16
1 Towards a “Treadmill Test” for Cognition: Reliable Prediction of Intelligence From Whole-Brain Task Activation Patterns Chandra Sripada 1* , Mike Angstadt 1 , Saige Rutherford 1 1 Department of Psychiatry, University of Michigan, Ann Arbor, MI *Correspondence: [email protected] Abstract Identifying brain-based markers of general cognitive ability, i.e., “intelligence”, has been a longstanding goal of cognitive and clinical neuroscience. Previous studies focused on relatively static, enduring features such as gray matter volume and white matter structure. In this report, we investigate prediction of intelligence based on task activation patterns during the N-back working memory task as well as six other tasks in the Human Connectome Project dataset, encompassing 19 task contrasts. We find that whole brain task activation patterns are a highly effective basis for prediction of intelligence, achieving a 0.68 correlation with intelligence scores in an independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive processing and that are more cognitively demanding are particularly effective for intelligence prediction. These results suggest a picture analogous to treadmill testing for cardiac function: Placing the brain in an activated task state improves brain-based prediction of intelligence. 1 Introduction In addition to particular abilities associated with individual cognitive tasks, there is substantial evidence for an overarching general ability involved in performance across a diverse range of tasks. 1–5 Intelligence tests composed of multiple subtests can yield accurate estimates of this general ability, usually denoted g, and which we here refer to as “intelligence”. 6,7 Intelligence is a fundamental dimension of individual differences and is a key contributor to a number of important academic, occupational, health, and well-being-related outcomes. 8–13 There is thus substantial interest in understanding the neural basis of intelligence and in developing “neuromarkers” of intelligence, objective brain-based means of measuring individual differences. One potentially promising route is to construct neuromarkers of intelligence from neuroimaging maps, including structural and functional imaging. Existing studies have mainly investigated brain size 14 , cortical thickness/gray matter volume 15,16 , white matter structure 17 , and resting state functional connectivity 18–20 (for reviews, see 21–24 ). A notable feature of these studies is they mainly examine stable, enduring features of the brain, features that are largely independent of the person’s current . CC-BY 4.0 International license under a not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available The copyright holder for this preprint (which was this version posted September 9, 2018. ; https://doi.org/10.1101/412056 doi: bioRxiv preprint

Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

1

Towardsa“TreadmillTest”forCognition:ReliablePredictionofIntelligenceFromWhole-BrainTaskActivationPatterns

ChandraSripada1*,MikeAngstadt1,SaigeRutherford11DepartmentofPsychiatry,UniversityofMichigan,AnnArbor,MI*Correspondence:[email protected]

AbstractIdentifyingbrain-basedmarkersofgeneralcognitiveability,i.e.,“intelligence”,hasbeenalongstandinggoalofcognitiveandclinicalneuroscience.Previousstudiesfocusedonrelativelystatic,enduringfeaturessuchasgraymattervolumeandwhitematterstructure.Inthisreport,weinvestigatepredictionofintelligencebasedontaskactivationpatternsduringtheN-backworkingmemorytaskaswellassixothertasksintheHumanConnectomeProjectdataset,encompassing19taskcontrasts.Wefindthatwholebraintaskactivationpatternsareahighlyeffectivebasisforpredictionofintelligence,achievinga0.68correlationwithintelligencescoresinanindependentsample,whichexceedsresultsreportedfromothermodalities.Additionally,weshowthattasksthattapexecutiveprocessingandthataremorecognitivelydemandingareparticularlyeffectiveforintelligenceprediction.Theseresultssuggestapictureanalogoustotreadmilltestingforcardiacfunction:Placingthebraininanactivatedtaskstateimprovesbrain-basedpredictionofintelligence.1 IntroductionInadditiontoparticularabilitiesassociatedwithindividualcognitivetasks,thereissubstantialevidenceforanoverarchinggeneralabilityinvolvedinperformanceacrossadiverserangeoftasks.1–5Intelligencetestscomposedofmultiplesubtestscanyieldaccurateestimatesofthisgeneralability,usuallydenotedg,andwhichwehererefertoas“intelligence”.6,7Intelligenceisafundamentaldimensionofindividualdifferencesandisakeycontributortoanumberofimportantacademic,occupational,health,andwell-being-relatedoutcomes.8–13Thereisthussubstantialinterestinunderstandingtheneuralbasisofintelligenceandindeveloping“neuromarkers”ofintelligence,objectivebrain-basedmeansofmeasuringindividualdifferences.Onepotentiallypromisingrouteistoconstructneuromarkersofintelligencefromneuroimagingmaps,includingstructuralandfunctionalimaging.Existingstudieshavemainlyinvestigatedbrainsize14,corticalthickness/graymattervolume15,16,whitematterstructure17,andrestingstatefunctionalconnectivity18–20(forreviews,see21–24).Anotablefeatureofthesestudiesistheymainlyexaminestable,enduringfeaturesofthebrain,featuresthatarelargelyindependentoftheperson’scurrent

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 2: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

