6
Towards near zero energy buildings New developments in Earth Air Tunnel Systems Pierre Hollmuller [email protected] Green Building Congress New Delhi, 20 – 21 October 2011 -10 -5 0 5 10 15 20 25 30 35 °C -10 -5 0 5 10 15 20 25 30 35 °C moyenne journalière extrêmes journaliers 32°C 26°C 20°C 26°C 20°C Summer -8°C 10°C 4°C 22°C 16°C Winter Operating mode Hollmuller, Université de Genève Day / Night Winter / Summer Principle: use thermal inertia of ground (heat storage) Objective: dampening of daily / yearly temperature oscillation carried by ventilation Operating mode Hollmuller, Université de Genève Heat storage versus Heat exchange Heat exchange with soil /surface (recharge + perturbation) Heat storage (dampening of oscillation) Winter / Night Summer / Day Focus of this presentation: Heat storage Large systems Operating mode www.maison-bioclimatique.fr D.Pahud, SUPSI www.batirbio.org Vertical setup Depth : 5 à 200 m Soil temperature : stable (year ambient average) Risk of long term drift (discharge) Horizontal setup Depth : 50 cm à 3 m Soil temperature subject to seasonal/daily variations Long term operation granted (upper climate) Closed loop (water) + heat pump Summer/winter operation : strong link Open loop (air) Summer/winter operation +/- independent (cf. dimensioning guidelines) Air/soil heat exchangers (buried pipes) Geothermal boreholes Hollmuller, Université de Genève

Towards near zero energy buildings New developments in Earth …€¦ · Tin=T0sin(ωt) − = − cm Sk t Sh Tout T & 0exp sin ω •Phase-shifting usually secondary •Heat penetration

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Towards near zero energy buildings

    New developments in Earth Air Tunnel Systems

    Pierre Hollmuller

    [email protected]

    Green Building Congress

    New Delhi, 20 – 21 October 2011

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35 °C

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35 °C moyenne journalière

    extrêmes journaliers

    32°C

    26°C

    20°C

    26°C

    20°C

    Summer

    -8°C

    10°C

    4°C

    22°C

    16°C

    Winter

    Operating mode

    Hollmuller, Université de Genève

    Day / Night

    Winter / Summer

    Principle: use thermal inertia of ground (heat storage)

    Objective: dampening of daily / yearly temperature oscillation carried by ventilation

    Operating mode

    Hollmuller, Université de Genève

    Heat storage versus Heat exchange

    Heat exchange with soil /surface (recharge + perturbation)

    Heat storage (dampening of oscillation)

    Winter / Night Summer / Day

    Focus of this presentation:

    • Heat storage

    • Large systems

    Operating mode

    www.maison-bioclimatique.fr

    D.Pahud, SUPSI

    www.batirbio.org

    • Vertical setup

    • Depth : 5 à 200 m

    • Soil temperature : stable (year ambient

    average)

    • Risk of long term drift (discharge)

    • Horizontal setup

    • Depth : 50 cm à 3 m

    • Soil temperature subject to seasonal/daily

    variations

    • Long term operation granted (upper climate)

    • Closed loop (water) + heat pump

    • Summer/winter operation : strong link

    • Open loop (air)

    • Summer/winter operation +/- independent

    (cf. dimensioning guidelines)

    Air/soil heat exchangers (buried pipes) Geothermal boreholes

    Hollmuller, Université de Genève

  • Aymon building (Sion)

    Case studies : potentials and constraints

    Lessons

    • Delocalization of thermal mass

    • Cut-off of day/night oscillation + over-

    ventilation = important cooling effect

    • Robustness of simple solutions

    (reproducibility / optimization)

    10

    15

    20

    25

    30

    16.08 18.08 20.08 22.08 24.08 26.08 28.08 30.08 01.09

    C Météo

    Bureau, vent. par cave

    Bureau, vent. nocturne (10 ach)

    Hollmuller, Université de Genève

    Cité solaire (Plan-les-Ouates / Genève)

    Lessons

    • Buried pipes in competition with

    recovery on exhaust air

    • Important cost for little preheating

    (see dimensionning rules)

    Case studies : potentials and constraints

    Hollmuller, Université de Genève

    www.unige.ch/cuepe/html/biblio/detail.php?id=288

    Schwerzenbacherhof (Zurich)

    Case studies : potentials and constraints

    Hollmuller, Université de Genève

    Lessons

    • Cooling by overventilation

    • Water infiltration/evaporation ?

