195
WHITE PAPER SHALE GAS HYDRAULIC FRACTURING (FRACKING) ISSUES & CHALLENGES Michael P To-en, Principal AssetsforLife.net December 05, 2013

Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Embed Size (px)

DESCRIPTION

review of costs and risks associated with natural gas fracking, including a comparison with competitive options. 200 slides.

Citation preview

Page 1: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

WHITE  PAPER  SHALE  GAS  HYDRAULIC  FRACTURING  (FRACKING)  ISSUES  &  CHALLENGES    

 Michael  P  To-en,  Principal  

         AssetsforLife.net  December  05,  2013  

Page 2: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

SecAons  

2  

Page 3: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 4: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

4  

EIA,  Natural  Gas  Annual,  2011,  Energy  InformaAon  AdministraAon,  U.S.  Dept.  of  Energy  

Natural  Gas  supply  &  disposiAon  in  USA,  2011  2011�

U.S.�Energy�Information�Administration���|���Natural�Gas�Annual� 5

(J\SW�

Figure�2.��Natural�gas�supply�and�disposition�in�the�United�States,�2011�(trillion�cubic�feet)�

Extraction�Loss

Gross�Withdrawals�From�Gas�and�Oil�Wells�

Nonhydrocarbon�Gases�Removed�

Vented/Flared

Reservoir�Repressuring�

Production�Dry�Gas�

Imports�

&DQDGD� 7ULQLGDG�7REDJR���

1LJHULD�

Natural�Gas�Storage�Facilities�

Exports�

-DSDQ�&DQDGD� 0H[LFR�

Additions

Withdrawals�

Gas�Industry�Use� Residential� Commercial Industrial Vehicle�Fuel� Electric�Power

���� ���

���

���

����� �����

�����

���������� �����

�������

���

���

��� ��� ��� ���� ���

�����

����Sources:� �Energy� Information�Administration� (EIA),�Form�EIAͲ176,�“Annual� �Report�of�Natural�and�Supplemental�Gas�Supply�and�Disposition”;�Form�EIAͲ895,�“Annual�Quantity�and�Value� of� Natural� Gas� Production� Report”;� Form� EIAͲ914,� “Monthly� Natural� Gas� Production� Report”;� Form� EIAͲ857,� “Monthly� Report� of� Natural� Gas� Purchases� and� Deliveries� to�Consumers”;� Form� EIAͲ816,� “Monthly� Natural� Gas� Liquids� Report”;� Form� EIAͲ64A,� “Annual� Report� of� the� Origin� of� Natural� Gas� Liquids� Production”;� Form� EIAͲ191M,� “Monthly�Underground�Gas�Storage�Report”;�Office�of�Fossil�Energy,�U.S.�Department�of�Energy,�Natural�Gas� Imports�and�Exports;� the�Bureau�of�Safety�and�Environmental�Enforcement�and�predecessor�agencies;�Form�EIAͲ923,�“Power�Plant�Operations�Report”;�Form�EIAͲ886,�“Annual�Survey�of�Alternative�Fueled�Vehicles”;�state�agencies;�Form�EIAͲ23,�“Annual�Survey�of�Domestic�Oil�and�Gas�Reserves”;�LCI;�Ventyx;�and�EIA�estimates�based�on�historical�data.�

0H[LFR������

4DWDU������

1RUZD\������

���

6RXWK�.RUHD�����

3HUX������

<HPHQ������

%UD]LO�

8QLWHG�.LQJGRP6SDLQ������ �����

�����,QGLD������

&KLQD� &KLOH������ �����

2011�

U.S.�Energy�Information�Administration���|���Natural�Gas�Annual� 5

(J\SW�

Figure�2.��Natural�gas�supply�and�disposition�in�the�United�States,�2011�(trillion�cubic�feet)�

Extraction�Loss

Gross�Withdrawals�From�Gas�and�Oil�Wells�

Nonhydrocarbon�Gases�Removed�

Vented/Flared

Reservoir�Repressuring�

Production�Dry�Gas�

Imports�

&DQDGD� 7ULQLGDG�7REDJR���

1LJHULD�

Natural�Gas�Storage�Facilities�

Exports�

-DSDQ�&DQDGD� 0H[LFR�

Additions

Withdrawals�

Gas�Industry�Use� Residential� Commercial Industrial Vehicle�Fuel� Electric�Power

���� ���

���

���

����� �����

�����

���������� �����

�������

���

���

��� ��� ��� ���� ���

�����

����Sources:� �Energy� Information�Administration� (EIA),�Form�EIAͲ176,�“Annual� �Report�of�Natural�and�Supplemental�Gas�Supply�and�Disposition”;�Form�EIAͲ895,�“Annual�Quantity�and�Value� of� Natural� Gas� Production� Report”;� Form� EIAͲ914,� “Monthly� Natural� Gas� Production� Report”;� Form� EIAͲ857,� “Monthly� Report� of� Natural� Gas� Purchases� and� Deliveries� to�Consumers”;� Form� EIAͲ816,� “Monthly� Natural� Gas� Liquids� Report”;� Form� EIAͲ64A,� “Annual� Report� of� the� Origin� of� Natural� Gas� Liquids� Production”;� Form� EIAͲ191M,� “Monthly�Underground�Gas�Storage�Report”;�Office�of�Fossil�Energy,�U.S.�Department�of�Energy,�Natural�Gas� Imports�and�Exports;� the�Bureau�of�Safety�and�Environmental�Enforcement�and�predecessor�agencies;�Form�EIAͲ923,�“Power�Plant�Operations�Report”;�Form�EIAͲ886,�“Annual�Survey�of�Alternative�Fueled�Vehicles”;�state�agencies;�Form�EIAͲ23,�“Annual�Survey�of�Domestic�Oil�and�Gas�Reserves”;�LCI;�Ventyx;�and�EIA�estimates�based�on�historical�data.�

0H[LFR������

4DWDU������

1RUZD\������

���

6RXWK�.RUHD�����

3HUX������

<HPHQ������

%UD]LO�

8QLWHG�.LQJGRP6SDLQ������ �����

�����,QGLD������

&KLQD� &KLOH������ �����

Trillion  cubic  feet,  TCF  

IMPORTS  

EXPORTS  

Page 5: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Shale  gas  800%  Rise  in  12  years  as  Natural  Gas  prices  steeply  decline  

5  

Page 6: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

36,000  Shale  Wells  in  US  in  2012    

6  

P. O Box 470157

Fort Worth, Texas USA 76157-0157 Office: (817) 210-6292 Fax: (817) 231-0707

www.shaledigest.com

1 Powell Shale Digest Special Edition International Journalists Aug 13 2012

August 13, 2012

SHALE PRODUCERS IN U.S. TOP 35,000 WELLS, 23 TCF GAS & 682 MMBO The Powell Shale Digest© was requested by one of the largest shale operating companies in the U.S. to answer a request

from a newspaper in Paris, France. They desired to know the number of shale gas and oil producers in the United States. We

estimated 40,000 wells. Our final research numbers were 35,996 producers, 22,970,801,142 MCF gas + 682,073,803 BO/BC.

Subsequently, we totaled our last research of the major shale plays in the United States and below is our summary.

SHALE PRODUCERS IN U.S. MAJOR SHALE PLAYS

SHALE NAME STATE AGE YRS.

NO. WELLS

BEGAN MO/YR

LAST PROD

RESEARCH MO/YR

CUM GAS MCF

CUM OIL BO/BC

BARNETT SHALE TX 30.0 17,980 Jun-82 May-12 11,922,273,082 39,444,928 FAYETTEVILLE SHALE AR 7.75 3,730 Mar-04 Nov-11 2,512,089,052 - HAYNESVILLE SHALE LA 4.3 1,402 Jan-08 Apr-12 4,086,232,822 282,151 HAYNESVILLE SHALE TX 6.25 797 Mar-06 May-12 1,700,959,291 350,099 EAGLE FORD SHALE TX 6.4 3,597 Dec-05 May-12 622,433,431 120,582,966 BAKKEN/THREE FORKS SHALE ND 26.3 3,777 Mar-86 Jun-12 366,805,083 390,030,044 BAKKEN/THREE FORKS SHALE MT 26.4 886 Jan-86 Jun-12 107,666,762 128,981,402 MARCELLUS SHALE PA 2.4 2,312 Jul-09 Dec-11 1,530,087,438 2,070,715 MARCELLUS SHALE WV 5.9 1,515 Jan-05 Dec-10 122,254,181 331,498

TOTALS 35,996 22,970,801,142 682,073,803

Data Source: State Regulatory Agencies

August 13, 2012

Powell  Shale  Digest,  Special  EdiAon,  InternaAonal  Journalists,  Aug  13  2012    

Does  not  include  the  UAca  Shale.    The  Marcellus  figures  are  more  dated  than  for  the  other  shale  plays  due  to  lagging  reporAng  by  Pennsylvania  and  West  Virginia  regulators.  

Page 7: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Coal  declined  11%  in  5  years,  Natural  Gas  increased  10%  -­‐-­‐  with  cost  &  emission  savings  

7  UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  ScienAsts.    

Page 8: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Shale  FormaAons  Immense  

8  

Map  of  basins  with  assessed  shale  oil  &  shale  gas  formaKons,  as  of  May  2013    

PGC Resource Assessments, 1990-2012

Data source: Potential Gas Committee (2013)

Total Potential Gas Resources (Mean Values)

PotenKal  Gas  Agency,  PotenKal  Supply  of  Natural  Gas  in  the  United  States,  Report  of  the  PotenKal  Gas  CommiQee  (December  31,  2012)    

Page 9: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Shale  gas  producAon  in  North  America  A  bullish  view  in  LATE  2009  to  2040  

9  

15  TCF  

Kenneth  B  Medlock  III,  “Barne-  Shale  SAll  has  lots  of  life”,  June  11,  2011,  Baker  InsAtute  Energy  Forum,  slide  presented  at  the  Dallas  Federal  Reserve  Bank  in  2009,  h-p://fuelfix.com/blog/2011/06/27/barne--­‐shale-­‐sAll-­‐has-­‐lots-­‐of-­‐life/    

Page 10: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Shale  gas  producAon  in  North  America  Super-­‐bullish  view  by  EARLY  2011  to  2040  

10  Kenneth  B  Medlock  III,  “Barne-  Shale  SAll  has  lots  of  life”,  June  11,  2011,  Baker  InsAtute  Energy  Forum,  slide  presented  at  the  American  AssociaAon  of  Petroleum  Engineers  AAPG,  2011,  h-p://fuelfix.com/blog/2011/06/27/barne--­‐shale-­‐sAll-­‐has-­‐lots-­‐of-­‐life/    

20  TCF  

Page 11: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EXXONMobile  Natural  Gas  Global  &  North  America  SUPPLY  PerspecAve  to  2040  

11  Source:  ExxonMobile,  Energy  Outlook,  2013,  h-p://www.exxonmobil.com/Corporate/energy_outlook_datacenter_eo13gassupply.aspx      

Page 12: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

3  basic  steps  in  HF  Process  

12  

Establish  the  Pad:    Inject  hydraulic  fluid,  without  propping  agent  (proppant),  into  target  formaAon  

Pumped  at  about  100  barrels  per  minute;    Pressure:  around  14,000  psi  Pressure  tests  conducted  to  check  for  leakage  into  neighboring  formaAons  

Add  propping  agent  “proppant”    Proppant—sand,  ceramics,  wire  mesh,  sintered  bauxite  Proppant  carried  into  fractures—designed  to  hold  the  fractures  open  for  flow  

Flush  the  reservoir  20-­‐50%  return—although  anecdotal  data  from  industry  says  80%  or  more  

Produce  the  gas  normally  thereamer.  ProducAve  for  1-­‐2  years.  Geometric  decline  over  Ame.    Total  amount  of  fracking  fluid  use  per  well  in  the  Marcellus:  1-­‐5  million  gallons    

 

Page 13: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  PUBLIC  Opinion  1. Public  opinion  surveys  show  diverse  perspecAves.  2. Nov  2013  survey  finds  half  the  public  know  li-le  about  fracking  3. Several  2013  surveys  find  more  people  are  negaAve  towards  fracking  by  two  to  one  margin  

4. NegaAve  aotudes  driven  by  toxic  legacy  of  fossil  industry  plus  lax  or  absent  regulatory  standards  and  enforcement  for  ensuring  no  impacts  on  air,  water,  land,  human  health  and  well-­‐being  

5. NegaAve  aotudes  driven  by  uneven  quality  of  industry  pracAces  leading  to  local  impacts  

6. Public  divided  over  fracking  risks/threats  and  promises  (e.g.,  cleaner  than  coal,  low  cost  fuel,  tax  revenue  base,  security)    

7. Social  jusAce  concerns  of  economic  winners  vs  losers  13  

Page 14: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Opinion  Surveys  Californians  Wary  of  Fracking  

14  

Californians  Wary  of  Fracking,  poll  says  September  26,  2013,  By  Chris  Megerian      61%  of  likely  voters  said  they  favor  stricter  rules,  and  53%  said  they're  against  the  expansion  of  fracking  in  the  state.      Californians  want  stricter  regulaAon  of  hydraulic  fracturing,  the  controversial  method  of  oil  and  natural  gas  extracAon,  according  to  a  new  poll  from  the  Public  Policy  InsAtute  of  California.    In  addiAon,  a  majority  of  likely  voters  surveyed  opposed  the  increased  use  of  fracking,  which  involves  injecAng  water  and  chemicals  into  the  ground  to  remove  the  resources  locked  underneath.    The  issue  is  gaining  increased  a-enAon  in  California  because  energy  companies  are  eyeing  an  esAmated  15  billion  barrels  of  oil  in  the  massive  Monterey  Shale  rock  formaAon.    

Page 15: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Opinion  Surveys  Pennsylvania  

15  

Page 16: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Opinion  Surveys  New  York  

16  

Poll:  Fracking  opposiKon  at  an  all-­‐Kme  high  in  NY  September  30,  2013,  By  Jon  Campbell    The  gap  between  opponents  and  supporters  of  hydraulic  fracturing  has  grown  to  an  all-­‐Ame  high  in  New  York,  according  to  a  new  poll.  The  Siena  College  survey  released  Monday  shows  45  percent  of  New  York  voters  do  not  support  allowing  high-­‐volume  fracking  in  the  state,  compared  to  37  percent  who  do.  18%  had  no  opinion  or  not  enough  informaAon  to  formulate  one.  The  gap  is  even  larger  upstate,  where  52  percent  oppose  fracking  and  34  percent  are  in  favor  of  it.  The  gas-­‐rich  Marcellus  Shale  formaAon,  which  spans  several  states  in  the  Northeast  and  Mid-­‐AtlanAc,  stretches  across  New  York's  Southern  Tier.    “A  majority  of  upstaters  and  Democrats,  and  a  plurality  of  independents  and  New  York  City  voters  oppose  fracking,  which  is  supported  by  a  plurality  of  Republicans  and  downstate  suburbanites,"  Greenberg  said.    

Page 17: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Opinion  Surveys  United  States  

17  

Support  for  regulaAon  of  hydraulic  fracturing  has  increased  in  the  past  three  months,  a  sign  that  the  gas-­‐drilling  pracAce  is  facing  greater  public  scruAny.      A  Bloomberg  NaAonal  Poll  found  that  66  percent  of  Americans  want  more  government  oversight  of  the  process,  known  as  fracking,  in  which  water,  chemicals  and  sand  are  shot  underground  to  free  gas  trapped  in  rock.  That’s  an  increase  from  56  percent  in  a  September  poll.  The  poll  found  18  percent  favored  less  regulaAon,  down  from  29  percent  three  months  ago.        “More  people  are  aware  of  fracking,  and  they  are  a  li-le  bit  more  opposed  to  it,”  Sheril  Kirshenbaum,  director  of  the  University  of  Texas  Energy  Poll,  said  in  an  interview.  The  school’s  polls  also  have  asked  quesAons  on  the  topic,  and  “it’s  becoming  more  familiar,”  she  said.    

Page 18: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Opinion  Surveys  U  of  Texas  Poll  Shows  Divide  on  Fracking  

18  

Page 19: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Worries  about  Boom  &  Bust  Cycles  

19  

Evidence  suggesAng  cauAon  in  projecAng  long  term  economic  development  from  natural  gas  drilling  comes  from  a  study  of  26  counAes  in  western  US  states  that  have  based  their  economic  development  on  the  extracAon  of  fossil  fuels  (natural  gas,  oil,  and  coal).      

This  study  shows  that  these  counAes  (that  have  at  least  7%  of  their  total  jobs  in  resource  extracAon  industries)  have  not  performed  as  well  as  similar  counAes  without  extracAon  industries.      

Both  their  average  annual  growth  in  personal  income  and  their  employment  growth  (1990–2005)  were  lower  than  their  peer  counAes  without  extracAon  industries.      

Page 20: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Concerns  about  Boom  &  Bust  Cycles  

20  

These  energy-­‐dependent  county  economies  exhibited  a  set  of  similar  characterisAcs.  They  had:  •  Less  economic  diversity    •  Lower  levels  of  educaAonal  

a-ainment    •  More  income  inequality  between    

households    •  Less  ability  to  a-ract  investment.    

natural gas, and in a 2008 report withLash, he estimated that perhaps 10 percent of that gas (50 tcf ) might berecoverable.13 The following year, heestimated that recoverable reserves couldbe as high as 489 tcf.14 More recentestimates of recoverable gas fall in the200-300 tcf range. From a geologist’sperspective, extraction of these totalrecoverable reserves could take decades.

Another perspective on the pace andscale of drilling looks at what are thelikely firm strategies in response to theirprofit opportunities in particular shaleplays and among potential extraction sites.For example, given a limited number ofdrilling rigs, they will be deployed in thoseplaces (within a gas play or across gasplays) where profits are most likely. Thequestion for an energy company is notwhether a well is viable in terms ofpotentially recoverable gas, but whether itis commercially viable — that is, will itmake money for the operator (the owner

of the mineral rights) and the drillingcompanies. An understanding of thechoices made by operators and theirsubcontractors in a shale play requires ananalysis of the costs and delivery rates ofdrilling operations, margins of commercialprofitability, and corporate financial andcompetitive relationships.

Production in shale plays isunpredictable and only a small number ofwells may be able to produce commercialvolumes of gas over time withoutre-fracking, which is very costly. Evidencefrom the Barnett and Haynesville shaleplays in the USA, for example, indicatesthat high initial production rates may dropoff rapidly, making it difficult for operatingcompanies to cover their finding anddevelopment costs. Industry investmentadvisors are cautious about the long-termproductivity of the US natural gas plays.Their advice to investors is simple: ‘Shaleproduction is characterised by a steepdecline curve early in its productive life.

! Henry Stewart Publications 1756-9538 (2012) Vol. 2, 4, 000–000 Journal of Town & City Management 7

How shale gas extraction affects drilling localities

Amou

nts

gene

rate

d

Time (whether over months or years)

The pattern of the Boom-Bust cycle in royalties, business income, �tax revenues and jobs�

(green line)

Adapted from Tim Kelsey (2011), 'Annual Royalties in a Community'.

Figure 3:AQ2

Also,  a  majority  of  the  energy  industry  focused  counAes  (16  of  the  26)  lost  populaAon  during  this  period.  Though  the  reasons  for  this  loss  are  not  fully  documented,  anecdotal  informaAon  suggests  that  they  may  include  the  higher  cost  of  living  in  these  counAes  and  the  displacement  of  residents  who  do  not  want  to  live  in  an  industrialized  landscape  —  for  example,  reArees.    

Susan  Christopherson  and  Ned  Rightor,  How  shale  gas  extracAon  affects  drilling  localiAes:  Lessons  for  regional  and  city  policy  makers,  Journal  of  Town  and  City  Management,  vol.  2,  no.  4,  2012    

Page 21: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Dealing  w/  Boom  &  Bust  Cycles  

21  

All  this  suggests  to  local  governments  three  crucial  elements  of  preparaAon:    

1.  The  need  for  baseline  data.  Without  the  baseline  data  on  roads,  water  treatment,  rents,  traffic,  use  of  government  equipment,  etc.,  local  governments  cannot  hold  the  well  operators  or  their  subcontractors  accountable  for  the  increased  cost  to  local  services  that  their  acAviAes  generate,  nor  can  they  make  a  good  case  for  relief  from  the  state.  

2.  The  need  for  a  dedicated  revenue  stream  from  gas  producKon.    

3.  The  need  to  budget  for  future  costs.  Just  as  the  unfolding  of  demands  on  localiAes  from  the  effects  of  shale  gas  development  may  not  correspond  to  the  flow  of  tax  revenue  from  gas  producAon  or  lease/royalty  payments  to  landowners,  so  the  effects  of  shale  gas  exploraAon  may  last  far  longer  than  the  boom  in  drilling  acAvity  in  any  given  locality.  Lowering  property  taxes  during  the  revenue  boom  may  only  lead  to  raising  them  even  more  when  the  full  effects  on  local  government  operaAons  are  realized.  Be-er  to  uAlize  the  variety  of  budgeAng  instruments  —  fiscal  impact  fees,  trust  funds,  capital  reserve  funds  and  a  healthy  fund  balance  —  designed  to  stabilize  the  tax  rate  by  seong  aside  monies  to  defray  future  costs.  

Susan  Christopherson  and  Ned  Rightor,  How  shale  gas  extracAon  affects  drilling  localiAes:  Lessons  for  regional  and  city  policy  makers,  Journal  of  Town  and  City  Management,  vol.  2,  no.  4,  2012    

Page 22: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Public  Distrust  Reasonable  Cause  or  Uninformed  Fear?  

22  

“The  oil  and  gas  industry  is  the  only  industry  in  the  U.S.  that  is  allowed  by  the  

EPA  to  ‘inject  hazardous  materials-­‐unchecked’  directly  into  or  adjacent  to  underground  drinking  water  supplies.”  

       CEH,  Toxics  &  Dirty  Secrets  

The  Frackers’  Well-­‐Oiled  PoliAcal  Machine,  Mother  Jones,  Dec.  2012,  h-p://www.motherjones.com/environment/2012/10/fracking-­‐companies-­‐drilling-­‐poliAcal-­‐influence-­‐charts    

h-p://ceh.org/    

Page 23: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  SCIENCE  Evidence  

•  In  theory,  range  of  impact  issues  all  resolvable  (water  use,  waste,  contaminaAon,  GHG  emissions,  air  polluAon,  land  use)  

•  In  pracAce,  range  of  impact  issues  not  being  addressed  transparently,  rapidly,  sufficiently,  comprehensively  with  eye  towards  cumulaAve  long-­‐term  consequences  

•  Complexity  of  issues  allows  for  respected  experts  to  argue  for  expansion  and  for  ban  

23  

Page 24: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EDF/UT  find  emissions  rate  0.42%  in  “Green  CompleAon”  gas  wells  

24  

EDF  UT-­‐AusAn  found  fugiAve  methane  emissions  rates  at  a  scant  .42-­‐percent,  far  lower  than  the  NOAA/University  of  Colorado  study  and  2-­‐4%  lower  than  the  Howarth  et  al  Cornell  study.    the  EDF/UT-­‐AusAn  study  focused  on  well  compleAon  sites  the  industry  calls  green  compleAons  -­‐-­‐  a  process  in  which  impuriAes  such  as  sand,  drilling  debris,  and  fluids  from  hydraulic  fracturing  are  filtered  out  and  the  gas  is  sold,  not  wasted.        EPA  will  not  mandate  green  compleAons  unAl  2015,  so  they  are  not  representaAve  of  the  industry's  performance  at  the  moment.      The  study  is  based  only  on  evaluaAon  of  sites  and  Ames  chosen  by  industry,  and  reflects  the  leading  or  best  actors,  NOT  the  super-­‐emi-ers.    

David  T.  Allen  et  al.,  “Measurements  of  methane  emissions  at  natural  gas  producAon  sites  in  the  United  States,”  Proc  Natl  Acad  Sci  USA,  44,  October  29,  2013.    

Page 25: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Methane  emissions  double    what  EPA  esAmates  

25  

November  2013    study  found  GHG  emissions  from  “fossil  fuel  extracAon  and  processing  (i.e.,  oil  and/or  natural  gas)  are  likely  a  factor  of  two  or  greater  than  cited  in  exisAng  studies.”  In  parAcular,  they  concluded,  “regional  [(e.g.,  Texas,  Oklahoma]  methane  emissions  due  to  fossil  fuel  extracAon  and  processing  could  be  4.9  ±  2.6  Ames  larger  than  in  EDGAR,  the  most  comprehensive  global  methane  inventory.”    This  suggests  the  methane  leakage  rate  from  natural  gas  producAon,  which  EPA  recently  decreased  to  about  1.5%  is  in  fact  3%  or  higher.    

Joe,  Romm,  Bridge  Out:  Bombshell  Study  Finds  Methane  Emissions  From  Natural  Gas  ProducAon  Far  Higher  Than  EPA  EsAmates,  ClimateProgress,  November  25,  2013,  ciAng  Sco-  Miller  et  al,  Anthropogenic  emissions  of  methane  in  the  United  States,  Proceedings  of  the  NaAonal  Academy  of  Sciences  USA,  November  25,  2013,  0.1073/pnas.1314392110      

Page 26: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

3  NOAA  studies  find  higher  leakage  rates  of  methane  emissions  

26  

NOAA  researchers  found  in  2012  that  natural-­‐gas  producers  in  the  Denver  area  “are  losing  about  4%  of  their  gas  to  the  atmosphere  —  not  including  addiAonal  losses  in  the  pipeline  and  distribuAon  system.”  

Air  sampling  by  NOAA  over  Colorado  Finds  4%  Methane  Leakage,  More  Than  2X    Industry  Claims  

Petron,  G.,  et  al.  (2012),  Hydrocarbon  emissions  characterizaAon  in  the  Colorado  Front  Range  -­‐  A  pilot  study,  J.  Geophys.  Res.,  doi:10.1029/2011JD016360  

Page 27: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

3  NOAA  studies  find  higher  leakage  rates  of  methane  emissions  

27  

A  2013  study  by  NOAA  found  leaks  from  oil  and  gas  exploraAon  and  extracAon  in  the  L.A.  basin  represenAng  “about  17%  of  the  natural  gas  produced  in  the  region,  similar  to  the  leak  rate  esAmated  by  the  California  Air  Resources  Board  using  other  methods.”      

Almost  all  the  gas  produced  in  the  basin  is  “associated”  with  oil  producAon  (rather  than,  say,  fracked).      

Associated  gas  is  sAll  about  a  fimh  of  total  U.S.  gas  producAon.  

The  NOAA  WP-­‐3D  research  aircrac  flies  along  the  San  Gabriel  mountains  in  the  Los  Angeles  basin  during  the  CalNex  experiment  in  summer  2010.  The  aircrac  is  much  like  a  "flying  chemical  laboratory,"  containing  specialized  instrumentaKon  that  can  help  scienKsts  beQer  understand  air  quality  and  climate  change.  

Peischl,  J.  et  al.,  QuanAfying  sources  of  methane  using  light  alkanes  in  the  Los  Angeles  basin,  California,  J.  Geophys.  Res.  Atmos.,  doi:10.1002/jgrd.50413,  2013.  

Page 28: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

6  to  12%  methane  emissions  leakage  rate  in  Uintah  County  shale  gas  producKon  

28  

Eleven  flyovers  across  well  producAon  sites  in  an  enAre  shale  gas  basin  in  Utah  determined  the  rate  of  methane  emissions  in  Uintah  County  to  be  6  to  12  percent  of  the  average  hourly  natural  gas  producAon  during  the  month  of  February  2012.    

This  emissions  esAmate  is  1.8  to  38  Ames  inventory-­‐based  esAmates  from  this  region  and  five  Ames  the  US  EPA  naAonwide  average  esAmate  of  leakage  from  the  producAon  and  processing  of  natural  gas.      

Although  the  emissions  for  Uintah  reported  here  may  not  be  representaAve  of  other  natural  gas  fields,  this  study  demonstrates  the  importance  of  verifying  emissions  from  natural  gas  producAon  to  enable  an  accurate  assessment  of  its  overall  climate  impact.    

Karion,  A.,  et  al.  (2013),  Methane  emissions  esAmate  from  airborne  measurements  over  a  western  United  States  natural  gas  field,  Geophys.  Res.  Le-.,  40,  4393–4397,  doi:10.1002/grl.50811.  

3  NOAA  studies  find  higher  leakage  rates  of  methane  emissions  

Page 29: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Failsafe  Fracking  –  feasible?  

29  

TOWARD AN EVIDENCE-BASED FRACKING DEBATE

Science, Democracy, and Community Right to Know in Unconventional Oil and Gas Development

The Center for Science and Democracy at the Union of Concerned Scientists

Science-­‐driven,  evidence-­‐based,  empirical  tesAng,  monitoring  and  evaluaAon  is  essenAal  to  help:  •  Illuminate  the  issues  •  Transparently  discuss  all  

dimensions  •  Promote  innovaAve  soluAons  •  Research  be-er  pracAces  •  Inform  poliAcal  debate  •  Guide  consensus  building  

process  

Page 30: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  POLITICAL  Response  •  Federal  &  most  States  Bullish  on  economic  gains  and  tax  revenue  base,  Local  govts.  mixed  

•  PreferenAal  treatment  to  fossil  fuels  &  fracking  industry  in  subsidies  and  incenAves  

•  PreferenAal  treatment  in  exempAng  from  compliance  of  8  federal  environmental  laws  

•  PreferenAal  treatment  in  ignoring  long-­‐term,  cumulaAve  impacts  on  air,  water,  land  use  

•  Laissez-­‐faire  approach  (e.g.,  industry  self-­‐policing,  state-­‐based  regulatory  decisions)  

30  

Page 31: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

US  House  of  RepresentaAves  legislates  to  accelerate  fracking  –  Nov  2013  

31  

Two  House  bills  passed:  one,  to  reduce  federal  "red  tape"  and  cut  down  on  "frivolous  lawsuits  that  act  as  stumbling  blocks  to  job  creaAon  &  energy  development”  was  approved  by  a  vote  of  228-­‐192.  President  Barack  Obama  promised  to  veto  the  bills,  saying  they  are  unnecessary  and  run  counter  to  protecAons  put  in  place  for  oil  and  gas  drilling.  

The  other  bill  deems  a  drilling  applicaAon  approved  if  no  decision  is  made  within  60  days,  set  a  minimum  threshold  for  lands  leased  by  the  BLM,  charge  a  $5,000  fee  to  groups  that  protest  lease  permits,  and  restrict  the  Interior  Department  from  enforcing  proposed  rules  to  regulate  fracking  on  public  lands.  Ma-hew  Daly,  House  Approves  bill  to  speed  up  oil  and  gas  drilling,  Huffington  Post,  Nov  20,  2013,  h-p://www.huffingtonpost.com/2013/11/20/house-­‐oil-­‐and-­‐gas-­‐bill_n_4312118.html?utm_hp_ref=green    

HR1965,  Federal  Lands  Jobs  and  Energy  Security  Act;  HR2728,  ProtecAng  States’  Rights  to  Promote  American  Energy  Security  Act  

Page 32: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Skewed  government  subsidies,  and  ignoring  monetary  externaliAes  

burdened  on  taxpayers  &  ratepayers  

32  

Fossil  fuels  receive  preferenAal  tax  and  fiscal  policies  that  result  in  accruing  more  than  half  a  trillion  dollars  per  year  in  the  USA,  and  nearly  $2  trillion  worldwide,  according  to  IMF  assessments.  

Page 33: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Social  Cost  of  carbon  "Report:  Damages  From  Each  Gigaton  Of  Carbon  

Pollu@on  May  Exceed  $950  billion  a  year  "    

33  

A  recent  analysis  of  the  social  cost  of  carbon  (SCC)  —  the  total  economic  damage  done  by  GHG  polluAon  —  finds  official  govt.  esAmates  are  dangerously  low.    

Using  a  range  of  more  credible  numbers  for  the  physics  of  climate  change  and  differing  economic  discount  rates,  find  that  the  SCC  lies  between  $30  and  $956  per  ton,  and  will  rise  in  2050  to  between  $69  and  $1,660  a  ton  (in  2013$).  

Frank  Ackerman  and  Elizabeth  Stanton  ,  Climate  Risks  and  Carbon  Prices,    Economics    for  Equity  and  Environment  Network  report,  July  2011  

The  AdministraAon,  in  federal  guidance,  esAmates  SCC  to  be  $36  per  ton  CO2  emissions,  about  $0.25  per  gallon  of  gasoline,  and  roughly  4  cents  per  kWh  polluAon  fee  on  coal-­‐fired  electricity  and  2¢/kWh  on  natural  gas-­‐fired  electricity.  

Page 34: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Social  Cost  of  Carbon  

34  

"Shell  Oil  Self-­‐Imposes  Carbon  Pollu@on  Tax  High  Enough  To  Crash  Coal,  Erase  Natural  Gas’s  Value-­‐Added"      

Royal  Dutch  Shell  includes  a  high  price  for  CO2  when  evaluaAng  new  projects.  The  $40  a  metric  ton  price  that  Shell  uses  would  —  if  widely  adopted  —  reshape  domesAc  and  internaAonal  energy  consumpAon  and  investment  trends.      Other  corporaAons  are  also  imposing  internal  prices  on  their  carbon  emissions.    Disney  has  adopted  a  $10  to  $20  price  per  ton  CO2,  and  Microsom  has  adopted  a  $7  per  ton  CO2.    