2

cognitivestate,andinparticulartheiractualexerciseofthecognitiveabilitiesthatarerelevanttointelligenttaskperformance.Analternativeapproachforconstructingneuromarkersofintelligence,whoserationaleresemblesthatforcardiactreadmilltesting,attemptstofirstplacethebraininanactivatedstatethatengagesthesecognitiveabilities,renderingbrainfeaturesassociatedwiththeseabilitiesmore“visible”tofunctionalimaging(see25forasuggestionalongtheselines).Interestingly,whiletask-basedneuroimagingstudieshavebeenextensivelyusedtoinvestigatethebrain-basisofintelligence,theyhavethusfarbeenusednearlyexclusivelyforthepurposesoflocalization:Activationpatternsinhigherversuslowerintelligenceindividualsarecomparedtoidentifytheplacesinthebrainwheretherearestatisticallysignificantdifferences.26–30Task-basedstudieshavethusfarnotbeenusedwidelyinapredictionframeworkinwhichwhole-brainactivationpatternsareharnessedformakingpredictionsofeachsubject’sintelligence.Inthecurrentstudy,weaddressthisnotablegap.UtilizingtheHumanConnectomeProject’s1200release,weconstructahighlyreliablemeasureofintelligencefrom10measuresfromtheNIHToolboxandPennNeurocognitiveBattery.Wethenexaminebrain-basedpredictionofintelligencefromcontrastmapsderivedfromthe2-backworkingmemorytaskaswellassixotherfMRItasks(19taskcontrastsintotal),andweestablishtwothings.First,task-basedactivationpatternsallowhighlyreliablepredictionofintelligence,withperformanceappreciablyhigherthanthatreportedinotherneuroimagingmodalities.Second,tasksthattapexecutiveprocessingandthataremorecognitivelydemandingyieldmoreaccuratepredictionsofintelligence.2 Methods2.1 SubjectsandDataAcquisitionAllsubjectsanddatawerefromtheHCP-1200release31,32andallresearchwasperformedinaccordancewithrelevantguidelinesandregulations.Subjectsprovidedinformedconsent,andrecruitmentproceduresandinformedconsentforms,includingconsenttosharede-identifieddata,wereapprovedbytheWashingtonUniversityinstitutionalreviewboard.SubjectscompletedtworunseachofsevenscannertasksacrosstwofMRIsessions,usinga32-channelheadcoilona3TSiemensSkyrascanner(TR=720ms,TE=33.1ms,72slices,2mmisotropicvoxels,multibandaccelerationfactor=8)withright-to-leftandleft-to-rightphaseencodingdirections.ComprehensivedetailsareavailableelsewhereonHCP’soverallneuroimagingapproach31,33andHCP’staskfMRIdataset34.SubjectswereeligibletobeincludediftheyhadavailableMSMAllregisteredtaskdataforbothrunsofallseventasks,hadfullbehavioraldata,andnomorethan25%oftheirvolumesineachrunexceededaframewisedisplacementthresholdof

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 3: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

3

0.5mm.Theseexclusionsresultedin958subjects.Thiswasfurtherreducedto944subjectsingeneratingtheTrain/Testsetsplit(seebelow).2.2 DataPreparationDatawaspreprocessedthroughtheHCPminimallypreprocessedpipeline,whichispresentedindetailbyGlasseretal.35Briefly,thepipelineincludesgradientunwarping,motioncorrection,fieldmapdistortioncorrection,brain-boundarybasedlinearregistrationoffunctionaltostructuralimages,non-linearregistrationtoMNI152space,andgrand-meanintensitynormalization.Datathenenteredasurfaced-basedpreprocessingstream,followedbygrayordinate-basedprocessing,whichinvolvesdatafromthecorticalribbonbeingprojectedtosurfacespaceandcombinedwithsubcorticalvolumetricdata.2.3 FMRITasksWeusedcontrastsfromsevenHCPtasks,describedinbriefinTable1(detaileddescriptionsareavailableelsewhere32,34).N-backtask Participantsrespondwhenthepictureshownonthescreenisthe

sameastheonetwotrialsback(=2-backcondition)orthesameasoneshownatthestartoftheblock(=0-backcondition).

IncentiveProcessing

Participantsguesswhetherthenumberonamysterycardwillbemoreorlessthan5andwinorlosemoney(rewardcondition=mostlywins;losscondition=mostlylosses)

Motor Participantsmovefingers,toes,andtongueLanguageTask ParticipantsanswerquestionsaboutAesop’sfables(=story

condition)ormathproblems(=mathcondition).SocialCognitionTask

Participantswatchvideoclipsofobjectsinteractinginanagentiveway(=theoryofmindcondition)orrandomway(=randomcondition).

RelationalTask Participantsidentifythedimensionalongwhichacuepairofobjectsdiffersanddetermineifatargetpairdiffersalongsamedimension(=relationalcondition).Ortheydetermineifacueobjectmatchesamemberofatargetpairalongagivendimension(=matchcondition).