    • Thermal link with with building

    B

    E

    D

    C

    A

    Eintritt

    Austritt

    0 5 10 15 20 25 30m

    Perret building (Satigny / Genève)

    terrain

    local technique / bâtiment

    échangeur eau/sol échangeur air/sol

    récupérateur air vicié

    humidificateur

    chauffage

    éch. air/ eau filtre

    Lessons

    • Energetic loss due to link between

    building and buried pipes

    (non-symetric summer/winter

    behaviour)

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    sept oct nov déc janv févr mars avr mai juin juil août

    °C

    météo éch. air/eau/sol bâtiment

    Case studies : potentials and constraints

    Hollmuller, Université de Genève

    www.unige.ch/cuepe/html/biblio/detail.php?id=364

  • Case studies : potentials and constraints

    Hollmuller, Université de Genève

    serre à air

    Pertes par

    enveloppe

    (1'601)

    Pertes par

    enveloppe

    (1'077)

    Chauffage

    (1'254)

    Electricité

    (46)

    Captage

    solaire

    (192)

    Captage

    solaire

    (1'300)

    Diffusion

    vers serre

    (45 et 46)

    Rejets

    solaires

    (40)

    Stockage

    (268)

    Déstockage

    (93)

    Pertes vers sous-sol (128)

    Ensoleillement

    (232)

    Evaporation (20) Condensation (36)

    23.6 °C

    1310 K.jour

    16.9 °C

    2129 K.jour

    Geoser (Conthey/Sion)

    Lessons

    • Importance of auxiliary electricity

    • Importance of global energy balance

    • Potential water condensation/evaporation

    www.unige.ch/cuepe/html/biblio/detail.php?id=109

    Cooling vs Preheating

    Hollmuller, Université de Genève

    Winter / summer constraints (Continental Europe)

    Winter

    • seasonal constraint

    Summer

    • daily constraint

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    jour

    °C météo min/max

    comfort min/max

    Cooling vs Preheating

    Dampening of yearly oscillation

    (necessary for preheating)

    Dampening of daily oscillation

    (sufficient for cooling)

    Hollmuller, Université de Genève

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 0.4 m

    tube : 50 m

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 2 m

    tube : 50 m

    => dimensionning guidelines

    Objective

    • reduce winter heat loss (pre-

    heating)

    • airflow set to minimum

    Objective

    • produce summer cooling

    • airflow: possible over-ventilation

    • winter: avoid icing of heat

    recovery system

    System integration / Overall energy balance

    Hollmuller, Université de Genève

    Preheating

    Negative synergy

    • Interaction with heat recovery:

    Net gain = (1- η) x Gain brut

    η : efficiency of heat recovery

    • Interaction with building:

    increased heat diffusion

    Example of " Perret “ system

    Heat recov. only (η =50%) 3.1 MWh

    Pipe + rec. – ∆diffusion 2.1 + 2.1 – 1.6 = 2.6 MWh

    Net loss (!) -0.5 MWh

    2°C

    -8°C

    22°C

    12°C

    -8°C

    10°C

    4°C

    22°C

    16°C

    www.unige.ch/cuepe/html/biblio/detail.php?id=364

  • System integration / Overall energy balance

    Hollmuller, Université de Genève

    Cooling

    • Daily dampening

    => Possibility of enhanced ventilation 24/24h

    (“night ventilation all day long”)

