by eliminating the two bottom structural tubes used for placing the sub on a deck, and adding a symmetrical fin on the bottom‐side of the sub with respect to the topside fin. This adds additional volume for ballasting configurations and will further reduce anti‐symmetric disturbance torques that will yaw, pitch, and roll the sub. By doing this, design considerations will be needed to place the Simrad in an orientation where it has no chance of being damaged or scratched when the sub is placed on a deck out of the water.   Our team recommends keeping the body of the sub, but altering the internal configuration of the linear actuators and electronics unit so that the control fins may correct for rolling effects. This will be a roughly $1100 endeavor, but doing this and keeping the body of the sub will be much cheaper than restarting the project with an entire new sub body. Several of the control components may be reused for this design as well.  Our team also recommends keeping the tow boom, but altering its design in a way to add rubber dampening materials and additional electrical conduits. Adding the rubber dampening material will help eliminate structural vibrations and acoustics, and adding external electrical conduits will provide for an easier way to access electrical lines, rather than having to access through the boom arm. Further testing will be required to determine the ease‐of‐use of the tow boom as it has currently not been installed and used on the fishing boat. Lining the tow boom with an epoxy to aid in corrosion resistance would also be a useful effort in the future.    

9.  List of References 

[1] Simrad, "Simrad ES200-7C Data Sheet," [Online]. Available: http://www.simrad.com/www/01/nokbg0397.nsf/ … AllWeb/5DF9D5218852E463C125718D004511BE?OpenDocument. [Accessed 2011].

[2] M. P. Association, "Bouyancy and Stability," [Online]. Available: http://www.maritime.org/fleetsub/chap5.htm. [Accessed 2011].

[3] J. Wiley, The Fiberglass Repair and Construction Handbook, 2nd Ed., TAB Books, 1988.

[4] F. M. White, Fluid Mechanics, 7th Ed., McGraw-Hill, 2010.

[5] L. D. R. Bernard Etkin, Flight Dynamics: Stability and Control, Wiley, 1995.

Page 67: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

67

10.  Special Acknowledgements & Thanks  Professor Michael, “Mick” Peterson, Ph.D For bringing this project to the 2012 class of mechanical 

engineering students and for overseeing this project throughout the year.   

Diane Maguire For providing her expertise in machining, fabrication, and welding and overseeing equipment accessibility in Crosby Lab.  

Colleen Swanger For providing the means to tow our test models, and many other MEE 487/488 course functions.   

Garrett Staines For providing the interfacing and technical guidance between the UMaine Marine Sciences and UMaine Mechanical Engineering departments.  

Gayle Zydlewski, Ph.D.  For providing technical requirements for the tow boom and allowing us to gather dimensional data from onboard her team’s research boat.   

Professor Murray Callaway. For technical writing supervision for this report.  

Brendan Paradis For providing electrical engineering skills on developing and fabricating the H‐bridge amplifying circuits.  

Page 68: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

68

Appendix A­ Plan of Work  This Appendix gives the plan of work for test and construction phase of the project during the Spring 2012 semester. 

Page 69: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix A – Plan of Work

69

Items to be completed: 

Date to be Completed: 1/23/12  1/30/12  2/6/12  2/13/12 2/20/12 2/27/12 3/5/12 3/12/12  3/19/12 3/26/12 4/2/12 4/9/12 4/16/12 4/30/12

IMU Programmed  

          Spring  Break               

Vendors and parts final selection 

                           

Scale Model completion   

                           

Parts ordered   

                           

Testing of Scale Models  

                           

Building full‐scale product  

                           

IMU programmed for controls 

                           

Design of boom mount  

                           

Building boom mount  

                           

Installation of boom mount  

                           

Project Complete  

                           

Final webpage online 

                           

Page 70: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

70

Appendix B­ Project Milestones  Project milestones are given in this Appendix to show the process of project development throughout the 2011‐2012 year. 

Page 71: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix B – Milestones

71

09/09/2011:   Milestones Submitted 

09/16/2011:   Simrad Housing Design 

10/04/2011:   Webpage Live 

10/07/2011   First Design Iteration of Hull Complete in Solidworks 

10/14/2011:   Control theory outlined 

10/21/2011:   First Iteration of Internal Components Complete in Solidworks 

10/25/2011:   Milestones Review 

11/08/2011:   Final Design Iteration of Hull Complete in Solidworks 

11/16/2011:   Integration of Solidworks models 

11/30/2011:   Draft Midterm Report. 