EmotionTask Participantsdecidewhetheroneoftwopresentedfacesmatchoneatthetopofthescreen(=facecondition)orelsetheyperformthesametaskwithshapes(=shapecondition)

Table1:SevenHCPfMRITasks.Atthesinglesubject-level,fixed-effectsanalyseswereconductedusingFSL’sFEATtoestimatetheaverageeffectsacrossrunswithin-participants,using2mmsurfacesmootheddata.Sometaskspermittedmultiplecontrastsbeyondthestandardexperimentalversuscontrolcondition(e.g.,N-backallowsadditionalcontrasts

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 4: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

4

basedonallfourstimulustypes).Toreducethecomplexityoftheanalysisandavoidlossofpowerfromsmallernumberoftrials,wefocusedonthestandardcontrastsyieldingatotalof19.AfulllistoffilenamesofthecontrastmapsusedcanbefoundintheSupplementalTableS1.2.4 ConstructingaGeneralIntelligenceFactorWeconductedanexploratoryfactoranalysisutilizingthestrategyandassociatedcodesuppliedbyDuboisandcolleagues(https://github.com/adolphslab/HCP_MRI-behavior),whorecentlyinvestigatedpredictionofintelligencefromrestingstatefMRIintheHCPdataset36.Unadjustedscoresfromtencognitivetasksfor1181HCPsubjectswereincludedintheanalysis(subjectswithmissingdataorMMSE<26wereexcluded),includingseventasksfromtheNIHToolbox(DimensionalChangeCartSort,FlankerTask,ListSortTest,PictureSequenceTest,PictureVocabularyTest,PatternCompletionTest,OralReadingRecognitionTest)andthreetasksfromthePennNeurocognitiveBattery(PennProgressiveMatrices,PennWordMemoryTest,VariableShortPennLineOrientationTest),withadditionaldetailssuppliedin36.WeappliedDuboisandcolleagues’codetothisdata,whichinturnusestheomegafunctioninthepsych(v1.8.4)package37inR(v3.4.4).Inparticular,thecodeperformsmaximumlikelihood-estimatedexploratoryfactoranalysis(specifyingabifactormodel),obliminfactorrotation,followedbyaSchmid-Leimantransformation38tofindgeneralfactorloadings.Toassessreliability,inaseparateanalysis,were-ranthefactoranalysisexcluding46subjectsthathadTest/Retestsessionsavailable.Wethenestimatedfactorscoresforbothsessionsforthesesubjectsandcalculatedtest/retestreliabilityviaintraclasscorrelation(weusedICC(2,1)intheShroutandFleissscheme39).2.5 Train/TestSplitThe958subjectsafterexclusionsweredividedintotwogroups.Togenerateatestdatasetof100unrelatedsubjectswefirstselectedthe86subjectswithnosiblingswhopassedexclusioncriteria.Then,werandomlyselected14familiesfromthosefamilieswith2siblingsincludedandrandomlydroppedonesiblingofeachpair.Thisresultedin944totalsubjectsforouranalyses,with844inthetrainingdataand100unrelatedsubjectsinthetestset.2.6 DimensionalityEstimationandPrincipalComponentAnalysisInthetrainingdataset,eachsubject’sunthresholdedtaskdatafrom19taskcontrastswasvectorizedandconcatenatedyielding19matrices,eachwithdimensionsof844subjectsby91282grayordinates.Wenextestimatedthenumberofintrinsicdimensionsassociatedwitheachtaskcontrast.Thiswasaccomplishedbysubmittingeachofthe19subjectsxgrayordinatescontrastmatricestothedimensionalityestimationprocedureofLevinaandBickel40.Thisisamaximumlikelihoodestimationmethodbasedondistancebetweencloseneighbors,whichwe

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 5: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

5

previouslysuccessfullyappliedtoHCPrestingstatedata41.

Dimensionalityestimationfoundameanof72dimensionsacrossthe19taskcontrasts.Becausepriorstudiesbyourgroup41showedsmalldifferencesinthenumberofcomponentsmakelittledifferenceinclassifierperformance,wechosetheroundnumberof75componentsforeachtask.Wealsoverifiedthatusingtheexacttask-specificnumberofcomponentsmadenodifferencetotheoutcome(seeSupplementalTableS2).

Next,eachofthe19subjectsxgrayordinatescontrastmatriceswassubmittedtoprincipalcomponentsanalysisusingthepcafunctioninMATLAB(2015b),yielding,foreachcontrast,843componentsorderedbydescendingeigenvalues.