Page 35: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  INDUSTRY  PosiAon  

•  Be-er  at  self-­‐policing  than  government  mandated  standards  and  regulaAons  

•  IncenAves  are  not  subsidies,  essenAal  for  doing  business,  sustaining  innovaAon  

•  Public  concerns  can  be,  are  being,  addressed  through  ongoing  innovaAons  (e.g.,  reducing  water  use,  waste,  chemicals,  emissions,  land  footprint)  

•  All  public  concerns  are  resolvable,  and  best  addressed  through  industry-­‐driven  iniAaAves  

35  

Page 36: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

36  

•  Vertical Wells (pink) develop 23 acres per well with 19% land disturbance. •  Horizontal (green) develop 500 acres per pad with 2% surface disturbance

Centralized  OperaAons,  Less  Land  Disturbance,  Lower  ConstrucAon  Costs  

Industry  case:  Economic  &  Environmental    Advantages  of  Horizontal  Drilling    

Kelvin  B  Gregory,  NavigaAng  the  Water  Management  Challenges  During  Hydraulic  Fracturing  for  Shale  Gas  ProducAon,  Carnegie-­‐Mellon,  “Environmental  and  Social  ImplicaAons  of  Hydraulic  Fracturing  and  Gas  Drilling  in  the  United  States:  An  IntegraAve  Workshop  for  the  EvaluaAon  of  the  State  of  Science  and  Policy”,  Duke  University          January  9,  2012  

Page 37: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  voluntary  self-­‐reporAng  FRACKING  FLUID  –  20-­‐Month  trend  

h-p://ecowatch.com/2012/09/25/water-­‐for-­‐fracking/    

Based  on  industry  voluntary  self-­‐reporAng  to  FracFocus  between  Jan.  2011  and  Sept.  2012.  Not  all  industry  wells  are  reported.    As  of  the  end  of  2012  an  esAmated  47%  of  wells  are  reported  to  FracFocus,  the  other  53%  not  reported  for  proprietary  chemical  reasons.  

37  

Page 38: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUID  –  COMPOSITION  

h-p://www.shalegaswiki.com/index.php/Fracturing_fluid  38  

Page 39: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUIDS  –  no  problem  

"You  can  drink  it.  We  did  drink  it  around  the  table,  almost  ritual-­‐like,  in  a  funny  way,"  Hickenlooper  tesAfied  before  the  Senate  Commi-ee  on  Energy  and  Natural  Resources.    

h-p://www.huffingtonpost.com/2013/03/07/hickenlooper-­‐says-­‐state-­‐w_n_2828221.html    

Halliburton  CEO  David  Lesar  raised  a  container  of  Halliburton's  new  fracking  fluid  made  from  materials  sourced  from  the  food  industry  (CleanSAm),  then  called  up  a  fellow  execuAve  to  demonstrate  how  safe  it  was  by  drinking  it.  

39  

Page 40: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  COMPLEX  RealiAes  •  Shale  resources  occur  in  diverse  locaAons  making  generic  

statements  difficult  u  Extreme  dry  to  abundant  water  locaAons  u  Low  to  high  water  use  requirements  per  well  u  Low  to  high  water  waste  discharges  per  well  u  How  to  safely  discharge  and  store  wastes  long-­‐term  u  Sparse  populaAon  to  high  density  communiAes  u  Rare  to  abundant  capped  and  uncapped  Abandoned  Wells  u  Low  land  value  to  high-­‐valued  land  purposes  u  Local  aotudes  towards  fracking  industry  ranging  from  strongly  pro  

expansion  to  strongly  pro  ban,  omen  in  equal  amounts  u  24-­‐fold  difference  in  GHG  emission  levels  from  well  operaAons  

•  Shale  gas  preferenAal  treatment,  policies,  subsidies  &  regulaAons  vs.  compeAtors  (lower  cost  end-­‐use  efficiency,  wind,  solar  power    

40  

Page 41: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Marcellus  Shale  Complex  Issues  

41  

•  Water  needed  for  HF  and  disposal  of  produced  load  water  are  becoming  serious  obstacles  for  Marcellus  development.    

•  Problem  with  water  sourcing  is  not  availability  but  geong  water  mgnt  plans  approved  for  the  high  volume  withdrawals  (3-­‐4  million  gals).  

Arthur  E.  Berman,  Shale  gas—Abundance  or  mirage?  Why  the  Marcellus  Shale  will  disappoint  expectaAons,  October  2010.  

•  Few  waste  treatment  plants,  driving  up  the  cost  of  transporAng  disposal  water.    •  Widespread  belief  that  HF  will  contaminate  aquifers  -­‐-­‐  a  risk  that  cannot  be  tolerated.  •  PopulaAon  density  is  high  in  many  areas,  heightening  sensiAvity  to  perceived  drilling  and  

producing  hazards.  •  Any  spills  or  blowouts  raise  risk  of  shut  down  or  curtailing  operaAons  in  a  larger  area  than  

the  problem  well.  •  Abandoned  wells  complicate  issue  of  prior  contaminaAon  vs.  new  HF  impacts.  •   Drilling  in  suburban  areas  will  complicate  puong  acreage  blocks  together.  •  More  potenAal  objecAons  to  drilling  the  thousands  of  locaAons  necessary  to  hold  leases  

and  prove  reserves.  •  Factors  do  not  mean  that  development  won’t  proceed,  but  it  is  likely  to  move  forward  

more  slowly  and  at  greater  cost  than  in  other  shale  plays.  

Page 42: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  Issues  &  Level  of  Concern  

! 9!

INTRODUCTION)!

Issues)&)Level)of)Concern)!

!

!! !

ISSUES!&!LEVEL!OF!CONCERN!(High,!

Medium,!Low)!

SCIENCE<based,!evidence<driven,!accumulated!empirical!experience!

INDUSTRY!practices!and!motivations!–

leading!to!lagging!continuum!

PUBLIC!opinions,!local!outcomes!and!experiences,!

social!and!environmental!

impacts!

POLITICAL!response,!process,!procedures,!rules,!

regulations,!consensus!(Local,!

State,!Natl)!

Water!Use! Medium!to!High! Low!to!Medium! High!L:!High!S:!Medium!N:!Low!!

Water!contamination! High! Low!to!Medium! High!

L:!High!S:!Medium!N:!Low!

Water!Waste! Medium!to!High! Low! High!L:!High!S:!Medium!N:!Low!

GHG!Emissions! High! Low! Medium!to!High!

L:!Medium!to!High!S:!Medium!to!High!N:!Low!

Air!Pollution! High! ! High!L:!High!S:!Medium!N:!Low!

Fuel!Price! Medium!to!High! Low! High! Low!Long<term!Supply! Low!to!Medium! Low! Low! Low!

Land!change!patterns! Medium! Low! Medium!to!High! Low!

Competitive!Alternatives! Medium!to!High! Low! Medium!to!High! Low!to!Medium!

CCS! Low!to!Medium! Low! Medium!to!High! Low!CCUS! Low! Medium! Medium! Medium!

Earthquakes! Medium! Low! Medium!to!High! Low!Unknown!Knowns! Low! Low! Low! Low!

Known!Unknowns! Low! Low! Low! Low!

Unknown!Unknowns! Low! Low! Low! Low!

42  

Low

Page 43: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  Issues  &  Level  of  Concern  

! 9!

INTRODUCTION)!

Issues)&)Level)of)Concern)!

!

!! !

ISSUES!&!LEVEL!OF!CONCERN!(High,!

Medium,!Low)!

SCIENCE<based,!evidence<driven,!accumulated!empirical!experience!

INDUSTRY!practices!and!motivations!–

leading!to!lagging!continuum!

PUBLIC!opinions,!local!outcomes!and!experiences,!

social!and!environmental!

impacts!

POLITICAL!response,!process,!procedures,!rules,!

regulations,!consensus!(Local,!

State,!Natl)!

Water!Use! Medium!to!High! Low!to!Medium! High!L:!High!S:!Medium!N:!Low!!

Water!contamination! High! Low!to!Medium! High!

L:!High!S:!Medium!N:!Low!

Water!Waste! Medium!to!High! Low! High!L:!High!S:!Medium!N:!Low!

GHG!Emissions! High! Low! Medium!to!High!

L:!Medium!to!High!S:!Medium!to!High!N:!Low!

Air!Pollution! High! ! High!L:!High!S:!Medium!N:!Low!

Fuel!Price! Medium!to!High! Low! High! Low!Long<term!Supply! Low!to!Medium! Low! Low! Low!

Land!change!patterns! Medium! Low! Medium!to!High! Low!

Competitive!Alternatives! Medium!to!High! Low! Medium!to!High! Low!to!Medium!

CCS! Low!to!Medium! Low! Medium!to!High! Low!CCUS! Low! Medium! Medium! Medium!

Earthquakes! Medium! Low! Medium!to!High! Low!Unknown!Knowns! Low! Low! Low! Low!

Known!Unknowns! Low! Low! Low! Low!

Unknown!Unknowns! Low! Low! Low! Low!

! 9!

INTRODUCTION)!

Issues)&)Level)of)Concern)!

!

!! !

ISSUES!&!LEVEL!OF!CONCERN!(High,!

Medium,!Low)!

SCIENCE<based,!evidence<driven,!accumulated!empirical!experience!

INDUSTRY!practices!and!motivations!–

leading!to!lagging!continuum!

PUBLIC!opinions,!local!outcomes!and!experiences,!

social!and!environmental!

impacts!

POLITICAL!response,!process,!procedures,!rules,!

regulations,!consensus!(Local,!

State,!Natl)!

Water!Use! Medium!to!High! Low!to!Medium! High!L:!High!S:!Medium!N:!Low!!

Water!contamination! High! Low!to!Medium! High!

L:!High!S:!Medium!N:!Low!

Water!Waste! Medium!to!High! Low! High!L:!High!S:!Medium!N:!Low!

GHG!Emissions! High! Low! Medium!to!High!

L:!Medium!to!High!S:!Medium!to!High!N:!Low!

Air!Pollution! High! ! High!L:!High!S:!Medium!N:!Low!

Fuel!Price! Medium!to!High! Low! High! Low!Long<term!Supply! Low!to!Medium! Low! Low! Low!

Land!change!patterns! Medium! Low! Medium!to!High! Low!

Competitive!Alternatives! Medium!to!High! Low! Medium!to!High! Low!to!Medium!

CCS! Low!to!Medium! Low! Medium!to!High! Low!CCUS! Low! Medium! Medium! Medium!

Earthquakes! Medium! Low! Medium!to!High! Low!Unknown!Knowns! Low! Low! Low! Low!

Known!Unknowns! Low! Low! Low! Low!

Unknown!Unknowns! Low! Low! Low! Low!

43  

Page 44: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Irreconcilable  differences?    War  of  Words  &  ConfrontaAons  

44  

h-p://earthroot.net/frackconference/  

h-p://www.ihs.com/info/ecc/a/americas-­‐new-­‐energy-­‐future-­‐report-­‐vol-­‐3.aspx  

VS.  MERCHANTS  OF  FEAR?  

MERCHANTS  OF  DOUBT?  

Page 45: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  FEDERAL  Policy  Fracking  industry  exempAons  from  key  provisions  of  federal  laws  (so-­‐called  “Halliburton  Loophole”)  

1.  Clean  Water  Act  (CWA)  2.  Safe  Drinking  Water  Act  (SDWA)  3.  NaAonal  Environmental  Policy  Act  (NEPA)  4.  Toxic  Substances  Control  Act  (TSCA)  5.  Resource  ConservaAon  &  Recovery  Act  (RCRA)  6.  Hazardous  Materials  TransportaAon  Act  (HMTA)  7.  Emergency  Planning  &  Community  Right  to  

Know  Act  (EPCRA)  8.  Comprehensive  Environmental  Response,  

CompensaAon  and  Liability  Act  (CERCLA)  

45  

Page 46: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  LOCAL  BANS  RISING  

400  BANS    IN  21  STATES  

46  h-p://www.foodandwaterwatch.org/water/fracking/fracking-­‐acAon-­‐center/map/    

Page 47: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Points  –  State  vs  Local  Officials  

47  

Some  states  have  introduced  legislaAon  that  limits  the  ability  of  municipaliAes  to  use  zoning  to  protect  ciAzens  from  exposure  to  pollutants  from  hydraulic  fracturing  by  protecAng  residenAal  areas.  Such  laws  have  been  created  in  Pennsylvania,  Ohio    and  New  York,  Colorado,  and  Texas  are  ba-ling  over  related  legislaAon.  

Fort  Collins  Mayor  pro  tem  Kelly  Ohlson  had  no  kind  words  for  CO  Gov.  Hickenlooper,  saying  he  has  no  credibility,  nor  do  state  regulators.  “I  believe  the  governor  should  spend  his  Ame  protecAng  the  health  and  safety  and  welfare  of  ciAzens  of  Colorado  rather  than  acAng  like  the  chief  lobbyist  for  the  oil  and  gas  industry,”  Ohlson  said.  “In  fact,  I  think  he  should  literally  quit  drinking  the  fracking  Kool-­‐Aid.”  

CO  Gov.  Hickenlooper  has  said  the  state  will  sue  any  local  government  that  bans  fracking.  “Someone  paid  money  to  buy  mineral  rights  under  that  land  [and]  You  can’t  harvest  the  mineral  rights  without  doing  hydraulic  fracturing.”  

Page 48: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 49: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Overview  Horizontal  Drilling  from  AnA-­‐Fracking  perspecAve  

49  

“Walking  Rig”  MulAple  wells  on  same  pad  

Page 50: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Uncertainty  of  Ongoing,  Long-­‐term  Performance:    Industry  has  Leader  Cluster  and    

Long  Tail  of  PotenAal  Poor  Performers    

50  

Lead

ership  &  Great  Perform

ance  

The  Long  Tail  

Laggers  &  Poor  Performers  

Page 51: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUID  –  20-­‐Month  trend  

h-p://ecowatch.com/2012/09/25/water-­‐for-­‐fracking/    

h-p://www.youtube.com/watch?v=jMHr6LQhTRE    

Visualizing  65.9  Billion  Gallons  of  Frackwater  

750,000  gallons  per  second  flow  over  the  iconic  Niagara  Falls  during  the  summer.    The  chart  on  the  right  indicates  water  volume  used  for  fracking  in  equivalent  “Niagara  Falls  tourist  hours”.  

51  

Page 52: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUID  –  50+%  not  reported  

h-p://ecowatch.com/2012/09/25/water-­‐for-­‐fracking/    

More  than  half  of  new  wells  went  unreported  on  FracFocus  in  each  of  three  states:  Texas,  Oklahoma  and  Montana  

In  all,  1,126  companies  had  at  least  one  well  in  the  analysis  period.    1,038  of  them,  or  92  percent,  didn’t  report  any  wells  on  FracFocus.    

52  

Page 53: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Drilling  AddiAves  &  funcAons    in  Shale  gas  extracAon  

10

Part 2: Chemical and Biological Hazards From Natural Gas Extraction

Drilling Additives:

Many chemical products are used in the development of a gas well. Some examples,

along with their most common applications, are shown in Table II.

Table II: Additive Functions in Shale Gas Extraction

Additive Type Examples Purpose Used In

Friction Reducer heavy naphtha, polymer microemulsion

lubricate drill head, penetrate fissures

drilling muds, fracturing fluids

Biocide glutaraldehyde, DBNPA, dibromoacetonitrile

prevent biofilm formation

drilling muds, fracturing fluids

Scale Inhibitor ethylene glycol, EDTA, citric acid

prevent scale buildup

drilling muds, fracturing fluids

Corrosion Inhibitor

propargyl alcohol, N,N-dimethylformamide

prevent corrosion of metal parts

drilling muds, fracturing fluids

Clay Stabilizer tetramethylammonium chloride

prevent clay swelling

drilling muds, fracturing fluids

Gelling Agent bentonite, guar gum, “gemini  quat”  amine

prevent slumping of solids

drilling muds, fracturing fluids

Conditioner ammonium chloride, potassium carbonate, isopropyl alcohol

adjust pH, adjust additive solubility

drilling muds, fracturing fluids

Surfactant 2-butoxyethanol, ethoxylated octylphenol

promote fracture penetration

drilling fluids, fracturing fluids

Cross-Linker sodium perborate, acetic anhydride

promote gelling fracturing fluids

Breaker hemicellulase, ammonium persulfate, quebracho

“breaks”  gel  to   promote flow-back of fluid

post-fracturing fluids

Cleaner hydrochloric acid dissolve debris stimulation fluid, pre-fracture fluid

Processor ethylene glycol, propylene glycol

strip impurities from produced gas

post-production processing fluids

R.  E.  Bishop,  “Chemical  and  Biological  Risk  Assessment  for  Natural  Gas  ExtracAon  in  New  York  h-p://wellwatch.files.wordpress.com/2011/05/risk-­‐assessment-­‐natural-­‐gas-­‐extracAon.pdf.    

53  

Page 54: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Large-­‐scale  Chemical  Use  

54  

The  large-­‐scale  use  of  chemicals  with  significant  toxicity  has  given  rise  to  a  great  deal  of  public  concern,  and  an  important  aspect  of  the  debate  concerns  the  level  of  proof  required  to  associate  an  environmental  change  with  acAviAes  associated  with  gas  drilling.  

80,000  fracking  wells  since  2005  280  billion  gallons  toxic  wastewater  in  2012  

2  billion  gallons  chemicals  in  2012  

Page 55: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Chemical  Issues  

55  

Barium    Lead    Arsenic    Benzene  Bromide  

Over  200  different  chemical  products  More  than  three-­‐fourths  are  health  hazards:  respiratory  diseases,  endocrine  diseases,  infer@lity  and  birth  defects,  kidney,  heart,  liver,  brain  damage,  cancer  

2-­‐butoxyethanol  (2-­‐BE)    Glutaraldehyde    Hydrogen  Sulfide  4-­‐Nitroquinoline-­‐1-­‐oxide  (4-­‐NQO)  

Chemicals  of  Special  Concern  

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern    

Page 56: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Fracking  Fluids  -­‐  Chemicals  

56  

Based  on  FracFocus  data,  chemicals  used  in  Marcellus  Shale  typical  hydraulic  fracturing  job,  a  3D  visualizaAon  of  volume  of  various  chemicals  used  in  the  process.  “Trade  secret"  chemicals  not  idenAfied  are  symbolized  by  the  large  quanAty  of  red  barrels.  

h-p://blog.skytruth.org/2012/06/meet-­‐frack-­‐family.html    

Page 57: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUIDS  –  are  a  problem  

Veterinarian  Michelle  Bamberger  and  Professor  Robert  Oswald  of  molecular  medicine  at  Cornell’s  College  of  Veterinary  Medicine,  published  the  first  and  only  peer-­‐reviewed  report  to  suggest  a  link  between  fracking  and  illness  in  food  animals.        

The  authors  compiled  24  case  studies  of  farmers  in  six  shale-­‐gas  states  whose  livestock  experienced  neurological,  reproducAve  and  acute  gastrointesAnal  problems  amer  being  exposed  —  either  accidentally  or  incidentally  —  to  fracking  chemicals  in  the  water  or  air.    Michelle  Bamberger  &  RE  Oswald,  Impacts  of  gas  drilling  on  human  and  animal  health,  New  SoluAons:  A  Journal  of  Environmental  and  OccupaAonal  Health,  2012;22(1):51-­‐77.    

h-p://www.youtube.com/watch?v=IYdeWhP-­‐u_4    

57  

Page 58: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Fracking  Fluids  –  CiAzens  want  more  complete  transparent  informaAon    

58  h-p://blog.skytruth.org/2012/11/skytruth-­‐releases-­‐fracking-­‐chemical.html    

CiAzen-­‐generated  map  based  on  extracted  data  from  more  than  27,000  "chemical  disclosure  reports"  voluntarily  submi-ed  by  industry  to  FracFocus,  between  Jan.  2011  and  Aug.  2012.  The  SkyTruth  Fracking  Chemical  Database  is  the  first  free  public  resource  enabling  research  and  analysis  of  the  chemicals  used  in  fracking  operaAons  naAonwide.    

Page 59: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUIDS  –  are  a  problem  

Exposed  livestock  “are  making  their  way  into  the  food  system,  and  it’s  very  worrisome  to  us,”  Bamberger  said.      

“They  live  in  areas  that  have  tested  posiAve  for  air,  water  and  soil  contaminaAon.  Some  of  these  chemicals  could  appear  in  milk  and  meat  products  made  from  these  animals.”    Elizabeth  Royte,  Livestock  falling  ill  in  fracking  regions,  NBCNews,  November  29,  2012    

59  

Page 60: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

FRACKING  FLUIDS  –  are  a  problem  

LOUISIANA,  17  cows  died  amer  an  hour’s  exposure  to  spilled  fracking  fluid,  which  is  injected  miles  underground  to  crack  open  and  release  pockets  of  natural  gas.    

NEW  MEXICO,  hair  tesAng  of  sick  ca-le  that  grazed  near  well  pads  found  petroleum  residues  in  54  of  56  animals.    

NO.  CENTRAL  PENNSYLVANIA,  140  ca-le  were  exposed  to  fracking  wastewater  when  an  impoundment  was  breached.  Approximately  70  cows  died,  and  the  remainder  produced  only  11  calves,  of  which  three  survived.  

Elizabeth  Royte,  Livestock  falling  ill  in  fracking  regions,  NBCNews,  November  29,  2012     60  

Page 61: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Insurance  Risk?  

61  

NaAonwide  Mutual  Insurance  Co.    spokeswoman  Nancy  Smeltzer  stated  that  personal  and  commercial  policies  "were  not  designed  to  cover"  risk  f  rom  the  drilling  process,  called  fracking.  

memo  reads:  "Amer  months  of  research  and  discussion,  we  have  determined  that  the  exposures  presented  by  hydraulic  fracturing  are  too  great  to  ignore.  Risks  involved  with  hydraulic  fracturing  are  now  prohibited  f  or  General  Liability,  Commercial  Auto,  Motor  Truck  Cargo,  Auto  Physical  Damage  and  Public  Auto  (insurance)  coverage."  It  said  "prohibited  risks"  apply  to  landowners  who  lease  land  for  shale  gas  drilling  and  contractors  involved  in  fracking  operaAons,  including  those  who  haul  water  to  and  from  drill  sites;  pipe  and  lumber  haulers;  and  operators  of  bulldozers,  dump  trucks  and  other  vehicles  used  in  drill  site  preparaAon.  

Page 62: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Fracking  Boom  Gives    Banks  Mortgage  Headaches    

 

62  

At  least  three  insAtuAons  —  Tompkins  Financial  in  Ithaca,  N.Y.,  Spain's  Santander  Bank  and  State  Employees'  Credit  Union  in  Raleigh,  N.C.  —  are  refusing  to  make  mortgages  on  land  where  oil  or  gas  rights  have  been  sold  to  an  energy  company.    

Andy  Peters,  Fracking  Boom  Gives  Banks  Mortgage  Headaches,    Nov.  12,  2013,  h-p://www.americanbankers.com/  

"That  alone  would  make  it  a  problem.”    The  mortgage  agreement  says  home-­‐owners  can  sell  an  oil  or  gas  lease  to  an  energy  firm  with  prior  consent  from  a  lender,  but  May  says,  "I  don't  know  any  lenders  who  are  granAng  that  right  now.”    

The  uniform  New  York  state  mortgage  agreement,  used  by  Fannie  Mae  and  Freddie  Mac,  states  that  "you  cannot  cause  or  permit  any  hazardous  materials  to  be  on  your  property  and  it  specifically  references  oil  and  gas,"  says  Greg  May,  VP  of  residenAal  mortgage  lending  at  Tompkins.    

Page 63: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Banks  Mortgages  &  Fannie  Mae  

63  Andy  Peters,  Fracking  Boom  Gives  Banks  Mortgage  Headaches,    Nov.  12,  2013,  h-p://www.americanbankers.com/  

If  FannieMae  owns  the  mortgage,  it’s  unlikely  it  would  approve  such  a  transfer.  FannieMae  generally  does  not  "allow  surface  instruments,"  such  as  an  oil  rig,  on  property  it  owns,  says  spokeswoman  Callie  Dosberg.        

A  landowner  could  apply  for  prior  approval,  and  there  "may  be  a  work-­‐around,  but  generally  the  agency  does  not  approve  such  requests,"  she  says.      

A  greater  concern  for  homeowners  is  that  Fannie  Mae  or  Freddie  Mac  could  force  the  enAre  outstanding  loan  balance  to  become  due  immediately.  

Page 64: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Banks  Mortgage  &  Freddie  Mac  

64  Andy  Peters,  Fracking  Boom  Gives  Banks  Mortgage  Headaches,    Nov.  12,  2013,  h-p://www.americanbankers.com/  

Freddie  Mac  is  within  its  legal  authority  to  exercise  a  mortgage's  "due  on  sale"  clause  if  a  borrower  enters  into  a  mineral-­‐rights  agreement.  No  "public  informaAon"  is  available  to  show  if  that  has  ever  happened.      An  ability  to  exercise  the  "due  on  sale"  clause  is  triggered  if  a  landowner  transfers  a  right  a-ached  to  the  property;  or  through  language  that  bars  "hazardous  condiAons"  on  the  site.  A  clause  in  Freddie  Mac's  standard  security  instrument  bars  "the  borrower  from  taking  any  acAon  that  could  cause  the  deterioraAon,  damage  or  decrease  in  value  of  the  subject  property."    So  the  borrower  cannot  enter  into  a  mineral  lease  without  express  approval.      

Page 65: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Not  Problem  in  Western  States  with  Banks,  Mortgages  &  Fracking  

65  Andy  Peters,  Fracking  Boom  Gives  Banks  Mortgage  Headaches,    Nov.  12,  2013,  h-p://www.americanbankers.com/  

Severed  mineral  rights  has  not  been  an  issue  in  the  western  United  State,  where  homeowners  have  always  assumed  that  their  land  had  a  mineral  right  that  was  separate  from  their  mortgage,  says  Kent  Siegrist,  a  Tulsa,  Okla.,  lawyer.  "In  Oklahoma,  it's  virtually  impossible  to  buy  property  with  the  minerals  sAll  a-ached  to  it,"  says  Siegrist,  who  represents  oil  companies  and  landowners.      No  bankers  in  western  North  Dakota,  where  the  oil  industry  is  centered,  have  raised  concerns  about  fracking  and  mortgage  lending,  says  Rick  Clayburgh,  president  and  CEO  of  the  North  Dakota  Bankers  AssociaAon.      

Page 66: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Mid-­‐night  &  Mid-­‐day  Illegal  Dumping  

66  

Two  Ohio  state  regulatory  agencies    conducted  a  criminal  invesAgaAon  into  how  and  why  20,000  gallons  of  fracking  wastes  were  dumped  into  a  storm  drain  near  the  site  of  the  D&L  Energy  Group  headquarters  on  Salt  Springs  Road,  near  Youngstown,  Ohio.    Apparently  CEO  Ben  W.  Lupo  directed  employees  there  to  dump  the  wastewater  down  a  storm  drain.  

h-p://www.vindy.com/videos/2013/feb/05/2175/#sthash.aOXBQTvq.dpuf    

Page 67: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Wilderness  &  NaAonal  Park  Impacts  

67  

Footprint…wildlife…viewshed

E X P E R I E N C E Y O U R A M E R I C A

Footprint…wildlife…viewshed

E X P E R I E N C E Y O U R A M E R I C A Penoyer,  Stray  Gas  MigraAon  Issues  in  Well  Design  and  ConstrucAon;  ConsideraAons  in  Avoiding  Methane  Impacts  to  Drinking  Water  Aquifers  and/or  Air  Emissions,  NaAonal  Park  Service,  U.S.  Dept.  of  Interior    

Page 68: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

UTAH  Wilderness    Wonderland  Threatened  

The  BLM  deferred  99,960  acres  of  proposed  oil  and  gas  leases  in  and  around  the  Utah’s  magnificent  San  Rafael  Swell.  This  region  has  been  considered  for  everything  from  NaAonal  Monument  to  NaAonal  Park  status.  It’s  a  wonderland  of  red  rock  towers,  spires  and  canyons.  

68  

Page 69: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Night  Sky  PolluAon  &  Noise  

69  

Page 70: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  problems  Unplugged  abandoned  wells  

70  

Nearly  a  quarter  century  ago  the  EPA  esAmated  that  there  were  more  than  1  million  abandoned  oil  and  gas  wells  naAonwide,  with  nearly  1  in  5  being  portals  for  polluAon  to  reach  the  surface.      

Page 71: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  problems  Unplugged  abandoned  wells  

71  

New  York  state  regulators  esAmate  there  are  57,000  orphan/abandoned  wells  in  the  state,  with  half  of  their  locaAons  unknown.  In  2009  more  orphan/abandoned  wells  were  newly  discovered  than  were  plugged.  

NYS DEC - Division of Mineral Resources 24 Nineteenth Annual Report

New York State Oil, Gas and Mineral Resources, 2002

Priority Plugging List Historically, abandoned wells have been discov-ered at playgrounds and parking lots, inside buildings, in wetlands, underwater in creeks and ponds, in wooded and brushy areas and in resi-dential yards. Every year DEC staff discover additional abandoned wells during scheduled inspections or while investigating complaints. DEC staff evaluate the environmental and pub-lic safety threats posed by each well and place the most serious cases on the Priority Plugging List to be plugged whenever funds become available. Currently, there are 634 wells in 18 counties on the Priority Plugging List. Allegany and Catta-raugus County have a considerable number of abandoned old oilfield wells on the Priority Plugging List, but problem oil and gas wells of all ages are on the list. To date, only a small percentage of Priority Plugging List wells have ever been removed from the list. Wells removed from the list were plugged and abandoned with monies from the Oil and Gas Account and Environmental Audit Funds. Environmental Audit Process The Environmental Audit Program requires that each State Agency annually report any environ-mental problems associated with the lands and facilities they manage. Many agencies such as DEC, Parks, Urban Development, DOT and Mental Health have recently plugged leaking or abandoned wells identified in the Enviromental Audit (see page 23 for DEC plugging on State lands). However, many abandoned wells located on State lands are still not being reported, such as those found on DOT right-of-ways. In February Division staff made a presentation at a State Agency Environmental Audit Work-shop. Division staff explained the need to report abandoned wells and showed the workshop at-tendees examples of abandoned wells and the wide variety of settings where they can be found.

This Priority Plugging List well in the City of Rome, Oneida County was discharging brine at a rate of five gallons per minute into a wetland adjacent to Brandy Brook and had already killed over an acre of vegetation in 1998.

The mostly wooden structure is an older style of drilling rig known as a cable tool rig. It is being used to plug a well in a DOT right-of-way next to a stream.

The Division issued 177 Well Plug-ging Permits in 2002. All wells must be plugged and abandoned at the end of their productive life. The Division ensures that the proposed plugging procedures will protect ground and surface water and the site will be properly reclaimed and revegetated.

Plugging Permits

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern  ,  siAng  New  York  State  Department  of  Environmental  ConservaAon,  Division  of  Mineral  Resources,  New  York  State  Oil,  Gas  and  Mineral  Resources,  2002,  July  2004,  pp.  22-­‐24,  h-p://www.dec.ny.gov/docs/materials_minerals_pdf/prod023.pdf    

One  case  involved  an  old  gas  well  that  discharged  brine  at  a  rate  of  five  gallons  per  minute  into  a  wetland  near  Rome,  killing  over  an  acre  of  vegetaAon.  

Page 72: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  problems  Unplugged  abandoned  wells  

72  

Another  involved  the  enAre  village  of  Rushville,  on  the  border  between  Ontario  and  Yates  CounAes,  where  two  dozen  unplugged  abandoned  wells  were  responsible  for  widespread  emanaAon  of  gas  from  the  soil,  so  that  methane  accumulated  to  explosive  levels  in  some  structures.    

NYS DEC - Division of Mineral Resources 23 Nineteenth Annual Report

New York State Oil, Gas and Mineral Resources, 2002

Zoar Well Plugging Site. The construction of the access road and well site was designed to minimize disturbance to the surrounding area.

Public Lands - Using State Environmental Audit funds, the Department plugged seven problem abandoned wells on a wide range of public lands. DEC plugged three abandoned gas wells on the Three Rivers Wildlife Man-agement Area in Onondaga County. One well had been flowing natural gas and another was discharging brine. In addition, DEC plugged four abandoned wells in Cattaraugus County, three on Cattaraugus Reforestation Area #22 in the Town of Allegany and one on the Zoar Multiple Use Area in the Town of Persia. In a separate incident, another abandoned well was discovered on property that The Nature Conservancy purchased for possible addition to the Deer Creek Wildlife Management Area in Oswego County.

Seneca Lake - Through field and office work, Division staff discovered seven abandoned salt wells at the US Salt facility in the Town of Reading, Schuyler County. The wells had been abandoned for decades. All the wells were less than 50 feet from the shore and adjacent to a steep grade which raised concerns about po-tential impacts to the lake. Rig access was very difficult, but the responsible party successfully plugged all the wells.

Ongoing Problems - Many abandoned well issues take several years to resolve as the Di-vision pursues legal action against those responsible. The Moore Lease in Allegany County is a good example with more than 200 abandoned wells involved in legal actions. The Moore wells occur in a variety of settings (residential areas, roadside, woodland, field etc) and many are leaking oil.

Abandoned wells can leak oil, gas and/or brine. They can contaminate groundwater and sur-face water, kill vegetation and cause safety and health problems. Underground leaks may go undetected for years before their damage is discovered.

NYS DEC - Division of Mineral Resources 22 Nineteenth Annual Report

New York State Oil, Gas and Mineral Resources, 2002

ABANDONED WELLS

Residential Area - Pipeline company employees detected natural gas emanating from two residential lawns in the Village of Rushville, Ontario and Yates County. Explosive gas levels were also found in-side a garage. Division staff uncovered two natural gas wells in the vicinity. Gas in the soil declined when the wells were vented under DEC direction. Roughly 24 gas wells were drilled in the village in the 1900's and need to be plugged when funds are available. The backhoe is exca-vating a leaking well next to a building.

School - During construction of a new bus garage at the Bolivar-Richburg High School in Allegany County, several buried abandoned wells were uncovered. Since no well records were available, the school had to bring in a small service rig (red equipment in foreground) to check the condition of the wells. All the wells had to be plugged before construction could re-sume. This is not the first school well inci-dent that the Division has handled. For example, in nearby Wyoming County DEC plugged a gas well that was leaking brine in the parking lot of Wyoming County Central School in 1991.

The Division estimates that over 75,000 oil and gas wells have been drilled in New York State since the 1820s.

Most of the wells were drilled before New York established

a regulatory program and many were never plugged. Every

year the Division of Mineral Resources deals with a “new”

group of problem abandoned wells in a wide variety of

settings. Here is a selection of abandoned wells from 2002.