12/08/2011:  Midterm Report PDF Posted on Webpage 

1/19/2012:  Program Arduino for Pitch Measurement 

1/26/2012:  Vendors and Parts Final Selection 

2/03/2012:  All Parts Ordered 

2/10/2012:  Complete Tow Tank Tests 

3/16/2012:  Construction Complete of Submersible 

4/06/2012:  Program Arduino for Depth & Attitude Control 

4/20/2012:  Complete Control System Tests 

4/25/2012:  Documentation & Presentations Complete 

4/26/2012:  Open House Display 

5/03/2012:  Final Webpage Submission 

Page 72: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

72

Appendix C­ Simrad ES200­7C Technical Sheet  A technical sheet is supplied as an appendix to give information on acoustics and performance characteristics of the ES200‐7C Simrad. [1] 

Page 73: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix C – Simrad ES200-7C Technical Sheet

73

Technical sheet from source [1]

Page 74: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

74

Appendix D­ Arduino Control Programs  This Appendix contains three separate Arduino language files written by Brian Porter to:   

(1) Measure pitch and record angles to an SD card for test data.        Pg. 75  

(2) Measure voltage from a pressure transducer and correlate the voltage    Pg. 78       reading to a depth preset and return signals to an electrical actuator for        depth control. 

 (3) Read pitch and correlate to a zero‐body pitch attitude and return      Pg. 79       signals to an electrical actuator for body‐pitch control.  

  

Page 75: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix D – Arduino Uno Control Programs

75

(1) THE FOLLOWING PROGRAM READS PITCH FROM AN IMU AND WRITES TO AN SD CARD.

/* This program reads data from the accelerometer and converts to angles in degrees. Run VBScript file "ReadCom" to write to a file located in the C drive. */ #include <SD.h> #include "RTClib.h" #include <Wire.h> RTC_DS1307 RTC; const int chipSelect = 10; int g; int cyc=8; int count=1; int index; float thetayrun; File myfile; void setup() { Serial.begin(9600); Serial.print("Initializing SD card..."); // make sure that the default chip select pin is set to // output, even if you don't use it: pinMode(10, OUTPUT); // see if the card is present and can be initialized: if (!SD.begin(chipSelect)) { Serial.println("Card failed, or not present"); // don't do anything more: return; } Serial.println("card initialized."); char filename[] = "LOGGER00.CSV"; for (uint8_t g = 0 ; g < 100; g++) { filename[6] = g/10 + '0'; filename[7] = g%10 + '0'; if (! SD.exists(filename)) { // only open a new file if it doesn't exist myfile = SD.open(filename, FILE_WRITE); break; // leave the loop } } Wire.begin(); RTC.begin(); if (! RTC.isrunning()) { Serial.println("RTC is NOT running!");

Page 76: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix D – Arduino Uno Control Programs

76

// following line sets the RTC to the date & time this sketch was compiled RTC.adjust(DateTime(__DATE__, __TIME__)); } } void loop() { DateTime now; float xV = analogRead(A5)*3.3/1023; float yV = analogRead(A3)*3.3/1023; float zV = analogRead(A1)*3.3/1023; float dxV = xV-2.6325805; float dyV = yV-1.048387; float dzV = zV-1.2935483; float accx = dxV/0.2; float accy = dyV/0.1; float accz = dzV/0.2; float R = sqrt(accx*accx + accy*accy + accz*accz); float sxV = dxV/sqrt(dxV*dxV); float syV = dyV/sqrt(dyV*dyV); float szV = dzV/sqrt(dzV*dzV); float thetax = sxV*acos(accx/R)* 180/3.141592653589793; float thetay = syV*acos(accy/R)* 180/3.141592653589793; float thetaz = szV*acos(accz/R)* 180/3.141592653589793; if (thetay < 0) { thetay = (thetay + 180) * 45/11.75; } else { thetay = thetay * -4.3; } if (sqrt(thetay*thetay) > 91.0) { thetay=0; } if (count<cyc) { thetayrun=thetayrun+thetay; count=count+1;

Page 77: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix D – Arduino Uno Control Programs