2.7 BrainBasisSetModelingOuraimwastopredicteachsubject’sintelligencefromtheirexpressionscoresforncomponents(wherenwastypicallysettobe75;seeabove).Toaccomplishthis,weusedBrainBasisSet(BBS)modeling,previouslydescribedindetail41.Inatrainingdataset,wecalculatetheexpressionscoresforeachofthencomponentsforeachsubjectbyprojectingtheirdataontothe75principalcomponents.Wethenfitalinearregressionmodelwiththeseexpressionscoresaspredictorsandthephenotypeofinterest(i.e.,intelligence)astheoutcome,savingB,thenx1vectoroffittedcoefficients,forlateruse.Inatestdataset,weagaincalculatetheexpressionscoresforeachofthencomponentsforeachsubject.OurpredictedphenotypeforeachtestsubjectisthedotproductofBlearnedfromthetrainingdatasetwiththevectorofcomponentexpressionscoresforthatsubject.WeassessedperformanceofBBS-basedpredictionofintelligencebycalculatingthecorrelationbetweenpredictedversusactualintelligenceinthetestsample.2.8 AddressingAdditionalPotentialConfoundsInanadditionalanalysis,weusedmultipleregressiontoremoveanumberofpotentialconfoundsfromtheintelligencevariable(i.e.,g).SimilartoDuboisetal.36,variablesregressedwere:age,handedness,gender,brainsize,multibandreconstructionalgorithmversionnumber(HCPvariables:Age_In_Yrs,Handedness,Gender,FS_BrainSeg_Vol,fMRI_3T_ReconVrs),andmeanframewisedisplacement(task-specificvalueswereused).Analysesinvolvingintelligencepredictionwerethenrepeatedwiththeconfound-cleansedvariable.ResultswerebroadlysimilartotheoriginalanalysesandarepresentedinSupplementalTableS2.2.9 ConsensusComponentMapsforVisualizationWeusedBBSwith75whole-braincomponentstomakepredictionsaboutintelligence.TohelpconveyoverallpatternsacrosstheentireBBSpredictivemodel,weconstructed“consensus”componentmaps.WefirstmultipliedeachcomponentmapwithitsassociatedbetafromthefittedBBSmodel.Next,wesummedacrossall75componentsyieldingasinglemap,andzscoredtheentries.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 6: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

6

3 Results3.1.ConstructingagFactorFromTenHCPBehavioralTasksAsreportedbyDubiosandcolleagues36,abifactormodelwithageneralfactorgandfourgroupfactors,fitthedataverywell(CFI=0.990;RMSEA=0.0311;SRMR=0.0201;BIC=-0.519).ThesolutionisdepictedinFigure1.FollowingDuboisandcolleagues,weinterpretthefourgroupfactorsas:1)CrystallizedAbility;2)ProcessingSpeed;3)VisuospatialAbility;and4)Memory.Thegeneralfactorg,whichwerefertothroughoutas“intelligence”andwhichisthefocusofthisreport,accountsfor58.5%ofthevariance(coefficientomegahierarchicalω42),whilegroupfactorsaccountfor18.2%ofthevariance.Basedonthe46subjectsintheretestdatasetforHCP,test-retestreliabilityforgwasfoundtobe,0.78,whichisconventionallyclassifiedasverygood(weusedICC(2,1)intheShroutandFleissscheme39).

Figure1:BifactorModelBasedonTenBehavioralTasksfromtheHCPDatasetwithGeneralFactor(“g”)andFourGroupFactors.C=CrystallizedIntelligence,S=ProcessingSpeed,V=VisuospatialAbility,M=Memory.3.2 ContrastsassociatedwiththeN-Backtaskarehighlyeffectiveatpredictingintelligenceinout-of-samplesubjects.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 7: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

7

Becauseworkingmemoryhasbeenstronglyandconsistentlylinkedwithintelligence35,43,44,wefirstinvestigatedpredictionofintelligencebasedontheN-backworkingmemorytask.ABBSmodelutilizing75componentswasfitinthetrainingdatasetandthenappliedtothetestdataset.Thecorrelationinthetestdatasetbetweenpredictedintelligenceandactualintelligencewas0.68(p=8.5x10-15).Figure2showsthetopthreecomponentsbasedonstatisticalsignificancedisplayedsothatgreaterexpressionofthesecomponentspredictsgreaterintelligence.Thesecomponentsincludelargeactivationsinsupplementarymotorarea(SMA),precuneus,anddlPFC,aswellasdeactivationsinanteriordefaultmodenetwork(DMN).Toconvey“average”patternsacrossall75components,weconstructedconsensuscomponentmaps(seeMethods)andtheyaredisplayedinFigure3.Theseshowadditionalpatternspredictiveofintelligence,includingdeactivationofposteriorcingulatecortexandfronto-polarcortex.

Figure2:VisualizationoftheThreeMostIntelligence-PredictiveComponentsFromthe2-backvs.0-backTaskContrast.Thethreemoststatisticallysignificantcomponentsareshownfroma75-componentbrainbasissetmodeltrainedtopredictintelligencescores.WenexttrainedadditionalBBSmodelsonthe2-backvs.baselineand0-backvs.baselinecontrasts.Thecorrelationinthetestdatasetbetweenpredictedintelligenceandactualintelligencewas0.58(p=2.0x10-10)and0.43(p=6.2x10-6),respectively.TheconsensuscomponentmodelsinFigure3revealedaninterestingchangeindirectionalityacrossthesecontrasts.Forexample,pre-SMAstronglypredictsgreaterintelligenceinthe2-backcontrastvs.baselinebutthereverseistrueinthe0-backvs.baselinecontrast.Additionally,lessactivation(i.e.,deactivation)oftheanteriorDMNpredictshigherintelligenceinthe2-backvs.0-backcontrast,butthereverseistrueinthe0-backvs.baselinecontrast.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 8: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