    • Enhanced ventilation:

    => Larger storage (see dim. guidelines)

    => care with electricity

    0

    100

    200

    300

    400

    500

    10

    15

    20

    25

    30

    35

    0 24 48 72 96 120

    m3/hC

    h

    0

    100

    200

    300

    400

    500

    10

    15

    20

    25

    30

    35

    0 24 48 72 96 120

    m3/hC

    h

    0

    100

    200

    300

    400

    500

    10

    15

    20

    25

    30

    35

    0 24 48 72 96 120

    m3/hC

    h

    Sta

    nd

    ard

    ve

    nti

    lati

    on

    Nig

    ht

    ve

    nti

    lati

    on

    Bu

    rie

    d P

    ipe

    outdoor (C) ventilation (C) building (C) airf low (m3/h)

    www.unige.ch/cuepe/html/biblio/detail.php?id=448

    Dimensioning guidelines

    0r

    0R

    0R∆

    πδ

    aT=

    r0

    0

    0

    0

    =∂

    =

    Rsr

    Rs

    T

    ou

    T

    sh

    ah

    xaacm ,&aT

    sss c ρλ ,,sT

    )cos(00 tT xa ωθ==

    00θ=

    =xaT

    ou

    stsrsrs TTr

    Ta ∂=

    ∂+∂12

    ( )arrsaata

    axaa TThrTv

    Tmc −=

    ∂+∂

    = 002

    1π&

    ( )arrsarrsrs TThT −=∂ == 00λ

    Analytical model in cylindrical symmetry

    Hollmuller, Université de Genève

    • Objective: characterisation of

    storage/dampening

    • Limitation : perturbation from upper

    surface not taken into account !

    www.unige.ch/cuepe/html/biblio/detail.php?id=289

    Hollmuller, Université de Genève

    Dimensioning guidelines

    Main results (without perturbation from upper surface)

    • Dampening and phase-shifting of

    harmonic input :

    ( )tTTin ωsin0=

    −=mc

    Skt

    mc

    ShTTout

    &&ωsinexp0

    • Phase-shifting usually secondary

    • Heat penetration depth depends on

    period :

    πτ

    ρλ

    δc

    =~ 3 m in yearly mode

    ~ 15 cm in daily mode

    • Dampening given by serial link between

    convective and diffusive exchange :

    sa

    sa

    hh

    hhh

    +≈ ( )δ

    δλ

    +

    ≈ 0

    0

    0

    if

    1ln

    R

    rr

    hs

    hs

    ha

    δ

    Dimensioning guidelines

    Dampening of yearly oscillation

    (necessary for preheating)

    Dampening of daily oscillation

    (sufficient for cooling)

    Hollmuller, Université de Genève

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 0.4 m

    tube : 50 m

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 2 m

    tube : 50 m

    Perturbation annuelle

    Perturbation

    journalière

    Perturbation annuelle

    Perturbation journalièr

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500

    airf low [m3/h.pipe]

    pipe length [m]

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500

    airf low [m3/h.pipe]

    pipe length [m]

    10 cm 15 cm 20 cm 25 cm 30 cm 35 cm 40 cmdiamètre

    www.unige.ch/cuepe/html/biblio/detail.php?id=449

  • Dimensioning guidelines

    Pre-dimensioning tool (without perturbation from upper surface)

    Hollmuller, Université de Genève

    nombre de fréquences : 2

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    jour

    °C

    nombre de fréquences : 100

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    jour

    °C

    nombre de fréquences : 4380

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    jour

    °C

    Input:

    • Meteorological data

    • Airflow

    • Pipe : diameter + length

    • Soil cylinder : diameter

    Numerical simulation / Sensibility studies

    • Influence of surface + surrounding soil

    • Condensation/evaporation

    • Variable airflow

    • Inhomogeneous soils

    • Integration in TRNSYS

    Meteo Meteo

    Tube Soil 1

    Soil 2

    z

    y

    Building

    Plat

    Psbl

    Pdiff

    Pdiff Pdiff

    Pdiff

    convm&

    convm&

    soil airflow

    tube and water saturated air

    Hollmuller, Université de Genève

    Detailed simulation tool

    www.unige.ch/cuepe/html/biblio/detail.php?id=362

    Numerical simulation

    Algorithm (at pipe node)