77

} else { now = RTC.now(); thetayrun=(thetayrun+thetay)/cyc; thetay=thetayrun; int thetayint=thetay; Serial.print(index); //Serial.print(now.hour(), DEC); //Serial.print(":"); //Serial.print(now.minute(), DEC); //Serial.print(":"); //Serial.print(now.second(), DEC); Serial.print(" "); Serial.println(thetayint); thetayrun=0; count=1; if (myfile) { myfile.print(index); //myfile.print(now.hour(), DEC); //myfile.print(":"); //myfile.print(now.minute(), DEC); //myfile.print(":"); //myfile.print(now.second(), DEC); myfile.print(" "); myfile.println(thetay); myfile.flush(); } // if the file isn't open, pop up an error: else { Serial.println("error opening datalog.txt"); } index=index+1; } delay(100); } // float accX = xV/.33; // float // float xtheta = xmV*277.27 - 306.4; // Serial.println(xtheta, DEC); // // // float ytheta = ymV*297.15 - 324.07; // Serial.print(ytheta,DEC); // Serial.print("\t"); // //}

Page 78: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix D – Arduino Uno Control Programs

78

(2) THE FOLLOWING PROGRAM READS DEPTH FROM A PRESSURE TRANSDUCER AND CORRECTS FOR DEPTH CONTROL

void setup() { Serial.begin(9600); //Setup Channel A pinMode(2, OUTPUT); pinMode(4, OUTPUT); } void loop() { float VoltIn=analogRead(A0); delay(900); float V=VoltIn/100; double Depth=0.0004*pow(V,6)-0.0085*pow(V,5)+0.0722*pow(V,4)-0.2953*pow(V,3)+0.6111*pow(V,2)+0.8159*V-0.0006; if (Depth<6) { digitalWrite(2, HIGH); //Establishes forward direction of Channel A //digitalWrite(9, LOW); //Disengage the Brake for Channel A //analogWrite(3, 1023); //Spins the motor on Channel A at full speed delay(100); digitalWrite(2, LOW); //Eengage the Brake for Channel A } else { if (Depth>6) { digitalWrite(4, HIGH); //Establishes backward direction of Channel A //digitalWrite(9, LOW); //Disengage the Brake for Channel A //analogWrite(3, 1023); //Spins the motor on Channel A at full speed delay(100); digitalWrite(4, LOW); //Eengage the Brake for Channel A } else { delay(100); } } }

Page 79: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

79

(3) THE FOLLOWING PROGRAM READS PITCH FROM AN IMU AND CORRECTS FOR PITCH CONTROL

/* This program reads data from the accelerometer and converts to angles in degrees. Run VBScript file "ReadCom" to write to a file located in the C drive. */ //#include <Wire.h> //int g; int cyc=8; int count=1; float thetayrun; void setup() { delay(1000); Serial.begin(9600); //Setup Channel A pinMode(2, OUTPUT); pinMode(4, OUTPUT); } void loop() { float xV = analogRead(A5)*3.3/1023; float yV = analogRead(A3)*3.3/1023; float zV = analogRead(A2)*3.3/1023; float dxV = xV-1.0516128; float dyV = yV-1.0322580; float dzV = zV-1.2645161; float accx = dxV/0.2; float accy = dyV/0.1; float accz = dzV/0.2; float R = sqrt(accx*accx + accy*accy + accz*accz);

Page 80: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

80

float sxV = dxV/sqrt(dxV*dxV); float syV = -dyV/sqrt(dyV*dyV); float szV = dzV/sqrt(dzV*dzV); float thetax = sxV*acos(accx/R)* 180/3.141592653589793; float thetay = syV*acos(accy/R)* 180/3.141592653589793; float thetaz = szV*acos(accz/R)* 180/3.141592653589793; if (thetay < 0) { thetay = thetay*45/24.5; } else { thetay = thetay*45/157; } if (sqrt(thetay*thetay) > 91.0) { thetay=0; } if (count<cyc) { thetayrun=thetayrun+thetay; count=count+1; } else { thetayrun=(thetayrun+thetay)/cyc; thetay=thetayrun; int thetayint=thetay; Serial.println(thetayint); if (thetayint<0) { digitalWrite(2, HIGH); //Establishes forward direction of Channel A //digitalWrite(9, LOW); //Disengage the Brake for Channel A //analogWrite(3, 1023); //Spins the motor on Channel A at full speed delay(100); digitalWrite(2, LOW); //Eengage the Brake for Channel A }

Page 81: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

81

else { if (thetayint>0) { digitalWrite(4, HIGH); //Establishes backward direction of Channel A //digitalWrite(9, LOW); //Disengage the Brake for Channel A //analogWrite(3, 1023); //Spins the motor on Channel A at full speed delay(100); digitalWrite(4, LOW); //Eengage the Brake for Channel A } else { delay(1000); } } thetayrun=0; count=1; } delay(100); }

Page 82: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

82

Appendix E­ MATLAB Analysis Code  This Appendix gives the MATLAB code used to approximate the lift force generated for a range of fin angle of attacks and frontal velocities. 

