204
UNCLASSIFIED AD NUMBER AD872191 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1970. Other requests shall be referred to Naval Air Systems Command, ATTN: AIR-530214, Washington, DC 20360. AUTHORITY USNASC ltr dtd 26 Oct 1971 THIS PAGE IS UNCLASSIFIED

TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

UNCLASSIFIED

AD NUMBER

AD872191

NEW LIMITATION CHANGE

TOApproved for public release, distributionunlimited

FROMDistribution authorized to U.S. Gov't.agencies and their contractors; CriticalTechnology; JAN 1970. Other requests shallbe referred to Naval Air Systems Command,ATTN: AIR-530214, Washington, DC 20360.

AUTHORITY

USNASC ltr dtd 26 Oct 1971

THIS PAGE IS UNCLASSIFIED

Page 2: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rASD-P70-192 MP

CONTRACT NO 4,00019-69-C-0427

1 COLLOCATION

I ~FLUTTER ANALYSISSTUDY II

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS ANDTRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALSMAY BE MADE ONLY WITH PRIOR APPROVAL OF THE NAVAL AIRSYSTEMS COMMAND (AIR-530214).

3 VOLUME ISTRUCTURAL ANALYSIS PROGRAM FLUENC-100

COMPONENT MODE SYNTHESIS PROGRAM - COMSYN

ANDI MODAL FLUTTER ANALYSIS PROGRAM

APRIL 1970

MISSILE SYSTEMS DIVISOI>lC)r ------------------

HUGHES:L ------------------. 3

"wo-toZ &.*CeAf? colMoAft

Page 3: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I

COFA II

COLLOCATION FLUTTER ANALYSIS STUDY II'

I

VOLUME III

STRUCTURAL ANALYSIS PROGRAM FLUENC-IOC

COMPONENT MODE SYNTHESIS PROGRAM ,, COHSYN~and

MODAL FLUTTER ANALYSIS PROGRAM

PREPARED BY DYNAMICS & ENVIRONMENTS SECTION PERSONNEL, HUGHES

AIRCRAFT COMPANY, MISSILE SYSTEMS DIVISION, CONTRACT NO.

[ 00019-69-C-0427

1JANUARY 1970

This document is subject to special export controls and transmittalto foreign governments or foreign nationals may be made only with[prior approval of the Naval Air Systems Command (AIR-530214).

|~9?~3,

I

Page 4: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

TABLE OF CONMUS[

Section Type Page

1.0 Introduction 1

2.0 FLUENC-10C Structuril Malysis Program 22.1 Theoretical Derivation 2

2.2 Program Description 22.2.1 Processing Information 3

2.3 Description of Program Input 3 L2.4 Description of Program Output 9

2.5 Sample Problem 11

2.6 Program Listing 12

3.0 COMSYN-Componeni-Mode Synthesis Program 80

3.1 Introduction 80

3.2 Theoretical Derivation 803.3 Program Description 913.3.1 Processing Information 91

3.4 Input Instructions 91

3.5 Description of Program Output 96

3.6 Sample Problem 96

4.0 MOFA-Modal Flutter Analysis Program 1704.2 Program Description 173

4.2.1 Processing Information 174

4.3 Input Instructions 175

4.4 Program Output 179

4.5 Sample Program 179

4.6 Program Listing 1844.7 References 196

41

Page 5: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

1.0 INTRODUCTION

In order to determine the flutter characteristics of an aerodynamicsurface, it is necessary to know the unsteady aerodynamic forces, the 61asticproperties, and the mass distribution of the structure. This volume containsa set of three programs that calculate the mass and stiffness distributionsand the flutter speeds. The programs are FLUENC-!00C, COMSYN, and MOFA.

FLUENC-100C is a structural analysis program that uses the directstiffness method to generate stiffness, flexibility and mass mtrices, andthen to perform vibration ahalyses. In dddition, there is an option togenerate special structural parameters for use in the program CdSYN.FLUENC-100C is essentially the same as FLUENC except that the capabilityhas been expanded to analyze lumped parameter systems that contain up to200 nodes of which up to 100 may be free. The program COMSYN uses thecomponent mode synthesis technique toanalyze large structures. The struc-ture is divided into component parts; the component modes and frequenciesare obtained from FLUENC-IOOC and then entered into OMSYN where the analysisfor the combined structure is performed. In addition, COMSYN calculatesj generalized aerodynamic forces and generalized masses for use in MOFA, theModal Flutter Analysis Program. MOFA accepts data from FLUENC/FLUENC-100Cand COMSYN and/or comparable data and performs flutter analyses using thenormal mode (modal) method.

Both FLUENC-100C and CO4SYN are tailored for use in flutter analyses.As such, only a capability to analyze planar structures is presented. Theanalysis includes displacements normal to the plane of the structure andapproximates the two orthogonal rotations in the plane of the structure.

£1 The FLUENC-100C and COMSYN programs have not been completely checkedout for eigenvalue problems requiring more than fifty degrees of freedom.When exceeding fifty degrees of freedom, the user should check results care-

I fully and if errors are suspected, the program should be rewritten indouble precision for problems requiring degrees of freedom exceeding fifty.It should also be noted that the triangular plate elements are directional

I dependent which may cause small differences in deflections in syimmetricalvibration modes. This problem can be eliminated by using a more refinedand more complicated triangular plate element.

II

I I

! ,*

I.

Page 6: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

2.0 FLUENC-lOOC STRUCTtRAL ANALYSIS PROGRAM

2.1 Theoretical Derivation J

The theoretical derivation of the formulation for the FLUENC-IOOCProgram is identical to that of the FLUENC Proram presented in Volume II of Collocation Flutter Analysis Study, Reference 1; therefore, no newpresentation of the derivation will be presented here. The additionalcapabilities added to the FLUENC-1OOC Program involved only computing ichanges associated with increasing the size of the program, and collectingcertain structural data for use in CCKSYN.

2.2 Program Description iThe purpose of the computer program FLUENC- OOC is twofold; namely,

to provide structural influence coefficiento and mass matrices for use in jthe Collocation Flutter Program and to provide stiffness and mass matrices,mode shapes, and frequencies f6r use in the Component Mode Synthesis Program.When using FLUENC-100C, a decision must be made whether to analyze a struc- 4ture as one complete unit or to divide the structure into several components. JWhen this is done, the analysis of the structure or the component is handledin essentially the same manner, Only special attention must be given tonodes that are common to two or more components when the structure isdivided. Briefly, the program which is written in FORTRAN IV performs a

structural analysis by the direct stiffness method. The structure is assumedto be representable by a planar network of beams and triangular plate ele-ments connected at discrete joints. At each joint, if there are no restraints,the program assumes three degrees of freedom; that is, one displacement nor-mal to the plane of the structure and two rotations. The program first syn- Ithesizes the stiffness and mass matrices for the entire structure, includingall degrees of freedom from the data input for the beam and triangular plateelements and from the restraint information input for the joints. It thenreduces the stiffness and mass matrices by solving for the rotational degreesof freedom in terms of the normal displacements by using static deflectionrelationships. As e final step, the program inverts the reduced stiffnessmatrix to obtain the influence coefficients. The dynamical matrix is thenset up and a vibration analysis is performed. .

