32
Towards Multiscale Simulations of Cloud Turbulence Ryo Onishi *1,2 and Keiko Takahashi *1 *1 Earth Simulator Center/JAMSTEC *2 visiting scientist at Imperial College, London (Prof. Christos Vassilicos) International MetStorm Conference 9 June, 2011 ***Some figures and slides are removed from original talk***

Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Towards Multiscale Simulations of Cloud Turbulence

Ryo Onishi*1,2 and Keiko Takahashi*1

*1Earth Simulator Center/JAMSTEC *2visiting scientist at Imperial College, London

(Prof. Christos Vassilicos)

International MetStorm Conference 9 June, 2011

***Some figures and slides are removed from original talk***

Page 2: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

MSSG (Multi-Scale Simulator for the Geoenvironment)

High-resolution cloud simulations (LES) with MSSG-Bin microphysical scheme Turbulent collisions of droplets RICO

DNS for colliding droplets in high-Re flows Our numerical schemes validation of turbulent collision models

Page 3: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

3

Earth Simulator Mar. 2002 – Sept. 2008

Processors : 5,120 (640 nodes)

Peak performance:40 TFLOPS

Main memory:10 TB

Earth Simulator 2 Mar. 2009 -

Processors : 1,280 (160 nodes)

Peak performance:131 TFLOPS

Main memory:20 TB

Page 4: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

4

urban scale

mesoscale

global scale

Applicable to global, regional and local scales seamlessly

Ying-Yang grid for globe Consists of 3 modes; atmos. /

ocean / coupled Highly optimized for the Earth

Simulator (ES)

Page 5: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120
Page 6: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Observation (CMAP, 1979-2001JJA)

MSSG-A (ΔH=40 km, 32 levels, 5yrs ave-JJA)

precipitation at JJA

**skip**

Page 7: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

7

observation (TRMM 3B42)

NICAM-7km (Miura et al., 2008)

MSSG-10km

5[m/s]

5[m/s]

5[m/s]

30 days from Dec 15, 2006

Page 8: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

ΔH=2.7 km, 72 layers

MSSG result is operationally

provided to

Page 9: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

turbulence (large-eddy) resolving mesoscale simulation

Page 10: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

lat-long system for regional simulations

Yin-Yang system for global simulations Ref. Kageyama & Sato (2004)GGG Baba et al. (2010)MWR

Page 11: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

MSSG-Bulk model (Reisner et al. (1998) with modification by Thompson (2004))

Page 12: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

12 MSSG-Bin model (Onishi & Takahashi, submitted)

purely spectral-bin scheme for warm clouds

Page 13: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Gravitational (Hydrodynamic) Collision Kernel (No turbulent collisions)

Turbulent Collision Kernel

( R : collision radius (=r1+r2), V∞:settling velocity )

|wr| : radial relative velocity at contact (Wang et al. 2000)

g(R) : radial distribution function at contact (Onishi 2005, Onishi et al. 2007 etc…)

)()(),( 112

21 rVrVRrrKc ∞∞ −= π

∫∫∞

−=

∂00

')'()()',( ')'()''()',''( 21

)(drrnrnrrKdrrnrnrrK

trn

ppc

r

ppccol

p

Stochastic Collision Equation (SCE)

Collision kernel

Page 14: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

( ) 32SCs

SGS

∆=

≈ εε

MSSG Dynamics

Microphysics(Bin method)

・compressive N-S eq. (static Smagorinsky model) ・etc…

・collision growth ・condensation growth ・etc…

'15 ulεν

λ =

2/' Su ∆≈ν

λλ

lu'Re =

( ) 4/13 / ενη =lFlow turbulent statistics local isotropy

Page 15: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Field campaign for shallow cumulus developing over the ocean near the Barbuda islands (18.0N;61.5W).

www.eol.ucar.edu/ projects/rico/

Page 16: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

0

1

2

3

4

-15 -10 -5 0

U, V[m/s]

z [k

m]

U

V

surface fluxes •Heat flux: wθl=-Ch*|U|*(θl-SST*(p0/p)(Rd/cp)) •Water vapor flux: wqt=-Cq*|U|*(qt-qsat(Tsfc)) •Momentum flux: uw=-u*Cm*|U| vw=-v*Cm*|U| where,Cm=0.001229, Ch =0.001094, Cq =0.001133

12.8km 12.8km

4km

24h simulation withΔx=Δy=100m, Δz=40m

0

1

2

3

4

0 10 20

qv[g/kg]

z [k

m]

0

1

2

3

4

290 300 310 320

θ[K]

z [k

m]

init. vert. prof.

periodic B.C.

Page 17: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

1-hour-simulation with MSSG-Bulk method (for visualization)

Δx=100m

Page 18: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Bulk scheme Bin scheme

(r>40μm droplets are recognized as rain drops)

Clouds distribute uniformly in Bulk simulation (w/o CCN), while rather patchily in Bin simulation (with CCN).

