19
Towards a European Infrastructure for Lunar Observatories Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 Bremen, Wednesday 23 rd rd March 2005 March 2005 A 3D cosmic ray detector on the Moon A 3D cosmic ray detector on the Moon X. X. Moussas Moussas University of Athens University of Athens [email protected] 3D cosmic ray time dependent distributions can be obtained using properly positioned cosmic ray detectors on the Moon. This system can give new insight to the study of the modulation of both galactic and solar cosmic rays It will provide measurements outside the Earth’s magnetosphere of: 1. the cosmic ray intensity time variability 2. the cosmic ray anisotropy time variability 3. Earth directed strong solar wind shocks and hence 4. space weather predictions complementary to other methods 5. time and directional variations of the spectrum, possibly variations of the composition and temperature of cosmic rays can also be measured 6. Magnetar activity studies will also benefit from such an observatory

Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd March 2005

Embed Size (px)

DESCRIPTION

A 3D cosmic ray detector on the Moon X. Moussas University of Athens [email protected]. 3D cosmic ray time dependent distributions can be obtained using properly positioned cosmic ray detectors on the Moon. - PowerPoint PPT Presentation

Citation preview

Page 1: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Towards a European Infrastructure for Lunar ObservatoriesTowards a European Infrastructure for Lunar ObservatoriesBremen, Wednesday 23Bremen, Wednesday 23rdrd March 2005 March 2005

A 3D cosmic ray detector on the MoonA 3D cosmic ray detector on the MoonX.X. MoussasMoussas

University of AthensUniversity of [email protected]

3D cosmic ray time dependent distributions can be obtained using properly positioned cosmic ray detectors on the Moon.

This system can give new insight to the study of the modulation of both galactic and solar cosmic rays

It will provide measurements outside the Earth’s magnetosphere of:1. the cosmic ray intensity time variability 2. the cosmic ray anisotropy time variability 3. Earth directed strong solar wind shocks and hence 4. space weather predictions complementary to other methods 5. time and directional variations of the spectrum, possibly variations of the composition and

temperature of cosmic rays can also be measured6. Magnetar activity studies will also benefit from such an observatory

Page 2: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

The study of cosmic rays both galactic and solar continues to be of great importance to space sciences (origin, propagation, exotic objects)

Page 3: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

The cosmic ray spectral (not only the higher end) time and directional variability is of importance to cosmic sciences

Page 4: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005
Page 5: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

• The SunThe Sun the 11 (or 22) year solar the 11 (or 22) year solar activity cycle & Cosmic Rays activity cycle & Cosmic Rays

Page 6: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

time variations of the Heliospheretime variations of the Heliosphere::temperature, density, magnetic filed, velocity of the termination shock and radiustemperature, density, magnetic filed, velocity of the termination shock and radius

Page 7: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

1975 1980 1985 1990 1995 2000 20051975 1980 1985 1990 1995 2000 20051975 1980 1985 1990 1995 2000 20051975 1980 1985 1990 1995 2000 2005

CLIMAX NM E>5GeV

YEAR

1-D shell model

CR

inte

nsity (

arb

itra

ry u

nits)

E>400MeV

Cosmic ray 1D shell model (red), also for 400 MeV, > 5 GeV compared with Climax Neutron MonitorCosmic ray 1D shell model (red), also for 400 MeV, > 5 GeV compared with Climax Neutron Monitor

Page 8: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

whenever we have directional flux n=a00 (1) measurments of a population of particles (e.g. solar energetic particles, cosmic rays, solar wind plasma) of well-defined energy resolution are available, new macroscopic fluid-like quantities can be rigorously estimated, thus describing the sub-flux referring to that energy range in fluid terms. We have derived analytically, exact closed relations for these quantities as functions of lower order spherical harmonics coefficients. Equation (1) gives the differential number density of the energetic particles. Equations (2), (3) give the components and the magnitude respectively of the mean velocity. Equation (4) states that first order anisotropy vector, A1 is parallel and proportional in magnitude to the differential mean particle velocity. Thermal pressure tensor vector components are written as in equations (5)-(10). Equation (11) gives the kinetic temperature of cosmc rays.