    Plat

    Psbl

    Pdiff

    Pdiff Pdiff

    Pdiff

    co nvm& convm&

    ( )

    air

    tub

    tubairair

    sblconv

    c

    hS

    TTc

    Pm

    ⋅=

    −⋅=& ( )

    ( )air

    tubtubair

    convtubairlat

    c

    hSWW

    mWWm

    ⋅⋅−=

    ⋅−= && P c mlat lat lat= ⋅ &

    • Latent heat

    ( ) ( )P S k T T S k T Tdiff i i soil i t tubi soil

    i i tub i t tubi tube

    = ⋅ ⋅ − + ⋅ ⋅ −−∈

    −∈

    ∑ ∑, , , ,1 1

    • Heat diffusion

    ( ) ( )P

    c V c m T T

    tinttub tub tub wat wat t tub tub t

    =⋅ ⋅ + ⋅ ⋅ −− −ρ , ,1 1

    • Heat storage

    ( )P P P Pint sbl lat diff− + + = 0• Energy balance

    • Sensible heat

    ( )P S h T Tsbl tub air tub= ⋅ ⋅ −

    Hollmuller, Université de Genève

    Validation against extensive in-situ monitoring

    -10

    0

    10

    20

    30

    40

    50

    27/5 28/5 29/5 30/5 31/5 1/6 2/6 3/6day

    kW

    discharge

    charge

    sensible

    -50

    -40

    -30

    -20

    -10

    0

    10

    27/5 28/5 29/5 30/5 31/5 1/6 2/6 3/6

    day

    kW

    evaporation

    condensation latent

    -2500

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    2000

    2500

    0 4 8 12 16 20 24 28 32 36 40 44 48 52

    w eek

    kWh

    discharge

    charge sensible

    -2500

    -2000

    -1500

    -1000

    -500

    0

    500

    1000

    1500

    2000

    2500

    0 4 8 12 16 20 24 28 32 36 40 44 48 52

    week

    kWh

    evaporation

    condensation latent

    Numerical simulation

    Hollmuller, Université de Genève

  • Validation against analytical solution

    Numerical simulation

    Hollmuller, Université de Genève

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 2 m

    tube : 50 m

    -5

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25

    analytical [°C]

    numérical [°C]

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 0.4 m

    tube : 50 m

    -5

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25

    analytical [°C]

    numérical [°C]

    Dampening of annual oscillation

    Dampening of daily oscillation

    Numerical simulation

    Hollmuller, Université de Genève

    Phase-shifting !!

    Lab prototypes (for daily oscillation)

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    0 30 60 90 120 150 180 210 240 270 300 330 360

    day

    °Cair : 200 kg/h

    soil : 0.6 m

    tube : 400 m

    -5

    0

    5

    10

    15

    20

    25

    -5 0 5 10 15 20 25

    analytical [°C]

    numérical [°C]

    www.unige.ch/cuepe/html/biblio/detail.php?id=397

    12

    14

    16

    18

    20

    22

    24

    26

    28

    30

    32

    0 24 48 72 96 120 144 168h

    C input

    output

    Conclusions

    Analysis of buried pipe systems taking into account :

    • daily versus yearly heat effects

    • integration in building and technical system

    • global energy balance

    Main insights (European continental climates):

    • preheating: marginal interest (competition with heat recovery)

    • cooling: interesting potential (with compact geometry + over-ventilation)

    Hollmuller, Université de Genève

    Development of a new system

    Dimensioning tools:

    • guidelines and pre-dimensioning tool

    • detailed simulation tool