Page 83: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix E – MATLAB Analysis Code

83

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% LIFT GENERATION CODE %%%% FOR CONTROL FIN %%%% WRITTEN 11/03/2011 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all close all clc %PARAMETERS: b = 12.0; %Base Length, in inches c = 11.5; %Chord Length, in inches h = 0.5; %Height, in inches rho=0.03703; %Density of salt water, in lbf/in^2 y = 0:0.01:0.26; %Positive Angle of attack, in radians x = 0:1.0:150; %Frontal Absolute Velocity, in inches/second % THE FOLLOWING FINDS THE LIFT FORCE AS BOTH A FUNCTION OF (Y), THE ANGLE OF % ATTACK AND (X), THE FRONTAL VELOCITY. THESE FUNCTIONS ARE FOR THE % ASSUMPTION FOR A SYMMETRIC PROFILE FIN WITH ITS CRITICAL ANGLE OF ATTACK % AT 0.22 RADIANS WHERE LIFT FORCE NO LONGER GENERATES INCREASING LIFT WITH % INCREASING ANGLE OF ATTACK. for i = 1:length(x); for j = 1:length(y) if y(j) <= 0.22 A(j) = c*b*(sin(y(j))); C(j) = 0.2*((j^2-1)/j)/j; z(j,i) = (0.03*(rho)*(x(i)^2)*(A(j)))*C(j); else if y(j) > 0.22 A(j) = c*b*(sin(y(j))); K(j) = 0.03*(rho)*(x(i)^2)*(A(j))*0.2*((j^2-1)/j)/j; z(j,i) = K(j)*cos(0.3*j-0.22); end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %The following plots 3-D surface Figure of results with axes of Angle of %Attack, Frontal Velocity, and Total Lift Force %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% surf(x,y,z) grid on ylabel('Angle of Attack (Rads)') xlabel('Frontal Velocity (in/sec)') zlabel('Lift Force (Lbf)')

Page 84: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

84

Appendix F­ Final Budget  A budget breakdown throughout the year is given within this Appendix. The total cost spent on this project was $5149.48. We sought to buy local in Maine, and were able to get discounted items for several of our key parts through deals through the University. The items given in this Appendix are those bought by and for this project, we were able to use many of the supplies given in Crosby Lab at UMaine which did not come from this project’s funding.   

Page 85: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix F – Final Budget

85

DATE  VENDER  BRIEF ITEM DESCRIPTION  NET COST 

4/17/2012  Digi‐Key  18A fuse, fuse holder, P‐CH N‐CH Mosfets   43.25 

4/17/2012  McMaster‐Carr  Stainless steel software, marine loctite glue  79.41 

4/12/2012  Home Depot  Primer, Yellow Paint, Clear Coat, loctite glue  104.16 

4/5/2012  McMaster‐Carr  1"x1" 1/8" wall 3ft long 304 stainless tube  34.44 

3/30/2012  McMaster‐Carr  10/ea socket head cap screws, 3/ea eyebolts  63.78 

3/30/2012  Jamestown Distributors  1 gallon of 206 hardener, 1 gallon bondo filler  233.47 

3/30/2012  Cheap Humidors  Cigar Caddy 3540 Waterproof Case  24.99 

3/30/2012  The Hardware City  6 pack loctite epoxy for plastics  27.29 

3/29/2012  McMaster‐Carr  stainless steel cable, carabiner, thimbles, crimper  277.08 

3/26/2012  McMaster‐Carr  hand winch w/ strap, washers, nuts, bolts, 1/2" & 1/8" stainless flat stock  293.78 

3/26/2012  McMaster‐Carr  Delrin acetal resin 6" dia, 1" long, 3/8" stainless hex hd bolts  57.03 