If the option to generate data for COMSYN is used, a node or set ofnodes are designated as common joints. 'Common joints are those structural ipoints which exist on more than one component. The analysis is performedfirst with the common joints (junction nodes) restrained which yields the4F and F matrices and an eigenvalue solution. Then new mass and stiff-ness matrices are generated based on an analysis with all common jointsfree. It is from these matrices that K " KJJ M_ are obtained. It isto be noted that in the second analysis, the rotaional degrees of freedomfor the junction nodes remain in order to insure slope compatibility, whilethose associated with the free joints (other than common joints) are reducedout of the system.

2 I!

Page 7: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

The FLUENC-I00C Program allows a maximum of 200 nodal points in astructural idealization; of these 200 nodal points up to 100 nodal points maybe allowed translational freedom. The rimaing nodal points mst beconstrained in translation. Previouilyp the program FLIJENC allowed a maxiimof 50 points all of which could be free in translation; thus, the =%aimum sizeof the eigen value problem has increased; also, additional lattitude is allowed

in developing structural idealizations. The above change creates the following11 program restriction: The number of Joints minus the number of joints restrainedin translation must equal or be less thn one hundred (NJTS-NL 10)

Other features of the program include the option to input lumpedI masses or to compute the consistent -mass matrices for the beam and tri-

angular plate elements or both. The triangular plate elements may have1. either isotropic or orthotropic properties.

A series of problems was run to establish computer computation time.The results of this study are shown in Figure 2.2.1. The results are based

Iupon the analysis of a flat plate using plate elements and the consistentmass matrix option. Five modes were requested for the analysis. As aresult, the graph is only indicative of the computing time required, as the

I actual time not only depends on the number of degrees of freedom but alsoon the type of structural element, mass matrix, and number of modes requested.

2.2.1 Processing Information

A. Operation -- Standard FORTRAN IV processor system. Operable

on the GE635 computer.

I. B. Core Storage -- The program FLUENC-1OOC requires a minimum of54,000 memory units for execution.

L C. Tape Units -- Standard input, output, and punch tape units, and9 scratch tape units.

2.3 Description of Program Input

The following instructions describe the input data, their physical

units, and their input FORTRAN format. The input quantities' names, inall capitals, are their FORTRAN names.

1.0 Title Card, format (12A6) two cards always

Column 1--- -72

Name Any alphanumeric statement I

Column 1-- -72

Name Any alphanumeric statement

--3 *r

Page 8: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

1-

.,A

15 -N -il -

A; V

m; L:1J-

1:- In __ . ..,,.

HljEl .... .-.-.--.-.-.-....... ...

-7

Page 9: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

20 Problem -Size and Control Itif-oatibn, Format (1615)

I. Column I1-5 I61 1l5 160T242T6313l5 36-40 1 41-45 IILName rNJTS1 NR -jNBE' -NPE- 'NMDR-j--'KEY- INLUMP- VNCJT I NPUNJ

NJTS - Number of joints in structure (200 maximum).

R Number-of Joints' :with One or more restraints

{NBE = Number of beam elements in stkucture

NPE = Number of plate elements in structure

INM0DE - Number of eigenvalues and eigenvectors desired (9 maximum)

MKEY 1 1. Do not compute consistent Aass terms for beam and/or triangularI! plate elements

2. Compute 6onsistent mass terms for beam, and/or triangular plateelements

NLUMP Number of lumped:masses input. Only lumped masses correspondingto the normal displacement at each joint may be input.

NCJT Number of common joints on the component (12 maximum)

= , if the complete structure is to be analyzed (no common joints involved).

NOTE: NPUNJ = 0 when NCJT>O

NPUNJ -1 No Punched Output

= 0 Both Mass and Flexibility Matrices Punched Out

I Only Mass Matrix and ILOW, IHIGH CodePunched Out

- 2 Only Flexibility Matrix Punched Out

3.0 Material Properties

I(a) Number of Materials, format (15)

Column 1 - 5

Name ]_AT L2+

NMAT = number of materials for which properties are input (10 max.)

(b) Properties, format (4EI0.3)

Input NMAT number of cards, one for each material.

-_5- ir

Page 10: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Column 1 10 1 20 21 -30 31 -40

Name ~ ~i) PR. i -; Gt (i). ja ES L

YM (i) - Young's modulus of elasticity divided by 10 psi jPR i) - Poisson's ratio

GE (i) = modulus of rigidity; psi. if input as 0, it, will be computed Ifrom the following formula: LI

() iGE (i) - 2--.2 1 1+ PR (i)

DENS (i) - material density; lb/in3 . Not required if MEY 1

4.0 Joint Coordinate Cards, format (IOX, 2E0.3)

Input NJTS number of cards,, one for each joint. Also, the structureis assumed to lie in the x-y plane.

Column I -10 11 - 20 21 - 30

Liame m X(m) Y(m)

m - joint number (must be input consecutively starting with 1).May be placed anywhere between columns 1 and 10

X(m) - x coordinate of joint m; inches

Y(m) = y coordinate of joint m; inches

NOTE: If NCJT> 0, the common joints must be numbered last.Example: If NJTS - 10 and MCJT - 3

Then joints 8, 9 and 10 are the common joints.When reference is made to these joints in theprogram COMSYN, common joint 1 should be joint 8,common joint 2 -joint 9, common joint 3- joint 10.

5.0 Joint Restraint Information format (415)

Input NR number of cards, one for each joint with one or more restraints.

Column 1 - 5 6 - 10 11 - 15 16 - 20

Name JT Ml M2 M3

JT = number of joint having one or more restraints

M1 - 0 free in the z direction

= 1 fixed in the z direction

-6-

I4

Page 11: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

M2 = 0 free to rotate about the x axis

= I fixed about the x axisk3 -0 free to-rotate about the y axis

1 fixed about the y axis

NOTE: If NCJT> O then MIM2-M3W -for al&l common joints.

4 6.0 Lumped Masses., format (15, 5X, E10.3)

Input NLUMP number of cards, one for each lumped mass.

Column I - 5 6 -10 1 - 20

Name MASS blank MASS

JMASS = number of joint for which lumped mass is input

RASS = lumped mass, lb.

If more than one lumped mass is input for a particular joint, theprogram will sum the masses.

7.0 Beam Element Properties, format (3E10.3, 315)

Input NBE number of cards, one for each beam element.

Column 1 -10 11 - 20 21 -30 31 - 35 36 -40 41 -45

Name AR X1 i MAT JTNR JTFR

f AR = area of beam cross section, in2

XI = moment of inertia of area, in4

I YJ = effective torsional moment of inertia, in4

MAT = material code corresponding to one of the materials inputunder paragraph 4.1.3.

JTNR, JTFR = joint numbers at the ends of the beam element

8.0 Triangular Plate Element Properties, format (E1O.3, 515)

Input NPE number of cards, one for each triangular plate element.

I Column 1 -10 11 - 15 16 - 20 21 -25 26 - 30 31 -35

Name PTH MAT JTI JT2 JT3 NDX

-7-,

'I

Page 12: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

JPTH = plate thickness, in.