Also the direction of heat flux

Cosmic ray fluxes, heat flux, anisotropies and temperature, density etc

Page 9: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Cosmic ray fluxes, anisotropies and temperature, density etc

Page 10: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Cosmic ray fluxes, anisotropies and temperature, density etc

Page 11: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005
Page 12: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005
Page 13: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

The global neutron monitor network is used as a large CR 3D detectorThis permits the prediction of the arrival of an interplanetary shock (CME)using the anisotropies of “galactic” cosmic rays (see also Dorman, Belov and colleagues). Anisotropies of CR can be measured using detectors on the Moon without the masking and dstortion of the magnetic filed of he Earth

See Cosmic Rays and Space WeatherBy Lev I. DORMAN

Cosmic rays are used for forecasting of major geomagnetic storms accompanied by Forbush-effects.

Page 14: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

NM network, asymptotic directions of cosmic ray stations

(asymptotic directions)

Page 15: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Scheme of mechanisms of possible precursor effects in CR (Dorman et al 2003)

Page 16: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Observations of a precursor effect in CR (from Dorman et al 2003) : Galactic cosmic ray pre-increase (white circles) and pre-decrease (grey circles) effects before the Sudden Storm Commencement (SSC) of great magnetic storm in September 1992, accompanied with Forbush-decrease

~2 days warning!