8

Figure3:ConsensusComponentMapsforSevenTaskContrastsHighlyPredictiveofIntelligence.Eachconsensuscomponentmapcapturesaggregatepatternsacrossa75-componentbrainbasissetmodelforpredictionofintelligence.(toprow)N-BackTask;(middlerow)RelationalTask;(bottomrow)Math–StoryContrast.3.3 Lookingacrossall19taskcontrasts,tasksinvolvingexecutiveprocessingandhighercognitivedemandaremoreeffectiveinpredictingintelligenceWenextcomparedintelligencepredictionbasedonthethreeN-backtaskcontrastswiththeremaining16contrastsfromtheothersixHCPtasks.AswiththeN-backtask,wetrainedBBSmodelsforeachtaskcontrastinthetraindatasetandappliedthemodelstotheheldouttestdataset.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 9: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

9

Figure4:IntelligencePredictionAcross19TaskContrasts.A.PredictionofIntelligenceUsingBrainBasisSetModelingFor19HCPTaskContrasts.SmallBlackDots=resultswithadditionalregressionofanumberofpotentialconfounds(see§2.8).B.FPN/DMNActivationPatternsDuringaTaskStronglyPredictEffectivenessofThatTaskinPredictingIntelligence.ResultsareshowninFigure3.Tasksinvolvingexecutiveprocessingweretopperformers,includingcontrastsfromtheN-backtaskandrelationalreasoningtask,aswellasthemathvs.storycontrastofthelanguageprocessingtask.Therewardvs.baselineandpunishmentvs.baselinecontrastsofthegamblingtask,bothofwhichinvolvemakingnumericaljudgments,alsoperformedwell.3.4 FPN/DMNactivation,ameasureoftaskdemandingness,predictswhichtasksareeffectiveforintelligencepredictionAnumberofstudieshaveobservedthattasksthatarecognitivelydemandingproduceactivationinregionsoffrontoparietalnetwork(FPN)45–48anddeactivationofregionsofdefaultmodenetwork(DMN)49–52.Buildingontheseobservations,wehypothesizedthemorecognitivelydemandingtasks(operationalizedintermsofactivationlevelsofFPNandDMN)shouldbemoreeffectiveinpredictingintelligence.Toensurecomparabilityacrosstaskcontrasts,wefocusedonthe12taskcontraststhatcomparedataskconditionversusrestingbaseline.WeperformedaregressionanalysiswithaccuracyofintelligencepredictionastheoutcomevariableandFPNandDMNactivationaspredictors.Results,showninFigure4,supportourhypothesis:Thecorrelationacrosstaskcontrastsbetweenpredictedaccuracy,basedonFPNandDMNactivation,andactualaccuracyinpredictingintelligenceis0.67(FPNstandardizedβ =0.63,DMNstandardizedβ=-0.58,p=0.0482).3.5. Acrossthe19taskcontrasts,activationsignaturesofintelligencearespatiallydistributedandtask-specific

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 10: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

10

Wenextcomparedtheconsensuscomponentmapsassociatedwiththe19contrasts(sevenmapsareshowninFigure3,andtheremainingmapsareshowninSupplementalFigureS1).Signaturesofintelligencepredictionassociatedwitheachtaskwerehighlydistributed,withremarkablevariationinthesesignaturesacrosstasks.Prominentlyrepresentedregionsinclude:superiorparietalcortex(rewardvs.baseline,punishmentvs.baseline),dlPFC(mathvs.story),anteriorinsula(relationalv.match),fronto-polarcortex(mathvs.story),pre-SMA(relationalvs.match),andvisualcortex(relationalvs.match,rewardvs.baseline,punishmentvs.baseline).All75componentsaswellasconsensuscomponentmapsforeachofthe19taskcontrastshavebeensharedonBALSA,theHumanConnectomeProjects’websiteforsharingandhostingneuroimagingdatasetsandcanbeaccessedhere:https://balsa.wustl.edu/study/show/MZPv.4 DiscussionThisstudyisthefirsttosystematicallyassessneuroimaging-basedpredictionofintelligenceacrossmultiplefMRItaskconditions.Wefindthatwhole-braintaskactivationpatternsareahighlyeffectivebasisforpredictionofintelligence,withamodeltrainedonactivationduringtheN-backworkingmemorytaskachievinga0.68correlationwithintelligencescoresinanindependentsample.Additionally,wedemonstratethatmorecognitivelydemandingtasksareparticularlyeffectiveforintelligenceprediction.Theseresultshighlighttheimportanceofplacingthebraininanactivatedtaskstateforaccuratebrain-basedpredictionofintelligence.RoleofexecutiveregionsinpredictionofintelligenceTheimportanceoffronto-parietalnetwork,aswellasrelatedexecutiveregions(e.g.,dorsalanteriorcingulate),forintelligencehasbeenhighlightedinpreviouswork,especiallyinJungandHaier’sinfluentialfronto-parietalintegrationtheory21.Inasimilarvein,Duncanandcolleaguesproposedthat“multipledemand”cortex—regionsofthebrainthatactivateacrossabroadrangeofcognitivelydemandingtasks45—areaprimarysubstrateofintelligence27.Thepresentstudyextendsthesefindingsbydemonstratingakeyroleforfronto-parietalregionsasamajorsourceofdiscriminativeinformationformakingsubject-levelpredictionsofintelligence.Thisadditionalroleofexecutiveregionswassupportedinthreecomplementaryways.First,inlookingacrossthesetof19contrastsderivedfromsevenHCPtasks,wefoundthattasksthattapexecutiveprocessesweremorepredictiveofintelligence(e.g.,N-backtaskcontrasts,relationalreasoningtaskcontrasts,andmathvs.storycontrast).Second,wefoundthatFPNactivationandDMNdeactivation,highlyassociatedwiththecognitivedemandingnessoftaskconditions45–52,predictwhichtaskcontrastswillbeeffectiveforintelligenceprediction.Third,withinhighlypredictivecontrasts,suchthe2-backvs.0-backcontrastandmathvs.storycontrast,activationpatternsinexecutiveregionswereprominentamongregionspredictiveofintelligence.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 11: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