MAT = material code corresponding to one of the materials inputunder Item 3,

JTI, JT2, JT3 = joint numbers at the three corners of the triangular 1Restrictions:plt

a) The order of the joint numbers must be given in a clockwise

manner as follows: iy JT2

JT1 JT3

b) The angle formed by the edges of the triangular plate atJT1 must not be 900. j

c) The angle that the directed line defined by JT1 and JT2makes with the global or system y-axis must be acute (<900 ).

NDX = 0 the plate has isotropic properties and the flexural rigidty

terms are computed from

i

DX = ±Y= YH(MAT) x PTH3

12 1- [PR(MAT 2 }

DI [ PR(MAT)] Ix DXj

NDX = I the plate has orthotropic properties and the flexuralrigidity terms are input by the next card [format (4E10.3)]I

Column I -10 11 - 20 21 - 30 31 - 40 41 - 50

Name DX DY DI DXY BETA

DX, DY, Dl, DXY flexural rigidity terms, in.lb.

BETA = angle between material principal axes and the triangular platelocal coordinates as shown below

II f

-8- | ]

I

Page 13: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I rA

48 -,A

'[ i

All the components to be considered subsequently in the Component HodeSynthesis Analysis may be analyzed on one computer run of FLUENC-100CIRepeat the input requirements for each additional component.

2.4 Description of Program Output

I. Analysis of Complete Structure with No Common Joints Involved(NCJT=O)

A. Printed I

I Input Data

2. Coordinate numbers assigned by the program to the normaldisplacements at each unrestrained joint.

3. Results of the analysisa. Reduced stiffness matrix (lb./in.)b. Flexibility matrix (in./lb.)c. Reduced weight matrix (lb.)

(NOTE: Since the above matrices are symmetric, only the uppertriangle is printed.)

d. Eigenvalues and eigenvectors (normalized to the largestelement) for each mode requested.

e. Natural frequencies for each mode (CPS)

-9-I

Page 14: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

B. Punched -all matrices are p=nhe ita niey inFotrei Format (16*12.5). Each rowi starts an . a cord.

The cards for each ustrix are sequenced and identified *s

2. Weight

NOTE: The above punched output is cmpatible with the inputrequired for COFA, the Collocation Flutter Program

I1. Analysis of a Component with Comon Joints (NCTJ)

A. Printed Output

1. Common Joints restrained.Same as indicated in I-A.

2. Common Joints free.a. New list of coordinate numbers with the common Joints

ad2ed.b. CKPJ Matrix (Stiffness) and CMFJ Matrix (MASS)

relates common joints to free Joints.c. Upper triangles of CKJJ Matrix (Stiffness) and CHJJ

Matrix (MASS) - relates coon Joints to common Joints.

B. Punched Output - Full Matrices are punched for all items

Matrix I *heory Reference

1. Common Joints RestrainedStiffness CKFF

Flexibility FLEX 1(F-l

Weight (lbs.) WGHT 386 (Mn)

Frequencies (Cps) FREQ W/2r

Mode Shapes (Eigenvectors) MODE

2. Common Joints FreeCKFJ CKFJ KFJ

CKJJ CKJJ Kj

CMFJ CMFJ H-FJCMJJ CiMJJMj

NOTE: The above punched output is compatible with theinput required for the Component Mode Synthesis Program.

* Section 3.2, Volume III.

-10-

Page 15: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

II2.5 Sa-apli Problems

The sasple problems presented in Voltde I of Reference 1 will demon-strate the operation of this program for the casa when NCJT;0. To demonstratetho case for NCJT>O a typical missile .is analyzed.

1jThe analysis will be pegfo-med for the missile being divided into threecozponenta the fuselage, the wing, aid the control surface. There are threecoman joints; tvw attach the wing to the fuselage (Joints 1 and 2) and oneattaches the control surface to the fuselage (Joint 3).

~/,

I °

I -I1-

Page 16: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

a 0 c. > o. C)C3 .C,4

j -j

~~101

Ii I.IS' ml I I. .9I Li 0 1 .... .

--.. 0

4 0 IL

ofi In C.

CDI 4*O C3 m .IjC ) , ~ . - 3r

i'..I CI..'

IcJl0x '4C V nL -0 oc. 0 . 0 lco:

H U Ee c- V I I U JF)L

I.0. %'o0 4;94C oV - ). n oI ,o . . %

ggC3.S

.Lip 2I

I~: I -12aft af

Page 17: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

. 1 1 14 trrn I I I

r II~UIC w4 If 4 - V r l * 4 A A W fC3 C Cco '3 0 C3 in 0 M Ccu c N C) Imcc =C 3c

U; C3 v I0 j3 0 C7 C2 0 l 0 c )C.' 1 1 I

V 0 0 c

N C,

I Il *-i C. C3 *A ' IiC ' 2CL "D c -1' .t ::pC: ) -Ii Cl 1Ex U I M~: I.3MO 0CIMi

I' '. I I

* 'U I t.

wo 10 caoat% %1... U% U% aN.4. I 10Ii 14 l cu .4 -C NN 4

IM kI

w U.IiL) It

C. If aft ani I

U 41 I.

Page 18: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

- 1 1f -SiC) I 1c;

oC X I 1a~Z! ti!

Mi w-a o. a

1;l0 1D jcl #c cp C I I.

CD 'II

I~o I .

* u04 c 1 IIj I N

C; cj rlfGoI *o co G o

Q1 c c c C

I

Lr N cu CY N .

C; .! C, 0.I C.1CJV CU

Ng~ to 0% Ch 40c $A

0 a1 ,0 o* 0 C l 1tu, ,u W W LU LU W w Lu LU

C2 co 0 N

cv~~ro M14 qwI o i0 ~ cN 'W( I

j~~S 1. 0 44 v1' ' :' 1 I :Ij1 cq MJ O ~ NI j 0 -0 4V;Ci

Page 19: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

77..

IU w

CY cm . co N

0 .0 0.7..!.N cm% (V T4 1 1

C; C! I ; C; I I-

C3 *x 0~ Q. K ri

I U W W I I. W , LU &. w L s Lo L iI.~. -0 m N I V I DL

U. 14 01 N 10 t. ' C j. I' c; a

:t16 i I :g IiiA0 - 1 1aIA

a A

Page 20: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

'421

I. .4

a aa1 49 cc I L

i ii

Page 21: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

wom KI emu

4.

WL I it I.U W:1 . t0V AU oc" . = 10 I I . c ) . .

.D 11 Well~o "let I

-rN" 000 - toI to~ o C c 0 :

v-1I IU.so W iw via'0 WW '.ww f L

cc~ in.LI W C' qJW VU.~

C% .~ 'u4s 1V~ 'Nt- V)O' Los ffl lV') i

Nv-'.0 ~' .-0Du mzIL ~ ~ '4. I I0- CDo COZ?.Z

92 am.* 10 CIL20 wo.