Page 17: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Abbe

Abul Wafa

Aitken

Al-Biruni

Alden

Alder

Alekhin

Al-Khwarizmi

Anders

Andronov

Appleton

Arminski

Artamonov

Ashbrook

Avicenna

Avogadro

Babcock

Backlund

Balandin

Baldet

Bawa

Becquerel

Bekesy

Bel'kovich

Bell

Bellinsgauzen

Belyaev

Bergman

Bergstrand

Berlage

Bhabha

Bingham

Birkeland

Birkhoff

BjerknesBlackett

Blazhko

Bobone

Bok

Boltzmann

Bolyai

Bondarenko

Borman

Bose

Bragg

Brashear

Bredikhin

Bridgman

Brouwer

Buffon

Buisson

Buys-Ballot

Cabannes Cailleux

Cajori

Campbell

Cantor

Carnot

Carver

CassegrainChadwick

Chaffee

Chalonge

Chamberlin

Champollion

Chandler

Chant

Chaplygin

Chapman

Chappe

Chappell

Charlier

Chaucer

Chauvenet

Chebyshev

Chernyshev

Chretien

ClarkCoblentz

Cockcroft

Compton

ComrieComstock

Congreve

Cori

Coriolis

Couder

Coulomb

Crocco

Crommelin

Crookes

CurieCurie

Cyrano

D'Alembert

Danjon

Dante

Das

Davisson

de MoraesDebye

Dellinger

Denning

Deutsch

Dewar

Dirichlet

Doerfel

Doppler

Drude

Dryden

Dufay

Dugan

Duner

Dyson

Dziewulski

Edith

Ehrlich

Eijkman

Einthoven

Ellerman

Emden

Eotvos

Erro

Esnault-Pelterie

Espin

Evans

EvdokimovEvershed

Fabry

Fechner

Feoktistov

Fermi

Fesenkov

Finsen

Firsov

Fitzgerald

Fizeau

FlorenskyFoster

Fox

Freundlich

Fridman

Froelich

Fryxell

Gadomski

Galois

Gamow

Ganskiy

Garavito

Gavrilov

Geiger

Gerasimovich

Gernsback

Giordano Bruno

Glauber

Glazenap

Golitsyn

Golovin

Grave

GreenGregory

Grigg

Grissom

GuillaumeGullstrand

Guyot

Hale

Haret

Harkhebi

Harriot

Hartmann

Harvey

Hatanaka

Hayford

Healy

Heaviside

Henderson

Hendrix

Henyey Hertz

Hertzsprung

Hess

Heymans

Hilbert

Hirayama

Hoffmeister

Hohmann

Holetschek

Hopmann

Houzeau

Hutton

Ibn Yunus

Idelson

Il'in

IngallsInnes

Ioffe

Isaev

Izsak

Jackson

Jarvis

Jeans

JoliotJoule

Kamerlingh

Karima

Karpinskiy

Karrer

Katchalsky

Kearons

Kekule

Kepinski

Khvolson

Kibalchich

Kimura

Kirkwood

Kleymenov

Klute

Kohlschutter

Kolhorster

Komarov

Kondratyuk

Konoplev

Konstantinov

Korolev

Kostinskiy

Kovalevskaya

Kramarov

Krasovskiy

Krylov

Kulik

Lamb

Lampland

Landau

Lander

Lane Langemak

Langevin

Langmuir

Larmor

Laue

Lauritsen

LeavittLebedev

Leeuwenhoek

Leibnitz

Lemaitre

Lenz

Leonov

Leuschner

Levi-Civita

Ley

Lindblad

Lippmann

Lipskiy

Litke

Lobachevskiy

Lodygin

Lomonosov

Love

Lovelace

Lovell

Lowell

Ludwig

Lundmark

Lyman

Mach

Maksutov

Mandelshtam

Marci

Marconi

Mariotte

Maunder

Maxwell

McAdie

McAuliffe

McKellar

McMath

McNair

McNally

Mechnikov

Mees

Meggers

Meitner

Mendel

Mendeleev

Merrill

Meshcherskiy

Mezentsev

Michelson

Milankovic

Millikan

Mills

Milne

Mineur

Minnaert

MitraMobius

Moissan

Montgolfier

Moore

Morozov

Morse

Moulton

Murakami

Nagaoka

Nansen

Nassau

Necho

NernstNijland

Nishina

Nobel

Nother

Numerov

Nuvsl

Oberth

Obruchev

O'Day

OhmOlcott

OlivierOmar Khayyam

Oppenheimer

Oresme

Orlov

Paneth

Pannekoek

Papaleksi

Parenago

Parkhurst

Parsons

Paschen

Patsaev

Pauli

Pavlov

Pease

Perelman

Perepelkin

Perkin

Perrine

Petropavlovskiy

Pirquet

Pizzetti

Planck

Plante

Plaskett

Plummer

Poczobutt

Pogson

Poincare

Poinsot

Polzunov

Poynting

Prager

PrandtlPriestley

Racah

Raimond

Ramsay

Raspletin

Rayet

Razumov

Recht

Resnik

Riedel

Ritz

Roberts

Roche

Rontgen

Rosseland

Rowland

Rozhdestvenskiy

Rumford

Rutherford