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern    

Page 73: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  problems  Unplugged  abandoned  wells  

73  

Plugging  or  excavaAon  of  abandoned  wells  on  school  properAes  in  Allegany  and  Wyoming  CounAes  cost  those  school  districts  thousands  of  dollars.    

NYS DEC - Division of Mineral Resources 22 Nineteenth Annual Report

New York State Oil, Gas and Mineral Resources, 2002

ABANDONED WELLS

Residential Area - Pipeline company employees detected natural gas emanating from two residential lawns in the Village of Rushville, Ontario and Yates County. Explosive gas levels were also found in-side a garage. Division staff uncovered two natural gas wells in the vicinity. Gas in the soil declined when the wells were vented under DEC direction. Roughly 24 gas wells were drilled in the village in the 1900's and need to be plugged when funds are available. The backhoe is exca-vating a leaking well next to a building.

School - During construction of a new bus garage at the Bolivar-Richburg High School in Allegany County, several buried abandoned wells were uncovered. Since no well records were available, the school had to bring in a small service rig (red equipment in foreground) to check the condition of the wells. All the wells had to be plugged before construction could re-sume. This is not the first school well inci-dent that the Division has handled. For example, in nearby Wyoming County DEC plugged a gas well that was leaking brine in the parking lot of Wyoming County Central School in 1991.

The Division estimates that over 75,000 oil and gas wells have been drilled in New York State since the 1820s.

Most of the wells were drilled before New York established

a regulatory program and many were never plugged. Every

year the Division of Mineral Resources deals with a “new”

group of problem abandoned wells in a wide variety of

settings. Here is a selection of abandoned wells from 2002.

Abandoned  wells  have  been  found  leaking  oil  into  creeks  and  wetlands  in  Steuben  and  Allegany  CounAes,  and  into  residenAal  ponds  and  lawns  in  Allegany  and  Ca-araugus  CounAes    

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern    

Page 74: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  problems  create  confusion  with  current  development  

74  

Case  on  Point  –  Eddy  Family  Arc  of  new  gas  wells  developed  by  U.S.  Energy  Resources  about  1⁄4  mile  away  Eddy  family’s  land.  Eddy’s  water  well  polluted  by  oil  -­‐-­‐  not  brine  or  other  gas  

 industry  chemicals  Probable  cause:  abandoned  oil  well  near  their  home  DisposiAon:  cause  not  related  to  gas  development      U.S.  Energy  Development  offered  a  water  treatment  system,  while  acknowledging  no  culpability.  U.S.  Energy  also  offered  a  financial  se-lement  in  return  for  signing  a  non-­‐disclosure  agreement.  The  treatment  system  was  accepted,  but  not  the  cash.  

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern    

Page 75: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

What  to  Do  about  legacy  problems?  

75  

Clean  up  the  old  mess  before  we  start  a  new  one.  §  Prohibit  non-­‐disclosure  agreements  unAl  AFTER  

invesAgaAons  are  complete.  §  DramaAcally  increase  staffing  of  Bureau  of  Oil  and  

Gas  RegulaAon  §  In  NY  over  13,000  oil/gas  wells,  only  16  field  

agents:  over  800  wells  per  inspector  §  Promote  research  on  health  impacts.  §  Plausible  deniability  is  not  preferable  to  

scienAfically-­‐based  risk  assessment.  

Professor  Ronald  E.  Bishop,  Ph.D.,  C.H.O.  Chemistry  &  Biochemistry,  SUNY  College  at  Oneonta,  Shale  Gas  Impacts  on  Water  Quality,  Incident  Frequencies  PotenAal  Pathways  Chemicals  of  Concern    

Page 76: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 77: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Summary  Shale  Gas  Methane  Emissions  

77  

1. Shale  gas  is  abundant,  emits  half  the  CO2  emissions  as  coal,  is  currently  low-­‐cost,  resulAng  in  rapid  expansion.    But  methane  is  a  far  more  potent  GHG  than  previously  esAmated,  and  if  leakages  surpass  a  certain  percentage  of  producAon  then  climate  advantages  over  coal  disappear.      2. AggregaAng  gas  emissions  from  pre-­‐producAon,  producAon,  processing,  transmission  (pipeline)  and  end-­‐use  combusAon  (e.g.,  power  plant)  is  complex,  and  a  myriad  of  assumpAons  result  in  a  wide  range  of  esAmates.    3. There  is  widespread  agreement  that  there  is  insufficient  monitoring  and  measurement  to  accurately  or  precisely  determine  the  gas  industry’s  methane  emissions.    EPA  esAmates  emissions  at  2  to  3%  of  producAon,  but  esAmates  from  field  research  span  24-­‐fold  –  from  0.45%  to  12%.  4. Industry  leaders  believe  below  1%  is  a  sensible  goal  and  would  gain  wide  support  from  environmental  and  civic  groups.    Climate  scienAsts  see  this  as  a  necessary  imperaAve,  but  not  sufficient,  given  the  carbon  constrained  budgets  the  world  must  adopt  in  order  to  prevent  exceeding  2°C  rise  in  global  average  temperature.    Zero  emissions  is  an  imperaAve,  so  gas  expansion  must  shim  to  zero  emissions  within  the  next  decade-­‐plus.  5. Coal  is  not  the  ulAmate  comparison  for  gas,  but  now  confronts  cost-­‐effecAve  compeAAon  from  three  emission-­‐free  opAons  –  end-­‐use  efficiency,  wind  and  solar  power.    And  methane  emissions  is  only  one  among  a  dozen  a-ributes  that  civic,  corporate  and  public  leaders  use  to  evaluate  the  least-­‐cost-­‐and-­‐risk  methods  of  delivering  energy  services  to  the  point  of  use.  

Page 78: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Possible  mechanisms  for  leakage  of  stray  gas  to  water  resources    

78  Penoyer,  Stray  Gas  MigraAon  Issues  in  Well  Design  and  ConstrucAon;  ConsideraAons  in  Avoiding  Methane  Impacts  to  Drinking  Water  Aquifers  and/or  Air  Emissions,  NaAonal  Park  Service,  U.S.  Dept.  of  Interior    

Page 79: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Methane  migraAon    via  abandoned  wells  

79  

Page 80: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Gas  Leakage  along  a  Well    Wellbore Leakage

• Wellbore leakage is separated into two distinct areas of the wellbore

• Shallow leakage generally due to poor cementing practices

• Deep leakage generally due to stimulation or perforating

• Only deep leakage is generally associated with CO2

• CO2 leakage in the shallow areas are due to secondary events

Theresa  L.  Watson,  T.L.  Watson  &  Associates,  and  Stefan  Bachu,  Alberta  Energy  Resources  ConservaAon  Board,  EvaluaAon  of  the  PotenAal  for  Gas  and  CO2  Leakage  Along  Wellbores,  journal  SPE  Drilling  &  CompleAon,  SPE  106817-­‐PA     80  

Wellbore  leakage  is  separated  into  two  disAnct  areas  of  the  wellbore.  Shallow  leakage  is  generally  due  to  poor  cemenAng  pracAces.      Deep  leakage  is  generally  due  to  sAmulaAon  or  perforaAng.    Only  deep  leakage  is  generally  associated  with  CO2.  

Page 81: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Gas  Leakage  along  a  Well    

Theresa  L.  Watson,  T.L.  Watson  &  Associates,  and  Stefan  Bachu,  Alberta  Energy  Resources  ConservaAon  Board,  EvaluaAon  of  the  PotenAal  for  Gas  and  CO2  Leakage  Along  Wellbores,  journal  SPE  Drilling  &  CompleAon,  SPE  106817-­‐PA     81  

Shallow Leakage

• Surface Casing Vent Flow• Gas Migration• Casing Failure

Shallow Leakage

• Surface Casing Vent Flow• Gas Migration• Casing Failure

Surface  Casing  Vent  Flow,  Gas  MigraAon,  Casing  Failure.  

Page 82: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Zonal  Abandonment  failure  example    

Theresa  L.  Watson,  T.L.  Watson  &  Associates,  and  Stefan  Bachu,  Alberta  Energy  Resources  ConservaAon  Board,  EvaluaAon  of  the  PotenAal  for  Gas  and  CO2  Leakage  Along  Wellbores,  journal  SPE  Drilling  &  CompleAon,  SPE  106817-­‐PA     82  

Zonal Abandonment Failure

Page 83: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Gas  MigraAon  along  a  Well    

2

“Since the earliest gas wells, uncontrolled migration of hydrocarbons to the surface has challenged the oil and gas industry…many of today’s wells are at risk. Failure to isolate sources of hydrocarbon either early in the well-construction process or long after production begins has resulted in abnormally pressurized casing strings and leaks of gas into zones that would otherwise not be gas bearing”.

Figure 1. Simplified schematic showing phenomenon of upward gas migration

along a casing string. From Dusseault et al., 2000.

Figure 2. Schematic of details of possible fluid migration paths in and around a cased/cemented well.

Theresa  Watson  &  Stefan  Bachu,  Wellbore  Leakage  PotenAal  in  CO2  Storage  or  EOR,  Fourth  Wellbore  Integrity  Network  MeeAng  Paris,  France,,  March  19,  2008.     83  

Cement Type

Data and photograph courtesy Barbara Kutchko, DOE

One  Year  DegradaAon  of  Neat  Class  H  Cement    

Page 84: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Deep  Leakage  to  Surface  and  Groundwater  in  Central  Alberta  

84  Theresa  L.  Watson,  T.L.  Watson  &  Associates,  and  Stefan  Bachu,  Alberta  Energy  Resources  ConservaAon  Board,  EvaluaAon  of  the  PotenAal  for  Gas  and  CO2  Leakage  Along  Wellbores,  journal  SPE  Drilling  &  CompleAon,  SPE  106817-­‐PA    

Deep Leakage to Surface and Groundwater in Central Alberta

Page 85: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

What’s  the  Problem  with  Horizontal  Well  MulA-­‐stage  Fracturing?  

85  

Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.  16-­‐17,  2013  

§  Increasing  numbers  of  horizontal,  mulA-­‐stage  hydraulic  fractured  wells  

§  Large  numbers  of  pre-­‐exisAng  wellbores  in  the  province  

§  PotenAal  to  impact  assets  and  groundwater  

Page 86: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Where’s  the  Proof?  

86  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

Blue:  all  wells  drilled  in  Alberta  since  1955    Light  orange:  all  wells  fractured    Dark  orange:  all  horizontal    wells  sAmulated  by  mulAstage  hydraulic  fracturing    

Where’s the Proof?Where s the Proof?• Blue: all wells

drilled in Alberta since 1955

• Light orange: all wells fractured

• Dark orange: all h i lhorizontal wells stimulated by multistage hydraulic g yfracturing

Watson, Theresa, Presented at University of Calgary, Schulich School of Engineering Alumni 2013 Distinguished Speakers Panel, March 14, 2013.

Page 87: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Where’s  the  proof?  

87  

Where’s the ProofWhere s the Proof

Kim.Thomas, Overview of Interwellbore Communication Incidents: An ERCB Perspective. Presented at the Canadian Society of Unconventional Resources 14th Annual Conference October 3-4, 2012, Calgary Alberta

Kim.Thomas,  Overview  of  Inter-­‐wellbore  CommunicaKon  Incidents:  An  Energy  Resources  ConservaKon  Board  of  Canada    PerspecKve.  Presented  at  the  Canadian  Society  of  UnconvenAonal  Resources  14th  Annual  Conference  October  3-­‐4,  2012,  Calgary  Alberta    

Where’s the ProofWhere s the Proof

Kim Thomas Overview of Interwellbore CommunicationKim.Thomas, Overview of Interwellbore Communication Incidents: An ERCB Perspective. Presented at the Canadian Society of Unconventional Resources 14th Annual Conference October 3-4, 2012, Calgary Alberta

Distance  between  wellbores:  Closest  30  meters  Furthest  2400  m  Mean  355  m  Median  250  m  

Page 88: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Where’s  the  proof?  

88  Kim.Thomas,  Overview  of  Inter-­‐wellbore  CommunicaKon  Incidents:  An  Energy  Resources  ConservaKon  Board  of  Canada    PerspecKve.  Presented  at  the  Canadian  Society  of  UnconvenAonal  Resources  14th  Annual  Conference  October  3-­‐4,  2012,  Calgary  Alberta    

20  reported  incidents  since  2009    •  18  incidents:  fracture  sKmulaKon  communicaKng  to  a  producing  well    

•  2  incidents:  fracture  sKmulaKon  to  a  drilling  well    

•  55%  of  the  incidents  had  no  spills,  equipment  damage,  or  long-­‐term  adverse  effects  on  producKon    

Where’s the Proof?Where s the Proof?•20 reported incidents since 2009

• 18 incidents: fracture stimulation communicating to a producing well

• 2 incidents: fracture stimulation to a drilling well

•55% of the incidents had no spills equipment damage orspills, equipment damage, or long-term adverse effects on production

Where’s the Proof?Where s the Proof?•20 reported incidents since 2009• 18 incidents: fracture stimulation communicating to a producing well

• 2 incidents: fracture stimulation to a drilling well

•55% of the incidents had no spills equipment damage orspills, equipment damage, or long-term adverse effects on production

Where’s the Proof?Where s the Proof?•20 reported incidents since 2009• 18 incidents: fracture stimulation communicating to a producing well

• 2 incidents: fracture stimulation to a drilling well

•55% of the incidents had no spills equipment damage orspills, equipment damage, or long-term adverse effects on production

Page 89: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  of  Abandoned  Wells    

89  

§ Urban  encroachment  on  old  abandoned  oil  fields  

§ Public  safety  concerns  about  leaking  wells  and  gas  accumulaKons  in  basements  

§ Numbers  of  impacts  growing  

§ No  permanent  indicator  of  abandoned  wells  on  the  land  or  on  Ktle  

Where’s the Proof?Where s the Proof?

Photos Courtesy Doull Site Inc

Where’s the Proof?Where s the Proof?

Photos Courtesy Doull Site Inc

Where’s the Proof?Where s the Proof?

Photos Courtesy Doull Site Inc

Where’s the Proof?Where s the Proof?

Photos Courtesy Doull Site Inc

Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

Page 90: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  of  Abandoned  Wells    

90  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

Wellbore  Strike  by  Farming  Equipment  Wellbore Strike by Farming Equipment

Wellbore Strike by Farming Equipment

Page 91: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  of  Abandoned  Wells    

91  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

Wellbore  Strike  during  Development  Wellbore Strike during Development

Wellbore Strike during Development

Page 92: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Legacy  of  Abandoned  Wells    

92  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

Urban  Expansion  &  Encroachment  Urban Encroachment

City

Well 2

Well 1

2006 City Boundary

Estimated 2056 City Boundary

2 people per km2

8 people per km2 100 people

per km2

Population growth by expanding urban centresINCREASED  POPULATION.    EsAmated  growth  from  3  milliion  to  6  million  by  2056.  INCREASED  WATER  WELLBORES.    It  is  esAmated  that  there  will  be  959,000  wells  in  Alberta  province  by  2056  compared  to  343,000  in  2006.  

Page 93: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

What  SoluAons?  

93  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

§  Requires  a  5  meter  setback  from  an  abandoned  well  §  Requires  developers  to  check  for  abandoned  wells  

and  contact  licensees  to  make  development  plans  §  Liability  remains  with  licensee  §  Requires  abandoned  wells  to  be  tested  for  gas  

migraAon  §  Risk  assessment  and  ongoing  tesAng  

Alberta  Province’s  DirecKve  79:  Surface  Development  in  Proximity  to  Abandoned  Wells  

Page 94: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Other  regulatory  changes?  

94  Theresa  Watson,  Alberta  RegulaAons:  Wellbore  Integrity  Issues  Driving  Regulatory  Change,  North  American  Wellbore  Integrity  Workshop  Oct.17,  2013  

§  Change  in  abandoned  well  capping  requirements    §  Changes  in  surface  casing  requirements    §  Discussion  and  research  ongoing  to  determine  a  level  of  acceptable  

leakage    §  Field  research  invesAgaAng  surface  measureable  gas  leakage  of  

abandoned  wells  §  Ongoing  changes  in  abandonment  requirements    §  Limits  on  in-­‐situ  oil  sands  development  due  to  pre-­‐exisAng    §  wellbores  in  the  steam  AOI.  §  Changes  to  wellbore  construcAon  requirements  for  injecAon  wells  

Alberta  Province  example    

Page 95: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Increase  in  New  Water  Wells  

95  

Increase in Water Wells Associated with Population Increase

An increase in the number of water wells increases the likelihood that gas, due to migration through shallow zones, can accumulate in buildings.

Increasing  number  of  water  wells  increases  likelihood  gas,  due  to  migraAon  through  shallow  zones,  can  accumulate  in  buildings.  

Page 96: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Deep  Leakage  Factors  

96  

Deep leakage factors.

Factor Criterion Meets Criterion Value

Default Value

Fracture count =1 1.5 1

Fracture count >1 2 1

Acid count=1 1.1 1

Acid count=2 1.2 1

Acid count>2 1.5 1

Perforations count>1 2 1

Abandonment type Bridge Plug 3 1

Abandonment type Not abandoned

2 1

Cement types and values.

Cement Type Assigned Value Description

1:1 POZ MIX 1 Cement and fly ash

1:1:# POZ3 Cement, fly ash and various quantities

of bentonite

BLACKGOLD 1 Unknown

CAP (NEAT)1 Cap pumped on top of foam cement,

not applicable.

CLASS X NEAT 1 Various neat cements

FILL ECP1 Cement to fill annular packer, not

applicable

FOAMED 1 Cement foamed with nitrogen

G + # PC SALT1 Cement with various percent salt

additive

G + # PC SAND1 Cement with various percent silica

sand additive

GPSL/GPCEM/THX 3 Gypsum and gel additives

LIGHT WEIGHT 3 Assumed gel additive to reduce density

SELF STRESS3 No cement, hole allowed to slough in

on casing

SLAG1 Blast furnace slag, reduces cement

porosity

SLOTTED LINER 3 No cement

SLURRY 6D 1 Unknown

TAPERED CASING 3 No cement

TH CEM/CEM FNDU1 Thermal cement, usually sand or silica

additive

UNCEM CSG/LINER 3 No cement

Deep Leakage Factors

Theresa  Watson  &  Stefan  Bachu,  Wellbore  Leakage  PotenAal  in  CO2  Storage  or  EOR,  Fourth  Wellbore  Integrity  Network  MeeAng  Paris,  France,,  March  19,  2008.    

Page 97: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Scoring    Shallow  &  Deep  Leakage  PotenAal  

97  Theresa  Watson  &  Stefan  Bachu,  Wellbore  Leakage  PotenAal  in  CO2  Storage  or  EOR,  Fourth  Wellbore  Integrity  Network  MeeAng  Paris,  France,,  March  19,  2008.    

Scores

Deep leak potential.

Deep Leak Potential (DLP) Score

Low <2

Medium 2-6

High 6-10

Extreme >10

Shallow leak potential.

Shallow Leak Potential (SLP) Score

Low <50

Medium 50-200

High 200-400

Extreme >400

DLS= v(fracture count) X v(acid count) X v(perforated interval count) X v(aban type) X v(cement type)

SLP = v(spud date) X v(aban date) X v( SC size) X v(well type) X v(location) Xv( TD) X v(dev) X v(cement top) X v(additional plugs)

Scores

Deep leak potential.

Deep Leak Potential (DLP) Score

Low <2

Medium 2-6

High 6-10

Extreme >10

Shallow leak potential.

Shallow Leak Potential (SLP) Score

Low <50

Medium 50-200

High 200-400

Extreme >400

DLS= v(fracture count) X v(acid count) X v(perforated interval count) X v(aban type) X v(cement type)

SLP = v(spud date) X v(aban date) X v( SC size) X v(well type) X v(location) Xv( TD) X v(dev) X v(cement top) X v(additional plugs)

SLP  Score  =  v(spud  date)  X  v(abandoned  date)  X  v(  SC  size)  X  v(well  type)  X  v(locaKon)  Xv(  TD)  X  v(dev)  X  v(cement  top)  X  v(addiKonal  plugs)    

DLP  Score  =  v(fracture  count)  X  v(acid  count)  X  v(perforated  interval  count)  X  v(aban  type)  X  v(cement  type)  

Page 98: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Leakage  Case  Study  -­‐  Alberta  

98  

Case Studies

4u3b3554333***D4*u3*1133 551453u3u13u5uu45*u*u"3334*Šu3Šu53G53u331Š41**u5*"3Š4415u*5*4554u533""555554Iuu3u43555

3u4uu1

*5u**555555"335u3555*555555555*135555553535533u43Š3"55535*555533"5533"455u355u*53*55335555555Eu3u33u4u43435"u55*uŠ5554*55534*335u5*5u355u5G45u555G555555555*55*55Š55E5"5G545555*54G3555555*45u5*535555*55555G4ŠG55555555G555554*55G555*5*5""5335*355u5"*5"555535555555555G55555G55G"G"5555GO555O55535555355I55*4555535355335u55*533b3*33"*3*"""553*35554553415Š555uu3*5555u55*u45"354555555***"45u*555"***5*4***5u4u5*55u5335354u"5u4u4334*5***5**5355G555*55"5"""551*55535*355*5453**u5*u3*5554G5535G54*355353u35G3*G*5"GK13334115u44u4434533uu44u4u44u411441u3414141434444u44u44u414uu343u43544334uu34515444144414444441414444u4341

13uu4353344uu5554144414u4435u5*uG3*5*3"u3u3445uIu*5"13"*Gu*uuG"3"I""34G"53""5553*G3

554uŠ3433*33u"433u333433bb13343344Š444355"545*3"3*4*544K5554uu5G33*34*u4u33u54u33343333"""313uu4355*333u33"41135u55I55*G*5"3"O"u"34u33O"3"3"34333uu44"*4554"3O5555I4Š4*455*54I54uG455543"33G*G*345411GOG555554uu55"G45"G*G55I545uu54I*3

443G5**3*5"*I*I55uG53455G5O5451uG"GG*5""G54u"*I5*3*4*3G*"5451"G*G55"O*G**3G"5"5G*I3"5"35*I*555O53"4"55"1O*O""3u33uM3O555O"" 553G15*3345G3*555G*"G"OG"13"G55G455IO"1"555333G314335Š45553555u35*553545u4353GO5"1G5"G*535*5u535*53555551""3b33GI5G"54uu35"113"53G5"N333*G5*u"5G"3G5GII4535*u333O45*O""I*O545"3IGI"O33553355"4"""4GO334G555u45L35""33u*""353"3OO"33345G3333u3451Ou""OO434"5G35*"35G5G*""343Gu5G5G5O5I33G3O5"3O3""u"5*553*"3uG""""5u*"O3IO153G"G"*5OG""G""G3G5*"534"""GG55Gu3555553*3"G*G*5uu*u134343""3""3G35"545G"5GG354I35535*I3"G3"53333555553GG4**33"3"155G

5O55555GG5555IOOD55"""O""EGO55D5G35D53G555555G"5D1335355I3145Iu55O55DGGD5535D155Gu1"u5551uIu4N5DuI51O5535I3D55G*G5uG5555G555G5G15uGG535O4553*NO"DDO54""4"u"N5uO555G555555"5I*5I5"533G"G"Ou535O5*4uG5G5I553555G55535OGuu553G5GN*u45G555G55G"555u5443GG55uG55G5"GO5555G55555uG455G5555G54355G55*D5533534G5G5*55555G55*5G55555553G*55*5555555u55G545G55uG"5"u"O"G33"NO"N33N"Ou5G5N5553uI5u5G5*55Guu*5G3G55D5D5G5555543uG5455555535555LG5u5G5G5551455I5"5543G55G35GG5G555"35G155G" 55"*"ONOu3"" GG555G55G51G5555G555551G535G5**5G5G5G355555u533G55G5555u4G55uGu55G515O*55u3553G555554GG55GG5G55G355I55GG5551G55G35G5u5G55Šuu4u44Š414134434

u3

4u314134134u413444uu33u4u3u"34334u4ubu43u

13u"5"34"33u33u33133133*u533*43333433433"553**43455344343"3"u"4""""

34u553355"GŠ*u45GGI*G5455G5G453G555G5G55G5G55GG55555G5555G5G5D14G555G45G5555G45G5553145G5555555555*555II5*I55IDO*55*55555I5I*5O5I55G3u45LI*5G4u5G54531u1OI555G45G5*5G45G"55GGu55GuGu55II555Gu5Guu55G*uG55G3G5u555GG33555G3u1Gu5345GGI*ŠŠ4uu5G55G5455555u45454I"4*G545II555Šu55GG35*35G333555ŠŠ5G5G555535G3345G55ŠŠ4u555G5G555GG5u555Gu4G*55Gu5G*5G5Gu"5O"u554*u55555uu14555455u3334435343*335u5555u55b5uu34""555555*45555555455545b555555555555555II5*5II5555355555G5G*155555u*uŠG5G55555L5355uI 3555555*5uI54uu454II*u5455"355*555"554"54555455155G555G55GI5u5IuID5554uIuO455IG5GI5u4Š55GG355G55G5O4G535NG5GG55GŠG5555455534*3GG5535555GG5513"GG5"5"GG3554GNN54G5545143b1114u333""533Š5u5355455u5345Š45*55555*3u*5*3uŠ5*45555Š5*5355*"55555*555*55315O35545IGG5G555I3u4I"5OGG455OI5*I33b34*"3I55Š5uG33G55II3*555G*G5u5u5353"4453314u413u5u555G5*55G5Šu44u5"G5GG555GI5455G5G55GGu43353135b35G55u555***G"I*5

54G435G5554*555555G555u1G554"55G1535u1u41415uG"15554G15441555141555555455515355455545555555GG55555uGGGGG555*45GG1511133u4u555u435uu5u4u55uu114414434u5u3D4u344u35555Gu544G"35u5343331334u*"53u3u41uu4GGLDG5DG5G5G55G5"G514GG5G55454u5445G4u*4u5GG5G5G5555414G514G5G55G55G54G5GI**O5"G45uŠG5OO"G5G5uO"u5G4355ŠG5554455G5u445u554G5"555553"5554u555554GG33I5IG5*5OG"u55IIu5IO55"GGO*5G4GGG551414G5I1G55515O555I*uG5G5G555355G55GG53G55"355554ŠuŠ1555uuu55G45u35354G5GD5445NO5545G5G54GG2*G5Š4GG55555

53555uuŠ*15535Š555E555E*4E"3433335"51O555*53u533"55535Gu553443"35434443u433"u43"33"553535533""45*54 333353b335*u53

uuŠ31u4"u3u3b3335GŠ553u3334"3433u354u34443uu31u435G5555Gb5G**u45G314531G*Š455G3"5u553G4u535355"***I4*uG*3u5G535G5uu515*4G15555*51333333534513G55533GL5333535355G55G"u4Š"3G51111G*GGG"553*5351341"3G5153334"55G3N5uu53G33*535G3G"5554511"33544*554u3344*5Š5345G15353"*53*Lu55Euu*33"333"34"""53"55""513333333b4"3G533E355355555*3G53G*5555"Š5"5G553543553"GO53354G555G51433u411444133434115O45151"55331533*53"5G3333333"5G5""5355G5G55331"3GG55u33"""u4113555115I554345555"5555515"5"1535"5354555G553343313443333uu33333"43*55""533353uu545G*5"5"5G4G33335"u"33G55I455533*5****5*43"33G"4NG333G45*GO5E53uG*35O"G5*"533455***3"5D53u3"G3*u4"33535555DG3G3535G5*3G**515***u55553u*5O15GGG554535u3445G3355555553555I*55u*Gb55*G**5u3G355*5u4"55u554"5OO"44u"NO555O33*5*5515G55551u5G53554G5G555555G*23345uu5"5455G531u55531451414u4344u41u4414EE434"4415415534D5G55Gu54G555"5553555455545D"G5G45I5"5uuu55I4434535GG545*5u4u22G5435"5G55555553"54G5555*uu3554IG455"55145355343u325"44353455uI5u55415"4*5345*u4534Š4355445454455Šu5G5"33355334335*44"Šu5144Š*45G5443514333451315533G4545535G335355555555""3"

555G53u35u11u43G5uG155G1135534uuu535133G3511535G53u55333555Db5355333333355GGO5*554555G4G5*5145*G*35455*5I55I43"O5O5"O5Š"41533I5GuŠ45555GEO55*555GG55"5IO3555EO554G4I5331453O5OLL51"IGG454""O3uO55G5G3u*5G*5u55u*555G5*NG5G5G5G5GG5*55LIG53"G5*G5*G3EN5**5"55**555G*Ou55O33u555*Š*I*5*u4*G3*5ŠŠu545*13u*G545**1*35*4G4N55"55555555545455555G5E5*553*55G"5G355555113*53I555O5555G4N5Š455544553GŠ453145555"5Š55G*"3G55*G"4"OO5355LDG5uIL3G5u4O55I553G45I45G5G4u54I53G5535uu555I3N5G54uu5G3G55DGGuuu5uu5GI5OG55"5G5G3355555G55G55G5u4uuG3I553NGI55IDI5335u4II55GG55555G5G5u5uGuG55555G5O55Gb1*55GN5I35G4u555G5G5*53*ŠINIu5455ŠGI5"3II"**5ILO*5II*5G443DI"53IO55IG355G35DG3554G5*Iuu35Iu155GG355G54uG553G3G55GG55*4G5G35G"5G5G5G555GO5GO55"55"5GuG35"N**5u5I5G4555Gu55Iu*5u55G3uGLu554G3G15u5u5GDGD555*355GI

55G45G524551u43G5G5uO53GN55NO4GN553*3I5G1*551G5G535GO55G5G5NG"NG5G5G5NGNG5G55G55LO5G54G5G5NG5455G55Gu5G5NG555G53545G5N*G"u55G35G54uN55u5G5GNGD5G55G"555G5GN5GNN555G5u3G3LGN345O5553uNu5I3GD*5"5uu55G35G4I4G5uG5b5I45Š"G5G5Gu5DI5NG5G53G53G53**5NŠ1GNO""55N3G5NG5G5NG5NG54NG55G5DG5NG53G5415"I3G5G5I53NO54u5415NI5NI*3N53uI55"I554Š4"355ON5335545G55"GG5D55u5ODG5GN5GD5G5G5Gu5GN5NG5GG35GL5O5"*55G5555"u5"Oub5Iu*u"IG43GO""IOG5"I3u5I"5u555uG5333bI54G14u5u55*GD35**45u35O5O5533335"G5GD*55O*G5G5*N5O5G53*354G5G555"4553Du55G55555uGI5GN55I3LGG5545G3uO4uu54*IDG*"O**5*5"u54IO*uuu*555GNI"5u55"55G5NG54EN55G5NG544G5G5DG5NuG53G4533G5NGNG4*4"NIN"I**"NGNG44I5NuuG"55Š3G5GNG3Š*D55LI3I***3G5O5N5IL***INONID 45O4533453544uu4555OO55I55345554I4444555u4545"*5G15355*5u5GD15Š155*1554553354I445"3431G54LG45555*5D5555GG55"O515G555154GO51*Š55"55114355IIG553G55Šu4I535G55151G"35I5u555355555*555O55II5311*51Ib55Gu4453u3555*u5554555GG345ŠI53443345u443u5GO555Šu535544G45GG45*5Š553I5u3355545555"5535I5*31""3413u554545I554435O545554uG*53555uŠ5554Š55533544143333443u35*5*555"45OG*5G55*G445555u4554333u543u45545314I"5314*33**334355u3u33*u53*u45u4Šu43444ŠŠ*45 5133535535555***55*555*5*"33*""33Š435Š5*5G555G355555"GG35445"55uG*G5G5555GDLGu5G*5G5u"555551u433*343u4154"

34u413355535u55Š333u53333"33335ŠŠu55u3*"553Šu545Š3Š44344Š45Š*5554*55555*u533"Š414333G55G5555""G*35D5G5""3G5u*5354*uu3u4335444441*33u3435353*5553G555G555I4GG5I5455"55G554534"G5*55G5455555O"5uu5G3*"55*45*II535G31335555345G5uG55555543G"3G3555455555"555G

3u444414*451344u335343"14"3443Š341344444Š54335u414Š3Š55"5555G55*53534514444343**5555G35G45435Gu1Gb45343445415453GGuu55GŠ45553543G553555*554G**u455G**G"5445G55GG5G5"G35b5GG555G5GG555b3Gu55"G*O455*u545*5*ŠG5GG5G5*5G5455GG5*5555GGuG*GG5G3*555G555353G35555555ŠŠ*Gu5G55555G5555Du5G5D5G43535545G55G53G35G35545554uGG5555555GD15u3553355533b4444Š34Š143Šu43434433"455""5G3G5G5I51555G55G5Šuu5455G5*G555*55GG5G3"O5G55u3

54G5154455"4*4E3453u455441*44E3143431555G5154u55G4Š54u15**u 51544*5454355555345"*5uu545454u5"44ŠG5343M51455*31"5455513u453E41u55uu5ŠŠ*5533u315"uu55454b5*543335343335b34454u5Š4554354u"333*I4u""533*Gu"3155455445"5351b5455555"44355Š45b45b51435G51u45444G4uGu"454Š35435u55443*14**515I445G"154u1GŠu4I5Š5*445144311b33414*53544G5I54Š*544G554G*544545"bGu4*533535354Š51451*14*45u453u4553314554*551Š455G53ŠŠ1553544E54335451145*E4b13b43"34""33u34451u 5bu 45"5ŠŠ5355534Š5"354*35455u55E435534uu54G

415"4Š544u*5"3" Š53114*4544345u45G5u4G554454G5G4453434544545G454 554"55453155443*4 441u3334uu4444u43355 """"34"45"5"415"1Š345445Š5"34345"b415154"3335455515""3334G533u411445O543