414 I tooo

-j I'.Is , 1"U- 'f iw W,

to In .r:! j 7.V

!IolL to) N-* J- ~ to 'Co II LUUL 1to, CC, coM.P). 0.1 V4 Y:31Z

W' ICY to ? m~- s.0 "OD.% j: t at V -U I3t)C ,."ac

I-0,% L%0 'Q;-4 so COy' 1o.4 cy* 'sU P t 9 Cra(I CM:0a 1* L' -: 1'LLL 1-,L4&LIL (Vdr I Iw i i9= - c;-

U%0 V4 In0 Im C& Ift'i _3) -i W-.4(0k I.

cc 1 -4 . 'C0) . LA±.~ .4.4 UN cza I.-j. I' I.--t. I.-.4. 'C 4 0.-k ~ ~ ~ ) I!W C Uf4 C'V II I r C-4, i t s UII I I10 U , 5l woo . D 1 1-

00C'VJI %:50 0 I f. -40 ND cn 410t' 0:1 40I -Z z

tv le Of ; . ) I- N!" V - 10 ,4It N114 0JLI nt *g 4 0 Vx.4.01MVmcv- ' ) t. CVC % '0 m0 ' f- C' I Kp a a.01. o .05 'T L 14 1S0t.

CD . ' j.t.C -4 ISaf. * .. Qj g*- - m~

0I 1 1 !C' I~~~l Us -. LI (11.1_ ~-__- ~ ' 0

Page 22: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

- -' . . , -t-

.'-. I I ' '

-~o

lI-?

C3 'a 31, m 0 a

In I. .W qg'

-AL do - cw- ti. wt IC-n ,

I INx1 C' aC3 4 2

C20* 4; c

j~: 11I .1- C.2Iw'II

w CC I'n us ccI A0I1

.U a* C2 'a

[1O1 1 ~~O CY N~r 'c z I6

40 .0 (M

Jil~~c tiw~~~lu f-C; 11 ; 1; C C7 D 30

lb92 Kjo..~ OD

c C, 4

Page 23: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

NOTICE TO USERS

Portions of this document have been judged by the Clearinghouseto be of poor reproduction quality and not fully legible. However, inaneffort to mako as much information as possible available to the public,the Clearinghouse sells this document with the understanding that if theuser is not satisfied, the document may be returned for refund.

If vou return this document, please include this notice togetherwiththe IBM order card (label) to: I

Clearinghouse

Attn: 152.12Spingfield, Va. 22151

5-

Page 24: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IICID

Ii 10

0 j 40 l

, .10 C

I ~ 1 0- U

f-)l

0. ~ .

00

IJ C m l CD 0 0 :

ul

CD) CoC-C

r4 I

C) C.

1 CC 0C 00

) 1;1 .

I X cI

Page 25: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.1

ji. C; C x C.. C3*1~C * 4*

.1 go 44tt a4 . 4 ' & I'1 I; 0. az 2- 3-3 M. Z

or ef cr 0 0: 0

Page 26: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

ci It

C5 I M0 ri 74 KH 6C III i414-11%'.1a . . I**J I l

I _I Cl *

9i 1-% l -1

ca I VIc i20 3c' ,aC1- c

If 9. :L0. in,~

ittitc C

-J I0i t I ) 1%I ( tcI 0 Nocic o cia . 00 , CusI I- rto-LJi,1w.9

fl2C.)4OUI r 4 O X4 "(W n a Vl vI% t Q.- i~ 4 N~ (,; 0C :.4 Nk- t U - .~ trL.I A. . 4. 1 . .4 ...7 . . . . . . . .i.

C %n gb%, ae *eou .40Orv. a Cu0 In LU 0co f I ? C t Ci.A-b

X I ~ lVV OUU I IIWSP4fr t4-

W0z

W. c

z k CL I I Ir c-.V.

ia b As b Ab 4 - -Af l k A l %O f

Page 27: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

N lw c

t- CY CY I

to I'OM tIo r

;f W% !U

c In ;C 1

jC

I0 N 0

LLLI 1.4 (a 10 :%0n N N o

Ul I-I :o

.0l1% m %0t% Wl t 1, I :C;-

I; .. . .

R

I nC ,QJO C C . 0

.i ~

! ..j' ' . .

It C

C. t, I c'c W C f Av c'I I i n .

OOi IllI- CD

INN

I; w 0L ~ l i l U

-4- Q I- C c*. I c , f.), ':rC 1~ 1i is0 ILU W:

UP I

Page 28: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Cal cl C c

Ci 0 (2 5ACi a

Io uti , r)~',

* .4 UN .41

0~ 0: Q C: I

NN

W j N irl cv 1v 4

N IN -. %I

Iu A III Vt.0. I - C

I-i (v 'i "1 t ?A : cci I A

iCAca, 0I vC~ Iist,

I-,' cl

ra Ia I N! WI 0'NL

. C A0 cc In 0I U% K jI -I 4

ltD 0m 0 C;; c.) C3

A j . LU A~jU

A I.. U.t I

AL A Lu (fl N. IA t ol 14 I It cc

CD I0 0U .1j t ~ oA

0I -C t), N

1 I' to. cc. f0CC I

0 1 u 4 ;

I . t' *

4I A

1 11 LA tn. I

WI U III II WlU I V. ZU\4. N CV! v C)% Nt* It. rA IV.

II -t4 .'T 0-.4 111) 1-6 1- IfAI q IllC

'C N.4 In- LS

) I' M CC I -DI C.J C:. A- C C

ltN. C 1. - c1 " N 11 II "I

'. p .: IVi 01 U

L> iA 3 Im W c, Ak 4 C 3I [; 9. C3 U . C

a a2 ', 0 00I C A

~~.,4gt us A i CA ~cAH

III Lh A I I u

14i r vi r 4 " i02. "a IA u I A1 IC,

.... I*.. o C r.U* Ie e 0IOlefu . @cm N f, ;r

Page 29: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

- ~~Amt~lm~fmI~l m.D. rp

CD C, Cl C3 C;

i

1. ~a.I 0L

cm LV Q C2C; C C*P C3 c

u In C)

C; iC ,0 Ic; 1. Q In

121110a CI 0 0 0 0 0* ioI

:24

dm Am'h b &

Page 30: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

V If I ' - TI

C2 I- It IC I N1 I

c -I e- .

III. w .1 .l '1 A n vII

W% INc U luUU

10 03. c o:oN10 N~ go

is, C4 000 V cC Us-

N IwoI 40i:,W~iCol CI

T ~ 4%I Ol_ 10 d c

la 10 v 01il t- eISA uS I~I ~ - *.

If T4.? N m 00

cV rr.,= a' fir it cc'

J L UIW II-UL-

Cl C11 c IIC

?Ioo, - 21 0CDI C. I,

.1. v)1- E u)-w

0.4. .0N .4 0, us! !C C?

C,.? co' r, L.UJ

.9 1.c I< < -x c

U) l C C 1 0 C3 !C.0 O. r-a

'rI I Il , !I= u- It a ~ .B O B B 1111 it,

Page 31: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

tu WI .. 1UJ UI ut if

!l 04 IqW IN1

Z (v IY " Y 1 W

z 0 C2C i C-' .1L 6 A t IUI; u t

t. N " '14 W 0. 10 VI r .. Ivn V, I0w C3 t0 1 Pw C I C, I N I 1 0 N I ,

U0 0 a . cju .I UL 0) -f N %1. w IA, U: W, W. J

21i w CC 11 C2 CO 0 . I' 0 , C.r'I I' IDI LA 4 0

N'.1.1 N107 t t ccU) j C 0i ~ ~s1 01 C:P S ~a~j~~

0 -- c N II v ~C3~~I 02I:) ~ j II~

cy 0 10 N '1 0 "C ''v0(6 ' I0 1 N CV:. Cr

CIJI t' ;A,,105' 0' 00'

CL WI .4. 2 .