11

Interestingly,forcertainregions,thedirectionalityofpredictionofintelligenceexhibitedsomevariabilityacrosstaskcontrastsinawaysuggestiveofmoderationbytaskdifficulty(forexample,seepre-SMAin0-backcomparedto2-backandinmatchcomparedtorelational).TheseobservationsareconsistentwithaneuralefficiencymodelofintelligenceproposedbyNeubauerandFink53.Theyproposethathigherintelligenceisassociatedwithgreaterprocessingefficiencyinelementarycognitivetasks(leadingtolessactivationinmoreintelligentindividuals)butgreaterprocessingcapacityindemandingcognitivetasks(leadingtogreateractivationinmoreintelligentpeople),thuspotentiallyexplainingtheflippeddirectionsofactivationobservedacrosstheeasyandhardconditionsoftheN-backandothertasks.Whileactivationpatternsinexecutiveregionsclearlyplayanimportantroleinexplainingthesuccessofourtask-basedapproachtointelligenceprediction,thereisstillclearevidenceforsubstantialdiscriminativeinformationaboutintelligencelocatedoutsideexecutiveregions.ThisisapparentinlookingattheconsensuscomponentimagesinFigure3aswellFigureS1intheSupplement.Activationsareobservedindistributedregionsofcortex,includingnon-executiveregionssuchasvisualcortex,lateraltemporalcortex,andtemporalpole,amongotherregions.Comparisonoftask-basedpredictionwithothermodalitiesPreviousstudiesusingneuroimagingforpredictionofintelligencehaveprimarilyusedstructuralmeasures,forexamplecorticalthickness15,16orwhitematterstructure17,forreviewssee21–23.IntermsoffunctionalfMRI,recentstudieshaveexaminedrestingstateconnectivitypatterns.18–20InanimportantstudybyDuboisandcolleagues36thatexaminedthesameHCP1200datasetusedinthepresentstudy,theyfoundrestingstateconnectivitypatternspredictedintelligencewithacorrelationof0.44incross-validatedtesting(seealsoarelatedfindingfromourgroup41).Whileimpressive,thisisstillsubstantiallylessthanthepeakcorrelationof0.68achievedinthepresentstudyinout-of-sampletesting.Therearetwointerrelatedreasonswhytask-basedfMRImightpotentiallyoffermorereliablepredictionofintelligencethanothermodalities.Thefirstappealstothe“treadmilltesting”ideaalreadymentioned:actively34engagingincognitivetaskshasthepotentialtounmaskcriticalintelligence-relevantfeaturesofthebrainthatareotherwiseinvisibleinothermodalitiessuchasstructuralbrainimaging.Asecondpotentialadvantageoftask-basedmethodsisspecificity.Tasksareconstructedbytheirdesignerstotargetspecificpsychologicalprocesses,oftenwithcontrolconditionsthatsubtractawaycontributionsfromauxiliaryprocessesofnointerest.Thiswilltendtomakeclassificationmoreaccurateasthefeaturesetisculledofasizablenumberofuninformativefeatures.FutureDirectionsResultsfromthisstudyopenthedoortopromisingadditionallinesofresearch.ItisnotablethatweusedthesetofimagingtasksthatwereincludedintheHCPdataset.Theseimagingtasks,inturn,wereselectedbasedondiverseconsiderations(see34),

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 12: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

12

butmaximizingpredictionofintelligencewasnotamongthem.Thus,itisplausiblethatonecandostillbetter:Itshouldbepossibletointentionallydesignandoptimizeanimagingtaskbattery—basedonfindingsfromtheliteratureaswellastrial-and-errorexperimentation—toyieldevenmoreaccuratetask-basedpredictionofintelligence,andfutureworkshouldexplorethispossibility.Insum,thisstudyfirmlyestablishestheeffectivenessoftask-basedfMRIforpredictionofintelligenceanddemonstratesthattasksthattapexecutiveprocessingandthataremorecognitivelydemandingareassociatedwithbetterpredictionaccuracy.

References1 SpearmanC.‘GeneralIntelligence,’objectivelydeterminedandmeasured.AmJ

Psychol1904;15:201–292.

2 NeisserU,BoodooG,BouchardJrTJ,BoykinAW,BrodyN,CeciSJetal.Intelligence:Knownsandunknowns.AmPsychol1996;51:77.

3 HornJL,NollJ.Humancognitivecapabilities:Gf-Gctheory.1997.

4 MackintoshN,MackintoshNJ.IQandhumanintelligence.OxfordUniversityPress,2011.

5 CarrollJB.Thehigher-stratumstructureofcognitiveabilities:Currentevidencesupportsgandabouttenbroadfactors.In:Thescientificstudyofgeneralintelligence.Elsevier,2003,pp5–21.