443u4413b35534514533uuu44443334u3u31433G534*44445144555u*4E5u54544554Š4*5G3455444445543u3uuuu4143u43u4bu3u33434133431333 ""344 53345133u 3553454u445u355OŠ

u5E44"535Š3555545415544151511515G555GŠu35u4G555u155543354bG551"54uu"55b"355435545O31bb"b3G4545313444ŠG*44*1b5*444"35Š4bu1341544"G4Š44555544EI45443544G4G554""u*5u43u3G45155415u1b*354Š*5G5*445344534153u4*b44*"54uE43"544533533534*5553E4uG4G53b15G5buG3"5b5G45u45Š4Gu345G54G51335Šu5uu354155433*551415uG44uG445GK541*5*54133

4u5"GG45G5G5G5O35G5Gu55G5G5"534uuŠ45N1I5554"5Gu55DG5G1554555I*35553555GO5G455G5GOG5OG45"4434u44u444444553434u444u44444554G435515G4u 43344143u441144u 444"434544"55uu4444u4434u4444u4344444u34541555Š5554555553544555515554555544"454545555"55G44544Š5G4G554414415455G544uŠuu5u4555514534444144Šu4u43u4551144443u53444u44uu344434u5444544"4uu4u4544444145145u14"14144u4554u4u1u3114"314uuu14314441444144u4*54u555555554555555uG533uu34u334443uŠ444434u4Šu1143434544541154334"4443uu5u434u41433444434"44u*

55G5"4GG5uuO5451GGG5DuGG55ŠI5454554555434154341Šu1Š3uŠ*55u441GŠ35*Gu55GG433141435554145544uu4411114uu5u4bu3143444443uŠ4435G55uIuuIub53I555455I5*Iu5u*uuu44"G553455555uG5G24155G5155GG3*""G*1*1G*G5uu*G555u55555415u"44u54*55"4DGuu545G"5G554Gu3151435155515541O15*154G3G35G4I55435"1555u45555G54"55Š44u441Gu*331"4u4545555b5"5554u55"53u5G*3G4135551O5554*5ING3G55555533N1I555535555u5I53G5u55I555uI554555G545555G5uGG5G5551G4G5555GG5G5G55555GI533GGG55GO35*NGG3G*415G54G3GN55G4OG4uGNuNG545u5uGL4G4ŠD453454G54uu54G45455O54I55u4555G5G55GG5G555GuI5G55Gu4G53535*G1G*G533G5G55545GGN55G45555"5NG4G5G*Gu5**Gu5GG*4G**G54G4NGuu5**G4uu5454GGG5*u*5GG54553G5GG5Gu54u15G5GG5"*5*u5533I5I5*5N5G"5*I55551I55535I55*""53*55G5*5uu55*G"455353ONNu"N5GDDuu4"545

*435I45"414I5545Gu555*5u55I5O*3""O55355*5GG55553GN35G555545G5G3555LLG3G55G5G555I***ŠG3G*5NN5"O3533NG5"555G5555G55G45555G5GG55553G55G55*55G5*G55*455G"5G553*5G"O55G555G35G55uGG555GNG545IGu***G5NG54335GNI5*4GG55D5GG55*35GG333N55N3O3O55uI3G53L55G1G4*DNGNG555G43G45L53G5NIO5N3u3G35GG55G3G5535GG55G1G5u353OG3545IG55IDG55355uu4GG555554G5Gu555G5GG"G555555G3G55155355uG"55N5G5553GGu533uG55O33uG55GG355I3uI5I355G5G5"5G343GGO3"535G55535uOI55""1"Š"5O5uEK5NE"D31*"1N"54ONOE"5"53u5"O15*3u41555Gu55G5u15515555G5G5G55G5553*G5555u35G55u53G"155531*5u55G555555345G4GuŠG"555131""55Gu4D5u455G4LG555GD55545uG555G5555uu5155G35GuGuu555551GG5555G""G5555O"G555G55u435GG5555355G555uuŠG5GG5G555535G55GG35G55555GG555555G5NN35"GOu5G3G355G5uuGG5uG55G5G55G555G5G55*55G555Gu45555u55Š455554u34u554555G"545G55"5*2*3555G35Du55155*uG515555"55555G4"55G4"54G1114554455u5*5554355"541I55*5G335u5u55415GG354155"G*45511335G5155"55553544"555345455353435553*455514553G5*55*5Š5*55G33444334*33u3uG34334445454u54G5555*53uu3314543uŠ43*5u5554u355445454451G5G544"53553u55554514""5u5G54u5353b 5"*5OGG" 5G5"""3"55*"5543G555ŠG3"55"55G555353G5*45355GG5"Iu*53"55*""*5G55G3335333333u433u44u33u3333334133"3u33343"333u""5uE514u545545453515"4Š55"5555G5"55u535"3G""5*u3335G3"G35553*33**55"b" 44""*5543"""55"334uu335*5"33"G*G"55G*G"*55GGu555"I5G53*53G4G"*535"G54I*35GG54*5I5G""4GG5*55G""G355I*1545"4313333"54344"3355"5"333uu131"

333b*3334*u*G"555I4G5*5555"55GG3G5554G

53534234u2454Š5GI*5DGDG5I535LGLG5G555*uuuu5II5uN5G5D3G3433G55u5GuuuG555G3G45G3uG3Š555G4G5G5GNG5G5555G5G5GGuI14555535II343554G555G53*5553DuuG15DG555DGDG55GDG545LGDG555GLLG5155II*G5555G55LGLI15uDG55LGuG55DGDG1355LD3Gu35545Gu33G454u5G"5G5555555Gu4"5G5"Guu5555LG55DGDG55u5NG53553G5G*315IG5"51uGG55uGG55"G5354G555D"44u3"5"44G5G555"555u533ŠG33455"3""*51b53555uuuu"4G55Gu333G55G4555535554**45GNOuu533u5555"*35I535"G3uuu"Gu5LILGu*5*L3IL1G55u5LG32u55"5LGG555*LG3*G5LG5G55L3GLG55355L3I5DG55DG5LG5G"3Gu5*5555535u*155*335555535G15GŠ5D4N553uI5LG335"355*5DI3IDIu555GG55GG555u5G353DGD5GDG5D55G*G5GL55IG55555G5D5N"G5555uu33u55G5D3u345G5"5Gu 5G"553G55G5D54555O"I""5I"Š5455I55455G55G45G5555GGu53555"1455G14434"55"34"55u4GO55""55G45555G53313u"""3"35555"""3GG5G55G35355"uGu5555"55555355G55*G*435*G5*5u5u5G535G555553555ŠuŠG3G""4"53"53"""54"5Š5Š43*3355553344"3*55555*"G"3O*3555ŠŠ55GŠ*5"555Šu35ŠŠ5u345"*35GG355GG555G555G5555GE55553555553E55*55"55555555545555555G553*3""55"3"5u3GG55535355G5G3"55555"5555G53*G55355I4"3433444u34444344b3555"I3u351O5N55N55553333G5D5553GO55""5555G5515"5GO55"5"55b53GO4535GO355"5535*GO"5"5GO5"43*u55"55"5GI553*u354"OG5*5GE3"55533535*55553553Š4G55O"5"3555535*u5G55GM5"5555GG"5"GO55G355G5G55G5"5553GO4G5555554"5"55333555555G5"G53455GG5G1"3G5""G5G4O333355"5G355G555GŠG55O*Š55GG4K554352455EG5455G55455*Š5Š335GG515555I5uLL"G55"5G5G5355555G5GG*O5G"55G55555G555G5GO3G55""G*GGL5555G35O4355G""5"555G5*44uu553G55G5*54

*4u5u4*4Š5u454Š544E445"3E5G54u5*"545445Š45u543455331*5G5545"35444"b354uu54544354G544544Gb1*345ŠŠ54515u455454534544551

5*5134553G4N*1IL5555G5NIL55I41NG5N1515I1511u1IGN11GN*555G51NGN5G5G5NGuuN5G415uuGL5GN5G5G5IN5555I54uI5N5*GGN5151514GGNNDNuDIGN155553IuN5GN55IG5G5NO5N55Gu4NIN"55G5NO*4"uu"ON"*55u5G455*55I55G535D55I5NG*G545*N4G5NG4551455NGNG1*1*45uG5u5N552N1G15G5G45NGNGI*555NG41INI4I*555NGNG555uNGN3G5*4uNI5uuG5555NGI5*G5G5LG553355N5GNNDG4GD45I55D3G5O5O555LGLL5**5DI5G5555NG45G5G4u5NuuuI5G3335G5NG5GGG5*G554O5G545DDDDN*23GOu14GG55G4O545G5G5G55G55GGD51E5NG53O55G55DI3455I54I5I*35445GDDNI5555I5D4I5NG55455I45I5uI345I5""43355"4G5L5GNO"O55"145"ON"OO4"5IuG55G14bG555G5u5G3G54515GG55GG5455GI*54G5G55455GDI5454554NI5NI5D5G5G4G55uI5u5545**5I3*N***IINGIN3Šu5GN5*55IN35IN55GNGN55GN5555ININ5551IGN5555D1GN3NI1N55554IGN534G5G5I4uN*3IN*5Iu4NGN*5Š4I5415*IN*5345GO55G5I555G5G5DG555G5G1N553G5GG5G5NG5G4N5G5GN55G4GG5Gu55G553GN551G5GN55545GuNGN55G5G1555GN5GNN5L5G5GNNG5535G45G14N45I*

Zama Field

Pembina Field

Edmonton

Calgary

ALBERTA

Field data and results summary.

Pembina Zama

Number of cased wells 9860 607

Number of wells drilled and abandoned 1050 106

% of wells with cement data 40% 64%

% of wells with high DLP cement score 28% 20%

% of wells fractured 75% 2%

% of wells acidized 47% 80%

% of wells abandoned 12% 13%

% of wells with multiple completions 11% 55%

% of wells with extreme DLP 14% 28%

% of wells with extreme SLP 7% 18%

% of wells with extreme SLP and DLP 1.6% 4.3%

Zama Deep Leakage Potential

0

20

40

6080

100

120

140

0 5 10 15 20 25 30+

DLP Score

Nu

mb

er o

f W

ells

wit

h D

LP

S

core

ExtremeHighMediumLow

3

u4

u1

u

u

u4

3

43

3 u

14

4 u

4

4

34 u

bu4

uu314

3 1413

u443

u

u

"

4333

" """3 4 "343u

415

5334u

444

4

uu4333u 14

4 uu1

443

u3

3" " 4 3" 34b31b453

3*41433b11 34551 3"uG*335""u4I* 33

3"u453455

4Š 5u4543b5 3 334

3533345*5b454

u

5uu"51 3u33

55* ŠŠ5uu5 5u45

5545"1 3*55415M34545*44515

51u45Š4G55u45134

3413 E 44*1451Š455 415" 4Š5

445 31*445

"5"415"1ŠŠ5"3

4345"b45 "333

5455515""3 333 u4

143b355345145

334 4

44

uu 4

333

4u

3u3

u3

5

1433144443u

3 uuu

u414

3u43u4bu3u3343413

343133

34u4 44Š14Š4

b4G5b4G541544* 5ŠŠG1u451"G544534455 u53453 "

uGu4G5 Š4G5154455"4*4E345 3

u4554555G51**u55555345"*5 uu5

45454u5 "4

4ŠG534313u45

3E14455 445"5351 b545 51435G51u4544

4454Š*14**51Iu4I553544G5I54Š*5 44G554G *54

45 45"bGu4*533535354Š51451*14*

45u453u4553

314554*5G5 3ŠŠ155 3544E5451145*E

455b45 "5ŠŠ53 5

5534Š5"354*35455u5E43 553Š53114*4544345u45G5u4G554454G

5G44534345445 45G455

4"

5545544334544511544G531445

O5 44G534*44 445

4455 5u*

4E5 u54544554Š""345334513

3355345445u5

3 G45453134*u1333145*5*145K

G544Gu44Gu 14551453uu5uŠ533151b35G4Gu4

E3555*435 33533 5445" 3 4Eu51455154G3

u34u5*u""

455 G4G 44534 54IE4455

5544Š4G"4451

b"b b45 34553"

"u55445543G5* 445 "3"

5 *uG45uu455 555"44355Š45

b45bG5GŠu35u4G5

55u15554355O31G* 4b5* 44" 3

54u1 b*3

54Š*5

G5*445 34453415

3 u4*b 44* "54uG3"5

5Ou5E44"535Š3

55554 54155

b5G45u45Š4G u345G5

441 51511515553 54bG55 1"54u55b

5145 33*55ŠŠ5

545345 4455 b4554u 5154*1G44544544545uu45345

43G4 53b"44 453"5455G5*1335 543

5G

u54Š5445

5E3

45

"544E445Š454u5Š4*4

"*5u4u5u4*1

4

4

4

u u

4

3

u3

4

55

Š 355

4

5

555

*5 5

55 3 4

455

5

3u

433 u

44

44

41

4

*55

55 5EG5

5 E55*5

555 5

5G*55555

55 5

55E5 5

4*5555G5

55555

5

5

5*

5K

5GG 55

E555 5 E5

G

555 " 5 5

555555

"

*5 55

*G5

E5

55 51

555G 55

55G

5

5

u

55 5

5 5555 55

5" 55

5E5

55

55*

5

Zama Shallow Leakage Potential

0

50

100

150

200

250

300

100200

300400

500600

700800

9001000+

SLP Score

Nu

mb

er o

f W

ells

wit

h S

LP

S

core

ExtremeHighLowMedium

3

u4

u1

u

u

u4

3

43

3 u

14

4 u

4

4

34 u

bu4

uu314

3 1413

u443

u

u

"

4333

" ""

"

3 4 "343u41

5

533

4u44

44

uu4333u 1

44 uu

1

443

u3

3" " 4 3" 34

b31b4533*4143

3b11 34551 3"uG*

335""u4I*

33

3"u453455

4Š 5u4543b5 3 334

3533345*5

b454

u

5uu"51 3u33 55* ŠŠ5uu5 5

u455545"1 3*55415

M34545*44515

51u45Š4G55u45134

3413 E 44*

1451Š455 415" 4Š5

445 31*445

"5"415"1ŠŠ5"3

4345"b45 "

333

5455515""3 333 u4

143b355345145

334 4

44

uu 4

333

4u

3u3

u3

5

1433144443u

3uuu

u414

3u43u4bu3u33

434133

43133

34u4 44Š14Š4

b4G5b4G541544* 5ŠŠG1u451"G5445

34455 u53453 "

uGu4G5 Š4G515 4455"4*4E345 3

u4554555G51**u55555345"*5 uu5

45454u5 "4

4ŠG534313u45

3E14455 445"5351 b545 51435G51 u4544

445 4Š*14**51Iu4I553544G5I54Š*5 44G554G *54

45 45"bG u4*533535354Š51451*14*

45u453u4553

314554*5G5 3ŠŠ155 3544E5451145*E

455b45 "5ŠŠ53 5

5534Š5"354*35455u5E43 553Š53114* 4544

345u45G5u4G554454G

5G44534345445 45G455

4"

5545544334544511

544G531445O5 44G53

4*44 4454455 5u*

4E5 u54544554Š""345334513

3355345445u5

3 G45453134*u1333145*5*

145KG544G

u44Gu 14551453uu5uŠ533151b35G4Gu4

E3555*435 33533 5445" 3 4Eu5145

5154G3u34u5

*u""

455 G4G 44534 54IE4455

5544Š4G"4451

b"b b45 3455

3""

u55445543G5* 445 "3"5 *uG45uu455 55

5"44355Š45

b45bG5GŠu35u4G5

55u15554355O31G* 4b5* 44" 3

54u1b*3

54Š*5

G5*445 34453415

3 u4*b 44*"54uG3"5

5Ou5E44"535Š3

55554 54155

b5G45u45Š4G u345G5

441 51511515553

54bG55 1"54u55b

5145 33*55ŠŠ5

545345 4455b4554u 5154*1

G44544544545

uu45345

43G4 53b"44 453"5455G5*133

5 5435G

u54Š5445

5E3

45

"544E44

5Š4 54u5Š4*4

"*5u4u5u4*1

3

43"u""

3

33

1"

3"

35

3

b

343

3 1

"

553 ""555"55

I5

"*5

5 " "5

55"

555

5*

53

35

5335G

5

"

5*u

"54 5

"

bb 3

"

"""

5 3 *

3

*" 5

"35

5 51

5 533

"5

55

u5

"E5 55*

5

Theresa  L.  Watson,  T.L.  Watson  &  Associates,  and  Stefan  Bachu,  Alberta  Energy  Resources  ConservaAon  Board,  EvaluaAon  of  the  PotenAal  for  Gas  and  CO2  Leakage  Along  Wellbores,  journal  SPE  Drilling  &  CompleAon,  SPE  106817-­‐PA    

Page 99: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

State  of  Colorado  takes  naAonal  lead  in  regulaAng  HF  methane  emissions  

99  

In  November  2013,  Colorado  health  officials  proposed  new  regulaAons  for  the  oil  and  gas  industry.  The  rules  would  require  operators  to  capture  almost  all  methane,  equivalent  to  92,000  tons  per  year,  from  both  oil  and  gas  wells  and  storage  tanks.    CO  has  more  than  30,000  wells,  one-­‐third  drilled  between  2006-­‐2011.          

Michael  Wines,  Colorado  Governor  Proposes  Strict  Limits  on  Greenhouse  Gas  Leaks  From  Drilling,  November  18,  2013,  New  York  Times    

Operators  will  be  responsible  for  detecAng  methane  leaks  and  reducing  emissions  by  95  percent,  especially  near  populaAon  centers.  The  Colorado  regulaAons  would  be  the  first  in  the  United  States  to  regulate  methane  emissions.    

Areas  around  wells  have  seen  an  increase  in  ground-­‐level  ozone  formed  from  methane  and  other  chemicals,  which  can  cause  and  exacerbate  asthma.  In  recent  years,  a  smoggy  haze  has  crept  across  the  front  range  of  the  Rocky  Mountains  north  of  Denver,  where  new  wells  are  concentrated,  partly  as  a  result  of  gas  leaks  that  have  reacted  with  other  chemicals  to  form  ozone.  Nine  counAes  in  the  area,  including  much  of  Rocky  Mountain  NaAonal  Park,  exceed  federal  ozone  limits.    

Page 100: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

State  of  Colorado  HF  methane  regs  tougher  than  naAonal  regs  

100  

The  industry’s  methane  emissions  are  mostly  unregulated.  the  CO  proposal  goes  well  beyond  the  restricAons  that  EPA  began  enforcing  last  year.    The  federal  rules  apply  primarily  to  new  wells,  leaving  thousands  of  older  sites  exempt  from  regulaAon,  and  cover  only  leaks  of  volaAle  organic  compounds.      

Michael  Wines,  Colorado  Governor  Proposes  Strict  Limits  on  Greenhouse  Gas  Leaks  From  Drilling,  November  18,  2013,  New  York  Times    

They  do  not  directly  limit  leaks  of  methane,  although  requirements  to  limit  emissions  of  volaAle  organic  compounds  also  end  up  reducing  methane.      Nor  do  the  federal  rules  require  companies  to  check  for  leaks  at  well  sites  and  repair  them.        

While  some  industry  experts  believe  the  costs  will  be  burdensome  to  operators,  ciAng  compliance  costs  of  up  to  $80  million  per  year,  the  legislaAon  was  dramed  with  industry  input.  Ted  Brown,  Sr  VP  at  Noble  Energy,  said  the  rules  are  “the  right  thing  to  do”  for  the  environment  and  the  health  of  Coloradans.”    Gov.  Hickenlooper  developed  the  proposal  in  negoAaAons  with  3  of  the  state’s  largest  oil  and  gas  developers  —  Anadarko  Petroleum  Corp.,  Encana  Corp.  and  Noble  Energy  —  and  EDF.    Formal  hearings  on  the  proposal  will  begin  February  2014.    

Page 101: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Natural  Gas  vs.  Coal  A  Climate  PerspecAve  

101  Source:  adapted  from  IEA,  “Golden  Age  of  Gas”  special  report  (Figure  1.5)    

Leakage  rate  (%  of  total  producKon)  

RaKo

 of  G

HG  emission

s  of  g

as  over  coa

l   8%  

7%  

6%  

5%  

4%  

3%  

2%  1%  

0   25   50   75   105  0  

0.5  

1  

1.5  

2  

Global  Warming  PotenKal  (GWP)  for  methane  

Page 102: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Natural  Gas  Methane  Leakage  Rates  &  GWP  

102  

Natural'Gas'vs.'Coal'A'Climate'Perspec5ve'

9'Source:'adapted'from'IEA,'“Golden'Age'of'Gas”'special'report'(Figure'1.5)''

Leakage&rate&(%&of&total&produc2on)&

Ra2o

&of&G

HG&emission

s&of&g

as&over&coa

l& 8%&

7%&

6%&

5%&

4%&

3%&

2%&1%&

0& 25& 50& 75& 105&0&

0.5&

1&

1.5&

2&

Global&Warming&Poten2al&(GWP)&for&methane&

3  key  factors  of  how  natural  gas  compares  to  coal  from  a  climate  standpoint:    

1.   GWP  for  Methane  (a  science  and  policy  quesKon)  2.   Methane  Leakage  Rate  (a  data  quesKon)  3.   End-­‐use  combusKon  efficiency  (leading  or  lagging  tech)    

Studies  esAmate  U.S.  leakage  rates  span  large  range    2  –  5%,  with  some  studies  and  monitoring  indicaAng  5  to  12+%  leakage  levels  at  some  locaAons.      To  remain  less  GHG-­‐intensive  than  coal,  methane  leakage  rates  must  remain  below  2%;  sensible  goal  to  achieve  below  1%.  

Page 103: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EsAmaAng  Emissions  from  Shale  Gas  Systems  

103  

gram

s  CO

2e  per  M

egaJou

le  (M

J)  

0  

5  

10  

15  

20  

Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

There  are  differing  assumpAons  regarding  how  frequently  the  average  well  requires  HF  and  liquids  unloading,  and  the  extent  to  which  control  technologies  are  used.  HF  is  an  emissions-­‐intensive  process  used  to  iniAate  producAon  and  in  workovers  to  re-­‐sAmulate  producAon  mulAple  Ames  during  the  well’s  20-­‐  to  30  year  lifespan.    

Why  such  different  esKmates  among  studies?  

Studies  done  prior  to  NOAA  and  EDF/UT  AusAn  studies  

Page 104: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Life  cycle  methane  leakage  rate  esKmates  for  natural  gas  from  onshore  convenKonal  &  shale  gas  sources    

104  

CONVENTIONAL  ONSHORE  

RANGE  SHALE/  

UNCONVENTIONAL  

RANGE  

LOW   HIGH   LOW   HIGH  

Burnham   2.75   0.97   5.47   2.01   0.71   5.23  

Howarth   3.85   1.7   6   5.75   3.6   7.9  

Weber   2.8   1.2   4.7   2.42   0.9   5.2  

Logan   -­‐   -­‐   -­‐   1.3   0.8   2.8  

Leakage  rate  esKmates  are  highly  sensiKve  to  choice  of  EUR  (esKmated  ulKmate  recovery).  Burnham,  A.,  J.  Han,  C.E.  Clark,  et  al.  2011.  “Life  cycle  greenhouse  gas  emissions  of  shale  gas,  natural  gas,  coal,  and  petroleum.”  Environ  Sci  Technol.,  h-p://pubs.acs.org/doi/pdfplus/10.1021/es201942m.    Howarth,  R.,  and  R.  Santoro,  and  A.  Ingraffea.  2011.  “Methane  and  the  Greenhouse-­‐Gas  Footprint  of  Natural  Gas  from  Shale  FormaAons.”  ClimaAc  Change  106(4):  679–690,  h-p://www.springerlink.com/content/e384226wr4160653/.  Logan,  J.,  G.  Heath,  J.  Macknick,  et  al.  2012.  “Natural  Gas  and  the  TransformaAon  of  the  U.S.  Energy  Sector:  Electricity.”  NREL  Report-­‐6A50-­‐55538,    h-p://www.nrel.gov/docs/fy13osA/55538.pdf  [Logan  esAmate  based  on  data  from  the  Barne-  basin].  Weber,  C.,  and  C.  Clavin.  2012.  “Life  Cycle  Carbon  Footprint  of  Shale  Gas:  Review  of  Evidence  and  ImplicaAons.”  Environ  Sci  Technol,  h-p://pubs.acs.org/doi/  abs/10.1021/es300375n  .    

Page 105: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Comparing  Detailed  EsKmates  of  Life  Cycle  GHG  Emissions:  Shale  Gas  &  ConvenKonal  Onshore  Natural  Gas  Sources    

105  

4 |

0HDQZKLOH��UHFHQW�UHVHDUFK�EDVHG�RQ�¿HOG�PHDVXUHPHQWV�RI�DPELHQW�DLU�QHDU�QDWXUDO�JDV�ZHOO�¿HOGV�LQ�&RORUDGR�DQG�Utah suggest that more than 4 percent of well production may be leaking into the atmosphere at some production-stage operations.5 With hundreds of thousands of wells and thousands of natural gas producers operating in the U.S., this will likely remain an active debate, even as forthcom-ing data from EPA and other sources aims to clarify these

questions in the coming months. For example, independent researchers at the University of Texas at Austin are team-ing up with the Environmental Defense Fund and several industry partners to directly measure methane emissions from several key sources. When results are published in 2013 and 2014, these data will provide valuable points of reference to help inform this important discussion.

Figure S-2 | Comparing Detailed Estimates of Life Cycle GHG Emissions from Shale Gas and Conventional Onshore Natural Gas Sources

* Data available from Marcellus only** “Other Production” and “Other Processing” each include point source and fugitive emissions (mostly from valves)*** Includes all combustion and fugitive emissions throughout the entire transmission system (mostly from compressor stations)

Notes: Recent evidence suggests that liquids unloading is a common practice for both shale gas and onshore conventional gas wells (Shires and Lev-On 2012). Therefore, contrary to data originally published by NETL, showing zero emissions, liquids unloading during shale gas development may result in GHG emissions that are comparable to those associated with conventional onshore natural gas development. GWP for methane is 25 over a 100-year time frame.Source: National Energy Technology Laboratory.

15 10 5 5 10 15

Pipelines & Compressor Stations***

Pipeline Construction

TRANSMISSION

CRADLE-TO-GATE

Compressors

Other Processing**

Acid Gas Removal

Dehydration

PROCESSING

Liquids Unloading

Other Production**

Workovers

PRODUCTION

Well Completion

Well Construction

Water (treatment and transport)*

PRE-PRODUCTION

GHG Emissions (g CO2e/MJ) GHG Emissions (g CO2e/MJ)

SHALE GAS CONVENTIONAL ONSHORE GAS

CH4 CO2PRE-­‐PRODUCTION  

PRODUCTION  

PROCESSING  

TRANSMISSION  

CRADLE-­‐TO-­‐GATE  

CH4   CO2  

GHG  Emissions  gCO2e/MJ   GHG  Emissions  gCO2e/MJ  15   15  10  10   5   5  

Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

Page 106: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

OpportuniAes  to  Reduce  FugiAve  Methane  

106  

New  EPA  rules  –  NSPS/NESHAP*  VolaAle  Organic  Compounds(VOCs)  Hazardous  Air  Pollutants  (HAPs)    

Two  Scenarios  with  addiKonal  reducKons  Low-­‐hanging  fruit  “Go-­‐ge-er”  scenario  

Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

*NSPS  –  New  Source  Performance  Standards      NESHAP  -­‐  NaAonal  Emission  Standards  for  Hazardous  Air  Pollutants  

Page 107: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

ProjecKons  of  GHG  Emissions  from  All  Natural  Gas  Systems  Acer  AddiKonal  Abatement  

107  

6 |

FURTHER POTENTIAL TO REDUCE METHANE EMISSIONS With the implementation of just three technologies that capture or avoid fugitive methane emissions, we estimate that upstream methane emissions across all natural gas systems could be cost-effectively cut by up to an additional 30 percent (Figure S-4). The technologies include (a) the use of plunger lift systems at new and existing wells during liquids unloading operations; (b) fugitive meth-ane leak monitoring and repair at new and existing well sites, processing plants, and compressor stations; and (c) replacing existing high-bleed pneumatic devices with low-bleed equivalents throughout natural gas systems. By our estimation, these three steps would bring down the total life cycle leakage rate across all natural gas systems to just above 1 percent of total production. Through the adoption RI�¿YH�DGGLWLRQDO�DEDWHPHQW�PHDVXUHV�WKDW�HDFK�DGGUHVV�smaller emissions sources, the 1 percent goal would be readily achieved.

NEXT STEPS TO REDUCE METHANE EMISSIONSNew public policies will be needed to reduce methane emissions from both new and existing equipment through-out U.S. natural gas systems because market conditions DORQH�DUH�QRW�VXI¿FLHQW�WR�FRPSHO�LQGXVWU\�WR�DGHTXDWHO\�or quickly adopt best practices. Minimum federal stan-dards for environmental performance are a necessary and appropriate framework for addressing cross-boundary pollution issues like air emissions. Federal CAA regula-tions are generally developed in close consultation with industry and state regulators and are often implemented E\�VWDWHV��7KLV�IUDPHZRUN�DOORZV�DGHTXDWH�ÀH[LELOLW\�WR�enable state policy leadership and continuous improve-ment in environmental protection over time.

:H�KDYH�LGHQWL¿HG�D�UDQJH�RI�DFWLRQV�WKDW�FDQ�EH�WDNHQ�WR�reduce methane emissions.6 These tools are listed in this summary, and discussed in more detail in section 5.

Federal Approaches to Address EmissionsIn addition to the recently enacted NSPS/NESHAP rules, EPA has a number of additional tools to either directly or indirectly reduce methane emissions from U.S. natural gas systems, most of which would also support more protec-tive actions at the state level. For example, EPA could do the following:

'LUHFW�UHJXODWLRQ�RI�*+*�HPLVVLRQV� EPA could directly regulate GHG emissions under section 111 of the CAA, which could achieve greater reductions in methane and CO2 emissions from new and existing sources than would otherwise be achieved indirectly through standards for VOCs or HAPs.

(PLVVLRQV�VWDQGDUGV�IRU�DLU�WR[LFV� Under section 112 of the CAA, EPA could set emissions standards for HAPs from production-stage infrastructure and operations in urban areas.

Figure S-4 | Projections of GHG Emissions from All Natural Gas Systems after Additional Abatement

Notes: Potential for additional upstream methane emissions reductions for all natural gas systems based on implementation of a hypothetical rule in 2019 requiring plunger lift systems, leak detection and repair, and replacing existing high-bleed pneumatic devices with low-bleed equivalents (purple line); or a rule requiring those technologies and five additional abatement measures (green line). The light blue dashed line shows the total amount of GHG emissions (MMt CO2e) that would result from 1 percent fugitive methane emissions relative to total dry gas production in each year, plus estimated annual CO2.

MM

t CO 2e

350

250

300

200

150

100

50

400

450

2005 2010 2015 2020 2025 2030 2035

Pre-NSPS

BAU (with NSPS)

BAU (with NSPS), with Three Abatement Technologies

“Go-Getter” Scenario

1% Leakage RateLooming  quesKon:  How  to  get  enKre  industry  pursuing  abatement  opportuniKes,  not  just  the  leaders.    What  will  it  take?  Stronger  regulaKons?  Subsidies?  CombinaKon  of  carrots  and  sKcks?  

Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

Page 108: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

WRI  Report  Key  Takeaways  on  Shale  gas  methane  emissions  

108  Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

1.  Reduce  emissions  to  below  1%  to  ensure  fuel-­‐switching  to  natural  gas  is  beneficial  

2.  FugiAve  methane  occurs  at  every  stage  of  the  natural  gas  life  cycle,  more  direct  measurements  are  imperaAve  

3.  Recent  EPA  rules  will  stem  methane  leakage;  but  deeper  reducAons  can  be  achieved  cost-­‐effecAvely  

4.  The  Clean  Air  Act  is  an  appropriate  tool  for  policy  acAon;  responsive  to  industry  and  flexible  for  states    

Page 109: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 110: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

110  

“At  some  point  down  the  road  towards  the  red  light  of  2°C  it  is  enArely  plausible,  even  predictable,  that  conAnuing  to  hold  equiAes  in  fossil  fuel  companies  will  be  ruled  negligence.”    

     Bevis  Longstreth,            former  SEC  Commissioner          appointed  by  President  Reagan  

 

Page 111: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2e  budget  for  2°C  Limit  

111  

Listed Fossil FuelReserves & Resources

Global Non-ListedFossil Fuel Reserves

Remaining Available2°C Carbon Budget

Through 2100

2500

2000

1500

1000

500

0

UnburnableCarbonReserves

Gt C

O 2Es

timat

e

A significant portion of the world’s fossil fuel reserves will need to remain in the ground in 2050

if we are to avoid catastrophic levels of climate change. Fossil fuel companies, however, continue to develop reserves

that may never be used.

1541

987

2098

Fossil Fuel Assets at RiskUnburnable Carbon Reserves

www.ceres.org www.carbontracker.org

If  humanity  is  to  prevent  global  average  temperature  rise  from  exceeding  2°C  ,  then  80%  of  fossil  fuel  assets  (now  owned  by  corporaAons  or  governments)  must  not  be  burned.    

This  means  leaving  the  majority  in  the  ground  as  stranded  assets,  or  those  that  are  consumed  must  be  done  with  zero  emission  releases,  such  as  carbon  capture  and  storage  (CCS).    

With  CCS,  both  coal  and  most  gas-­‐fired  power  plants  are  technically  and  economically  unnecessary,  given  robust  compeAAon  that  can  deliver  electricity  services  at  the  least-­‐cost-­‐and-­‐risk  LCOE  (levelized  cost  of  electricity).  