21 0 0 C ! 2

41 1- 2 * W!.1 * *') jL1 I v1us

'41 Cl4, ii III-

PC I~c Ia l Ca Lt Cj .

*1 *) L laW, II- wN) V1 0 N V4 CDSI: '

Mi wf -, r%41- 0'. 4, , 120 N4 " u

-26.IIIi

Page 32: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I Oro

cc a

I ':e I.Q4jI

Z1 I c 1

II. cmL

Ca 'o, I

jcQ I

0 #.J'

CA il' 0I.

1.1 Ul jiC0. CC U% 0

Iki 4. IJa

.j.

Page 33: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

*r - ' - -

L,4.-

L a. :. 3an 0.4 I

(*.

Cl 1wI

Page 34: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

LINI

Ins

j0 ii

A. 10ii1 10110~c QI .0

ii:~~IJ c ~ tLI)0 Iiin.o o. t"a Qa1

I- Ix

W - a Ic 4Ix m ~ CD 0 0% I .fI -.1 i.0 C3 rC.3Q ri:c010to. 4u C "i : J c0 l)t.aCl cI j- c.

1 Ci tU) Di C0 o0 0 Cri0 0 mV a ~ r

_j I Z;0 0~ 'c4C%. i:.qN w

a .I *. oo OOOaI . CC.I ;.aieL4~ U iC iCIKU I

.4 C3 C3 4000IIcl1

I-I. NI7~c3 o t Q 0.4 I- 4- clc O CM 0 j ) *Z UhI ;

c *l... 4.. - a- I'.

xi OD D. -0 co co 0 !); ; .4O

Page 35: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

C4~ to C3 -k

I~0 ?. I 0i

ICC;

0CD

IC; C

1w .1i* r C w ~ w u U

2l (v Ii.U 9,

NC NC~

"JJ NNI

N 2v N

(n V)iI C. I*uj IL '4 w' C- 00 0

I 'o .1C aC - ,C c20 , ' 0 I at'o 0 ,0, . '. . 0 '0 % :O .4 IC Z J

CI c

,4

L '

10CD,

IN, L v Of tv Ct A.V*-V lAt

Page 36: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.,- ~ ~ ~ "'~ - - - -Y

a-j

iu1 ta Ico I; a a- Cl v

a C

Co ,%I C. N0N"C '4, N ~ 0

cl ! W' jIL U 1 0 to

C, ic;

'o . 0 1' 0 IV .

I' . IL La I w ''co m 10 N 'N C

a v IV0 4

tr -4 cv. HC 0 0 a

:uj *

IU .1 10,I 1*'lii II ~ , 'l'

rl H in 'l Z ~ :I ~ ~ ~ ~ ~ 1 iu', 1 . ~'n U'~ 4 10j'~

1;' 0l I,'io0 101#. \I v L ** j i1, 4' vi I~ f J. to) NJ N c v

I 1 N i c, 10 0& Ol CA .

CL I1i

L J c. I. C; 10 0

00 00 I cm tv b I I tit .

1U 1 o 0 CM~ q '0 N 0 0~,.1 l 0.' cr a:

~ .~- -- - -- -* * '%

C. w 4

Page 37: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Vf I

CD-

LS. .

f- w 1.t 1 t5Iw UIU Uft I C$ Cp cl 20

0 I 3 .4 I' VI nc 0w p Dk .V 4m N

1o 4 .4 '1 VI .

QI ;C! 1*CI * -V I, C i x - 'P 39

12., . r1 I i'Il AN IiAaaaaa

Page 38: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.11full 1 fo . lk11%j. 0*1

V4 Al V 14 wko N U II0aIw 5:0 in VPC t% ev N ~

?A P4 j%

.0 AI i 1' tli na f u acAI I .4NII

at 0. ,41I k% IO ,L

9% N.fV

,A 0 to lt 31 . 4. . 9

1.1 V i 3f!84u Ic U. st all4 UIt, 1 1 .1

c 4 P) P)t CA04 .%lu ul i lu"M u A l a9 '.4 B, wo. w 4. 5io a.L ~ I

UNIM 'mC.C $ Inc CI -

tp# N to),* .4 . .4-~4~1

C. I I C.ci

U. LL 0- W..2 I.-L Cw '0.4 uj WL~ t..

lb C3r 0 ao V0 a C3I2 M I-m,63m

to a- itW,1.-' Wa"o ! Lt n 2.

4~0 r% L. 4 $a *in4*4

r)P (A Ut.lt 11) W C4 I t.A..

3C .4 : flL'4 .4 tv) Ix Ec -. 4 0x Ct'.t NG ..

X a0 ;i C, a Z . 0 a d ca. C2 cl D=* - 4

1p, I~ iL 'cr* Iw ," M t 9 u

-4-4~ ~~u WW 1- 10a "" w UA '). o- I .- W *UJ VO"P 011 a P -N) I.- ON

u; "~ T P rluv*uI nt-uc 0c 0v tv > 1"a Lm a > aD aw a a a aa 0a

CO' t 9% r Z .4V Z4

Page 39: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

46 I M4ZI]

c - Q 2 V

-v C D N 4N 4 , U c

1j t I. 4I 1 j

Is -' ILt..

ICA 'rI it' el :CI cI , CAC

LxI w L I Ur k v 0 n 1 ii IL It 4Io 4 .

N Cl OD to IV C o - 1

94 C3 C4' f ICW I i(4 .C' LIN U%'I. I' C;I 43 1 . ILX 0

11) ItA ic) CM v. t -C3 40 ai .1 a % r C3, Cs

M% *1 IC' U%1 ?1)~ ~ eJIt, ti U 0i,0 pV

W4, . rj I I 1U

Il i T 2 :.~ fI~ Vv cr 9:v C I h

Page 40: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

'MOM am.

I LLC

SIL yII

~.1

I IP

bI( i ' M

IL- lJ1 4

or aa~ to '.L

It Ak 4m C IIg

Page 41: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

2.b Program Listing

rnI1RAN nFeK 1(IMAIt. PR(BORAM FLIIlENCaFflR GFNFRAT IN STIFFNFSSsr1.FXlBILlTY AND 14ASS L

r MATRicFs rRom PIANE 60ID --'EAM AND'TR'JANn. PLATE ELENISr F111ING-1rf r FOR 100 IFGCRFFS OF FRFE~iVW OR LOSS. GENERATES PU14CHEil LIDr rlJTPIIT TO' RF IISFl IN THF COI PONrNT IFODE SYNTAFSIS PROORAM.