6 CarrollJB.Humancognitiveabilities:Asurveyoffactor-analyticstudies.CambridgeUniversityPress,1993.

7 McGrewKS.CHCtheoryandthehumancognitiveabilitiesproject:Standingontheshouldersofthegiantsofpsychometricintelligenceresearch.Elsevier,2009.

8 GottfredsonLS.Whygmatters:Thecomplexityofeverydaylife.Intelligence1997;24:79–132.

9 StrenzeT.Intelligenceandsocioeconomicsuccess:Ameta-analyticreviewoflongitudinalresearch.Intelligence2007;35:401–426.

10ReeMJ,EarlesJA,TeachoutMS.Predictingjobperformance:Notmuchmorethang..JApplPsychol1994;79:518.

11WhitleyE,BattyGD,GaleCR,DearyIJ,TyneliusP,RasmussenF.Intelligenceinearlyadulthoodandsubsequentriskofassault:cohortstudyof1,120,998Swedishmen.PsychosomMed2010;72:390.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 13: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

13

12GaleCR,BattyGD,TyneliusP,DearyIJ,RasmussenF.Intelligenceinearlyadulthoodandsubsequenthospitalisationandadmissionratesforthewholerangeofmentaldisorders:longitudinalstudyof1,049,663men.EpidemiolCambMass2010;21:70.

13BattyGD,MortensenEL,OslerM.ChildhoodIQinrelationtolaterpsychiatricdisorder:evidencefromaDanishbirthcohortstudy.BrJPsychiatry2005;187:180–181.

14McDanielMA.Big-brainedpeoplearesmarter:Ameta-analysisoftherelationshipbetweeninvivobrainvolumeandintelligence.Intelligence2005;33:337–346.

15ShawP,GreensteinD,LerchJ,ClasenL,LenrootR,GogtayNetal.Intellectualabilityandcorticaldevelopmentinchildrenandadolescents.Nature2006;440:676.

16ColomR,HaierRJ,HeadK,Álvarez-LineraJ,QuirogaMÁ,ShihPCetal.Graymattercorrelatesoffluid,crystallized,andspatialintelligence:TestingtheP-FITmodel.Intelligence2009;37:124–135.

17TurkenU,Whitfield-GabrieliS,BammerR,BaldoJV,DronkersNF,GabrieliJD.Cognitiveprocessingspeedandthestructureofwhitematterpathways:convergentevidencefromnormalvariationandlesionstudies.Neuroimage2008;42:1032–1044.

18HeuvelMPvanden,StamCJ,KahnRS,PolHEH.EfficiencyofFunctionalBrainNetworksandIntellectualPerformance.JNeurosci2009;29:7619–7624.

19FinnES,ShenX,ScheinostD,RosenbergMD,HuangJ,ChunMMetal.Functionalconnectomefingerprinting:identifyingindividualsusingpatternsofbrainconnectivity.NatNeurosci2015;18:1664–1671.

20GoñiJ,HeuvelMPvanden,Avena-KoenigsbergerA,MendizabalNVde,BetzelRF,GriffaAetal.Resting-brainfunctionalconnectivitypredictedbyanalyticmeasuresofnetworkcommunication.ProcNatlAcadSci2014;111:833–838.

21JungRE,HaierRJ.TheParieto-FrontalIntegrationTheory(P-FIT)ofintelligence:convergingneuroimagingevidence.BehavBrainSci2007;30:135–154.

22DearyIJ,PenkeL,JohnsonW.Theneuroscienceofhumanintelligencedifferences.NatRevNeurosci2010;11:201.

23LudersE,NarrKL,ThompsonPM,TogaAW.Neuroanatomicalcorrelatesofintelligence.Intelligence2009;37:156–163.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 14: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

14

24PietschnigJ,PenkeL,WichertsJM,ZeilerM,VoracekM.Meta-analysisofassociationsbetweenhumanbrainvolumeandintelligencedifferences:Howstrongaretheyandwhatdotheymean?NeurosciBiobehavRev2015;57:411–432.

25FinnES,ScheinostD,FinnDM,ShenX,PapademetrisX,ConstableRT.Canbrainstatebemanipulatedtoemphasizeindividualdifferencesinfunctionalconnectivity?Neuroimage2017.

26GrayJR,ChabrisCF,BraverTS.Neuralmechanismsofgeneralfluidintelligence.NatNeurosci2003;6:316–322.

27DuncanJ,SeitzRJ,KolodnyJ,BorD,HerzogH,AhmedAetal.Aneuralbasisforgeneralintelligence.Science2000;289:457–460.

28ChoiYY,ShamoshNA,ChoSH,DeYoungCG,LeeMJ,LeeJ-Metal.Multiplebasesofhumanintelligencerevealedbycorticalthicknessandneuralactivation.JNeurosci2008;28:10323–10329.

29BastenU,StelzelC,FiebachCJ.Intelligenceisdifferentiallyrelatedtoneuraleffortinthetask-positiveandthetask-negativebrainnetwork.Intelligence2013;41:517–528.