Chart  source:  CERES  &  CarbonTracker,  Investors  ask  fossil  fuel  companies  to  assess  how  business  plans  fare  in  low-­‐carbon  future  -­‐-­‐  coaliAon  of  70  investors  worth  $3  trillion  call  on  world’s  largest  oil  &  gas,  coal  and  electric  power  companies  to  assess  risks  under  climate  acAon  and  ‘business  as  usual’  scenarios,  Nov  2013    

Page 112: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Carbon  Budget  per  generaAon  for  2°C  

112  

Used  to    Create  Society  

Remaining  budget    Rest  of  humankind  

Lars  Boelen,  World  Energy  Outlook  2013  –  What  It  Doesn’t  Say,  Stormglas,  Nov  12,  2013,  ,h-p://stormglas.wordpress.com/2013/11/12/world-­‐energy-­‐outlook-­‐2013-­‐what-­‐it-­‐doesnt-­‐say/    

Page 113: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Very  few  Years  Away  from  Reaching    2°C  Carbon  Budget  

113  

Page 114: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

2°C  Carbon  Budget  &  Emissions  Growth  

114  

(Annual  global  carbon  emissions  GtC  by  yearly  emissions  growth  rate)  

Note:  the  %  is  the  chances  of  limiAng  warming  to  2°C  Data:  Budget  -­‐  IPCC  WG1  ARS,  Historical  -­‐  Global  Carbon  Project  Note:  assumes  limited  non-­‐CO2  forcing  changes  (RCP  2.6)  h-p://shrinktha�ootprint.com      

Uncertainty  pervades  what  decisions  are  made  in  the  coming  years  and  decades.  

Page 115: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

UNCERTAINTY  

115  Source:  UK  Met  Office,  Hadley  Centre,  h-p://www.metoffice.gov.uk/climate-­‐guide    

Lost  opportuniAes  from  inacAon  in  reducing  CO2  emissions  are  esAmated  to  incur  hundreds  of  trillions  of  dollars  in  future  economic  value  foreclosed;  in  addiAon  to  hundreds  of  trillions  of  dollars  in  economic  losses  caused  by  increased  destrucAon  from  extreme  weather  catastrophes.  

Page 116: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Uncertainty  if/when  policies  will  avert  BAU  catastrophic  climate  impacts  

116  

Page 117: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2  EOR  Facts    

117  

More  than  1  billion  tons  of  CO2  have  been  used  for  Enhanced  Oil  Recovery  (EOR)  over  the  past  40  years.    Some  3,600  miles  of  pipelines  acAvely  transport  CO2  today.    

In  the  US,  50  CO2  pipelines  currently  operate,    transporAng  ~55  million  tons  of  CO2  in  2010.    These  onshore  pipelines  cross  6  provincial/state  boundaries  and  the  US-­‐Canada  border.  Much  of  the  exisAng  pipeline  infrastructure  in  the  US  was  built  in  the  1980s  &  1990s  for  energy  security  reasons.  

Global  CCS  InsAtute,  The  Global  Status  of  Carbon  Capture  and  Storage,  2013    

THE GLOBAL STATUS OF CCS | 2013

75%  of  CO2  used  in  North  American  EOR  operaAons  is  derived  from  geological  structures  containing  vast  amounts  of  NATURALLY  OCCURRING  CO2  that  can  be  obtained  relaAvely  inexpensively.  This  readily  available  geologic  CO2  is,  in  part,  the  reason  the  CO2–EOR  industry  developed  in  southern  states.  CAPTURED  (ANTHROPOGENIC)  CO2  contributes  the  remaining  25%,  historically  derived  from  gas  processing  and  ferAlizer  plants.    

Page 118: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2  Enhanced  Oil  Recovery  (EOR)  Long-­‐term  Opportunity  or  Short-­‐term  Benefit?  

118  

National Enhanced Oil Recovery Initiative10

Journal, 2011).

Increasing CO2-EOR also stimulates the economy more broadly. Recent estimates show that expanded CO2-EOR could provide up to $12 trillion in economic benefits to the U.S. over the next three decades, based on the “multiplier effects” of oil production on economic activities (Carter, 2011). In fact, a report by the University of Texas Bureau of Economic Geology’s (TBEG) Gulf Coast Carbon Center quantifies the total economic activ-ity of oil production for Texas to be 2.9 times the value of the oil produced. In other words, almost two dollars of additional economic activity is created for every dollar of oil produced. Moreover, TBEG estimates 19 jobs for every $1 million of oil produced annually (TBEG, 2004).

An increase in oil production from EOR has the potential to reduce net crude oil imports by half and provide up to $210 billion in increased state and federal revenues by 2030. Under a robust policy, EOR could reduce the U.S. foreign trade deficit by $11-$15 billion dollars (2007 dollars) in 2020 and $120-$150 billion by 2030. Cumulatively, this reduction in oil imports would

keep $600 billion here at home, generating additional economic activity, jobs and revenues, rather than flowing out of the U.S. economy to other countries (ARI, 2010).

Regarding the benefits of EOR for reducing CO2 emissions, using CO2 captured from industrial sources to produce oil has the potential to help the United States reduce the CO2 intensity of the industrial and power generation sectors. Over the life of a project, for every 2.5 barrels of oil produced, it is estimated that EOR can safely prevent one metric ton of CO2 from entering the atmosphere.1

Current CO2 use for EOR ranges between 65 million tonnes per year (Melzer, 2012) to 72 million tonnes per year (ARI, 2011). ARI states that 55 million tonnes of CO2 come from natural sources and 17 million tonnes come from anthropogenic sources. But the potential for EOR to contribute to CO2 reduction goals is great. The volume of CO2 that could be captured and sequestered from industrial facilities and power plants to support “next generation” EOR could be 20- 45 billion metric tons (ARI, 2011).This is equal to the total U.S. CO2 pro-duction from fossil fuel electricity generation for 10 to 20 years (EPA, 2011). Figure 5 illustrates the oil production potential and CO2 demand — i.e., CO2 stored through EOR — from “next generation” EOR technologies.

Properly managed EOR projects have demonstrated that injecting CO2 into producing oil fields can safely store CO2 in geologic formations without leaking to groundwater resources or escaping to the atmosphere. EOR is governed by federal regulations that require the protection of underground sources of drinking water, under the U.S. Environmental Protection Agency’s (EPA’s) Underground Injection Control (UIC) program. Many states have obtained authority from EPA to ad-minister the UIC program and have laws that meet or go further than EPA’s requirements. Permits issued by the EPA or states require that EOR operators manage their site in a manner that will prevent CO2 (and other forma-tion fluids) from migrating out of the subsurface confin-ing formation and into drinking water aquifers (Code of Federal Regulations (CFR) 40 CFR §144).

1 Industry Sources

Source: ARI, 2011

Figure 5: Domestic Oil Supplies and CO2 Demand (Storage) Volumes from “Next Generation” CO2-EOR Technology**

*At an oil price of $85/B, a CO2 market price of $40/mt and a 20% ROR, before tax.

**Includes 2,300 million metric tons of CO2 provided from natural sources and 2.6 billion barrels already produced or being devel-oped with miscible CO2-EOR.

The  potenAal  volume  of  CO2  that  could  be  captured  and  sequestered  from  industrial  faciliAes  and  power  plants  to  support  “next  generaAon”  EOR  could  be  20-­‐45  billion  tons,  equal  to  1  to  2  decades  of    U.S.  CO2  producAon  from  fossil  fuel  power  plants.  

*At  an  oil  price  of  $85  per  bbl,  a  CO2  market  price  of  $40  per  ton  and  a  20%  ROR,  before  tax.    

One  ton  of  CO2  EOR  produces  2.5  barrels  of  oil,  which  in  turn,  emit  1.1  tons  of    CO2  when  combusted.  

NaAonal  Enhanced  Oil  Recovery  IniAaAve  (NEORI),  Carbon  Dioxide  Enhanced  Oil  Recovery:  A  CriAcal  DomesAc  Energy,  Economic,  and  Environmental  Opportunity,  Feb  2012    

Page 119: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Large  CO2  EOP  PotenAal  –    but  at  what  cost  and  risk?  

119  

16

Untapped Domestic Energy Supply and Long Term Carbon Storage Solution

A 2009 study by Advanced Resources International (ARI) for DOE assessed the role that “best practices” CO2 EOR technologies could play in U.S. oil recovery. ARI noted that introducing “best practices” technology to regions where it is currently not yet applied, lowering risks by conducting research, pilot tests and field demonstrations in geologically challenging fields, providing state production tax incentives, federal investment tax credits, and royalty relief, and establishing low-cost, reliable, CO2 supplies, could result in an additional 85 billion barrels of technically recoverable oil from the 400 billion barrels of oil remaining in large reservoirs across 11 basins.

However, many factors play a role in the suitability and economics of CO2 EOR applications—not the least of which are the price of oil and the cost and availability of CO2. Consequently, there can be a substantial gap between a “technically recoverable resource” and a proven reserve volume booked to an oil company’s balance sheet. Still, the study points to the significant potential of CO2 EOR to contribute to the nation’s future oil supply. Increasing the volume of technically recoverable domestic crude oil could help reduce the Nation’s trade deficit and enhance national energy security by reducing oil imports, add high-paying domestic jobs from the direct and indirect economic effects of increased domestic oil production and help to revitalize state economies and increase federal and state revenues via royalties, and corporate income taxes.

Carbon Dioxide Enhanced Oil Recovery

Potential Technically Recoverable Incremental Oil with “best practices” CO2 EOR Technology

NETL,  CO2  Enhance  Oil  Recovery,  2010,  NaAonal  Energy  Technology  Laboratory    

Page 120: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2  EOR  is  NOT  CCS  

120  

CO2-­‐EOR  does  not  consAtute  CCS,  and  is  dissimilar  enough  from  true  commercial-­‐  scale  CCS  it  is  unlikely  to  significantly  accelerate  large  scale  adopAon  of  CCS  technology.      

Federal  subsidies  promoAng  energy  security  played  the  decisive  role  in  creaAng  the  exisAng  CO2-­‐pipeline  network  and  EOR  iniAaAves,  NOT  for  CCS.      

Paul  Dooley  et  al.,  CO2-­‐driven  Enhanced  Oil  Recovery  as  a  Stepping  Stone  to  What?  July  2010,  Pacific  Northwest  NaAonal  Laboratories  (PNNL).    

These  historically  subsidized  CO2  pipelines  are  a  subsidy  for  any  CO2-­‐EOR  flood  that  relies  on  them,  as  the  new  CO2  flood  does  not  need  to  pay  the  enAre  cost  of  delivering  it  to  a  given  field.  Thus,  it  would  be  prudent  not  to  apply  the  same  cost  data  to  new  CO2  pipelines  in  regions  of  the  U.S.  where  there  is  CO2-­‐EOR  potenAal  but  no  extant  pipeline  infrastructure.    

Page 121: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2  EOR  Subsidy  Uncertainty  

121  

CO2-­‐EOR  currently  accounts  for  6  %  of  annual  U.S.  oil  producAon  using  mostly  naturally-­‐occurring  CO2.    This  is  driven  by  the  SecAon  45Q  tax  credit,  which  provides  a  subsidy  of  potenAally  up  to  $10  per  ton  CO2  for  no  more  than  75    million  tCO2  from  man-­‐made  sources  used  for  CO2-­‐EOR.      The  NEORI  consorAum  is  lobbying  Congress  for  greatly  expanding  the  subsidy  to  capture  nearly  4  billion  of  tons  of  CO2  from  man-­‐made  sources  that  will  be  used  to  produce  for  EOR.  NEORI  argues  the  current  subsidy  is  insufficient  to  cover  the  cost  gap  between  what  EOR  operators  are  willing  to  pay  for  CO2  and  the  cost  to  capture  and  transport  CO2  from  power  plants  and  industrial  sources,  as  well  as  lacking  sufficient  transparency  to  enable  CO2  capture    project  developers  to  obtain  private  sector  investment  for  their  projects.  NEORI  provide  sufficient  tax  credits.  

NEORI  (NaAonal  EOR  InsAtute),  Center  for  Climate  SoluAons  &  Great  Plains  InsAtute,  Recommended  ModificaAons  to  the  45Q  Tax  Credit  for  CO2  SequestraAon,  Feb.2012,  submi-ed  to  USHR  Ways  &  Means  Commi-ee,  April  2013        

4  billion  tons  CO2  EOR  produces  ~10  billion  bbls  oil,  which  in  turn,  emit  4.4  billion  tons  of    CO2  when  combusted.  

Page 122: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Long-­‐term  CO2  supply  price  Uncertainty  

122  

Figure 5: Illustration of supply and demand for pipeline quality CO2 and the resulting price paid under two scenarios of assumed scarcity (taken from Dooley, 2004)

If pipeline quality CO2 remains scarce, then it is reasonable to assume that the supplier (i.e., the

anthropogenic CO2 point of origin which might be different from the entity that delivers pipeline quality

CO2 at the boundary of a CO2 flood) will have some ability to set the price of pipeline quality CO2 and

receive some positive price (i.e., payment) for supplying this commodity. While potentially dated,

Norman (1994) examined the market for pipeline quality CO2 in West Texas in the early 1990s and found

the market to be oligopolistic in nature (i.e., a small number of sellers were able to control supply and

therefore influence the price paid). This is what one would expect in a market characterized by scarcity

and high barriers to entry. However when CCS systems are deployed on a large scale because of GHG

emissions constraints, a very different market structure for pipeline quality CO2 should exist. When the

supply of pipeline quality CO2 on offer significantly exceeds demand, the rents from CO2-EOR do not

accrue to the upstream supplier of CO2-EOR. Under these market conditions, while CO2-EOR may

remain profitable, the revenue streams would no longer accrue to the anthropogenic CO2 point source

supplier and the cost of capturing the CO2 would not be offset. For a more rigorous treatment of the

evolving pricing of pipeline quality CO2 for CO2-EOR in a greenhouse gas constrained world readers are

encouraged to consult Leach et al. (2009).

Page | 18

Paul  Dooley  et  al.,  CO2-­‐driven  Enhanced  Oil  Recovery  as  a  Stepping  Stone  to  What?  July  2010,  Pacific  Northwest  NaAonal  Laboratories  (PNNL).    

When  CO2  supply  is  scarce  relaAve  to  demand  a  posiAve  price  for  CO2  results.    But  when  pipeline  quality  CO2  is  is  far  in  excess  of  any  potenAal  then  the  price  paid  declines  and  eventually  becomes  negaAve  (i.e.,  incurring  disposal  fee).    XX’s  current  CO2  for  EOR  is  posiAvely  priced,  but  for  how  long?  

Page 123: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CO2  EOR  price  Uncertainty  

123  

 When  the  supply  of  pipeline  quality  CO2  on  offer  significantly  exceeds  demand,  the  rents  from  CO2-­‐EOR  do  not  accrue  to  the  upstream  supplier  of  CO2-­‐EOR.  Under  these  market  condiAons,  while  CO2-­‐EOR  may  remain  profitable,  the  revenue  streams  would  no  longer  accrue  to  the  man-­‐made  CO2  point  source  supplier  and  the  cost  of  capturing  the  CO2  would  not  be  offset.  

Paul  Dooley  et  al.,  CO2-­‐driven  Enhanced  Oil  Recovery  as  a  Stepping  Stone  to  What?  July  2010,  Pacific  Northwest  NaAonal  Laboratories  (PNNL).    

Figure 5: Illustration of supply and demand for pipeline quality CO2 and the resulting price paid under two scenarios of assumed scarcity (taken from Dooley, 2004)

If pipeline quality CO2 remains scarce, then it is reasonable to assume that the supplier (i.e., the

anthropogenic CO2 point of origin which might be different from the entity that delivers pipeline quality

CO2 at the boundary of a CO2 flood) will have some ability to set the price of pipeline quality CO2 and

receive some positive price (i.e., payment) for supplying this commodity. While potentially dated,

Norman (1994) examined the market for pipeline quality CO2 in West Texas in the early 1990s and found

the market to be oligopolistic in nature (i.e., a small number of sellers were able to control supply and

therefore influence the price paid). This is what one would expect in a market characterized by scarcity

and high barriers to entry. However when CCS systems are deployed on a large scale because of GHG

emissions constraints, a very different market structure for pipeline quality CO2 should exist. When the

supply of pipeline quality CO2 on offer significantly exceeds demand, the rents from CO2-EOR do not

accrue to the upstream supplier of CO2-EOR. Under these market conditions, while CO2-EOR may

remain profitable, the revenue streams would no longer accrue to the anthropogenic CO2 point source

supplier and the cost of capturing the CO2 would not be offset. For a more rigorous treatment of the

evolving pricing of pipeline quality CO2 for CO2-EOR in a greenhouse gas constrained world readers are

encouraged to consult Leach et al. (2009).

Page | 18

When  CCS  systems  are  deployed  on  a  large  scale  because  of  GHG  emissions  constraints,  a  very  different  market  structure  for  pipeline  quality  CO2  should  exist.    

Page 124: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 125: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

RelaAve  Risk  Exposure  New  GeneraAon  Sources    

125  Source:  Ron  Binz,  PracAcing  Risk-­‐Aware  Electricity  RegulaAon:  What  Every  State  Regulator  Needs  to  Know,  April  2012,  CERES  

Page 126: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

RelaAve  Cost  &  Risk  Rankings    

126  

Source:  Ron  Binz,  PracAcing  Risk-­‐Aware  Electricity  RegulaAon:  What  Every  State  Regulator  Needs  to  Know,  April  2012,  CERES  

Cost  is  an  essenKal  but  not  sufficient  decision-­‐making  criterion  

Risk  is  an  essenKal  and  imperaKve  decision-­‐making  criterion  as  well  

Page 127: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Projected  UKlity  GeneraKon  Resources  RelaKve  Cost  &  RelaKve  Risk  -­‐  2015  

 

127  Source:  Ron  Binz,  PracAcing  Risk-­‐Aware  Electricity  RegulaAon:  What  Every  State  Regulator  Needs  to  Know,  April  2012,  CERES  

Page 128: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Policies  &  Subsidies  promote  high-­‐Emission  investments  over  Zero-­‐E  OpAons  

128  

Total GlobalInvestments inRenewables

Billions of Dollars Invested

2012 Investments in Fossil Fuel Reserves Versus Clean Energy

0 100 200 300 400 500 600 700

$674

$281

Corporate Investments in Developing

Fossil Fuel Reserves

www.ceres.org www.carbontracker.org

Legacy  policies,  subsidies,  and  regulaAons  (or  lack  thereof)  conAnue  to  steer  investments  into  energy  opAons  with  high-­‐emission  output.    The  IMF  esAmates  $2  trillion  per  year  worldwide  in  subsidies  to  the  fossil  fuel  industry.    

Another  $4  trillion  per  year  in  economic  losses  are  due  to  fossil  fuel  externaliAes  that  go  unpriced  or  unregulated,  according  to  esAmates  by  UN  Finance  IniAaAve.    This  skewing  of  decisionmaking  creates  uncertainty  as  to  whether  emissions  will  steeply  rise  (BAU)  or  major  policy  changes  will  occur.    

Chart  source:  CERES  &  CarbonTracker,  Investors  ask  fossil  fuel  companies  to  assess  how  business  plans  fare  in  low-­‐carbon  future  -­‐-­‐  coaliAon  of  70  investors  worth  $3  trillion  call  on  world’s  largest  oil  &  gas,  coal  and  electric  power  companies  to  assess  risks  under  climate  acAon  and  ‘business  as  usual’  scenarios,  Nov  2013    

Page 129: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Huge  opportunity  to  eliminate  coal,  most  gas    with  LCR  Por�olio  of  efficiency,  wind,  solar  

129  UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  ScienAsts.    

(LCR=  Least-­‐Cost-­‐and-­‐Risk)  

Page 130: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Risk  factor:  Fuel  cost  comparisons  

130  

40

Graph 1 (http://blogs-images.forbes.com/jamesconca/files/2012/07/Fuel-Costs.jpg)

To measure the true value of power generation, one must not only take into account the

cost of the fuel but also the cost of installation/construction of the energy providing source along

with the maintenance cost over the lifespan of the resource. To calculate the cost for

construction, the following equation was used:

Total Construction cost ((MW ratting x 1000) x Useful life x (Capacity Factor X 8760)

The megawatt rating was multiplied by 1,000 to convert the energy value to kilowatts and the

8,760 was the number of hours of energy production over the course of a year. While the

production values may vary depending on the provider and area that the resource was used, the

average was taken from multiple years of costs. With all of this information, hydropower was

shown to be the cheapest but is strongly limited by the terrain requirements and the geographical

locations of the dams. Coal and nuclear are the next cheapest with wind being almost double the

price showing that while the alternative energies may be the cleaner form of energy, they are far

Page 131: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Natural  Gas  to    Higher  Prices  and  VolaAlity  

131  UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  ScienAsts.    

Page 132: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

AccounAng  for  VolaAlity  

132  

Utility&Scale+Wind+and+Natural+Gas+Volatility+|+Rocky+Mountain+Institute+|+RMI.org+ 8!

in! the!underlying! asset’s! price,! volatility,! time! to! expiration,! and! riskbfree! interest!rate,!and!the!sensitivity!of!delta!to!changes!in!the!underlying!asset!price.!!Sensitivity!to! volatility,! as!measured!by!vega,! is! one!of! the!most! significant! factors! in!pricing!commodity! options.! ! In! fact,! implied! volatility! levels! can! be! derived! from! listed!option!premiums!to!determine!the!magnitude!of!natural!gas!movements!“pricedbin”!by! the!options!market!at!a!given! future!date! (Figure!3).! !For!example,!options!are!currently! pricing! in! a! potential! range! of! $1.18! to! $13.80! per! mmBtu! at! the! 99%!confidence!interval!by!June!2015.!!!!

!Figure! 3:! Using! implied! volatility! levels! and! option! premiums! to! determine! future! natural! gas! price!ranges!at!68%,!95%,!and!99%!confidence!intervals!

RISK+DISTRIBUTION+!Assets!generally!face!two!types!of!risk:!risk!associated!strictly!with!the!underlying!asset! (alpha),!and!risk!correlated!with! the!broader!market! (beta).! !A!positive!beta!value!represents!a!positive!correlation!with!the!broader!market,!whereas!a!negative!beta!value!represents!an! inverse!correlation.! !Calculating!the!beta!value!of!natural!gas!has!previously!been!attempted,!but!most!studies!conducting!this!analysis!were!published! over! 10! years! ago! (Table! 1).! ! It! should! be! noted,! however,! that! results!have!consistently!shown!negative!beta!values12.!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!12!Bolinger,!M.!and!Wiser,!R.!LBNL!2002.!“Quantifying!the!Value!that!Wind!Power!Provides!as!a!Hedge!Against!Volatile!Natural!Gas!Prices”!

$13.80+++

++June+2015+

++++

$1.18+

Potential NYMEX Henry Hub Prices

RMI,  UKlity-­‐Scale  Wind  and  Natural  Gas  VolaKlity:  Uncovering  the  Hedge  Value  of  Wind  for  UKliKes  and  Their  Customers,  2012    

Using  implied  volaKlity  levels  and  opKon  premiums  to  determine  future  natural  gas  prices  ranges  at  68%,  95%  and  99%  confidence  intervals.  

NYMEX  Henry  Hub  Futures   68%CI   99%CI  95%CI  

Page 133: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

AccounAng  for  VolaAlity  

133  

CCGT  New  Build  (No  VolaKlity  Premium  included)  CCGT  New  Build  (AccounKng  for  VolaKlity)  Wind  PPA  (No  PTC)  

AccounKng  for  volaKlity  shows  wind  out-­‐compeKng  

gas  in  the  long-­‐term   CCGT  curve  shics  up  with  volaKlity  

premium  added  

AccounKng  for  volaKlity  shows  wind  out-­‐compeKng  gas  

 in  the  long-­‐term  

Low  gas  prices  seemed  to  out-­‐compete  wind  

RMI,  UKlity-­‐Scale  Wind  and  Natural  Gas  VolaKlity:  Uncovering  the  Hedge  Value  of  Wind  for  UKliKes  and  Their  Customers,  2012    

Page 134: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Natural  Gas  to  Carbon  Emissions  Budget  Cost  Impacts  

134  UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  ScienAsts.    

UCS  Reference  Case  (BAU)  

To  limit  some  of  the  worst  consequences  of  climate  change,  the  NaAonal  Research  Council  (NRC)  recommended  an  economy-­‐wide  carbon  budget  for  the  U.S.  of  170  billion  metric  tons  of  cumulaAve  CO2eq  emissions  from  2012  to  2050  (NRC  2010).  This  budget  would  cut  power  sector  carbon  9  %  from  current  levels  by  2050,  with  most  of  the  reducAons  in  the  first  20  years,  as  part  of  an  economy-­‐wide  emissions  reducAon  goal  of  greater  than  80%  by  2050.    

Page 135: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Natural  Gas  to  LCR  opAons  to  meet  carbon  budget  -­‐  UCS  USA  case  

135  

UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  ScienAsts;  and,  Clemmer,  S.,  J.  Rogers,  S.  Sa-ler,  J.  Macknick,  and  T.  Mai.  2013.  Modeling  low-­‐carbon  U.S.  electricity  futures  to  explore  impacts  on  naAonal  and  regional  water  use.  Environmental  Research  LeWers  8(1).  Online  at  iopscience.iop.org/1748-­‐  9326/8/1/015004        

Union  of  Concerned  ScienKsts  (UCS)  modeled  three  possible  electricity  pathways  for  the  United  states  to  meet  the  NRC  carbon  budget.  The  no  

Technology  Preference  pathway  leads  to  high  levels  of  renewables;  natural  gas  with  CCS  plays  a  modest  role.  The  renewables  and  efficiency  pathway  leads  to  the  least-­‐cost-­‐risk  (LCR)  consumer  electricity  bills.  Natural  gas  plays  a  more  

limited  long-­‐term  role  in  all  three  pathways  compared  with  the  reference  Case.      

Page 136: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Natural  Gas  to  lower-­‐cost-­‐and-­‐risk  (LCR)  opAons  –  PJM  power  pool  case  

136  Cory  Budischak  et  al,  Cost-­‐minimized  combinaAons  of  wind  power,  solar  power  and  electrochemical  storage,  powering  the  grid  up  to  99.9%  of  the  Ame  ,  Journal  of  Power  Sources  225  (2013)  60e74    

 Univ.  of  Delaware  engineers  modeled  wind,  solar,  and  storage  to  meet  demand  for  1/5  of  the  US  electric  grid  (PJM).    28  billion  combinaAons  of  wind,  solar  and  storage  were  simulated  to  derive  least-­‐cost.    Least-­‐cost  combinaAons  have  excess  generaAon  (3X  load),  thus  minimizing  more  expensive  storage.    99.9%  of  hours  of  load  can  be  met  by  renewables  with  only  9  to  72  hours  of  storage.    At  2030  technology  costs,  90%  of  load  hours  are  met  at  electric  costs  below  today’s.      

 

Cost-minimized combinations of wind power, solar power and electrochemicalstorage, powering the grid up to 99.9% of the time

Cory Budischak a,b,*, DeAnna Sewell c, Heather Thomson c, Leon Mach d, Dana E. Veron c,Willett Kempton a,c,e

aDepartment of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USAbDepartment of Energy Management, Delaware Technical Community College, Newark, DE 19713, USAcCenter for Carbon-Free Power Integration, School of Marine Science and Policy, College of Earth Ocean and Environment, University of Delaware, Newark, DE 19716, USAd Energy and Environmental Policy Program, College of Engineering, University of Delaware, Newark, DE 19716, USAeCenter for Electric Technology, DTU Elektro, Danmarks Tekniske Universitet, Kgs. Lungby, Denmark

h i g h l i g h t s g r a p h i c a l a b s t r a c t

< We modeled wind, solar, andstorage to meet demand for 1/5 ofthe USA electric grid.

< 28 billion combinations of wind,solar and storage were run, seekingleast-cost.

< Least-cost combinations have excessgeneration (3! load), thus requireless storage.

< 99.9% of hours of load can be met byrenewables with only 9e72 h ofstorage.

< At 2030 technology costs, 90% ofload hours are met at electric costsbelow today’s.

a r t i c l e i n f o

Article history:Received 7 June 2012Received in revised form13 September 2012Accepted 15 September 2012Available online 11 October 2012

Keywords:Variable generationRenewable energyElectrochemical storageHigh-penetration renewables

a b s t r a c t

We model many combinations of renewable electricity sources (inland wind, offshore wind, andphotovoltaics) with electrochemical storage (batteries and fuel cells), incorporated into a large gridsystem (72 GW). The purpose is twofold: 1) although a single renewable generator at one site producesintermittent power, we seek combinations of diverse renewables at diverse sites, with storage, that arenot intermittent and satisfy need a given fraction of hours. And 2) we seek minimal cost, calculating truecost of electricity without subsidies and with inclusion of external costs. Our model evaluated over 28billion combinations of renewables and storage, each tested over 35,040 h (four years) of load andweather data. We find that the least cost solutions yield seemingly-excessive generation capacitydattimes, almost three times the electricity needed to meet electrical load. This is because diverse renew-able generation and the excess capacity together meet electric load with less storage, lowering totalsystem cost. At 2030 technology costs and with excess electricity displacing natural gas, we find that theelectric system can be powered 90%e99.9% of hours entirely on renewable electricity, at costs compa-rable to today’sdbut only if we optimize the mix of generation and storage technologies.

! 2012 Published by Elsevier B.V.

* Corresponding author. Department of Energy Management, Delaware Technical Community College, 400 Stanton-Christiana Road, Newark, DE 19713, USA. Tel.: þ1 302453 3099; fax: þ1 302 368 6620.

E-mail address: [email protected] (C. Budischak).

Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier .com/locate/ jpowsour

0378-7753/$ e see front matter ! 2012 Published by Elsevier B.V.http://dx.doi.org/10.1016/j.jpowsour.2012.09.054

Journal of Power Sources 225 (2013) 60e74

Load  met  with  renewable  generaKon  &  storage  99.9%  of  hours  over  4  years;  fossil  backup  needed  on  only  five  occasions.  

Page 137: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

39

The methods just described for reducing energy use and improving efficiency of buildings can be incorporated into a microgrid, which is a self-contained combined heat and power (CHP) system for a community, hospital, industrial or military complex, or city block. Microgrids, which generally produce less than 50 MW of power, are attractive because they are not centrally planned by a power utility and they reduce reliance on long-distance transmission and offer protection against large-scale grid failure. The main drawback is that, with a small CHP system, matching electric power demand with supply is often more difficult than with a big system with more generators. However, by combining electric power generation with thermal storage, such as described above, this problem can be reduced or eliminated. In many cases, the microgrid can rely on the regular grid for backup as well. 12. Timeline for Implementation of the Plan Figure 5 shows one timeline scenario for the implementation of this plan in California. Other scenarios are possible. Figure 5. Change in percent distribution of California energy supply for all purposes (electricity, transportation, heating/cooling, industry) among conventional fuels and WWS energy over time based on the roadmap proposed here. Total power demand decreases over time due to energy reductions due to conversion to WWS and efficiency. The percentages above the fossils plus nuclear curve are of remaining penetration of those energy sources each decade. The percentages next to each WWS source are the final estimated penetration of the source. The 100% demarcation indicates that 100% of all-purpose power is provided by WWS technologies by 2050, and the power demand by that time has decreased. Neither the percentages each year nor the final percentages are exact – they are estimates of one possible scenario.

Vulnerability  Natural  Gas  to  LCR  opKons  to  meet  carbon  

budget  in  CALIFORNIA  

137  Mark  Jacobson  et  al,  EvaluaKng  the  Technical  and  Economic  Feasibility  of  Repowering  California  for  all  Purposes  with  Wind,  Water,  and  Sunlight,  Energy  Policy  Journal,May    2013.  

MulA-­‐university  team  modeled  an  all-­‐renewable  power  system  for  California,  with  natural  gas  serving  as  back-­‐up  reserve  during  peak  periods.  System  capaciAes  are  74  GW  of  wind,  26  GW  of  CSP,  28  GW  of  solar  PVs,  5  GW  of  geothermal,  21  GW  of  hydroelectric,  and  25  GW  of  natural  gas.      