7'T'16,6 ,SMFH(b,.6),PI TK(9,9)jPLT"(9,9 )DSSTF(25l5l)PSM(25050),3PSMASS(300),A(2)050)VALJ1(9)TFPP(lUfl,,R(JO0),(OO).DIIM

3 (3 00)o

iPI TM(1 .1)) L1000 FIJPMAT(8r12W3

1 001 FOPMtIT( I-X?F1 0 .3 )1M4 F OPMA T(31 1 n.3, 3 15 )

10 0A F (IRMA T( V',,5 X- F 1 .3)

15001 F0PlMAI(///6;iNJiTS =14#5y,6H NR :14,5X,6H NRE x14,'jXAH N4PE =1#X1114?IMHflF =I3,5x,'AI4MKFY =13,5X,7IFLUMP =13,

500"3 PORMATW//7314M A T V P I A 1. P R 0 P F R T I F S ..... e*YnUNG'S HOOIJLUS POTSSON RATIO

1 mCIpILIIS Of RIGIflITY flNSITY,lf(/2,6XF12.5,9X.F7.5,10%,Et2o5 ,16 X l 12.9) ) )

5flb0 F OPM T//3-LJ 11. I N I C 0 0 R P I N A T F S/35HJOINT NOl. x

1 rf(lo fl. Y C(Infl.) [5ofi4 r0PMAT( j',7Y.F1Ol.5,3X, 110.5)l~flf FOPMAT(//6714.j V I N T R E S T P A I N T r 0 1) E ~o#**

1.i*~*N*.******/7H,IINT NO. 7 nISPLACFMENT ROTATION ABOIIT X

1 iPnTATI flN AllT Y)F091/ FIPMAT( 1 116.1 1QD170)6)00 Q FnpmAT(/11'/7"H F A H~ F I. E V' F N T P R r, P E R T F S .'

~*I**.1********75EEMEl T NO. A I F

I I MAT JOINT 1 JOI'.T 2)5000 FIW?4AT( IfRXF9.4,4XF9.e4,4YF9.4.2X, I?DAXD I3o9X. 13)501ni FO)PMT(///1p'14T R I A N 0 Ui L A R P 1 A T F F I F M F N T

1 P P (1 P F 1P 1 I E S iA1*-/t7?l'FI FMFNI NO. I MAT .10INT 1 JOINT 2 JOINT13i Ox Bly pti IXY HETA)

r)(111 F0PMAT(/,/6QH(:nORDTNATr NIJNPFRS PR~n FACH Z fliqPLACFMFNT Al F-ACH UN

JPFc.TPAINrfln .JOiNT/251HJOINT Nro. COCRn. NO.)

5071 FORMATC 1 116) L502?2 FnOPMAT'/'/?8I11 i' m P F n W F I r, H T s/23H.JOJNT NO. WFJ

1HT)0f? 2 FpmAT I%)6YFlfI.4)

r PlC( ASSIGNmFijT'; L

K 01 1111l-36-

Page 42: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

jjNt I e.(;?j A

r prrnvt jIN! lIT Of IIAIA100if Rl tiI( IN. I 0110) C TITI F( I 1=1#1,-4)

Rr~lI Nn tM IscRI, V' I'f .11 I ISRFW1 M I) I i. is

RI 1 1 Po .t1ISC'

R F'11 'll I In I f'!

6m1? 1~ MfIT , 6fiflO) 11 TIP I I~ Tuls24)11I) MN 011) I'l-ITS NP, iRF, NFP, NVPF ,MI(FY ,NLIJMP NUCT NPIINJ

c N.I11StNO. (7' I'lIMTS. NR?.NO. 11F J 'INTS huH RESTRAINTSF NRF:io. s.F PFAM FI.F-MFNTS, NPF=W.' OF TRIANGULIAR PLATS: FLEMFNTS

r PI'I =NO. OF I IAFNVALIIr.S ANDl E-V*-NVFC7OPS DEFSIRFPlr P tfr-Y = IlnNOT r.0I4PIITr.F I.FMEFNT'4 PONSTSTFNT MASS TF*TMSr KV = COJPI VF- I. MFNT AL f'ONS ISTFN T MASS I ERMS

C i,I 'lo ni* ) I IIMPFI) m~ASSES I Nt'tTSc iT fr' iNI IjY ONE ra~MPOthENT IS CONvSIIWRFD.

C hr Cif ton. Of COMMON ilINIS ir MORF THAN ONF rpmpONrNT IS CONSIflEPFIr TtW vnmkmmi mIINTI; MlST CIF NI'MHF'4Ff LAST.r t-~. 0 WI MASS A4fl Fl EXI' ITTY MhTRICFq PIINC11rD1 0l01

N-IP'IIj.i= 1 , 011 Y MASS mATRIX AN11i 11 VW, THIGH CflPE PUNrHED aiTr N11P11N.1 = . nh Y Rl PlICr-1 Fl FXIRIL ITY PsATRIX PlINCHED) OUTr it- tir IT is r FqR Alm? THAN 11, 1t,PIIN.' MIST OF 1) SO THAT Al L. OuTPuIT WI LL

L F 1-N11F I)i~ INCI 1DINC Fii STiFFNI SS FA1R1X, POTIF SHAPIFS AND) FREC,r FOV i4 rf)mIAn:FPHT MOTIF '-YNrjiEspT. PRCARAM.

[ I' hNUFt(lhIT,r11fl1) Nj)TS,NiNRF,NPF,N'fi'F.,MKFYNLIIMP,NCJTNPIJNJr I'i' MA'FPIAI PIpoprRiirs

RI kUI,10fl1 ) NMAT

r flrtWI=flF.N!.ITY

j ~~IrFl;r( I GF~l F( I )=vtP( )/(?.*( I * *PI 11))YM( I )=YM(, )il 17F;

~r F ' I ) F.I C I ) c1 .1 61hRlir(flwuriflfl)) (I .YM( i)DPR( I),'F(1I)9,FNS( I), 1=1 .NMAT)I.. 1111 ?r,6 I1 ,IN4AT

r I NPuT A .INT C(Il I flNATi cI ~~PF*A~I(IN,1lfl.i) C X(M),Y(tJ),Ml .NJIS)1,I1 1 lF( rIIT , r00 jj

wrfill. =Y( I

PO 400 1Q =i : , ITS

I F ( X~lrIR- yCrFlP 409 * 4a 40)94 9,; yrrizy11r 4q~ YAH.37-

Page 43: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

SF ( YMOR-YCOR1)499, 485;494 OF WRI19(flhIT,5499) 1#1!

599'o rflf'AT(1ll1,5X,31HA DATA rRRON HAS OFEN -DE7FCTFD./6Xi,34HHE X AND Y

1 ClOnPDINATFS OF JOINTS v4,1x~jHANaD I3,1X.VIHAIF TIIF SANE./,/6X,3OHP

?ROCI'AM FJDII~ ANII JPR D-t FT~f'teC:AII1 FXJT

490 r1I T I Nil['510 C(It' II WiF

r' I-N~lT JuOINT RFSTRAINT rnODE

r' iI AMPEIIDO 19 I=I,N.STI;

N t?( I ) = [

h -3 ( I I = [ 1fF(NP.FO.I) Iro Tn So

PF P.11 1N, 10Al1 .1,MI , M2.M.3

NIV'(.IT I =P2 LJT7'( I )=.IT

11 01" T I NM'II F( NP.F1I) rgl,'1TO Fi t

D'O 6fl0) JtIPNNRj-ITT= 'TN( 1)