3/26/2012  Bangor Steel Services, Inc  304 Stainless square box tube 2"x2" & 4"x4", 304 Stainless 1/2" flat stock   814.88 

3/22/2012  Jamestown Distributors  2/ea fiber reinforced bondo fairing filler  131.56 

3/22/2012  The Hole Cutter Store  adjustable hole saw  139.95 

3/12/2012  amazon.com  2/ea Arduino Uno R3 Board  51.9 

3/12/2012  amazon.com  2/ea Arduino Motor Shield for R3  51.9 

3/12/2012  McMaster‐Carr  6" wide x 36" 304 Stainless flat stock  70 

3/8/2012  McMaster‐Carr  stainless hose clamps, rubber tubing, female clevises, eye bolts, hex nuts  145.52 

3/6/2012  Jamestown Distributors  2/ea gallon Fiberglass fairing filler w/ short strand filler  131.56 

2/21/2012  McMaster‐Carr  1/8" steel flat stock, 1/2" PVC flat stock, pipe clamps, PVC cement, threaded rod  114.63 

2/21/2012  Hamilton Marine  Epoxy resin, slow hardener  142.55 

1/31/2012  Bangor Pipe and Supply, Inc  4' length of 12" NPS schd 40 PVC pipe  72.08 

1/31/2012  McMaster‐Carr  6"dia x 4" long Nylon round stock, male clevis, female clevis, rod, shaft coupling  481.57 

1/31/2012  TAP Plastics  aluminum quick release resin roller  11.25 

1/31/2012  Instrumart  Keller Acculevel Water Level Transducer  553.75 

1/31/2012  Motion Industries  2/ea Electrak Pro Linear Actuator (IP‐67)  900 

1/23/2012  Sparkfun  11.1V 1500mAh batterypack w/ charger, breakaway female headers, 2.1 mm plug  97.7 

TOTAL PROJECT COST  $5149.48

Page 86: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

86

Appendix G­ Design Package  Given in this Appendix is a final design package of all parts machined or fabricated for this project. All machining, welding, and assembly was done in‐house in Crosby Lab at UMaine.   Detail for standard parts that were procured for this project such as bolts, washers, nuts, etc. is not given within this Appendix. Only components requiring design and fabrication are given with this Appendix.   Part series‐designations within this Appendix are as follows:  1‐(‐‐) – Anchor Plates & Control Surfaces 

2‐(‐‐) – Simrad Housing Components 

3‐(‐‐) – Tow Boom Components 

4‐(‐‐) – Submersible & Hull Components 

Page 87: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

87

\

Page 88: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

88

Page 89: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

89

Page 90: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

90

Page 91: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

91

Page 92: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

92

Page 93: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

93

Page 94: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

94

Page 95: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

95

Page 96: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

96

Page 97: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

97

Page 98: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

98

Page 99: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

99

Page 100: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

100

Page 101: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

101

Page 102: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

102

Page 103: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

103

Page 104: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

104

Page 105: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

105

Page 106: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

106

Page 107: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

107

Page 108: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

108

Page 109: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

109

Page 110: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

110

Page 111: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix G – Design Package

111

Page 112: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

112

Appendix H­ Installation & Operations Manual  This manual was designed to give the Maine Tidal Power Initiative (MTPI) team affiliated with the UMaine Marine Sciences Department a quick reference guide on installation and operation when they receive this project during the summer of 2012.  

Page 113: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

113

MMaannuuaall ffoorr IInnssttaallllaattiioonn && OOppeerraattiioonn ooff

TThhee TToowweedd AAccoouussttiicc TTrraannssdduucceerr PPrroojjeecctt

4/30/2012

Contents of Manual i. Installation ........................................................................................................................... 114

i.a Tow Boom .................................................................................................................... 114

i.b Submersible-to-Tow Boom .......................................................................................... 114

ii. Operation ............................................................................................................................. 119 ii.a Stationary Operation during Slack Tide ....................................................................... 119

ii.b Operation while being Towed ...................................................................................... 119

ii.c Extending & Retracting Tow Boom ............................................................................. 119

Page 114: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

114

i  Installation 

i.a.  Tow Boom The tow boom is to be installed on the starboard side of the boat on the gunwale. All necessary software for installation is provided, along with pre-cut and pre-drilled pressure treated wood planks to be installed on the underside of the gunwale. Install as follows:

I. Secure the tow boom mount with the 6 bolts, washers, nuts provided. Install with the pressure-treated lumber provided. Make sure location is in a position that can be 9.0 ft. forward (centerline to centerline) from the winch mount plate. Boom mount distance is to be at a minimum 11.5 ft. forward from the aft end of the starboard gunwale.