17

Notes: System capacities are 73.5 GW of wind, 26.4 GW of CSP, 28.2 GW of photovoltaics, 4.8 GW of geothermal, 20.8 GW of hydroelectric, and 24.8 GW of natural gas. Transmission and distribution losses are 7% of the demand. The least-cost optimization accounts for the day-ahead forecast of hourly resources, carbon emissions, wind curtailment, and 8-hour thermal storage at CSP facilities, allowing for the nighttime production of energy by CSP. The hydroelectric supply is based on historical reservoir discharge data and currently imported generation from the Pacific Northwest. The wind and solar supplies were obtained by aggregating hourly wind and solar power at several sites in California estimated from wind speed and solar irradiance data for those hours applied to a specific turbine power curve, a specific concentrated solar plant configuration (parabolic trough collectors on single-axis trackers), and specific rooftop PV characteristics. The geothermal supply was increased over 2005 but limited by California's developable resources. . Natural gas capacity (grey) is a reserve for backup when needed and was not actually needed during the two simulation days. Source: Hart and Jacobson (2011). 6.B. Using Demand-Response Grid Management to Adjust Demand to Supply Demand-response grid management involves giving financial incentives to electricity users and developing appropriate system controls to shift times of certain electricity uses, called flexible loads, to times when more energy is available. Flexible loads are electricity demands that do not require power in an unchangeable minute-by-minute pattern, but instead can be supplied in adjustable patterns over several hours. For example, electricity demands for a wastewater treatment plant and for charging BEVs are flexible loads. Electricity demands that cannot be shifted conveniently, such as electricity use for computers and lighting, are inflexible loads. With demand-response, a utility may establish an agreement with (for example) a flexible load wastewater treatment plant for the plant to use electricity during only certain hours of the day in exchange for a better electricity rate. In this way, the utility can shift the time of demand to a time when more supply is available. Similarly, the demand for electricity for BEVs is a flexible load because such vehicles are generally charged at night, and it is not critical which hours of the night the electricity is supplied as long as the full power is provided sometime during the night. In this case, a utility can contract with users for the utility to provide electricity for the BEV when wind is most available and reduce the power supplied when it is least available. Utility customers would sign up their BEVs under a plan by which the utility controlled the supply of power to the vehicles (primarily but not necessarily only at night) in exchange for a lower electricity rate. 6.C. Oversizing WWS to Match Demand Better and Provide Hydrogen and District Heat

17

Notes: System capacities are 73.5 GW of wind, 26.4 GW of CSP, 28.2 GW of photovoltaics, 4.8 GW of geothermal, 20.8 GW of hydroelectric, and 24.8 GW of natural gas. Transmission and distribution losses are 7% of the demand. The least-cost optimization accounts for the day-ahead forecast of hourly resources, carbon emissions, wind curtailment, and 8-hour thermal storage at CSP facilities, allowing for the nighttime production of energy by CSP. The hydroelectric supply is based on historical reservoir discharge data and currently imported generation from the Pacific Northwest. The wind and solar supplies were obtained by aggregating hourly wind and solar power at several sites in California estimated from wind speed and solar irradiance data for those hours applied to a specific turbine power curve, a specific concentrated solar plant configuration (parabolic trough collectors on single-axis trackers), and specific rooftop PV characteristics. The geothermal supply was increased over 2005 but limited by California's developable resources. . Natural gas capacity (grey) is a reserve for backup when needed and was not actually needed during the two simulation days. Source: Hart and Jacobson (2011). 6.B. Using Demand-Response Grid Management to Adjust Demand to Supply Demand-response grid management involves giving financial incentives to electricity users and developing appropriate system controls to shift times of certain electricity uses, called flexible loads, to times when more energy is available. Flexible loads are electricity demands that do not require power in an unchangeable minute-by-minute pattern, but instead can be supplied in adjustable patterns over several hours. For example, electricity demands for a wastewater treatment plant and for charging BEVs are flexible loads. Electricity demands that cannot be shifted conveniently, such as electricity use for computers and lighting, are inflexible loads. With demand-response, a utility may establish an agreement with (for example) a flexible load wastewater treatment plant for the plant to use electricity during only certain hours of the day in exchange for a better electricity rate. In this way, the utility can shift the time of demand to a time when more supply is available. Similarly, the demand for electricity for BEVs is a flexible load because such vehicles are generally charged at night, and it is not critical which hours of the night the electricity is supplied as long as the full power is provided sometime during the night. In this case, a utility can contract with users for the utility to provide electricity for the BEV when wind is most available and reduce the power supplied when it is least available. Utility customers would sign up their BEVs under a plan by which the utility controlled the supply of power to the vehicles (primarily but not necessarily only at night) in exchange for a lower electricity rate. 6.C. Oversizing WWS to Match Demand Better and Provide Hydrogen and District Heat

Page 138: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 139: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Natural  Gas  to  Water  Demand  from  Wellhead  to  Power  Plant  

139  

Environ. Res. Lett. 8 (2013) 015004 S Clemmer et al

Figure 5. Electricity generation in the southeast, by scenario. For purposes of this analysis, the region includes Mississippi, Alabama,Tennessee, Georgia, South Carolina, North Carolina, and Virginia. Scenario 1, reference case; scenario 2, carbon budget, no technologytargets; scenario 3, carbon budget with coal with CCS and nuclear targets; scenario 4, carbon budget with efficiency and renewable energytargets. Bus-bar demand is the amount of energy that needs to be delivered from the point of generation. Gas includes combustion turbineand combined cycle (CC) plants. Solar photovoltaics (PV) include residential, commercial, and utility scale systems.

Figure 6. National electricity sector water consumption, byscenarios. Scenario 1, reference case; scenario 2, carbon budget, notechnology targets; scenario 3, carbon budget with coal with CCSand nuclear targets; scenario 4, carbon budget with efficiency andrenewable energy targets.

trajectory until 2030, as conventional coal plant retirementsreduce consumptive uses. They then diverge, as consumptionincreases slightly between 2030 and 2050 under scenario2 as a result of building new natural gas combined cycleplants with CCS and continues to steadily decline under

scenario 4 due to a reduction in electricity demand andincreased penetration of renewable technologies. For scenario4, the result is a reduction of 1.1 trillion gallons (85.2%) by2050 from 2010 levels. For more detailed results on waterwithdrawals and consumption at the national and regionallevel, see Macknick et al (2012).

3.4. National electricity and natural gas costs

Because we modeled a carbon budget and specific technologytargets in scenarios 2–4, showing how those scenariosimpact consumer energy costs can provide policy-relevantinformation to decision makers. Average consumer electricityprices, for example, rise under the reference case, but risemore sharply under scenarios 2, 3, and 4, with scenario 3producing the highest prices (figure 7). Changes in overallconsumer electricity bills (price times usage), arguably a moreimportant measure of the economic impact to consumers, varymore dramatically. Both scenarios 2 and 3 show increasesin consumer electricity bills consistent with the respectiverate increases because there is little projected change inconsumer electricity use under these scenarios. In contrast,consumer electricity bills under scenario 4 drop below thereference case because of energy efficiency investments(figure 8). Because of natural gas’s importance outside of the

8

NaAonal  electricity  sector  water  consumpAon,  by  scenarios.  Scenario  1,  reference  case;  scenario  2,  carbon  budget,  no  technology  targets;  scenario  3,  carbon  budget  with  coal  with  CCS  and  nuclear  targets;  scenario  4,  carbon  budget  with  efficiency  &  renewable  energy  targets.    

,  Clemmer,  S.  et  al.  2013.  Modeling  low-­‐carbon  U.S.  electricity  futures  to  explore  impacts  on  naAonal  and  regional  water  use.  Environmental  Research  LeWers  8(1),    iopscience.iop.org/1748-­‐  9326/8/1/015004    

All  thermal  power  plants,  whether  fossil,  nuclear  or  solar-­‐thermal-­‐electric,  use  water  for  cooling.  In  sharp  contrast,  wind,  solar  PV  and  solar-­‐electric  dishes  require  95%  less  water  to  operate.    

The  power  sector  uses  45%  of  total  U.S.  water  withdrawals.    With  expanding  demand  for  both  power  and  water,  rising  prices  for  water  is  occurring.  So  is  increased  price  volaKlity,  given  weather-­‐triggered  water  shortages.    

Water-­‐stressed  states  like  Arizona  now  mandate  air-­‐cooling  for  new  power  plants,  which  is  more  expensive.    

CCS  nearly  doubles  the  amount  of  water  required.  

Page 140: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Vulnerability  of  Shale  Gas  Wells  to  Water  Demand  and  Disposal  Costs    

140  

HF  shale  gas  wells  vary  in  water  demand  by  a  factor  of  four  depending  on  a  number  of  parameters  (see  next  slide).  EPA  esAmates  the  35,000  oil  and  gas  wells  operaAng  in  2011  consumed  70  to  140  billion  gal.  water  per  year.  About  the  water  use  in  40  to  80  ciAes  with  populaAons  of  50,000  people,  or  1  to  2  metropolitan  areas  with  2.5  million  pop.  each.  

Clark,  CE,  Horner  RM,  and  Harto,  CB.  Life  Cycle  Water  ConsumpAon  for  Shale  Gas  and  ConvenAonal  Natural  Gas,  Environ.  Sci.  Technol.,  2013,  47  (20),  pp.  11829–11836;  Dram  Plan  to  Study  the  PotenAal  Impacts  of  Hydraulic  Fracturing  on  Drinking  Water  Resources,  Office  of  Research  and  Development  U.S.  Environmental  ProtecAon  Agency  Washington,  D.C.  February  7,  2011,  Report  EPA/600/D-­‐11/001      

Results - Fuel

� Variability and uncertainty within plays is as great or greater than between plays � While recycling is important in many plays from a water management standpoint,

low flowback rates limit the impact on total water requirements

Page 141: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Key  Parameters  for  Life  Cycle  Water  Analysis  Associated  with  Natural  Gas    

141  Christopher  Harto,  Corrie  Clark,  Todd  Kimmell,  and  Robert  Horner,  Water  consumpAon  for  fossil  fuel  exploraAon  and  producAon,  Argonne  NaAonal  Laboratory,  Groundwater  ProtecAon  Council  Annual  Forum  St.  Louis,  MO,  September  23-­‐25,  2013    

Key Parameters

Parameter

unit

Shale Play

conventional

source

Barnett

Fayetteville

Haynesville

Marcellus

Well lifetime years 30 30 30 30 30 Industry and Argonne Assumption

Bulk gas methane content % 80 (40–97) 80 (40–97) 80 (40–97) 80 (40–97) 85 (69–95) Ref. 4

Hydraulic fracturing jobs per well jobs/well

1 for low EUR 3 for high

EUR 1 for low EUR, 3 for high EUR

1 for low EUR, 3 for high EUR

1 for low EUR, 3 for high EUR –a Argonne

assumption

Estimated ultimate recovery BCF/well 1.4–3.0 1.7–2.6 3.5–6.5 1.4–5.2 0.79–1.25

Shale: Refs. 5, 6 Conv.: Refs. 7, 8

Water for drilling gal/well 240,000 170,000 280,000 180,000 78,000–110,000

Assumptions based upon well designs: Refs. 9, 10

Water for cement gal/well 27,000 19,000 37,000 24,000 7,200–9,800 Assumptions based upon well designs: Refs. 9, 10

Water for hydraulic fracturing gal/job 1,800,000–

6,200,000 3,700,000–6,700,000

3,400,000–8,800,000

2,600,000–5,800,000 –a Sampled from:

Ref. 11 Flowback fraction (0–10 days)

gal flowback/ gal/job 0.2 0.1 0.05 0.1 –a Ref. 12

Recycled fraction gal recycled /gal flowback 0.20 0.20 0.00 0.95 –a Ref. 12

Water for gas processing gal/mmBtu 1.67 Ref. 13

Water for pipeline operation gal/mmBtu 0.84 Ref. 13

Water for electricity for gas compression gal/SCF 0.005–0.007 Ref. 14

a Not applicable. Hydraulic fracturing was not assumed for the conventional natural gas life cycle pathway.

See Paper linked on slide 10 for references

Page 142: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Ranges  of  wastewater  &  consumpAve  freshwater  use  in  3  shale  plays:  

142  

The Next Frontier in United States Shale Gas and Tight Oil Extraction: Strategic Reduction of Environmental Impacts

52

Figure 17. Estimated reductions in fresh water consumption and wastewater production using optimized completions for a typical well in each of the three focus plays. Bars are bounded by low case and high case estimates. In each of the low cases, an injection volume reduction of 10% is assumed; in the high cases, 20%. Note that the indicated fresh water consumption values account for average regional intra-operator rates of recycling; that is, water that is sourced from operators’ recycled stores is not included.

Estimated reduction in water transport-related carbon dioxide emissions using optimized completions

The industrial-scale operations on a hydraulically fractured horizontal well site require several

hundred truck trips for water-related supplies and equipment alone (NY DEC 2011, Prozzi 2011). A

reduction in water volume via an optimized completion would be accompanied by a proportionate

reduction in truck trips and associated carbon dioxide emissions. To model emissions reductions

stemming from reduced water usage, we assumed that all water transport is via truck rather than pipeline,

as this is the dominant practice in all three plays.28 All truck trips are modeled as two-way; trips both to

and from the well site are included. Fuel economy is assigned as the average across all commercial-

weight truck classes from 2000-2010 (US DOE 2012); differences in miles per gallon based on freight are

ignored. It was assumed that completions additives, such as fracturing chemicals and sand, vary

proportionally with injected water volume, but that completions equipment (e.g., trucks and tanks) does

28 Relative to trucking, piping would almost certainly reduce the carbon cost of all water transportation, though this would depend on site topography and transport distance. In addition, spill risk concerns exist for the piping of wastewater.

Clark,  CE,  Horner  RM,  and  Harto,  CB.  Life  Cycle  Water  ConsumpAon  for  Shale  Gas  and  ConvenAonal  Natural  Gas,  Environ.  Sci.  Technol.,  2013,  47  (20),  pp  11829–11836    

Page 143: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Impact  of  natural  gas  fuel  source  &  power  plant  type  on  lifecycle  water  consumpAon  for  electricity  generaAon.    

143  

scenario and the second lowest in the maximum scenario. TheEUR and the volume of fracturing fluid required appear to havethe greatest impact on the life cycle water consumption per unitof energy produced. While the recycling of flowback water isoften cited as a means to reduce the water footprint of shale,these results show the effect to be relatively small. This holdseven for the Marcellus shale where 95% of flowback water wasassumed to be recycled, due to the limited quantity of flowbackwater recovered. These numbers could be increased if allproduced water collected over the lifetime of the well werecollected and reused, but this introduces the logistical challengeof collecting and aggregating smaller volumes of water fromhundreds or thousands of wells across a play that may not bepractical or economical.Life Cycle Water Consumption for Natural Gas versus

Other Vehicle Fuels. Although natural gas can be combusteddirectly with no additional water consumption, additional wateris likely needed if the end use of the gas is a vehicle tank. In thecase of natural gas vehicles, the natural gas may first becompressed via an electric compressor prior to entering thevehicle tank. The electricity required for this compressionconsumes 0.6−0.8 L of water for cooling per LGE (18.3−25.5L/GJ) for both natural gas pathways).22 This is incorporatedinto the total life cycle water consumption for natural gas foundin Figure 2.Of the fuels evaluated, conventional natural gas consumes the

least amount of water over its life cycle with 0.88−1.12 Lconsumed per LGE. Shale natural gas consumes slightly more,ranging from a minimum of 0.99 L/LGE in the Haynesvilleshale to a maximum of 2.02 L/LGE in the Fayetteville shalewhen not accounting for flowback water recycling (SI TableS1). Both natural gas pathways ultimately consume less waterthan conventional gasoline or the other alternatives reported inFigure 2. Variations in water consumption estimates forgasoline are primarily due to the crude oil production stage,where water consumption is highly dependent upon the age ofthe oil well, the type of recovery technology in place, and theextent that formation water or alternative water is recycled andreused.39 Because the majority of wells in Saudi Arabia areyounger and require less injection water to maintain wellpressure than U.S. wells, less water is consumed.39 The fuel thatconsumes the most water per LGE is corn ethanol due to theirrigation requirements for growing corn, which depend onlocation and regional climate.39 Ethanol produced fromswitchgrass requires considerably less water than corn ethanoldue to an assumption of no irrigation. The majority of waterconsumption for switchgrass ethanol occurs during theproduction stage at the refinery. Similarly, while water isconsumed for mining, washing, and transporting coal, Fischer−Tropsch diesel (FTD) produced from coal gasificationconsumes the majority of its water during liquids production.Although water is used directly in the Fischer−Tropschprocess, the majority of water consumption for FTD is dueto cooling water losses at the plant.40

Life Cycle Water Consumption for Natural GasElectricity Generation versus Other Fuels. A large andgrowing quantity of natural gas is consumed for electricitygeneration. A few recent papers have analyzed waterconsumption for electricity production across technologiesand have found that water consumption for natural gas powerplants is on the low end of the range for conventionalthermoelectric power generation.41−43 To differentiate thisanalysis from those studies, the impact of natural gas fuel source

on the life cycle water consumption across different natural gaspower plant types was evaluated and is shown in Figure 3.

The results of this analysis show that the addition of waterconsumption for fuel production adds incrementally to the totallife cycle impact; the effect, however, is much smaller than thatof the power plant type. In most cases, the variability in waterconsumption from the fuel type is less than the variability inwater consumption for the same power plant type shown inTable 2. While the water consumption for combustion turbinesand power plants utilizing once-through cooling is on the lowend, these power plants have significant drawbacks. Theefficiency of combustion turbines is low, leading to muchhigher fuel consumption and operating costs. This makes themonly suitable for short-term operation to meet peak load. Once-through cooling systems reduce water consumption at the costof significant water withdrawals. High water withdrawal ratesintroduce their own ecological impacts, including, but notlimited to, entrainment, entrapment, and increased temper-atures near the discharge location.The majority of new natural gas power plants being built are

high-efficiency combined-cycle plants utilizing recirculatingcooling. Switching to shale gas from conventional natural gasin one of these plants would result in an average increase of 7%in life cycle water consumption. Macknick et al., however,showed that these power plants have the lowest waterconsumption among all power plant types utilizing recirculatingcooling, with just over half the water consumption of the mostwater efficient coal power plants, and less than one-third thewater consumption of a nuclear power plant when utilizing thesame cooling technology.41 Because of this, the net effect of ashift to increased reliance on natural gas power generation fromshale gas is likely to be positive in terms of overall waterconsumption. The incremental increase in water consumptionfrom shale gas production should be more than offset by thesignificantly lower operational water consumption from naturalgas power plants relative to the other power generationtechnologies that they are likely to displace.

■ IMPLICATIONSThe production of shale gas is more water intensive thanconventional natural gas, primarily due to water consumptionfor hydraulic fracturing. How much more water intensive variessignificantly both across plays and within each play. The

Figure 3. Impact of natural gas fuel source and power plant type onlife cycle water consumption for electricity generation.

Environmental Science & Technology Article

dx.doi.org/10.1021/es4013855 | Environ. Sci. Technol. XXXX, XXX, XXX−XXXF

Clark,  CE,  Horner  RM,  and  Harto,  CB.  Life  Cycle  Water  ConsumpAon  for  Shale  Gas  and  ConvenAonal  Natural  Gas,  Environ.  Sci.  Technol.,  2013,  47  (20),  pp  11829–11836    

The  addiAon  of  water  consumpAon  for  fuel  producAon  adds  incrementally  to  the  total  life  cycle  impact;  the  effect,  however,  is  much  smaller  than  that  of  the  power  plant  type.  In  most  cases,  the  variability  in  water  consumpAon  from  the  fuel  type  is  less  than  the  variability  in  water  consumpAon  for  the  same  power  plant  type.  

fracturing improves the flow of gas by creating fracturepathways. The fracture fluid for shale formations is typicallywater based and contains a proppant and chemical additives.The amount of water and the fluid constituents used forhydraulic fracturing vary according to the geology and thespecific characteristics of the fracturing techniques used,including the length of the lateral portion of the well and thenumber of fracture stages.Typical water volumes required for hydraulic fracturing in

each play were estimated from industry-reported data obtainedfrom the FracFocus.org Web site.18 FracFocus is a nationalregistry of hydraulic fracturing chemical data operated by theGround Water Protection Council (GWPC) and the InterstateOil and Gas Compact Commission (IOGCC). FracFocus dataare entered either voluntarily by operators or in accordancewith state chemical disclosure laws. In addition to chemicalinformation, FracFocus also includes the volume of water usedto hydraulically fracture each well.FracFocus data are not available in an aggregated format.

Data for each well are stored separately in a portable documentformat (PDF). This analysis relied upon a data set madeavailable by Skytruth. The data set consists of data reported in2012 to FracFocus, and contains hydraulic fracturing data foractivities completed in 2011 and 2012.19 Wells were selectedgeographically by county for the four plays of interest. The datawere screened to remove hydraulic fracturing jobs that mayhave been performed on vertical wells in the area, and toremove obvious typos or erroneous entries (included onlywater volumes above 500 000 gallons and below 20 000 000gallons). The total number of wells evaluated for each playvaried from 1124 for the Haynesville play to 1705 for theBarnett play (see SI Table S2 for summary statistics for eachplay). The range of water consumption shown in Table 1 wasdefined as plus or minus one standard deviation away from theaverage for each play (see SI Figure S4 for histograms). Overall,the average water requirements for each play estimated by thismethod, particularly for the Haynesville and Fayetteville plays,are slightly higher than the range of values presented by othersources.9,28

Management of Flowback Water. Another componentof fracturing a well is the management of flowback water andproduced water. Flowback water is the water that is producedfrom the well immediately after hydraulically fracturing the welland before commencing gas production; produced water iswater that is produced along with the gas over the life of thewell. Outside of the Marcellus play, flowback water is collectedand typically disposed of through underground injection.Within the Marcellus region, however, flowback water iscollected and typically reused in hydraulic fracturing activities.For the Marcellus, 95% of flowback was assumed to be recycledbecause of the long-distance transport requirements to disposeof the fluid via injection wells. For the other plays, whereinjection wells are located nearby, recycle rates were assumed tobe 20% of flowback for the Barnett and Fayetteville plays and0% for the Haynesville play.20 The total volume of recycledfluid depends on the amount of fluid that flows back up the wellafter hydraulic fracturing, which varies considerably among thedifferent shale plays. For this study, flowback fractions andrecycle fractions were based upon input from industry experts.Flowback fractions for the Marcellus shale fall within estimatesreported by others.27,29

Data for Natural Gas Processing, Transmission, andUse. Downstream from the recovery stage, natural gas passes

through a processing stage in which it is purified for pipelinetransportation. The processed natural gas enters the trans-mission and storage stage, where natural gas is moved longdistances through high-pressure pipelines. Compressor stationfacilities are located along the transmission pipeline network toforce the gas through the large-diameter pipes. After trans-mission through such pipelines, gas may be stored under-ground, liquefied, and stored in aboveground tanks, and/ordistributed to customers for use. All of these steps consumewater, primarily for cooling.30 Estimates for this water use aretaken from a widely cited paper by Gleick,21 as indicated inTable 1. This paper is dated, and the values for these processesare poorly supported. However, there are few alternativesources for data on these processes. It is recognized that there isa high level of uncertainty in applying these numbers tomodern practices, and new primary data are needed to betterunderstand the water consumption from natural gas transportand processing.Because this study examines transportation as a specific end

use for natural gas, water used for the compression of naturalgas into vehicle tanks was also considered. To compare theenergy content of natural gas to that of gasoline fortransportation use (assuming 3% ethanol blend), a conversionof 32 000 GJ/LGE was used.31 Table 2 gives the parametersused to compare the impact of natural gas fuel source on waterconsumption for electricity generation.

■ RESULTS AND DISCUSSION OF WATERCONSUMPTION

The life cycle water consumption of both shale andconventional natural gas pathways was evaluated according tothree functional unitsL/GJ produced, L/LGE, and L/kWh ofelectricity generated. The results in L/GJ are displayed by lifecycle stage, and overall water consumption in L/LGE iscompared to that for other transportation fuels. The results inL/kWh are presented across natural gas fuel sources and powerplant types. Parameter variability and uncertainty are discussed,and some key factors affecting water consumption estimates areidentified.

Water Consumption by Life Cycle Stage. An overviewof water consumption for the shale gas and conventional gas lifecycles per GJ is presented in Figure 1. Results are presented bylife cycle stage and utilize the minimum and maximumparameter values in Table 1 to illustrate the range ofuncertainty and variability among wells within each play. The

Table 2. Power Plant Water Use Parameters

plant type cooling typepower plantefficiencya

operational waterconsumption (L/kWh)b

steam turbine(ST)

once through(OT)

32.3 1.1−1.3 (1.2)

recirculating(RC)

32.3 1.8−2.6 (2.2)

combustionturbine (CT)

NAc 29.5 0.19

combined cycle(CC)

once through(OT)

44.9 0.38

recirculating(RC)

44.9 0.68−1.2 (0.91)

aBased on higher heating value (HHV) Source: ref 32. bRange ofliterature values; value in parentheses is average value used in analysis.Sources: refs 21, 33−38. cNA, do not require water for cooling butoften require water for emission control.

Environmental Science & Technology Article

dx.doi.org/10.1021/es4013855 | Environ. Sci. Technol. XXXX, XXX, XXX−XXXD

Power  Plant  Water  Use  Parameters    

a  Based  on  higher  heaAng  value  (HHV)  Source.  b  Range  of  literature  values;  value  in  parentheses  is  average  value  used  in  analysis.  c  NA,  do  not  require  water  for  cooling  but  omen  require  water  for  emission  control.  

Page 144: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Slide&4&Labyrinth&Consul4ng&Services,&Inc.& South&Texas&Money&Management&

Shale&Plays&Discussed&In&This&Presenta4on&

EsAmates  of  water  use  for  hydraulic  fracturing  vary  (median  values)    

144  

2.8  million  gal  per  horizontal  well  for  the  Barne-  4.3  million  gal  for  the  Eagle  Ford  5.7  million  gal  for  Texas  porAon  of  the  Haynesville  4.5  million  gal  for  the  Marcellus      

While  statewide  water  use  for  shale  gas  development  is  expected  to  be  less  than  1%  of  total  water  withdrawals  in  Texas,  local  impacts  may  vary  depending  upon  seasonal  water  availability,  wastewater  management  strategies,  and  compeAng  demands.      

Clark,  CE,  Horner  RM,  and  Harto,  CB.  Life  Cycle  Water  ConsumpAon  for  Shale  Gas  and  ConvenAonal  Natural  Gas,  Environ.  Sci.  Technol.,  2013,  47  (20),  pp  11829–11836.    

Page 145: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

WasteWater  ContaminaAon  A  Mountain  or  a  Molehill?  

145  

“…with  over  20,000  shale  wells  drilled  from  2001-­‐2010,  the  environmental  record  of  shale  gas  development  has  for  the  most  part  been  a  good  one—  only  43  ‘widely  reported’  water  contaminaAon  incidents-­‐-­‐    but  it  is  important  to  recognize  the  inherent  risks  and  the  damage  that  can  be  caused  by  just  one  poor  operaAon....  In  the  studies  surveyed,  no  incidents  are  reported  which  conclusively  demonstrate  contaminaAon  of  shallow  water  zones  with  fracture  fluids.”     MIT  Gas  Report  2011,  Massachuse-s  InsAtute  of  Technology      

7

recycling. Innovative water management solutions are required to address the long-term sustainability of water use in shale gas production.

Water movementsThe volume of equipment, materials and water required to support shale gas operations presents a significant logistics challenge. Given the remote nature of most locations and the frequent operations movements across highly dispersed and numerous well site locations, flexibility is required in the transport model making road transport the logistics model of choice for most environments. While pipeline and rail movements can be effective for long- distance or point-to-point movements, the final distribution to and from the well pad is almost exclusively managed via road transport. Road transport volumes and types vary significantly depending on the operational phase of the project, with the majority of demand during the fracking and completion phases, which can account for 60–85 percent of total transport volumes. Some large operations are required to source, plan and manage up to 300 truck movements per day within a single basin, which is the equivalent of a pan-regional transport operation in many other sectors. This concentration creates significant challenges, with on-site congestion causing issues to the operations teams and local residents, and leading to significant cost exposure to an already marginal cost operation.

The high volume and intensity of road transport associated with shale gas production present some unique challenges for operators. A shortage of transport operators with sufficient knowledge, difficulties in tracking and optimizing delivery schedules, reducing burden on strained road infrastructure, and a lack of standardized reporting and regulatory data can all lead to high costs, Health Safety Security Environment (HSSE) exposure, and regulatory compliance issues. With up to 30 percent of completion costs related to transportation, operators are exploring different options to reduce transport activity, with a key focus on water hauling, which

can represent up to 80 percent of logistics activity. Research into water-free fracking, on-site treatment and disposal and assessment of alternative modes of transport are all being pursued, but are currently unable to generate significant impact. Within the boundaries of current capabilities, the adoption and integration of logistics leading practice provide the most straightforward, technology-ready approach to reducing transport cost and regulatory and HSSE exposure.

Improvements in water movements also have an impact on other aspects of shale operations, specifically HSSE exposure, operational performance and compliance.

HSSE exposureImproved transport planning processes and systems can reduce the number of truck moves, while telematics systems can provide real-time visibility of truck movements and driver performance, supporting reduction in wait times, less congestion and better driver HSSE compliance.

Operational performanceBetter monitoring and planning capabilities will reduce bottlenecks and smooth delivery into a site (e.g., managed slot windows, dynamic re-routing to avoid congestion). Availability of accurate operational data can allow operators to identify issues and enable continuous improvement in both drilling and transportation. Logistics costs can be reduced through efficiency gains (e.g., reduction of waiting time) and automated processes can reduce administrative costs. Past implementations have shown that consistent adoption of logistics leading practices can deliver up to 45 percent reduction in transport costs.

ComplianceThe use of a water inventory monitoring tool can support water management regulatory compliance through visibility of water draw, usage and movements. Automated end-to-end processes and systems enable accurate and rapid data capture, storage and reporting. A cross-operator, basin-wide solution would also confirm consistent basin-wide reporting standards across multiple sites and operators.

Groundwater contamination

On-site surface spills

Water withdrawal and air quality issues, and blowouts

Off-site disposal issues

48%

33%

10%

9%

Figure 2. Chart of water contamination incidents related to gas well drilling.

Source: Massachusetts Institute of Technology 2011 Gas Report.

7

recycling. Innovative water management solutions are required to address the long-term sustainability of water use in shale gas production.

Water movementsThe volume of equipment, materials and water required to support shale gas operations presents a significant logistics challenge. Given the remote nature of most locations and the frequent operations movements across highly dispersed and numerous well site locations, flexibility is required in the transport model making road transport the logistics model of choice for most environments. While pipeline and rail movements can be effective for long- distance or point-to-point movements, the final distribution to and from the well pad is almost exclusively managed via road transport. Road transport volumes and types vary significantly depending on the operational phase of the project, with the majority of demand during the fracking and completion phases, which can account for 60–85 percent of total transport volumes. Some large operations are required to source, plan and manage up to 300 truck movements per day within a single basin, which is the equivalent of a pan-regional transport operation in many other sectors. This concentration creates significant challenges, with on-site congestion causing issues to the operations teams and local residents, and leading to significant cost exposure to an already marginal cost operation.

The high volume and intensity of road transport associated with shale gas production present some unique challenges for operators. A shortage of transport operators with sufficient knowledge, difficulties in tracking and optimizing delivery schedules, reducing burden on strained road infrastructure, and a lack of standardized reporting and regulatory data can all lead to high costs, Health Safety Security Environment (HSSE) exposure, and regulatory compliance issues. With up to 30 percent of completion costs related to transportation, operators are exploring different options to reduce transport activity, with a key focus on water hauling, which

can represent up to 80 percent of logistics activity. Research into water-free fracking, on-site treatment and disposal and assessment of alternative modes of transport are all being pursued, but are currently unable to generate significant impact. Within the boundaries of current capabilities, the adoption and integration of logistics leading practice provide the most straightforward, technology-ready approach to reducing transport cost and regulatory and HSSE exposure.

Improvements in water movements also have an impact on other aspects of shale operations, specifically HSSE exposure, operational performance and compliance.

HSSE exposureImproved transport planning processes and systems can reduce the number of truck moves, while telematics systems can provide real-time visibility of truck movements and driver performance, supporting reduction in wait times, less congestion and better driver HSSE compliance.

Operational performanceBetter monitoring and planning capabilities will reduce bottlenecks and smooth delivery into a site (e.g., managed slot windows, dynamic re-routing to avoid congestion). Availability of accurate operational data can allow operators to identify issues and enable continuous improvement in both drilling and transportation. Logistics costs can be reduced through efficiency gains (e.g., reduction of waiting time) and automated processes can reduce administrative costs. Past implementations have shown that consistent adoption of logistics leading practices can deliver up to 45 percent reduction in transport costs.

ComplianceThe use of a water inventory monitoring tool can support water management regulatory compliance through visibility of water draw, usage and movements. Automated end-to-end processes and systems enable accurate and rapid data capture, storage and reporting. A cross-operator, basin-wide solution would also confirm consistent basin-wide reporting standards across multiple sites and operators.

Groundwater contamination

On-site surface spills

Water withdrawal and air quality issues, and blowouts

Off-site disposal issues

48%

33%

10%

9%

Figure 2. Chart of water contamination incidents related to gas well drilling.

Source: Massachusetts Institute of Technology 2011 Gas Report.

Page 146: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Fracking  &  Earthquake  Links  

146  

USGS  and  Oklahoma  Geological  Survey  issued  a    warning  of  increased  risk  of  earthquakes  in  central  Oklahoma.    The  quakes  are  likely  due  to  induced  seismicity  from  deep  injecAon  of  wastewater  from  unconvenAonal  oil  an  gas  drilling  that  can  lubricate  geologic  faults  and  trigger  man-­‐made  earthquakes.    

More  than  200  earthquakes  of  magnitude  3.0  or  larger  have  shaken  central  Oklahoma  since  2009  -­‐-­‐  about  40  a  year.  Before  that,  there  were  usually  one  to  three  earthquakes  in  that  region  annually.  Earthquakes  are  now  six  Ames  more  likely  in  central  Oklahoma  than  prior  to  2009.    

St.  Gregory's  University  in  Shawnee,  Okla.  on  Nov.  6,  2011.  Two  earthquakes  in  the  area  in  less  than  24  hours  caused  one  of  the  towers  to  topple,  and  damaged  the  remaining  three.  

 

This  increased  seismic  risk  from  fracking  wastewater  disposal  adds  to  the  ever-­‐growing  need  or  widespread  adopAon  of  alternaAve,  waterless  technologies.    

John  H  Quigley,  In  Oklahoma,  a  whole  lo-a  shakin'  goin'  on,    h-p://johnhquigley.blogspot.com/2013/10/in-­‐oklahoma-­‐whole-­‐lo-a-­‐shakin-­‐goin-­‐on.html    

Page 147: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Fracking  &  Earthquake  links  

147  

110˚ 105˚ 100˚ 95˚ 90˚ 85˚ 80˚ 75˚ 70˚ 65˚

30˚ 30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

110˚ 105˚ 100˚ 95˚ 90˚ 85˚ 80˚ 75˚ 70˚ 65˚

Dallas-Ft. Worth, TexasMay 16, 2009 - M 3.3

Guy, ArkansasFeb. 27, 2011 - M 4.7

Youngstown, OhioDec. 31, 2011 - M 4.0

Colorado/New MexicoAug. 23, 2011 - M 5.3

49˚ 49˚

26˚ 26˚M

ap b

y M

ark

D. Z

obac

k, d

ata

from

U.S

. Geo

logi

cal S

urve

y

wastewater injection occurred on Christmas Eve and New Year’s Eve near Youngstown, Ohio, the largest of which was a magnitude 4.0. Although there has been speculation that the magnitude-5.6 earthquake that occurred in Oklahoma on Nov. 5 may have been triggered by similar fluid injection, no linkage between this earthquake and fluid injection has been established.

The occurrence of injection-related earthquakes is understandably of concern to the public, govern-ment regulators, policymakers and industry alike. Yet it is important to recognize that with proper planning, monitoring and response, the occurrence of small-to-moderate earthquakes associated with fluid injection can be reduced and the risks associ-ated with such events effectively managed.

First, the FactsNo earthquake triggered by fluid injection has

ever caused serious injury or significant damage. Moreover, approximately 140,000 wastewater disposal wells have been operating safely and without incident in the U.S. for many decades.