DO 109 J.':jflT, NI

I F (.ir T-JITT )5Q9 p ib , $99

foQQ rns'tlAT(1"t1,5X,31HA DATA IFRROP HAIS RFFN DFTFCTFD/6X,*iBHIN THE JOIN11 FPFTRAINI I ISTINO, JnINT l3,1~,l4IJAPPFARS Tw1CE.//6X.3flIIPR0GRAM

rAll EY17?50FN ti I I Ail .IO~fF T

Snq C Ol1lI I jI

r INPUtT 1 (11 P~rI mASSESI F IN1IIMP -. O.) ('0 TO ?'rORFATI(IN,10061 ((fJNASS(T),RStASS()h11NLl4P)

P 0 28:,1 - 1 ,N1IlIMP

URMA'(nw5? I 1:RP4ASS I )(i'.14.12

25n rflPI~ I tNIIF

IF(NAF.1 P.Q) (;n TOl P02

r IN~PI Rr M F~ifMPNIT PRUIPFR11FS -

PI( IN,1004) AR,XI,YJ.MAT..ITNR,.JTFRr' AR-APEA nF RPEAM CROSS RFCTICN. xT:ARFA MOMENT (IF INURlIA,

-38-

Page 44: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

tri Yl:1'rFFCTJVF TnpSIONAL Mohr4T Or INERTIA, NATat4ATERJAL CODEFr JITJP9J1rr:.jOTT NUMtPRS Al VNbS

WRI IF(OIIT,r5fl0Q) NMAROYIDYJoMAIsJTNRDJTFRIF(Ap~.o.O.IR.XI .FQO.lG.OA.YJ.EO.O.D.OR.MATFO.O) 110 70 795IF~jTNP.r..jTFR) GO TO 796

795 bWR1lr(nIT,7909)M

799(2 CfPMAT(1P1dl5X. 29HI)ATA IERRnP 14A-* RFFN DETECT~Fl./6XP3QHA REAM PROPE

?A II- FTF-D. I1I FvIrI

799P Fnr'MAT(1lI1,5X,31HA DATA FRRPR HAS FIEFI nFlTFCTFfl/6Xj,36tJ0Ih1Id1 AND1 JnIP'T 2 Or 111-Am FIFMFNT 15,itX,13NARF THF SAMr-.//6X,3OHPROGRAI END?Fn AN''1 .jofl or1F:TFD.)

lIK ? Ir (I In pr) A R, XI YJ.MAT-JrNRsJTFP6 ) IIFJTI NIF

Po, r CNI NIIFTP~~.r'F~ip ll TO 30l2

I-4? TF'(flwl,rn1oI)r P41I11 TRIANflIII AI Pt ATF EI.FMFNT "ROPFRTIES

RFAINItIN,lfln5) PTHPMATP iT1P-IT2,J13*NnXr PTII=PLATr TVjCrKIIFSS, MATxMATERIAL 110111r lTlv, IT'), IT3=jIIJtT NIIMRrRS AT CIWNERS. ANrI.F AT jTl MuIST NOT OF

91 fit (1r,1417:sr flX-flY,nj,n.I4,FTA - FI.r-XIIRAI niInITY TERMS At~D ANGIF: OF MAIERIALrr PIl1NrIPAI ANF5; W18 TRIANrn.F LOCAL AXFS

Tr'Npx.rrj.j1 PpAl( INn02) I'XPDY,nI ,DXY,RETAtC(NriX.F0.1 ) (;') tO 18

nX"yC (1 .- PP(MAT ))/?. )*nX1A RFTit.'RrrA/3s7.29 )R

hR~l If (WIT,651111 ) NMI.PTH,MAT, .Tto IT. JT3#)X, Py,!11 *OXYIIIETAfF(PTiI.rn.n.n.IwP.MATrti.n) S~O T: 8085Iuxri 7.Fr. JT'..j.JT Fo.JT3.OR.IT.FQ..J4) GO TO 806rsn in RC)'

8 9 (' rOPfAT(1t1,6y,P()n14AA rRROk HAS RIFN PETFrTFD,/6X,51t1A iRIANGIILARIPLtIF PRIIPFPTY Iq MISSING F(PR FuFMFNT I3.iX,1H.//6X,3lHPROflRAM END

?FnAln I 1 rpi -rm.

P96 lRI7F(flI,AQQA)mm809P FOPPAT(1.,5y,3114A IlAlA FPPPR HhS mrr jFTFCT t9./6X,4HIER JOIN3: 1TS 1 ANtI p, flP jAINTS 1 ANP 3, tR ICTNTS ?' AN11 3 DPHNINO TRI(ANGUL

?AR Ill ATF Fl I'MI NT 13,1.X.13HAIPE TIEF SAMF .//6sX#3flHPROGPAM ENDFD ANtI J

CAI I F~Y I89(r1n Cf1 NIIF

lIRI Ir (I i"~iqC) P1H,MAT, iTI .ITP,.113

it 0;JT) 6 F;7.''$6 s7J650; N)( 1-39-

Page 45: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

657 P4K-2

Nt~r'JT = KITS- ?4.ITd+65F nof iokVK~llN

IF(KK.Fc(.1 G1O TO) 670

RFWIP'f MPI1Sr

PFYIPID J4MWSC

6Qnlf 6( .II=Nr.TN)T

660 OPI INIIF.URI IF (OhIT,t6F9)

650 FOIPHAT(1111 41X.10ajnmMnN .JOINTS VFAFE)r ;F-Nlf( PATF rnIIR I PATF NUM6BERS"OOR FACI4 DFGRFF OF FREFDOM, 0 IFrCI.AMPEfl, NnvmAI nISPLArFMENTS APE NUJMPFRED) FIRSTC 'l V2 M, :i13 rONTAIN rnOiRn. NhiMHEI'S FOR EACH JOINT

c NPPII = 10 OF nORmAL nISPLACL-MrNTSr Nnfl NOl. OF D)F*:REFS Or FRF DOM INCLUDINOi ROTATIONSj P

6n CAII CflflflN(NP,NR?,NRI,N1,' 12,N.8,N.JTS,,NRFflJNfF,KKKNNCJT)NnH~AqSs=NAFr-jRI- 111 .NM =PRFr1I*NfMAS (NRFrI*(NRFDIJ+1)?Tr'Nr~T.rO0.II) GA 1n K71'Tr'H( K.FIJ.?) PO TO 671 .

A679 FOP'MAT(/// ?5llChkMON JnINTS COM,*TRAimFl)671 lWRITI (hll,5fl21)

no 13r, 1I,'NjITIF(PIM .FJ.1 ) (1 TO sill

5n1 C nm I INIIF

no j; 1:1,mmNi

IFIN12F.E0.fl) rQf TO 200r BFn IN TO GPMIPATF PFAM' STIrT-NESS TFRMSr SET lIP rf)DF NIIMPFRR FOI? REV, JOINTS

nnA 14 PIW-l,1RF:RIEAD( IDiISC) AR,XI,YJ,mAT,JTNtR.JTFRNOqC:(l )=lJI (,JTPR)-Nn'C ( ; ) =0(.1 CN i'R)

Nnqr(4)=M1 (.JTvR)

knOc(5)=HJ(.lTIP)

TFIM FY.rO0.1 ) I%(' TO 95.;C qTrPPl INrn. FOR' I ATFR IISF

WRl rri IIIISC.) AR,XI ,Y,MAT, JTNR,.ITFR, INnfSr~ I), I1,6)251 cOP I iII

XI:lY. XC.TNP)

Y1 -Y( .JTNP)

CAIlI rRAN'S( Xl, XD, Y2.FLNIIP.DrS~-40-

Page 46: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

F=YHI MAT)I O:A( d'(MATIW lL RFARK(Ft MTtf,,Xj,YJDTm1,n.)