Rydberg

Safavrik

Saha

Sanford

ScaligerSchaeberle

Schjellerup

Schliemann

Schneller

Schrodinger

Schuster

SchwarzschildSeares

Sechenov

Segers

Seidel

Seyfert

Sharonov

Shatalov

Shayn

Shi Shen

Shternberg

Shuleykin

Siedentopf

Sierpinski

Sikorsky

Sisakyan

Sita

Sklodowska

Slipher

Smith

Sniadecki

Sommerfeld

Stark

Stearns

Stebbins

Steklov

Steno

Sternfeld

Stoney

Stormer

Stratton

Stromgren

Subbotin

Sumner

Swann

Tamm

Teisserenc

TeslaThiel

Thiessen

Thomson

Tikhomirov

Tiling

Timiryazev

Tiselius

TitovTrumpler

Tsander

Tseraskiy

Tsinger

Tsu Chung-Chi

van Rhijn

Vavilov

Ventris

Vernadskiy

Vertregt

Vesalius

Vestine

Vil'ev

Virtanen

Volkov

von Karman

von Neumann

Von Zeipel

Walker

Wan-Hoo

Waterman

Watson

Weber

Wegener

Wexler

Weyl

White

Wiechert

Wiener

Wilsing

Winkler

Wroblewski

YablochkovYamamoto

Zelinskiy

Zernike

Zhukovskiy

Zsigmondy

Zwicky

Αντωνιάδης

Απόλλων

Γκαγκάριν

Δαίδαλος

Ήρων

Ίκαρος

Ιούλιος Βερν

Ιπποκράτης

Λεύκιππος

Λουκρίτιος

Μέλισσα

ΞενοφώνΌμηρος

Παράκελσος

Παρασκευόπουλος

Παστέρ

Ρωμαίος

Σαπφώ

Σοφοκλής

Τερέσκοβα

Φλέμινγκ

Φωκάς

-90-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

7090

-90-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 90

πλάτ

ος

μήκος

6 detectors

Page 18: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

Abbe

Abul Wafa

Aitken

Al-Biruni

Alden

Alder

Alekhin

Al-Khwarizmi

Anders

Andronov

Appleton

Arminski

Artamonov

Ashbrook

Avicenna

Avogadro

Babcock

Backlund

Balandin

Baldet

Bawa

Becquerel

Bekesy

Bel'kovich

Bell

Bellinsgauzen

Belyaev

Bergman

Bergstrand

Berlage

Bhabha

Bingham

Birkeland

Birkhoff

BjerknesBlackett

Blazhko

Bobone

Bok

Boltzmann

Bolyai

Bondarenko

Borman

Bose

Bragg

Brashear

Bredikhin

Bridgman

Brouwer

Buffon

Buisson

Buys-Ballot

Cabannes Cailleux

Cajori

Campbell

Cantor

Carnot

Carver

CassegrainChadwick

Chaffee

Chalonge

Chamberlin

Champollion

Chandler

Chant

Chaplygin

Chapman

Chappe

Chappell

Charlier

Chaucer

Chauvenet

Chebyshev

Chernyshev

Chretien

ClarkCoblentz

Cockcroft

Compton

ComrieComstock

Congreve

Cori

Coriolis

Couder

Coulomb

Crocco

Crommelin

Crookes

CurieCurie

Cyrano

D'Alembert

Danjon

Dante

Das

Davisson

de MoraesDebye

Dellinger

Denning

Deutsch

Dewar

Dirichlet

Doerfel

Doppler

Drude

Dryden

Dufay

Dugan

Duner

Dyson

Dziewulski

Edith

Ehrlich

Eijkman

Einthoven

Ellerman

Emden

Eotvos

Erro

Esnault-Pelterie

Espin

Evans

EvdokimovEvershed

Fabry

Fechner

Feoktistov

Fermi

Fesenkov

Finsen

Firsov

Fitzgerald

Fizeau

FlorenskyFoster

Fox

Freundlich

Fridman

Froelich

Fryxell

Gadomski

Galois

Gamow

Ganskiy

Garavito

Gavrilov

Geiger

Gerasimovich

Gernsback

Giordano Bruno

Glauber

Glazenap

Golitsyn

Golovin

Grave

GreenGregory

Grigg

Grissom

GuillaumeGullstrand

Guyot

Hale

Haret

Harkhebi

Harriot

Hartmann

Harvey

Hatanaka

Hayford

Healy

Heaviside

Henderson

Hendrix

Henyey Hertz

Hertzsprung

Hess

Heymans

Hilbert

Hirayama

Hoffmeister

Hohmann

Holetschek

Hopmann

Houzeau

Hutton

Ibn Yunus

Idelson

Il'in

IngallsInnes

Ioffe

Isaev

Izsak

Jackson

Jarvis

Jeans

JoliotJoule

Kamerlingh

Karima

Karpinskiy

Karrer

Katchalsky

Kearons

Kekule

Kepinski

Khvolson

Kibalchich

Kimura

Kirkwood

Kleymenov

Klute

Kohlschutter

Kolhorster

Komarov

Kondratyuk

Konoplev

Konstantinov

Korolev

Kostinskiy

Kovalevskaya

Kramarov

Krasovskiy

Krylov

Kulik