That said, we have known for more than 40 years that earthquakes can be triggered by

fluid injection. The first well-studied cases were earthquakes triggered by waste disposal at the Rocky Mountain arsenal near Denver, Colo., in the early 1960s, and by water injection at the Rangely oilfield in western Colorado in the late ‘60s and early ‘70s.

Such quakes occur when increasing pore pres-sure at depth caused by fluid injection reduces the effective normal stress acting perpendicular to pre-existing faults. The effective normal stress on a fault can be thought of as a force that resists shear movement — much as how putting a weight on a box makes it more difficult to slide along the floor. Increasing pore pressure reduces the effec-tive normal stress, allowing elastic energy already stored in brittle rock formations to be released in earthquakes. These earthquakes would some-day have occurred anyway as a result of slowly accumulating forces in the earth resulting from natural geologic processes — injection just speeds up the process.

No earthquake triggered by fluid injection has ever caused serious injury or significant damage.

Earthquakes above magnitude-3.0 have been recorded by the U.S. Geological Survey in the Central and Eastern United States and southeastern Canada since 1960. The dates and largest magnitudes associated with recent earthquakes apparently triggered by fluid injection are noted.

EARTH April 2012 Q 39www.earthmagazine.org

Earthquakes  above  magnitude-­‐3.0  have  been  recorded  by  the  USGS  in  the  Central  and  Eastern  U.S.  and  southeastern  Canada  since  1960.  The  dates  and  largest  magnitudes  associated  with  recent  earthquakes  apparently  triggered  by  fluid  injecAon  are  noted.      

These  earthquakes  would  someday  have  occurred  anyway  as  a  result  of  slowly  accumulaAng  forces  in  the  earth  resulAng  from  natural  geologic  processes  —  injecAon  just  speeds  up  the  process.    No  earthquake  triggered  by  fluid  injecAon  has  ever  caused  serious  injury  or  significant  damage.  Moreover,  approximately  140,000  wastewater  disposal  wells  have  been  operaAng  safely  and  without  incident  in  the  U.S.  for  many  decades.    That  said,  it  has  been  known  for  40+  years  that  earthquakes  can  be  triggered  by  fluid  injecAon.  

MarAn  D.  Zoback,  Managing  the  Seismic  Risk  Posed  by  Wastewater  Disposal,  Earth  magazine,  April  2012    

Page 148: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Reducing  Probability  Of  Triggering  Earthquake  

148  

 

1.  Avoid  injecAon  into  acAve  faults  and  faults  in  bri-le  rock.    2.  FormaAons  should  be  selected  for  injecAon  (and  injecAon  rates  should  

be  limited)  to  minimize  pore  pressure  changes.    3.  Local  seismic  monitoring  arrays  should  be  installed  when  there  is  a  

potenAal  for  injecAon  to  trigger  seismicity.    4.  Protocols  should  be  established  in  advance  to  define  how  operaAons  will  

be  modified  if  seismicity  is  triggered.  5.  Operators  need  to  be  prepared  to  reduce  injecAon  rates  or  abandon  

wells  if  triggered  seismicity  poses  any  hazard.    MarAn  D.  Zoback,  Managing  the  Seismic  Risk  Posed  by  Wastewater  Disposal,  Earth  magazine,  April  2012    

Experts  point  to  5  straigh�orward  steps  to  reduce  the  probability  of  triggering  seismicity  whenever  injecAng  any  fluid  into  the  subsurface:      

Brenn

a S. To

bler/A

GI

same saline aquifers from which the water used for hydraulic fracturing was produced, pressure in the aquifers decreases over time as more water is pro-duced for hydraulic fracturing than injected following flowback.

Alternatively, weak, poorly cemented and highly permeable sandstone formations would also be ideal for injection. Such formations deform plastically and do not store elastic strain energy that can be released in potentially damaging earthquakes. No earthquakes have been triggered in the 15 years during which a million metric tons per year of carbon dioxide from the Sleipner gas- and oilfield in the North Sea has been injected into the Utsira sand, a highly porous, regionally extensive saline aquifer.

Obviously, cases will arise where well-cemented, less permeable and more brittle formations must be used for injection. In those cases, care must be taken to avoid large pore pressure changes. This can be done through modeling prior to injection once the permeability and capacity of the injection intervals have been determined. Well-established procedures have been developed over many decades by petroleum engineers to do this.

Step 3: Install Local Seismic Monitoring Arrays

Potentially active faults that might cause large and damaging earthquakes should be identifiable during the site characterization phase of permit-ting potential injection wells. Because smaller faults can escape detection, seismic monitoring

arrays should be deployed in the vicinity of injec-tion wells when there is a cause for concern that injection might trigger seismicity.

The locations and magnitudes of naturally occurring earthquakes are routinely determined on a real-time basis in numerous seismically active regions around the world. The instrumenta-tion, data telemetry and analysis techniques used to accomplish this monitoring are well developed and easily implemented at relatively low cost. By supplementing regional networks with local seismic arrays near injection wells, accurate loca-tions of earthquakes that might be triggered by injection can be used to determine the locations and orientations of the causative faults.

Although small faults cannot cause large earthquakes, even small earthquakes felt by the public will be a cause for concern and should be monitored.

Step 4: Establish Modification Protocols in Advance

Following precedents established to deal with earthquakes triggered during the development of enhanced geothermal systems, operators and regulators should jointly establish operational protocols for injection sites located in areas where there is concern about the potential for triggered seismicity. These protocols are sometimes referred to as “traffic light” systems.

Green means go: Once operational protocols and local seismic networks are in place and injection begins at agreed-upon rates, operators would have a green light to continue unless earthquakes begin to occur that appear to be

Operators and regulators should establish operational protocols — like perhaps a “traffic light” system — for wastewater injection sites located in areas where there is concern about the potential for triggered seismicity: Green means go, all systems working correctly; yel-low means proceed with caution, seismicity detected; red means stop, seismicity poten-tially presents a hazard.

In the same way that it’s important to plan for the possibility of triggered seismicity in advance, we have to be prepared to reduce

injection rates, or even abandon wells if triggered seismicity cannot be stopped by

limiting injection rates.

stop:seismicity

potentially presents a

hazard

proceed with caution:

seismicity detected

go:all systems

working correctly

42 Q EARTH April 2012 www.earthmagazine.org

Page 149: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Water  &  CCS  Nexus  

149  

The Water and CCS Nexus

Travis  McLing,  Regional  Carbon  SequestraAon  Partnership  Water  Working  Group,  Idaho  Engineering  NaAonal  Laboratory,    

Page 150: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Water  &  CCS  impact  by  power  plant  

150  

Water and Carbon Capture Impact

Source: Gerdes, K.; Nichols, C. Water Requirements for Existing and Emerging Thermoelectric Plant Technologies; DOE/NETL Report 402/080108; U.S. Department of Energy National Energy Technology Laboratory: Morgantown, WV, 2009.

0.00.10.20.30.40.50.60.70.80.91.0

Subcritical pc

Supercritical pc

IGCC – Dry Feed

IGCC –Slurry Feed NGCC

No Capture 0.52 0.45 0.30 0.31 0.19With Capture 0.99 0.84 0.48 0.45 0.34

Estimated Water Consumption Increase with CO2 Capture and Compression

gal/kWh

% Increase 91 87 61 46 76

pc=  pulverized  coal;  IGCC=  integrated  gasificaAon  combined  cycle  coal  plant;    NGCC-­‐  natural  gas  combined  cycle  

Gerdes,  K.;  Nichols,  C.  Water  Requirements  for  ExisAng  and  Emerging  Thermoelectric  Plant  Technologies;  DOE/NETL  Report  402/080108;  U.S.  Department  of  Energy  NaAonal  Energy  Technology  Laboratory:  Morgantown,  WV,  2009.  

Page 151: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Western  water  use  for    coal,  oil  &  natural  gas  extracAon  

151  

Combined Results

Christopher  Harto,  Corrie  Clark,  Todd  Kimmell,  and  Robert  Horner,  Water  consumpAon  for  fossil  fuel  exploraAon  and  producAon,  Argonne  NaAonal  Laboratory,  Groundwater  ProtecAon  Council  Annual  Forum  St.  Louis,  MO,  September  23-­‐25,  2013    

Page 152: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Water  ConsumpAon  for  Energy  ExtracAon  in  the  Western  US  –Argonne  Natl  Lab  study  

152  Christopher  Harto,  Corrie  Clark,  Todd  Kimmell,  and  Robert  Horner,  Water  consumpAon  for  fossil  fuel  exploraAon  and  producAon,  Argonne  NaAonal  Laboratory,  Groundwater  ProtecAon  Council  Annual  Forum  St.  Louis,  MO,  September  23-­‐25,  2013    

•  Overall  energy  extracAon  does  not  appear  to  be  a  major  water  user  in  most  areas  in  the  Western  U.S.  

•  According  to  USGS,  in  2005  all  mining,  including  energy  extracAon,  accounted  for  only  1%  of  total  US  water  withdrawals.  However  water  use  does  appear  to  be  concentrated  in  relaAvely  few  areas  

•   Moreover,  even  these  relaAvely  small  volumes  can  sAll  result  in  conflicts  between  the  energy  industry  and  agricultural  and/or  municipal  water  users  in  areas  with  high  water  stress/low  water  availability  or  in  Ames  of  drought.  

 

Page 153: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Reduced  Streamflow  ProjecAons  for  Most  River  Basins  in  the  Western  US  

153  

Climate  impacts  of  3-­‐5°C  temperature  rise  on  the  Upper  Colorado  River  Basin  projected  to  reduce  Spring  streamflow  36%  and  Summer  streamflow  declines  with  median  decreases  of  46%.      AddiKonal  worsening  from  warmer  temperatures,  with  increased  average  annual  evapotranspiraKon  by  ~23%.  

DECLINE  

DECLINE  

DECLINE  

DECLINE  

DECLINE  

 Darren  L.  Ficklin,    IT  Stewart,  EP  Maurer,  Climate  Change  Impacts  on  Streamflow  and  Subbasin-­‐Scale  Hydrology  in  the  Upper  Colorado  River  Basin  PLoS,  Aug  19,  2013,    DOI:  10.1371/journal.pone.0071297  

Page 154: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT
Page 155: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAons  

155  

The  vocal  opposiAon  to  fracking  by  so  many  ciAzen  groups,  rising  number  of  town  bans,  and  moratoriums  in  states  like  New  York  and  North  Carolina  have  caught  the  a-enAon  of  the  fracking  industry.        

There  is  a  pipeline  of  technology  innovaAons  to  address  public  concerns  on  water  use,  fracking  chemicals,  wastewater  disposal,  watershed  contaminaAon,  methane  and  VOC  emissions,  etc.      Some  of  these  innovaAons  offer  win-­‐win  outcomes  –  gaining  environmental  benefits  while  also  reducing  producAon  costs.    A  few  are  highlighted  in  the  next  few  slides.  

David  Wethe,  Be-er  Fracking  Through  Sound-­‐Sensing  Fiber  OpAcs,  Bloomberg  BusinessWeek,  July  11,  2013    

Page 156: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAons  Micro  Seismic  Monitoring    

156  

Microseismic  fracture  mapping  provides  an  image  of  the  fractures  by  detecAng  microseisms  or  micro-­‐earthquakes  that  are  triggered  by  shear  slippage  on  bedding  planes  or  natural  fractures  adjacent  to  the  hydraulic  fracture.      The  locaAon  of  the  microseismic  events  is  obtained  using  a  downhole  receiver  array  that  is  posiAoned  at  the  depth  of  the  fracture  in  an  offset  wellbore.  

h-p://www.halliburton.com/en-­‐US/ps/sAmulaAon/sAmulaAon/microseismic-­‐fracture-­‐mapping-­‐fracture-­‐modeling.page?node-­‐id=hgoxbxoc    

Microseismic  fracture  mapping  is  employed  to  improve  producAon  economics  by  increasing  reservoir  producAvity  and/or  reducing  compleAon  costs.  This  capability  helps  assure  the  fracture  stays  in  the  intended  zone  and  that  the  complete  zone  is  sAmulated.  This  capability  can  help  opAmize  producAon  and  minimize  the  number  of  wells  and  fractures  required.  

Page 157: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAons  Fiber  OpAcs  Monitoring  

157  

Drilling  companies  omen  fire  the  mixture  of  chemicals,  sand,  and  water  more  or  less  blindly  at  rocks  that  hold  oil  and  natural  gas  to  create  fissures  and  extract  the  seeping  fuel.    

Fracking  each  well  typically  takes  15  “stages”  of  mixture-­‐firing  at  about  $100,000  each.        

Success  is  hard,  with  80%  of  the  stages  delivering  less  than  20%  of  the  producAon.      Drillers  spend  more  than  $30  billion  on  “sub-­‐opAmal”  fracking  stages  across  26,100  U.S.  wells.    

David  Wethe,  Be-er  Fracking  Through  Sound-­‐Sensing  Fiber  OpAcs,  Bloomberg  BusinessWeek,  July  11,  2013    

Page 158: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Fiber  OpAc  Monitoring  

 

158  

Halliburton  and  others  are  tesAng  fiber-­‐opAc  cables  that  are  used  in  U.S.  submarines.  These  so-­‐called  distributed  fiber-­‐opAc  lines  record  sound  and  temperature  along  their  enAre  length.  With  steel-­‐encased  lines  clamped  between  fracking  wells  and  rock,  drillers  can  record  sounds  that  signal  the  perfect  frack.    The  Halliburton  team  is  refining  somware  to  convert  the  sounds  to  a  graph,  showing  how  thoroughly  the  rock  hiding  the  fuel  has  fractured.    In  addiAon  to  discerning  between  good  and  bad  fracking  stages,  the  fiber  picks  up  subtle  noises  that  can  indicate  when  the  cement  sealing  of  a  spent  well  isn’t  working—a  safety  threat  that  could  allow  residual  gas  to  reach  the  surface  and  trigger  an  explosion.  Fewer  fracking  stages  mean  less  toxic  sludge  pumped  down  toward  a  community’s  water  table,  but  it  doesn’t  make  the  chemical  cocktail  itself  any  cleaner.  And  while  fiber  lines  can  save  drillers  money  on  ill-­‐aimed  or  unnecessary  fracking  stages,  efficiency-­‐hungry  companies  may  balk  at  using  fiber  opAcs  on  smaller  operaAons.  Installing  the  fiber  can  cost  as  much  as  several  hundred  thousand  dollars  per  well.    

David  Wethe,  Be-er  Fracking  Through  Sound-­‐Sensing  Fiber  OpAcs,  Bloomberg  BusinessWeek,  July  11,  2013    

Page 159: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Gravity  &  Solar  PV  “SandCastle”  

159  

The  vast  majority  of  fracking  sites  in  America  are  powered  by  emissions-­‐spewing,  noisy  diesel  engines.        Halliburton  has  begun  using  SandCastles,  a  fracking  machine  that  uses  gravity  and  electricity  generated  from  solar  panels  to  send  sand  more  quietly  into  a  labyrinth  of  tubes  before  ulAmately  being  shot  underground  to  prop  open  Any  cracks  in  gas-­‐  or  oil-­‐bearing  rock.  

By  replacing  diesel  engines  to  move  sand  from  the  trailers,  Halliburton  esAmates  the  devices  have  saved  950,000  gallons  of  diesel  and  reduced  CO2  emissions  by  20  10,000  tons  in  the  first  nine  months  of  2012  

Page 160: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Ecologix  –  Wastewater  Recycling  

160  

Cleaning  up  wastewater  from  fracked  and  convenAonal  wells  already  is  an  $18  billion  annual  business.    The  industry  sees  innovaAon  as  a  key  way  of  somening  calls  for  government  regulaAons.    Ecologix  is  markeAng  technology  that  can  recycle  fracking  wastewater  by  using  air  bubbles  to  separate  out  polluAng  solids,  forming  them  into  a  sludge  blanket  that  can  be  scooped  up.      

Ecologix  Environmental  Systems,  Integrated  Treatment  System  (ITS)  for  Frac  Water  Management,  h-p://www.ecologixsystems.com/system-­‐its.php      

Page 161: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Verenium  Non-­‐toxic  Enzymes  

161  

Verenium  is  markeAng  nontoxic  enzymes  aimed  at  reducing  a  causAc  chemical,  ammonium  persulfate—a  standard  ingredient  in  hair  bleach—used  during  fracking.        

Guar  gum  is  a  natural  polymer  found  in  guar  beans,  and  India  supplies    80%  of  the  world  guar  gum  supply.        The  biggest  use  of  guar  gum  in  recent  years  has  been  as  an  addiAve  in  fracking.  

Fracking  uses  guar  gum  to  increase  viscosity  of  the  iniAal  fluid  pumped  down  wells,  followed  by  treatment  with  a  guar  breaker  to  decrease  viscosity  and  allow  hydrocarbons  to  flow  through  the  newly  formed  cracks  in  the  well.  Though  chemical  guar  breakers  like  chlorine  sources,  ammonium  persulfate,  and  hydrochloric  acid  are  omen  used,  the  push  toward  more  environmentally  friendly  alternaAves  has  intensified.  

Page 162: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  GE  Mobile  Evaporator  

162  

GE  has  come  up  with  the  Mobile  Evaporator,  a  boiler-­‐on-­‐wheels  the  size  of  a  semi  that  can  be  towed  from  well  to  well  and  cleans  about  50  gallons  of  water  per  minute  by  boiling  it  to  separate  out  contaminants.  The  cleaned  water  can  be  reused  or  fed  into  waterways.      

Page 163: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Halliburton  CleanSAm  

163  

CleanSAm  is  a  fracking  fluid  with  addiAves  made,  it  says,  almost  enArely  of  enzymes  from  fruit  and  vegetable  compounds.      Halliburton  won’t  disclose  the  new  ingredients,  so  far  used  in  23  wells,  calling  them  proprietary.  How  convinced  is  Halliburton  of  the  elixir’s  safety?    In  front  of  hundreds  of  oil  and  gas  execuAves  in  San  Antonio  for  the  Society  of  Petroleum  Engineers  annual  conference  in  October,  CEO  David  Lesar  took  a  swig  of  CleanSAm  from  a  small  jar.  “There’s  not  one  petroleum  product  in  it,”  he  said.  But,  he  added,  “It  doesn’t  taste  very  good.”    

David  Wethe,  For  Fracking,  It's  Geong  Easier  Being  Green,  Bloomberg  BusinessWeek,  Nov.  29,  2012    

Page 164: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Industry  InnovaAon  Using  Acid  Mine  Drainage  

164  

Winner  Water  Services,  a  Ba-elle  subsidiary,  runs  a  treatment  facility  in  Sykesville,  Pennsylvania  that  removes  iron  from  the  water  that  flows  through  an  abandoned  coal  mine.  The  company  would  like  to  sell  the  water  to  fracking  companies.    

PA’s  Dept.  of  Environmental  ProtecAon  is  encouraging  the  use  of  contaminated  water  flowing  from  hundreds  of  abandoned  coal  mines.  Over  300  million  gallons    of  contaminated  water  flow  from  the  state’s  abandoned  mines  every  day,  polluAng  roughly  5,500  streams.      

PA  DEP,  UAlizaAon  of  Mine  Influenced  Water  for  Natural  Gas  ExtracAon  AcAviAes,  White  Paper,  January  2013,  PA  Dept.  of  Environmental  ProtecAon.  Bre-  Walton,  Pennsylvania  Encourages  New  Source  of  Water  for  Fracking  –  Discharge  from  Abandoned  Mines,  Circle  of  Blue,  July  25,  2013    

Acid  mine  drainage  (AMD),  as  the  metal-­‐  and  salt-­‐laden  water  is  commonly  known,  can  be  treated  and  then  developed  as  a  source  of  fracking  water.  By  doing  so,  the  state  hopes  for  a  double  benefit:  cuong  the  flow  of  contaminated  water  from  mines  into  rivers  while  decreasing  the  amount  of  freshwater  used  in  fracking.    

Page 165: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

U.S.  ConAnental  Shale  Plays  

165  

Page 166: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

BUT  Resources  ≠  Reserves  ≠  Supply  

166  

Page 167: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Shale  Resource  SkepAcs  

167  

Arthur  E.  Berman,  petroleum  geologist  and  Shale  Resource  Industry  Analyst  

•  USA  does  not  have  100  years  of  natural  gas.  •  Less  than  22  years  of  possible  reserves.  •  Shale  gas  reserves  are  over-­‐stated  by  at  least  

100%.  •  E&P  business  succeeds  or  fails  based  on  earnings  

and  profit,  and  not  on  producAon  growth,  resource  or  even  reserve  addiAons    

•  True  break-­‐even  cost  of  shale  gas  is  $7/mcf.  Price  must  rise  above  this  cost  for  companies  to  survive.  

•  ProducAon  is  impressive  but  most  wells  are  not  profitable.  

•  All  plays  have  contracted  to  core  areas  a  fracAon  of  the  size  of  the  play  as  originally  adverAsed.  

•  Shim  to  liquid-­‐rich  shale  plays  will  deflate  the  gas  over-­‐supply  and  cause  prices  to  rise.  

•  Environmental  problems  will  limit  the  contribuAon  of  the  Marcellus  Shale.  

 

Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Page 168: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

A  View  from  the  BoQom  of  the  Resource  Pyramid    

168  

Slide 3 Labyrinth Consulting Services, Inc. ASPO Conference 2012

A view from the bottom of the resource pyramid • Unconventional plays became important as better plays were exhausted. • There is no technological revolution, just improvement through extensive & expensive trial-and-error. • Shale reservoirs will not perform as well as conventional reservoirs. • Economics depend on high prices. • Except that entry, drilling & completion costs are enormous. • And the drilling treadmill never ends because of high decline rates. • Demand destruction will limit product price and, therefore, the long end of the unconventional production curve.

“Shale plays are not a renaissance or a revolution. This is a retirement party.”

Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Arthur  E  Berman  

A  race  between  increased  pricing  &  improved  technology  

Page 169: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EsAmated  UlAmate  Recovery  (EUR)  

169  

EUR  is  defined  as  the  total  amount  of  gas  expected  to  be  economically  recovered  from  a  reservoir  or  field  during  each  well’s  producAon  lifeAme.      Life  Cycle  Assessment  (LCA)  studies  frequently  highlight  EUR  as  a  significant  area  of  uncertainty  for  shale  gas  wells.  While  shale  wells  are  expected  to  have  up  to  a  30-­‐year  lifespan,  they  only  started  to  be  developed  in  significant  numbers  in  the  last  decade,  so  their  full  lifespan  is  not  yet  well-­‐understood.      LCA  results  are  highly  sensiAve  to  EUR  because  life  cycle  emissions  are  typically  calculated  as  emissions  per  unit  of  energy  output.  Energy  output  is  a  direct  funcAon  of  the  total  volume  of  natural  gas  produced  by  each  well  over  its  lifeAme;  therefore,  if  a  shale  gas  well  turns  out  to  be  less  producAve  than  expected,  the  life  cycle  emissions  esAmates  will  be  higher  in  nearly  equal  proporAons.  Meanwhile,  most  upstream  methane  emissions  appear  to  occur  disproporAonately  during  the  early  stages  of  each  well’s  lifeAme  

Key  variable  in  esAmaAng  life-­‐cycle  emissions  

Page 170: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EUR  Uncertainty  

170  

Significant  uncertainty  remains  regarding  the  total  recoverable  quanAty  of  natural  gas  in  the  U.S.,  and  the  average  EUR  at  wells  in  each  producing  basin.  This  uncertainty  flows  down  to  the  level  of  an  individual  well;  for  example,  the  most  recent  assessment  by  the  U.S.  Geological  Survey  (USGS  2012)  finds  that  most  U.S.  shale  plays  have  EURs  in  the  range  of  0.7  to  1.3  Bcf  per  well.      

 This  is  considerably  less  than  industry  esAmates  and  less  than  half  the  esAmates  used  by  previous  LCA  authors  (Table  A2-­‐1).  This  would  suggest  that  LCAs  are  generally  underesAmaAng  average  well  life  cycle  emissions.    

 On  the  other  hand,  today’s  EUR  esAmates  are  based  on  current  informaAon,  while  unexpected  future  technology  improvements  (unknown  knowns)  could  result  in  be-er  economics  and  higher  EURs.        

Page 171: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Summary  of  parameters  in  different  shale  /  unconvenKonal  gas  studies    

171  

46 |

During well completions, Howarth et al. (2012) assumes zero flaring; NETL assumes a 15 percent flaring rate (citing EPA’s 2011 technical support document for subpart W). A recent study by O’Sullivan and Paltsev (2012) assumed 70 percent of potential fugitive emissions were captured, 15 percent vented, and 15 percent flared. The authors argued that this was a “reasonable representation of current gas handling practices in the major shale plays.” Industry representatives have claimed as high as 97 percent of 2011 well completions were either flared or captured using green completion technolo-gies (ANGA 2011).

Production stage workovers and liquids unloadingA recent oil and gas industry report (Shires and Lev-On 2012) concluded that 16 percent of their surveyed unconventional (including shale gas) wells vented methane in the process of liquids unloading (versus 11 percent for surveyed conventional wells).127 While these are fairly high activity rates, the report assigns much lower emissions to each liquids unloading event, yield-ing emissions estimates roughly 80 percent lower than 2012 GHG inventory estimates (EPA 2012a). EPA’s draft 2013 GHG inventory cites this industry survey as the basis for changing assumptions previously held in the 2011 and 2012 GHG Inventories—now assuming that liquids unloading occurs at both conventional and unconventional wells, but with significantly reduced associated emissions (EPA 2013a).

There is also uncertainty regarding the frequency in which workovers with refracturing will be required to stimulate production at the typical unconven-tional natural gas well. In the TSD for the proposed NSPS, EPA assumed that refracturing would occur 3.5 times, on average, over the lifetime of uncon-ventional natural gas wells.128 However, in the TSD accompanying the final NSPS rule (EPA 2012c), EPA assumed that only 30 percent of all uncon-ventional wells would be refractured during their lifetimes. Of course, these projections are fraught with uncertainties and based on only a few years of limited data and experience.

Nevertheless, based on the TSD for the proposed rule,129 NETL (2012) and Burnham et al. (2011) assumed multiple well workovers with refracturing during the production stage, while others assumed zero workovers (see Table A1). It is common to assume that refracturing during workovers results in roughly the same GHG emissions as well completions. For example, NETL and Burnham et al. calculate emissions associated with well workovers by multiplying the number of workovers per well life-time by the level of emis-sions associated with well completion. However, this likely overestimates emissions associated with workovers, since offtake pipes and gathering lines are always in place when workovers occur (though they may not be in place when the well is initially developed) and this increases the chances that operators will use green completions during refracturing operations.

PARAMETER HOWARTH JIANG NETL BURNHAM

Geographic area Barnett, Haynesville, Piceance tight sand, Uinta tight sand, Den-Jules

Marcellus Barnett & Marcellus Barnett, Marcellus, Fay-etteville, Haynesville

EUR, BCF (with range) 2.7 3.13* 3.5 (1.6–5.3)

GWP (integrated time frame) 20-year = 105100-year = 33

100-year = 25 20-year = 72 100-year = 25

20-year = 72100-year = 25

GWP (source) Shindell et al., 2009 IPCC, 2007 IPCC, 2007 IPCC, 2007

Flaring rate for well completions 0 76% 15% 41%

Number of workovers (or refracture) per well lifetime

0 0 3.5 2

Methane emissions per well completion (or workover)

95 to 4,608 tons 26 to 1000 tons 177 tons 177 tons

Primary methane emissions data sources

EPA, GAO, and others EPA EPA EPA

Table A2-1 | Summary of parameters in different shale / unconventional gas studies

Sources: Howarth et al. 2011; Jiang et al. 2011; NETL 2012; Burnham et al 2011.

Notes: *NETL’s EUR value is a simple average of EURs for Marcellus Shale and Barnett Shale, based on data provided in NETL’s Table 4-6.

Source:  James  Bradbury  et  al,  Clearing  the  Air:  Reducing  Upstream  Greenhouse  Gas    Emissions  from  U.S.  Natural  Gas  Systems,  April  2013,  World  Resources  InsAtute  

Table  A2-­‐1      

Page 172: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

USGS  Shale  Gas  EUR  Assessments  

172  

3

Table 1. Input data for estimated ultimate recovery distributions for United States shale-gas assessment units, values in billions of cubic feet of natural gas. [AU, assessment unit; and EUR, estimated ultimate recovery]

AU number AU name Province Year

assessed Minimum

EUR Median

EUR Maximum

EUR Mean EUR

50490161 Haynesville Sabine Platform Shale Gas Gulf Coast Mesozoic 2010 0.02 2 20 2.617 50490163 Mid-Bossier Sabine Platform Shale Gas Gulf Coast Mesozoic 2010 0.02 1 10 1.308 50580161 Woodford Shale Gas Anadarko Basin 2010 0.02 0.8 15 1.233 50670468 Interior Marcellus Appalachian Basin 2011 0.02 0.8 12 1.158 50490167 Eagle Ford Shale Gas Gulf Coast Mesozoic 2010 0.02 0.8 10 1.104 50620362 Fayetteville Shale Gas - High Gamma-Ray Depocenter Arkoma Basin 2010 0.02 0.8 10 1.104 50450161 Greater Newark East Frac-Barrier Continuous Barnett Shale Gas Bend Arch-Fort Worth Basin 2003 0.02 0.7 10 1.000 50440161 Delaware/Pecos Basins Woodford Continuous Shale Gas Permian Basin 2007 0.02 0.6 8 0.842 50440162 Delaware/Pecos Basins Barnett Continuous Shale Gas Permian Basin 2007 0.02 0.6 8 0.842 50580261 Thirteen Finger Limestone-Atoka Shale Gas Anadarko Basin 2010 0.02 0.5 10 0.785 50620261 Woodford Shale Gas Arkoma Basin 2010 0.02 0.5 10 0.785 50210364 Gothic, Chimney Rock, Hovenweep Shale Gas Paradox Basin 2011 0.02 0.4 10 0.672 50630561 Devonian Antrim Continuous Gas Michigan Basin 2004 0.02 0.4 4 0.523 50620363 Fayetteville Shale Gas - Western Arkansas Basin Margin Arkoma Basin 2010 0.02 0.3 6 0.470 50210362 Cane Creek Shale Gas Paradox Basin 2011 0.02 0.3 5 0.446 50440163 Midland Basin Woodford/Barnett Continuous Gas Permian Basin 2007 0.02 0.3 5 0.446 50490165 Maverick Basin Pearsall Shale Gas Gulf Coast Mesozoic 2010 0.02 0.25 5 0.391 50450162 Extended Continuous Barnett Shale Gas Bend Arch-Fort Worth Basin 2003 0.02 0.2 5 0.334 50390761 Niobrara Chalk Denver Basin 2001 0.025 0.2 2 0.261 50620262 Chattanooga Shale Gas Arkoma Basin 2010 0.02 0.1 6 0.223 50670467 Foldbelt Marcellus Appalachian Basin 2011 0.02 0.1 5 0.208 50620364 Caney Shale Gas Arkoma Basin 2010 0.02 0.08 5 0.179 50670469 Western Margin Marcellus Appalachian Basin 2011 0.02 0.05 5 0.129 50640361 Devonian to Mississippian New Albany Continuous Gas Illinois Basin 2007 0.01 0.08 1 0.110 50670462 Northwestern Ohio Shale Appalachian Basin 2002 0.01 0.04 0.5 0.055 50670463 Devonian Siltstone and Shale Appalachian Basin 2002 0.01 0.03 0.5 0.044

USGS,  Variability  of  DistribuKons  of  Well-­‐Scale  EsKmated  UlKmate  Recovery  for  ConKnuous  (UnconvenKonal)  Oil  and  Gas  Resources  in  the  U.S.,  Report  2012-­‐1118,  U.S.  Geological  Survey.    TABLE  1  

Table  1.  Input  data  for  esAmated  ulAmate  recovery  distribuAons  for  U.S.  shale-­‐gas  assessment  units,  values  in  billions  of  cubic  feet  of  natural  gas.  [AU,  assessment  unit;  and  EUR,  esAmated  ulAmate  recovery]    

Page 173: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

CLOUD  PLOT  USGS  Shale  Gas  EUR  Assessment  Units  (AUs)  

173  USGS,  Variability  of  DistribuKons  of  Well-­‐Scale  EsKmated  UlKmate  Recovery  for  ConKnuous  (UnconvenKonal)  Oil  and  Gas  Resources  in  the  U.S.,  Report  2012-­‐1118,  U.S.  Geological  Survey  

8

Results The results are presented in figures 1 through 4. Each line shows the range of EURs for a

single AU. Only those EURs greater than the minimum assessed value (for that particular AU assessment) are included. Individual AU distributions show approximately two orders of magnitude difference between the smallest and largest EURs within a single AU. This range would be even larger if the distributions were not truncated.

Figure 1. Cloud plot for United States shale-gas assessment units. Each curve represents one assessment unit and is based on the input data in table 1. Black diamonds indicate the mean value for each curve. [AU, assessment unit; EUR, estimated ultimate recovery; and BCF, billions of cubic feet]

Semi-­‐log  Cloud  or  Spagheo  plot  for  U.S.  shale-­‐gas  AUs.  Each  curve  represents  one  AU  and  is  based  on  the  input  data  in  table  1.      

FracAles  indicate  what  percent  of  wells  have  an  EUR  of  at  least  the  indicated  amount.  Note  the  EURs  range  more  than  two  orders  of  magnitude.      

The  EUR  distribuAons  tend  to  “collapse”  around  the  mean  (u).  

EUR,  esAmated  ulAmate  recovery;  BCF,  billions  of  cubic  feet]  

uBlack  diamonds  indicate  the  mean  value  for  each  curve.    