30BastenU,HilgerK,FiebachCJ.Wheresmartbrainsaredifferent:Aquantitativemeta-analysisoffunctionalandstructuralbrainimagingstudiesonintelligence.Intelligence2015;51:10–27.

31VanEssenDC,SmithSM,BarchDM,BehrensTEJ,YacoubE,UgurbilK.TheWU-MinnHumanConnectomeProject:Anoverview.NeuroImage2013;80:62–79.

32WU-MinnHCP.1200SubjectsDataReleaseReferenceManual.2017.

33GlasserMF,SotiropoulosSN,WilsonJA,CoalsonTS,FischlB,AnderssonJLetal.TheminimalpreprocessingpipelinesfortheHumanConnectomeProject.NeuroImage2013;80:105–124.

34BarchDM,BurgessGC,HarmsMP,PetersenSE,SchlaggarBL,CorbettaMetal.Functioninthehumanconnectome:task-fMRIandindividualdifferencesinbehavior.Neuroimage2013;80:169–189.

35EngleRW,KaneMJ,TuholskiSW.Individualdifferencesinworkingmemorycapacityandwhattheytellusaboutcontrolledattention,generalfluidintelligence,andfunctionsoftheprefrontalcortex.1999.

36DuboisJ,GaldiP,PaulLK,AdolphsR.Adistributedbrainnetworkpredictsgeneralintelligencefromresting-statehumanneuroimagingdata.PhilosTransRSocBBiolSci2018;373.doi:10.1098/rstb.2017.0284.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 15: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

15

37RevelleW.psych:ProceduresforPsychological,Psychometric,andPersonalityResearch.2016.

38SchmidJ,LeimanJM.Thedevelopmentofhierarchicalfactorsolutions.Psychometrika1957;22:53–61.

39ShroutPE,FleissJL.Intraclasscorrelations:usesinassessingraterreliability.PsycholBull1979;86:420–428.

40LevinaE,BickelPJ.MaximumLikelihoodestimationofintrinsicdimension.In:Proceedingsofthe17thInternationalConferenceonNeuralInformationProcessingSystems.MITPress:Vancouver,BritishColumbia,Canada,2004,pp777–784.

41SripadaC,AngstadtM,RutherfordS,KesslerD,KimY,YeeMetal.FundamentalDifferences:ABasisSetforCharacterizingInter-IndividualVariationinRestingStateConnectomes.bioRxiv2018;:326082.

42ZinbargRE,RevelleW,YovelI,LiW.Cronbach’sα,Revelle’sβ,andMcDonald’sωH:Theirrelationswitheachotherandtwoalternativeconceptualizationsofreliability.psychometrika2005;70:123–133.

43EngleRW,KaneMJ.Executiveattention,workingmemorycapacity,andatwo-factortheoryofcognitivecontrol.In:ThePsychologyofLearningandMotivation:AdvancesinResearchandTheory.Elsevier,2004.

44DuncanJ,SchrammM,ThompsonR,DumontheilI.Taskrules,workingmemory,andfluidintelligence.PsychonBullRev2012;19:864–870.

45DuncanJ,OwenAM.Commonregionsofthehumanfrontalloberecruitedbydiversecognitivedemands.TrendsNeurosci2000;23:475–483.

46CabezaR,NybergL.ImagingcognitionII:Anempiricalreviewof275PETandfMRIstudies.JCognNeurosci2000;12:1–47.

47ColeMW,SchneiderW.Thecognitivecontrolnetwork:Integratedcorticalregionswithdissociablefunctions.NeuroImage2007;37:343–360.

48NiendamTA,LairdAR,RayKL,DeanYM,GlahnDC,CarterCS.Meta-analyticevidenceforasuperordinatecognitivecontrolnetworksubservingdiverseexecutivefunctions.CognAffectBehavNeurosci2012;12:241–268.

49McKiernanKA,KaufmanJN,Kucera-ThompsonJ,BinderJR.Aparametricmanipulationoffactorsaffectingtask-induceddeactivationinfunctionalneuroimaging.JCognNeurosci2003;15:394–408.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint

Page 16: Towards a “Treadmill Test” for Cognition: Reliable ...independent sample, which exceeds results reported from other modalities. Additionally, we show that tasks that tap executive

16

50AnticevicA,RepovsG,ShulmanGL,BarchDM.Whenlessismore:TPJanddefaultnetworkdeactivationduringencodingpredictsworkingmemoryperformance.NeuroImage2010;49:2638–2648.

51AnticevicA,ColeMW,MurrayJD,CorlettPR,WangX-J,KrystalJH.Theroleofdefaultnetworkdeactivationincognitionanddisease.TrendsCognSci2012;16:584–592.

52EspositoF,BertolinoA,ScarabinoT,LatorreV,BlasiG,PopolizioTetal.Independentcomponentmodelofthedefault-modebrainfunction:Assessingtheimpactofactivethinking.BrainResBull2006;70:263–269.

53NeubauerAC,FinkA.Intelligenceandneuralefficiency.NeurosciBiobehavRev2009;33:1004–1023.

.CC-BY 4.0 International licenseunder anot certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 9, 2018. ; https://doi.org/10.1101/412056doi: bioRxiv preprint