Lamb

Lampland

Landau

Lander

Lane Langemak

Langevin

Langmuir

Larmor

Laue

Lauritsen

LeavittLebedev

Leeuwenhoek

Leibnitz

Lemaitre

Lenz

Leonov

Leuschner

Levi-Civita

Ley

Lindblad

Lippmann

Lipskiy

Litke

Lobachevskiy

Lodygin

Lomonosov

Love

Lovelace

Lovell

Lowell

Ludwig

Lundmark

Lyman

Mach

Maksutov

Mandelshtam

Marci

Marconi

Mariotte

Maunder

Maxwell

McAdie

McAuliffe

McKellar

McMath

McNair

McNally

Mechnikov

Mees

Meggers

Meitner

Mendel

Mendeleev

Merrill

Meshcherskiy

Mezentsev

Michelson

Milankovic

Millikan

Mills

Milne

Mineur

Minnaert

MitraMobius

Moissan

Montgolfier

Moore

Morozov

Morse

Moulton

Murakami

Nagaoka

Nansen

Nassau

Necho

NernstNijland

Nishina

Nobel

Nother

Numerov

Nuvsl

Oberth

Obruchev

O'Day

OhmOlcott

OlivierOmar Khayyam

Oppenheimer

Oresme

Orlov

Paneth

Pannekoek

Papaleksi

Parenago

Parkhurst

Parsons

Paschen

Patsaev

Pauli

Pavlov

Pease

Perelman

Perepelkin

Perkin

Perrine

Petropavlovskiy

Pirquet

Pizzetti

Planck

Plante

Plaskett

Plummer

Poczobutt

Pogson

Poincare

Poinsot

Polzunov

Poynting

Prager

PrandtlPriestley

Racah

Raimond

Ramsay

Raspletin

Rayet

Razumov

Recht

Resnik

Riedel

Ritz

Roberts

Roche

Rontgen

Rosseland

Rowland

Rozhdestvenskiy

Rumford

Rutherford

Rydberg

Safavrik

Saha

Sanford

ScaligerSchaeberle

Schjellerup

Schliemann

Schneller

Schrodinger

Schuster

SchwarzschildSeares

Sechenov

Segers

Seidel

Seyfert

Sharonov

Shatalov

Shayn

Shi Shen

Shternberg

Shuleykin

Siedentopf

Sierpinski

Sikorsky

Sisakyan

Sita

Sklodowska

Slipher

Smith

Sniadecki

Sommerfeld

Stark

Stearns

Stebbins

Steklov

Steno

Sternfeld

Stoney

Stormer

Stratton

Stromgren

Subbotin

Sumner

Swann

Tamm

Teisserenc

TeslaThiel

Thiessen

Thomson

Tikhomirov

Tiling

Timiryazev

Tiselius

TitovTrumpler

Tsander

Tseraskiy

Tsinger

Tsu Chung-Chi

van Rhijn

Vavilov

Ventris

Vernadskiy

Vertregt

Vesalius

Vestine

Vil'ev

Virtanen

Volkov

von Karman

von Neumann

Von Zeipel

Walker

Wan-Hoo

Waterman

Watson

Weber

Wegener

Wexler

Weyl

White

Wiechert

Wiener

Wilsing

Winkler

Wroblewski

YablochkovYamamoto

Zelinskiy

Zernike

Zhukovskiy

Zsigmondy

Zwicky

Αντωνιάδης

Απόλλων

Γκαγκάριν

Δαίδαλος

Ήρων

Ίκαρος

Ιούλιος Βερν

Ιπποκράτης

Λεύκιππος

Λουκρίτιος

Μέλισσα

ΞενοφώνΌμηρος

Παράκελσος

Παρασκευόπουλος

Παστέρ

Ρωμαίος

Σαπφώ

Σοφοκλής

Τερέσκοβα

Φλέμινγκ

Φωκάς

-90-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

7090

-90-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 90

πλάτ

ος

μήκος

26 detectors

Page 19: Towards a European Infrastructure for Lunar Observatories Bremen, Wednesday 23 rd  March 2005

A 3D cosmic ray detector on the MoonA 3D cosmic ray detector on the Moon

3D cosmic ray time dependent distributions can be obtained using properly positioned cosmic ray detectors on the Moon.

This system can give new insight to the study of the modulation of both galactic and solar cosmic rays

It will provide measurements outside the Earth’s magnetosphere of:1. the cosmic ray intensity time variability 2. the cosmic ray anisotropy time variability 3. Earth directed strong solar wind shocks and hence 4. space weather predictions complementary to other methods 5. time and directional variations of the spectrum, possibly variations of the

composition and temperature of cosmic rays can also be measured6. Magnetar activity studies will also benefit from such an observatory