Page 174: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Why  Reserves  (EURs)  are  Over-­‐stated:  Decline  Rates  are  Higher  than  AnAcipated  

174  

�)&���Y����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

•� QQ@U\�,��1,1�)��@�@�06--):@�•� C�:+�07&))���%�)���++6�)���0�����)&+��/�1��&0�JUS\=�8%&�%�1/�+0)�1�0�&+1,�JS@X����E��,��$�0�

-/,�6�3,+�1%�1�+���0�1,����/�-)������++6�)):D�H��=�R����/6�/:�RPQRI@�•� �6/�8,/(��,//,�,/�1�0����HTX\��++6�)����)&+��/�1�=�S@T����E��/�-)���*�+1�/�1�I@�

Data from DI

0

200

400

600

800

1000

1200

1400

1600

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Jan-

08

Mar-0

8

May-0

8

Jul-0

8

Sep-0

8

Nov-0

8

Jan-

09

Mar-0

9

May-0

9

Jul-0

9

Sep-0

9

Nov-0

9

Jan-

10

Mar-1

0

May-1

0

Jul-1

0

Sep-1

0

Nov-1

0

Jan-

11

Mar-11

May-11

Jul-1

1

Sep-11

Nov-11

Jan-

12

Nu

mb

er o

f P

rod

uci

ng

Wel

ls

Bill

ion

s o

f C

ub

ic F

eet

of

Gas

Per

Day

Haynesville Shale Static Decline Profile Gas Production Number of Producing Wells

48% Annual Decline Rate

Why Reserves are Over-stated—Decline Rates are Higher than Anticipated

11.5%  of  total  U.S.  gas  supply.    Haynesville  Shale  annual  base  decline  rate  is  ~48-­‐53%,  which  means  ~3.8  Bcf  per  day  of  gas  producAon  needs  to  be  replaced  annually.      

Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

Billion

 cub

ic  fe

et  gas  per  day  

Num

ber  o

f  produ

cing  wells  

Page 175: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Number  of  Wells  &  Cost  to  Replace  3.5  Bcf/day  in  Haynesville  Shale  

175  

�)&���QP����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

The Number of Wells & Cost to Replace 3.5 Bcf/day in the Haynesville Shale

���

��

��

���

��

���

��

���

��

���

��

��

��

���

��

���

��� ����

��������������������������� ������ !�

���������� ����������������

� �������%�������������&#'����$� !�� !�������������������

$2.3 Billion per Bcf/d

Total Cost: $8 Billion

$3.6 Billion per Bcf/d

Total Cost: $13 Billion Jan 2008 - Jun 2010

Jul 2010 - Sep 2011

Billion

 cub

ic  fe

et  gas  per  day  

800   1250  Number  of  new  producing  wells  

Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

Red  Queen  Syndrome  “…it  takes  all  the  running  you  can  do,  to  keep  in  the  same  place.”    

3.5  

7

Page 176: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Barne-  Shale  Gas  ProducAon  decline  

176  

�)&���QQ����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

��/+�5��%�)���/,�6�3,+�

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0

1

2

3

4

5

6

7

Jan-

03

Apr

-03

Jul-0

3 O

ct-0

3 Ja

n-04

A

pr-0

4 Ju

l-04

Oct

-04

Jan-

05

Apr

-05

Jul-0

5 O

ct-0

5 Ja

n-06

A

pr-0

6 Ju

l-06

Oct

-06

Jan-

07

Apr

-07

Jul-0

7 O

ct-0

7 Ja

n-08

A

pr-0

8 Ju

l-08

Oct

-08

Jan-

09

Apr

-09

Jul-0

9 O

ct-0

9 Ja

n-10

A

pr-1

0 Ju

l-10

Oct

-10

Jan-

11

Apr

-11

Jul-1

1 O

ct-1

1 Ja

n-12

Nu

mb

er

of

We

lls

Bil

lio

ns

of

Cu

bic

Fe

et

of

Ga

s P

er

Da

y

Barnett Shale Natural Gas Production Gas Number of Wells

•� �6//�+1�-/,�6�3,+��--��/0�1,����&+����)&+����0-&1�����&+$�+�8�8�))0@�•� Y\�,���@�@�06--):@�•� UP�/&$0��/&))&+$=��,8+��/,*�QXU@�•� QRUP�+�8�-/,�6�&+$�8�))0�8�/��������&+�)�01�QR�*,+1%0@��

Data from DI

9%  of  U.S.  gas  supply.  Current  producAon  appears  to  be  in  decline  despite  adding  new  wells.  1250  new  producing  wells  added  in  2011.  50  rigs  drilling,  down  from  185.  

Billion

 cub

ic  fe

et  gas  per  day  

Num

ber  o

f  produ

cing  wells  

Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

Page 177: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Barne-  Shale  –  Why  Reserves  over-­‐stated  &  decline  rates  higher  than  anAcipated  

177  

30%  annual  decline  rate.    Must  replace  1.6  Bcf  per  day  to  maintain  supply.    Devon  Energy-­‐  the  largest  operator  in  the  Barne-  –  announced  that  it  will  drill  no  dry  gas  wells.  

Billion

 cub

ic  fe

et  gas  per  day  

Num

ber  o

f  produ

cing  wells  

Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012     �)&���QR����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

5.33

3.68

0

2000

4000

6000

8000

10000

12000

14000

0

1

2

3

4

5

6

Jan-

03

Apr

-03

Jul-0

3 O

ct-0

3 Ja

n-04

A

pr-0

4 Ju

l-04

Oct

-04

Jan-

05

Apr

-05

Jul-0

5 O

ct-0

5 Ja

n-06

A

pr-0

6 Ju

l-06

Oct

-06

Jan-

07

Apr

-07

Jul-0

7 O

ct-0

7 Ja

n-08

A

pr-0

8 Ju

l-08

Oct

-08

Jan-

09

Apr

-09

Jul-0

9 O

ct-0

9 Ja

n-10

A

pr-1

0 Ju

l-10

Oct

-10

Jan-

11

Apr

-11

Jul-1

1 O

ct-1

1

Num

ber

of P

rodu

cing

Wel

ls

Bill

ions

of C

ubic

Fee

t of G

as P

er D

ay

Barnett Shale Static Decline Profile Gas Production Number of Producing Wells

•��SP\��++6�)����)&+��/�1�@�•�� 601�/�-)����Q@W����E��-�/�:��/�1,�*�&+1�&+�06--):@�•����7,+��+�/$:G1%��)�/$�01�,-�/�1,/�&+�1%����/+�5G�++,6+����1%�1�&1�8&))��/&))�+,��/:�$�0�8�))0�&+�RPQR@�

Data from DI

Why Reserves are Over-stated—Decline Rates are Higher than Anticipated

Page 178: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Number  of  Wells  &  Cost  to  Replace  1.7  Bcf/day  in  Barne-  Shale  

178  

Billion

 cub

ic  fe

et  gas  per  day  

2380   2536  

Number  of  new  producing  wells  

Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

Red  Queen  Syndrome  “…it  takes  all  the  running  you  can  do,  to  keep  in  the  same  place.”    

�)&���QS����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

The Number of Wells & Cost to Replace 1.7 Bcf/day in the Barnett Shale

����

���

���

��

���

��

���

��

���

��

���

��

��

�� �� ���� ����

����

���

���

����

��

����

���

���

���

����

���

������������������ ���������

���������#�������������$!%�� �"������������� �����

$4.2 Billion per Bcf/d

Total Cost: $7.1 Billion

$4.5 Billion per Bcf/d

Total Cost: $7.7 Billion

$9 Billion per Bcf/d

Total Cost:

$15.3 Billion

Jan 2003 - Jan 2007

Feb 2007 - Feb 2008

Mar 2008- Dec 2010

4900  

1.7  

3.5  

5.1  

Page 179: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Total  U.S.  Decline  Rates  Have  Increased  Since  the  Advent  of  Shale  Gas  Plays  

179  Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

Slide&15&Labyrinth&Consul4ng&Services,&Inc.& South&Texas&Money&Management&

0

10

20

30

40

50

60

70

2000 2002 2004 2006 2008 2010

Bcf per day

Steepening Decline Curves Increasing Drilling Productivity is Required to Grow Top Line Production

23% annual decline rate

32% annual decline rate

Total U.S. Decline Rates Have Increased Since the Advent of Shale Gas Plays

• &In&2001,&annual&decline&rate&for&&U.S.&natural&gas&produc4on&was&23%.&• &Now,&annual&decline&rate&is&32%.&

Source: ARC Financial Research

Billion

 cub

ic  fe

et  gas  per  day  

Page 180: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Maintenance  Capital  &    Cash  Flow  GeneraAon  

180  Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

�)&���QW����:/&+1%��,+06)3+$���/7&��0=�+�@� �,61%���9�0� ,+�:� �+�$�*�+1�

�&+1�+�+�����-&1�)��+����0%��),8���+�/�3,+�

•� �+�):0&0�,��1,-�ST�-6�)&�):�1/�����$�0�-/,�6��/0�&+�&��1�0�1%�1�1%���,01�,��/�-)���*�+1�&0�MRR��&))&,+�-�/�.6�/1�/@�

•� RPQP���0%�",8��,/�1%,0���,*-�+&�0�8�0�MQR��&))&,+�-�/�.6�/1�/�0,�1%�/��&0���MQP��&))&,+�.6�/1�/):���0%�",8��� �&1@�

Analysis  of  top  34  publicly  traded  gas  producers  indicates  that  the  cost  of  replacement  is  $22  billion  per  quarter.    2010  cash  flow  for  those  companies  was  $12  billion  per  quarter  so  there  is  a  $10  billion  quarterly  cash  flow  deficit.  

Page 181: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Capex  to  Cash  Flow  RaAos  

181  Arthur  Berman,  Labyrinth  ConsulAng  Services,  Amer  the  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  presented  at  South  Texas  Money  Management  Ltd  7th  Annual  Energy  Symposium,  May  16,  2012    

“Unsustainable  capital  expenditures  will  limit  capability  to  deliver  on  supply.    Service  cost  will  compound  this  limitaAon.    Further  constrains  on  cost-­‐of-­‐capital  will  limit  opAons.”    

 Arthur  E.  Berman,  petroleum  geologist  and  Oil&Gas  industry  

analyst  

Slide&18&Labyrinth&Consul4ng&Services,&Inc.& South&Texas&Money&Management&

CapexJtoJCash&Flow&Ra4os&

•  Unsustainable capital expenditures will limit capability to deliver on supply. •  Service cost acceleration will compound this limitation. •  Further constraints on cost-of-capital will limit options.

Ticker

Share*Price**as*of04/10/12 Mkt*Cap*($B) EV*($B)

1>Year*Change**inPrice Production*4Q11*(kboepd)

Gas*as*%*ofProduction

Cash*Margin($/boe)

Debt*to*Total*Cap Capex>to>Cash*Flow*

(Yahoo*Finance)CRK $15.45 $0.70 $1.90 >48% 46 92% $17.32 54% 769%CRZO $26.09 $1.00 $1.70 >28% 22 86% $21.32 59% 542%ATPG $6.63 $0.30 $2.70 >60% 25 34% $28.70 96% 417%XCO $6.02 $1.30 $3.10 >71% 92 98% $15.19 55% 336%UPL $19.51 $3.00 $4.90 >60% 121 97% $22.10 54% 318%KWK $4.41 $0.70 $2.60 >67% 69 82% $7.82 65% 304%PVA $3.95 $0.20 $0.90 >75% 19 63% $32.75 45% 302%MUR $51.98 $10.10 $9.60 >31% 192 42% $46.50 6% 286%PXP $40.50 $5.20 $8.40 16% 105 50% $26.70 54% 282%FST $11.35 $1.30 $3.00 >68% 57 70% $18.99 59% 282%MMR $8.83 $1.40 $2.10 >50% 28 66% $24.17 22% 214%SM $64.58 $4.10 $5.00 >10% 93 56% $29.21 40% 203%PQ $5.66 $0.40 $0.50 >35% 15 83% $14.51 40% 196%RRC $56.79 $9.00 $10.90 1% 104 79% $23.80 46% 195%NBL $93.16 $16.50 $19.50 >2% 233 60% $34.47 36% 189%CXO $96.29 $9.90 $12.00 >7% 71 38% $48.55 41% 186%BBG $22.74 $1.10 $1.90 >45% 53 90% $24.62 42% 186%GDP $15.35 $0.60 $1.10 >29% 18 86% $11.01 80% 181%CHK $20.69 $13.20 $28.20 >38% 599 82% $21.65 37% 180%COG $30.63 $6.40 $7.30 17% 99 94% $18.91 31% 176%DNR $17.80 $6.90 $9.40 >24% 67 6% $62.47 36% 173%ROSE $47.03 $2.50 $2.70 3% 32 51% $28.00 27% 164%SFY $27.12 $1.20 $1.60 >34% 29 49% $34.55 42% 161%SWN $29.30 $10.20 $11.50 >26% 242 100% $16.39 25% 146%EOG $104.00 $28.00 $32.40 >8% 442 58% $33.96 28% 144%NFX $33.09 $4.40 $7.30 >54% 144 56% $32.26 43% 144%XEC $69.19 $5.90 $6.30 >39% 100 56% $30.94 11% 136%CWEI $72.99 $0.90 $1.40 >26% 15 24% $73.10 61% 132%BRY $44.20 $2.40 $3.80 >13% 36 28% $37.92 62% 126%CPE $5.52 $0.20 $0.30 >20% 5 42% $46.56 57% 124%PXD $105.12 $12.90 $15.10 3% 137 44% $31.02 31% 122%DVN $68.94 $27.90 $30.60 >23% 680 65% $23.07 31% 100%OXY $89.61 $72.70 $74.80 >11% 749 28% $50.89 13% 96%WTI $18.54 $1.40 $2.10 >16% 50 52% $35.73 57% 80%APA $93.50 $35.90 $44.10 >26% 759 50% $45.21 20% 66%APC $74.63 $37.70 $52.30 >8% 683 57% $31.18 46% 52%WLL $51.17 $6.00 $7.40 >28% 71 16% $51.16 31% 5%CNQ $31.29 $34.20 $42.70 >31% 580 35% $43.16 27% N/ACVE $33.38 $25.10 $30.40 >11% 231 47% $28.06 27% N/AECA $18.19 $13.30 $19.00 >43% 600 96% $17.29 33% N/ATLM $12.18 $12.50 $17.30 >47% 362 59% $31.72 33% N/A

Source: Bernstein Research & Yahoo Finance

Source:  Bernstein  Research  &  Yahoo  Finance  

Page 182: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Abundance  or  mirage?  Why  the  Marcellus  Shale  will  disappoint  expectaAons    

182  

Industry  analyst  Arthur  Berman  argues,  “Shale  gas  plays  in  the  U.S.  are  commercial  failures  and  shareholders  in  public  exploraKon  and  producKon  (E&P)  companies  are  the  losers.      This  conclusion  falls  out  of  a  detailed  evaluaKon  of  shale-­‐dominated  company  financial  statements  and  individual  well  decline  curve  analyses.      Operators  have  maintained  the  illusion  of  success  through  producKon  and  reserve  growth  subsidized  by  debt  with  a  corresponding  destrucKon  of  shareholder  equity.  Many  believe  that  the  high  iniKal  rates  and  cumulaKve  producKon  of  shale  plays  prove  their  success.      What  they  miss  is  that  producKon  decline  rates  are  so  high  that,  without  conKnuous  drilling,  overall  producKon  would  plummet.  There  is  no  doubt  that  the  shale  gas  resource  is  very  large.  The  concern  is  that  much  of  it  is  non-­‐commercial  even  at  price  levels  that  are  considerably  higher  than  they  are  today.”    

Arthur  E.  Berman,  Abundance  or  mirage?  Why  the  Marcellus  Shale  will  disappoint  expectaAons,  ASPO  USA,  October  08,  2010  

Page 183: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Abundance  or  mirage?    

183  

Berman  explains,  “Recent  revisions  to  SEC  rules  have  allowed  producers  to  book  undeveloped  reserves  that  quesAonably  jusAfy  development  costs  based  on  their  own  projecAons  in  public  filings.    New  reserves  are  being  booked  at  the  same  Ame  that  billions  of  dollars  in  exisAng  shale  gas  development  costs  are  being  wri-en  down  because  the  projects  are  not  commercial.  Concerns  about  the  logic  of  ongoing  gas-­‐directed  drilling  while  prices  collapse  have  been  partly  diffused  by  a  shim  to  liquids-­‐rich  plays  like  the  Eagle  Ford  Shale  in  Texas.  Shale  gas  operators  have  consistently  told  investors  that  their  projects  are  profitable  at  sub-­‐$5/Mcf  natural  gas  prices.    Yet  company  10-­‐K  SEC  filings  show  that  this  is  untrue.  They  have  invented  a  new  calculus  of  parAal-­‐cycle  economics  that  excludes  major  capital  draws  for  land  costs,  interest  expense  and  overhead.  They  jusAfy  these  disclosure  pracAces  because  excluded  costs  are  either  sunk  or  fixed  and,  therefore,  supposedly  should  not  affect  their  decisions  to  drill.  Their  point-­‐forward  plans  are  made  at  shareholder  expense  since  the  dollars  spent  were  very  real  at  the  Ame,  and  their  costs  cannot  be  charged  to  a  profit  center  other  than  the  wells  that  they  drill  and  produce.”    

Arthur  E.  Berman,  Abundance  or  mirage?  Why  the  Marcellus  Shale  will  disappoint  expectaAons,  ASPO  USA,  October  08,  2010  

Page 184: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Abundance  or  Mirage?  

184  

A  mulA-­‐year  evaluaAon  of  producAon  costs  for  ten  shale  operators  indicates  a  $7  per  Mcf  (thousand  cubic  feet)  average  break-­‐even  cost  for  shale  gas  plays  in  the  U.S.  taking  hedging  into  account.    

Price  must  rise  to  meet  the  true  break-­‐even  cost,  yet  ~$4/Mcf  is  forecast  unAl  2020.  

Slide&7&Labyrinth&Consul4ng&Services,&Inc.& Duke&University&Nicholas&School&of&the&Environment&

Cost is Understated: The True Break-Even Price is $7.00/mcf

$0.00&

$2.00&

$4.00&

$6.00&

$8.00&

$10.00&

$12.00&

$14.00&

$16.00&

Selected Company 5 Year Imputed Production Costs/Mcfe

Weighted Realized Price/Mcfe with Hedges 5 Year Calculated "Break-Even" Price

•  Claims of profitability at less than $5.00 /mcfg are based largely on point-forward economics at odds with costs reported to the Securities and Exchange Commission in 10-K filings—all sunk costs written off. •  Price must rise to meet the true break-even cost. •  Several executives have recently said that $6/mcf is a minimum threshold to justify more drilling.

Source: Company Reports

$7/mcf avg.

�� ��� ���

����� ���

��������������������� ������������� ��-������ ��

���������� ����-���������������� ���������������

�����-������ � ��������������� ������������8��� ��,����

������� ��� ����������������������������������������

������������������������������������������������

�'�����������������-���������������$�� ����������,

������������������������8���-�8��������������8���-

8��������������� ��������������������-��� �������

���������������������-��,����:2�*;�����������<���(� !!

������+���� � �()�����*=+�

6���� �>���-�!,�� !!,��������� ����������� �������

�������������������(��������� ���������������+�����

�����������������,;�2�������������� �����1 ������,

���� ��,���������������� ���������������'���� �����

��������������������������������� ��-��� ���������

������� � ��������������'���� �,������������������ ������������������������-�

5������$�� ����������,����������������������������������������� ��������/�����������,

������������������������'������������������������� �������������������� �������'���� ������

.�������� �-����������������������������� ��-�����������(������:������������<��+,���������-��

�����������'��������������� ��������������������������� �%34��������?������������������ ����� !#,���

���-�����������������������/��������������� � �

��� ��� ������ ����� �������� �����$!�������#����� ��� ������# ���#%&)&

���������� ��������������������������������� �����

�������� �����<��������������������������8���-�8�������

������������������������-&�@� ��������������

���������������������������������-�����������

���,��������������������-��������������������

%�����6������1����������������������� ����������

�����-�����������6�!�!���������������������������

�������������������������������� ������-����������1�

�������,����������������� ��������'���� �����

������������������ � �()�����*2+,����������� � ��������

������������ ���������� ������������� �������

7��������������������������������,��������������

���������������������������������� � A����� ��,

���������������������������-����������������������,

�������������& ��&������������������ �������� !���� ���

4�����������������,�������������� ���������������������-������0������������,

������������������������,�������������������������& ��&��������������� !��

Arthur  E.  Berman,  Abundance  or  mirage?  Why  the  Marcellus  Shale  will  disappoint  expectaAons,  ASPO  USA,  October  08,  2010  EIA,  Market  Trends-­‐Natural  Gas  2013  

Page 185: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Well  Life,  NPV  and  EUR  –  overhyped?  

185  

The  high  shale  gas  reserve  forecasts  by  operaAng  companies  are  based  on  long  individual  well  lives  of  as  much  as  65  years.      In  the  Barne-  Shale,  wells  were  grouped  by  the  year  of  compleAon  and  evaluated  based  on  current  monthly  gas  producAon.    

yellow, or cooler, colors show areas of poorer production. The map shows extreme heterogeneity within the core area where high Barnett production volumes are unevenly distributed and many non-commercial wells have been drilled adjacent to excellent wells. The claim of repeatable and uniform results by the shale play promoters cannot be supported by case histories to date. We contend that the factory model is not appropriate because the geology of these plays is more complex than operators claim.

Well Life, NPV and EUR

The high shale gas reserve forecasts by operating companies are based on long individual well lives of as much as 65 years. In the Barnett Shale, wells were grouped by the year of completion and evaluated based on current monthly gas production. The percentage of wells from each group that are currently producing less than 1 million cubic feet of gas per month is shown in Figure 9. This gas volume only covers the cost of well compression assuming $5/Mcf without royalty payments or other costs. In other words, 25-35% of wells drilled over the past six or seven years are not paying for the cost of compression so what is the justification for 40-65 years of advertised commercial production?

When  we  examined  Chesapeake  Energy’s  type  curve  for  the  Barnett  Shale  and  assumed  that  all  parameters were correct--initial production rate, decline rate, well life, etc.--we found that most of the discounted net present value (NPV10) occured in the first five years and that there is negligible value after Year 20 (Figure 10). The type curve, however, forecasts about half of the reserves in years 20 through 65. Since these volumes have no discounted value, reserves are

This  gas  volume  only  covers  the  cost  of  well  compression  assuming  $5/Mcf  without  royalty  payments  or  other  costs.  In  other  words,  20-­‐35%  of  wells  drilled  over  the  past  six  or  seven  years  are  not  paying  for  the  cost  of  compression  so  what  is  the  jusAficaAon  for  40-­‐65  years  of  adverAsed  commercial  producAon?  

Arthur  Berman,  U.S.  Shale  Gas:  Magical  Thinking  &  The  Denial  of  Uncertainty,  Jan.  12,  2012,  presentaAon  at  Duke  Univ.  Nicholas  School  of  the  Environment.    

Percentage  of  wells  from  each  group  that  are  currently  producing  less  than  1  million  cubic  feet  of  gas  per  month.    

Page 186: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Barne-  mortality  rate  casts  doubt  on  40-­‐65  year  well  life  

186  

Slide 10Labyrinth Consulting Services, Inc. AAPG International Conference & Exhibition 2010

3UREDELOLVWLF�PHWKRGV�IRU�(85�DQG�HFRQRPLFV�

30%

33%

38%

34%

37%

24%

17%

13% 13%

8%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Pe

rce

nt

of

We

lls

At

Eco

no

mic

L

imit

, A

ba

nd

on

ed

or

Dry

Completion Year

Barnett Wells At Economic Limit

� 5HVHUYHV�EDVHG�RQ�YHU\�ORQJ�ZHOO�OLYHV�WKDW�DVVXPH�IODW�GHFOLQH�UDWHV�� %DUQHWW�H[DPSOHV�EDVHG�RQ�FXPXODWLYH�SURGXFWLRQ�VKRZ�WKDW�(85�HVWLPDWHV�DUH�LPSUREDEOH�LQ�D�WLPH�IUDPH�ZKHUH�139�LV�PHDQLQJIXO�� %DUQHWW�PRUWDOLW\�UDWH�FDVWV�GRXEW�RQ�������\HDU�ZHOO�OLIH�

Reserves  based  on  very  long  well  lives  that  assume  flat  decline  rates.  Barne-  examples  based  on  cumulaAve  producAon  show  that  EUR  esAmates  are  improbable  in  a  Ame  frame  where  NPV  is  meaningful.    

Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Average  BarneQ  Shale  horizontal  well  cumulaKve  producKon  by  operator  

Date  is  normalized  to  the  first  month  of  producAon  CumulaAve  ProducAon  (Bcf)  

Range  of  EUR  Claimed  by  Major  Operators  

Barne-  Wells  at  Economic  Limit  

CompleAon  year  

%  of  w

ells  at  econo

mic  limit,  aband

oned

 or  d

ry  

Page 187: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Inaccuracy  of  Type  Curve:  Haynesville  Shale  and  normalized  producAon  data  

187  

Months  from  start  of  producKon  Mon

thly  gas  ra

te  M

scf  

Chesapeake  Energy’s  type  curve  for  the  Haynesville  Shale,  predicAng  average  well  producAon  (EUR)  of  6.5  Bcf  gas  reserves.    The  difference  lies  in  forecasAng  future  decline  trends,  parAcularly  the  hyperbolic  b  exponent.    Type  curves  don’t  work  because  of  survivorship  bias.      Emphasis  on  mean  in  a  highly  variable  and  small  populaAon  commonly  over-­‐predict  by  50%.  

Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Page 188: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Hyperbolic  exponents    

188  

Hyperbolic  exponents  cannot  be  whatever  we  like.    The  match  with  wells  that  have  12  months  or  more  of  producAon  is  good.      

The  problem  lies  in  how  future  decline  trends  are  projected  and  what  hyperbolic  exponents  (curvature  or  b-­‐factor)  are  assumed.      

How  these  wells  will  decline  only  Ame  will  tell.  Be-er  to  present  a  probabilisAc  range  of  possible  reserves  rather  than  a  fixed  value.    

This  implies  greater  uncertainty  and  greater  risk  than  operators  represent.    Companies  should  use  an  intermediate  hyperbolic  exponent  (as  recommended  by  Society  of  Petroleum  Engineers  peer-­‐reviewed  papers)  to  project  reserves  and  revise  them  upward  or  downward  later  when  producAon  has  stabilized.      

Using  a  hyperbolic  exponent  of  0.5,  Chesapeake’s  average  well  will  produce  3.0  Bcf  based  on  their  type  curve,  which  is  not  commercial  at  $7.00/Mcf.    For  reputable  companies  to  say  that  the  least  likely  case  (b  =  1.1)  is  the  most  likely  case  does  not  prudently  represent  uncertainty.  Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Page 189: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

EUR  is  not  NPV  

189  

Shale  play  promoters  constantly  try  to  divert  a-enAon  and  analysis  from  current  plays  to  newer  plays.  Newer  plays  have  less  data  to  analyze  and,  therefore,  reserve  claims  are  more  difficult  to  quesAon.      Because  the  Barne-  and  Faye-eville  shale  plays  have  under-­‐performed  expectaAons,  a  few  years  later  the  emphasis  shimed  to  consider  the  future  potenAal  of  the  Haynesville  Shale  play.      Now  that  the  Haynesville  looks  disappoinAng,  the  emphasis  is  shiming  to  consider  the  Marcellus  Shale  play.    And  with  the  shim  to  liquids-­‐rich  plays  like  the  Eagle  Ford  Shale,  promoters  that  sold  the  under-­‐performing  plays  in  the  past  emphasize  this  Ame  it  will  be  different.    There  appear  to  be  a  host  of  foreign  investment  companies  that  may  provide  capital  for  the  shale  plays  now  that  operator  debt  has  reached  extreme  levels,  and  most  available  assets  have  been  sold  at  considerable  damage  to  shareholders.      

Arthur  E.  Berman,  Amer  The  Gold  Rush:  A  PerspecAve  on  Future  U.S.  Natural  Gas  Supply  and  Price,  ASPO  Conference  2012  Vienna,  Austria,  May  30,  2012    

Page 190: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Magical  thinking  

190  

•  A  tremendous  amount  of  capital  has  been  bet  on  shale  and  much  of  this  is  in  the  form  of  debt.  

•  There  is  very  li-le  shale  producAon  history  so  the  outcome  is  uncertain.  

•  It  is  unclear  that  shale  gas  producAon  will  support  even  short-­‐term  expectaAons  of  abundance.  

•  Capital  expenditures  exceed  cash  flow  for  most  companies.  

•  Full-­‐cost  and  off-­‐book  accounAng  mask  the  weak  performance  of  most  shale-­‐dominated  companies.  

•  There  is  great  uncertainty  about  reserves,  and  most  are  undeveloped.  

•  Yet,  the  prevailing  view  is  that  success  is  certain.  •  There  are  considerable  risks  in  magical  thinking.  

"This  is  an  industry  that  is  caught  in  the  grip  of  magical  thinking,"  Arthur  Berman  says.      "In  fact,  when  you  look  at  the  level  of  debt  some  of  these  companies  are  carrying,  and  the  quesAonable  value  of  their  gas  reserves,  there  is  a  lot  in  common  with  the  subprime  mortgage  market  just  before  it  melted  down."    

Page 191: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

191  

XX's  goal  is  to  reduce  

CO2  emissions  intensity  to  

0.45  tons  (990  lbs)  per  MWh  

by  2025    

Current and Future Technologies for NGCC Power Plants

11

Exhibit ES-8 CO2 emission rates

Source: NETL

780.2

89.5 88.1

752.8

85.7 84.5

714.7

80.8 79.7

686.5

77.0 76.3

760.3

81.6 80.7

734.5

78.6 77.8

698.8

74.6 73.9

672.4

71.5 71.1

0

100

200

300

400

500

600

700

800

900

1000

1100

7FA.05 7FA.05 CCS 7FA.05 CCS EGR

H-frame H-frame CCS

H-frame CCS EGR

J-frame J-frame CCS J-frame CCS EGR

AdvFuture AdvFuture CCS

AdvFuture CCS EGR

CO2

Emis

sion

s (l

b/M

Wh)

CO2 Emissions (lb/MWhnet)

CO2 Emissions (lb/MWhgross)

NETL,  Current  and  Future  Technologies  for  Natural  Gas  Combined  Cycle  (NGCC)  Power  Plants,  June  10,  2013,  NaAonal  Energy  Technology  Lab,  US  DPE,  DOE/NETL-­‐341/061013      

GE  7FA.05    F  frame  

Siemens  8000  H    H  frame  

MHI  J  frame  

Future  advanced  X  frame*  

*  Future  advanced  X  frame  assumes  the  7FA.05  model  with  output  90%  more  &  heat  rate  is  13%  be-er.  This  turbine  would  require  improvements  in  materials  &  cooling  technologies  to  become  feasible.      

Power  generaKon  fleet  goal  in  2025  

3  NGCC  plants  operaKng  today,  &  4th  one  in  development  (without  CCS  and  with  further  CO2  reducKons  w/  CCS)  

Page 192: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

192  

XX's  goal  is  to  reduce  

CO2  emissions  intensity  to  

0.45  tons  (990  lbs.)  per  MWh  by  2025.    

Current and Future Technologies for NGCC Power Plants

11

Exhibit ES-8 CO2 emission rates

Source: NETL

780.2

89.5 88.1

752.8

85.7 84.5

714.7

80.8 79.7

686.5

77.0 76.3

760.3

81.6 80.7

734.5

78.6 77.8

698.8

74.6 73.9

672.4

71.5 71.1

0

100

200

300

400

500

600

700

800

900

1000

1100

7FA.05 7FA.05 CCS 7FA.05 CCS EGR

H-frame H-frame CCS

H-frame CCS EGR

J-frame J-frame CCS J-frame CCS EGR

AdvFuture AdvFuture CCS

AdvFuture CCS EGR

CO2

Emis

sion

s (l

b/M

Wh)

CO2 Emissions (lb/MWhnet)

CO2 Emissions (lb/MWhgross)

NETL,  Current  and  Future  Technologies  for  Natural  Gas  Combined  Cycle  (NGCC)  Power  Plants,  June  10,  2013,  NaAonal  Energy  Technology  Lab,  US  DPE,  DOE/NETL-­‐341/061013.        

GE  7FA.05    F  frame  

Solar  PV   Large  wind  turbine  

Power  generaKon  fleet  goal  in  2025  

End-­‐use  efficiency  

Least-­‐risk  opKons  –  two  already  compeKKve  with  natural  gas  

No  fuels,  near-­‐zero  emissions,  near-­‐zero  water  use  

IPCC,  2011:  IPCC  Special  Report  on  Renewable  Energy  Sources  and  Climate  Change  MiAgaAon.  Prepared  by  Working  Group  III  of  the  Intergovernmental  Panel  on  Climate  Change  [O.  Edenhofer,  R.  Pichs-­‐Madruga,  Y.  Sokona,  K.  Seyboth,  P.  Matschoss,  S.  Kadner,  T.  Zwickel,  P.  Eickemeier,  G.  Hansen,  S.  Schlömer,  C.  von  Stechow  (eds)].  Cambridge  University  Press,  Cambridge,  United  Kingdom  and  New  York,  NY,  USA,  1075  pp.  (Chapter  7  &  9).    

VS  

Page 193: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Lower  Risk  Profits  &  

Earnings  Plays?    

193  

Focus  on  reAring  &  replacing  the  energy  services  from  the  230+  GW  of  operaAng  coal  power  plants.    Bid  to  deliver  power  services  at  lower  cost  and  lower  risk  through  long-­‐term  PPAs.    Efficiency  power  plants  for  replacing  coal  plants  with  lowest  O&M  costs,  and  wind  and  solar  PV  for  coal  plants  with  highest    O&M  costs.  

Page 194: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

Efficient  Power  Plants  –  core  to  smart  networks  for  real-­‐Ame  dynamically  

fluctuaAng  load  management    

194  

Delivering  power  services  with  BitWits  (digital  knowledge),  instead  of  atoms  &  molecules  (natural  resources)  

Page 195: Totten Shale Gas Hydraulic Fracturing - Fracking Issues Challenges White Paper 12-05-2013 200 PPT

195