II. Secure the winch mount plate using the 4 bolts, washers, & nuts provided. Install 9 ft. aft of the tow boom mount, with the winch facing outward.

III. Connect the strap from the winch to the upper eyehook on the boom arm. Run all necessary cables along the square tube section of the arm and secure with provided ties.

IV. Slide the tow boom arm (with the winch strap end facing aft) over the 2” round rod extending from the mount. Secure in place with provided bolt & nut. Refer to Figure 61 and Figure 62 within this manual.

V. Hoist the boom arm to its locking configuration by operating the winch. Install locking bar and insert pin into the locking bar.

This concludes installation of the tow boom. See Figures 59 through 62 for visual aid.

i.b.  Submersible­to­Tow Boom The only installation required by the submersible is connecting a power source to the boat’s power and running the Simrad cable through the sub. All other components are plug-and-play and do not require on-site calibration or assembly. Install as follows:

I. As mentioned in i.a, slide all cables along the tow boom arm. II. As mentioned in i.a, finish installation of tow boom arm prior to connecting sub to boom.

III. Tether sub to tow boom (a) slack tide operation (b) towing operation. a. To attach for slack tide operation, tether both front and aft ends of the sub to the

provided steel yoke and attack this yoke to the tow boom. All straps and yoke provided.

b. Tether front U-bolt attachment point on the sub to lower eyehook on the tow boom via stainless steel strap, provided.

See Figure 63 for reference for tow point locations on the sub.

Page 115: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

115

Figure 59: Computer Rendering of Boom Assembly

Page 116: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

116

Figure 60: Dimensions (in Inches) Separating Components

Page 117: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

117

Figure 61: Image of Tow Boom Mount (This End Facing Outward from Boat)

Figure 62: Image of Tow Boom Arm.

FWD end AFT end

Winch strap

Tow point attachment

Slide boom arm over round joint.

Install bolts (6/ea) at these locations

Insert locking pin here

Page 118: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

118

Figure 63: Tow Point Locations on Sub

AFT attachment for slack tide, location 2 of 2

FWD (tow) attachment & 1 of 2 slack tide attachments

Make buoyancy adjustments here as necessary (both sides)

Page 119: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

119

ii.  Operation 

ii.a.  Stationary Operation during Slack Tide Make sure the sub has fully purged all air from its hull before operation. Tether both attachment points on the sub to the provided yoke and anchor this yoke to the tow boom. Buoyancy adjustments on the sub can be done inside the two bottom tubes (see Figure 63), by adding weights where necessary. Make sure that the two cords that attach to the yoke are roughly the same length so that tension exists within each line.

ii.b.  Operation while being Towed Tether the steel tow line only to the forward tow location identified in Figure 63. Extend the tow boom down so that the towing location is below the water’s surface and that the locking pin secures the boom arm in place (Figure 64). Make sure that all air has purged from the sub before operating.

ii.c  Extending & Retracting Tow Boom Extending the tow boom into its towing configuration is done by removing the locking pin, provide sufficient slack on the winch strap, and releasing the boom arm into the water. Its own weight will pull itself down into its extended configuration. Retracting the tow boom into its stowage configuration is also done by removing the locking pin, and winching the strap tight so that the arm rises out of the water. Once the arm is high enough out of the water, the locking pin may be reinstalled so that the boom arm rests on this pin. Note that for extending and retracting of the tow boom, care must be taken to make sure that the Simrad cable which runs to the sub is not stressed, and that the sub when the tow boom is in its retracted state is onboard the boat. See Figure 64 and Figure 65 or a 3D rendering of the two different tow boom configurations.

Page 120: Towed Acoustic Transducer Project - Mick Peterson€¦ · Towed Acoustic Transducer Project FINAL REPORT MAY 1st, 2012 Mechanical Engineering Department Undergraduate Capstone Project

Appendix H- Installation & Operations Manual

120

Figure 64: Boom in Extended Configuration

Figure 65: Boom in Retracted Configuration

Locking Pin (Shown Installed)

Locking Pin (Shown Installed)

Place Sub in Water Place Sub onboard Boat