Δx=100m

Page 19: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

www.eol.ucar.edu/ projects/rico/

Page 20: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

20

Earth Simulator Center

Page 21: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Cloud simulation using MSSG-Bin scheme

ΔH=25m, ΔV=20m 512x512x200 grids 33 bins 3D Mie scattering

Earth Simulator Center

Page 22: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Earth Simulator Center

Page 23: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

hydr&turb_case1-4.x33

MSSG-Bin with Turb. Kc

Significant impact of turbulent collisions

Page 24: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Applicability of the turbulent collision model has not been confirmed. Reλ=103~4 in cumulus clouds, while available DNS data is for Reλ<102.

We need DNS data for high Reλ.

Page 25: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

>Our numerical schemes >Validation of turbulent

collision models

Page 26: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

St=0 St=0.2

St=4 St=1

R : collision radius (=r1+r2)

|wr| : radial relative velocity at contact

g(R) : radial distribution function at contact

preferential distribution

St

Page 27: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

27

Paper name fluid

calculation

cell-index method

paralleliza-tion

Reλ,max

Wang et al.(2000)JFM PSM w - 75.4

Reade&Collins(2000)PF PSM - - 82.5

Zhou et al.(2001)JFM PSM w - 58

Ayala et al.(2007)JCP PSM w shared 72.4

Ayala et al.(2008)NJP PSM w shared 72.4

Wang et al.(2008)NJP PSM w shared 72.4

Woittiez et al.(2009)JAS FDM - - 84.9

Onishi et al.(2009)PF PSM w/o shared 68.4

Table 1 Review of recent studies on collision frequencies of inertia particles in stationary isotropic turbulence.

Flow: Euler Particle: Lagrange

Pseudo-Spectral Model (PSM) has been used for flow!

Page 28: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

Steady isotropic air turbulence: Finite-Difference Model (FDM)

4th-order conservative scheme (Morinishi et al. (1998)JCP)

MPI, i.e., distributed-memory parallelization, for 3D domain decomposition

RCF(Reduced-Communication Forcing) to attain a stationary state (Onishi et al. (2011)JCP)

Particle motion:

Lagrangian tracking method Cell-index method for efficient

collision detection MPI for 3D domain decomposition

Cell-index method (Allen & Tildesley (1987))

3D domain decomposition

Page 29: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

100 101 102 103102

103

104

105

106

107

Present code (N256) Peak Performance 10% of Peak Performance

MFL

OPS

Number of cores

F =∂u1 ∂x1( )4

∂u1 ∂x1( )2 2Flatness factor:

Flow simulation Flow & Particle simulation

Performance on ALTIX for 260,000 droplets in 2563 grids

Good parallel performance Reliable & Fast

Present FDM is estimated to be x3.8 faster than conventional PSM (not shown here).

REF:Onishi et al. (2011)JCP

Page 30: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

newly obtained data appears in the contribution paper

? Collision data for Reλ~540 (20003 grids, billion particles) is obtainable on ES2

Reλ=340 10003 grids, 50million particles

Page 31: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

31

0.1 1 100.1

1

10

100

g(R)

- 1

St

CASE-1 (Reλ=36) CASE-2 (Reλ=44) CASE-3 (Reλ=54) CASE-4 (Reλ=83)

St2

St<<1 0.1 1 10 100

0.01

0.1

1

10

(g(R

) - 1

) / (R

e λ St-2

)

St

CASE-1 (Reλ=36) CASE-2 (Reλ=44) CASE-3 (Reλ=54) CASE-4 (Reλ=83)

St~1

1 10 1000.01

0.1

1

10

(g(R

) - 1

) / (R

e λ St-1

)1/2

St

CASE-1 (Reλ=36) CASE-2 (Reλ=44) CASE-3 (Reλ=54) CASE-4 (Reλ=83)

St >>1

Empirical, but with some physical support

Problem: g(2r) for St=1 is in between St<<1 and St~1, and parameterized fully-empirically.

Page 32: Towards Multiscale Simulations of Cloud Turbulencemetstroem.mi.fu-berlin.de/wp/wp-content/uploads/2012/06/Ryo-Onishi.pdf3 Earth Simulator Mar. 2002 – Sept. 2008 . Processors : 5,120

MSSG (Multi-Scale Simulator for the Geoenvironment) Non-hydrostatic atmos-ocean coupled model Yin-Yang grid

High-resolution cloud simulations (LES) with MSSG-Bin scheme useful to see the turbulence role in clouds Δ=25m simulations are feasible on the ES2

DNS for colliding droplets in high-Re flows useful to check the applicability of turbulent collision

models to cloud turbulence with Reλ=103~4 Data for up to Reλ=340 has been obtained, and one for Reλ=540 is coming.

-These atmos. flows have energy scales L of O(1m).

Turbulence models validated by the DNS for L=O(10m) will strengthen the Δ=O(10m) cloud simulations, on O(10 PFLOPS) supercomputers!