1F(NfSrOF)~.aO) Go TO to

pnf IA m='1 ,6

110.Mf) cm TO 16

fIF(J.LT.l) nn To 16

SR SrT(MM)=(;9TF(mM)*STM(K,N)

~,l1(MfIMIUC) MM2.AS II ' ON1 I I WI

irfNPF.O ) (,'() TO 300I' rF'11! TO CFMIlRAIF TPIAW)ULAP PLATF STIFFNF.SS TFPMSr j ST lip cflF NIlMIP-FRS Forn TRIANGULAR PlATE JOINTS

111 1 NM=1,NPF

RFAO(.J.I II X,fly,fl,nXYRFTA

N ( qV5 N t2 .1 .T 2[N c V(6 M:N3 j IT?)

N 0-r ( 9 3:l 1 T Aiir (M VF Y t 1 ) sl' v 7 2!)4FSTI'PF IN cjr . rw? tATPR IISFWRI iF C IRSr) PTlI,MAToJT1,JTP?,JT D(NVSC( 1),.1:1,9)

254 cflP T I lr.

RYl =y(.ITl)

rAl I P.ATFK(Y?,X3,Y3,lIJYPYIltflNY.RFTAIJCS.PLTK)

lF'NPSr(t ).F).l) (;O To 19

IF'J .I.T. ) CI* TI 2

Page 47: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

hslr roP PI-uICTIO

RoFOI I NflIF~I! 110 COMI I Wi.

D'P. t .),i O 201=. NFII

RFAI' J11!C HPX,..A.~ IIF,(OC ) : 6

IM72=0

IF(NPSCF .Pti.) ~ n T2401~

110 V21 : l.N~RF' M 9- - M 1 l, T YJM T J t ,IF - N S ( ) I 1 6

nn0 ?A vl

IF(N.1 F *f) onf TO 25

C I A ))i TR~IAICIA QtAFMSS" IS

19 0 ?6fl )=,-M,tI(V,

rX1Y in 7r11AsX7:Y( JT)

RY".CON( I I)py4 n i 7T(Pq1.?(leH)*) N IIl

23 cnm iI N I4

Page 48: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

vYi-IifS(*(Y(.IT3R-X )-CS(? )*(Y(jT3)RWY1)

I rjis(I OA i*Y OIT TOX 27c(? YjT

n:i 27 K=1 I

jttjri;ru').Fo.0) Go TO 27

IV(J.L.J) nl TIl 2R

IQ)smtm1k,)=S(mm)4PITM(K.N1

191q AS:H-P TmP ,N)

I~ ~ ~ fk IJ~ (~I j )MM,

?'~ ri~ tNIIF301 r WII I NIIF.

~~ C 1 ~Topt' ro RF-fl'.1 I 01

11,11 ~ ~ T ?r8I'9NUM

I F(hl IN . Fil. Q) rn 10f 258

N S= *Ntj,+ ( NN1,-)I(?*NlFwNNP )/PSPm ( c)=NS l PMASS ( I

c)rml:~.~i WITA30

r~ri Irs 321

A%- 1.0P.0l 31ii M"12=1 ,MM3

3?4 I(Kr.1) W'O TA 325

rAl I 7QAI'AK(A,R,,lIIM3,NRFl',NOI'ASS, 1PTSr,JDIsrDHDIS(',KflJSCDKKK)

CAil Z7QlI.A?.(A.l,r,I1IM3.NRFflhl,,Nn- ASS,IDTISr!.Jflh',MDISrKI~TSC)ICAl I Cr(AM~ ( A.Nr~ DI I M lTDM i) S C ADI )n l t ,N )~ r K II C

rA I i r " ( R,11,N .T MDIS A, ,11

I375 'al I F Iar N (A -VAlI,TF MP. H# ,,TiUM3 I FI PP4 nIW4Tl1I SC*KD I SC, h 1SC,

11fl I .r, Npi' ,NtilliF,Nm, DFNRFUNtMSS,P-MVSC,NNDISC#IK?9, 1M22,NPIIN.Jo?Nr 'I, KKK I

F -43-

Page 49: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I rnPTRAN nFCK -9 '~~iFAlrcrmim, 11RINTS, PliNCI4ES-MASS OR STIFFNESs N,. ANn JJ MATRICES t

Frn THCIPN~~1 SYNTHESI'S -PPGRiAr Fnilr,r CfTAIN'; PFnhJr'Fn MA'SS ON czTIFFNIFSS- MATRIX- -COMMON JOINTSr FIJ INCLI1r"FS POTATION), ROTATION .OrOTHER l0TyTS.ElJMINiTED.

r IP-PPINT ANII PlItirs( rOfr., NPaI rI!R qTJFFNFSS* N4P=? FRo MASS

511IP1?l1ITJ.F CnMS (NRFflu,NCJTMIqC;iA,R,Np_)

41 FOmmAT(//?)(.lP1HCKF.J mATRIY (STIFFNFSS) - REL.ATES cnmmON JOINTS T1r, r I F JOINTS - FOR CO"PONENT M-11E SYNTHFSIS PROGRAM)nFnomt1T(/// ?XQ6IlCMFJ mATRIX (MASS) - RELATES rOMMON JOINTS To FREIF 10INTS - r0R rOMPONFNT MOrE SYNTHFSTS PROGRAM )

5Al FOlPTAT(/// ?X.91HUIPPER TRIANGLE (IF CKJ'.J MATRZX (STIFFNESS) - r,014MO

IN~ 'piNTS - FOr~ COMPONT NpE SvNTH4FSIS PROGRAM Il

531 FflI1 MA T(/// ?%,91IlIltPPER TRIAN~GLE OF CMJJ MATRIY (MASS) -COPMON Jinihirz - Fiw C~rfiMFNT MnnE SYK-THFSIS PROGRAM

RFA P Mnl I'.r) (AC!I), 1=1 # MAX)IF(NP.FO.?) CU in 7

DO ?0 11N NF 2* V t D(4 (1 -(?* QFP1-7 R II Fr ( A,3)I,(4 J J= h1

1 r~i ~l pir 1. I V ~

?A CO 1 N'

IF (tP.FO.?) AO I in 1

2? fl r' I6j,r,

N1ID.O2 -( P)N

6RO IF A .4 3.1 A a csN

n4 29 thS,:I44

Page 50: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

2 5 .. I A K-T~ nt"i Nllf

I FI I t . Uf). no Tfl 3?

Sft~ I .JI I

31111tj 41NS:- I + 1 -1

3. ir 1#1 4

r.Al I piINi( (H. I .t.3 1 pr)4

4n CO (lI TNIIFGF 1 I'PN

17

F -45-

Page 51: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FOPRAN D)FrK

C'7IIPUAK cr'RATI*S 41Ffilhi(ff STIFrNFSS t4ATPIX FOR IFNCIOCf

r 0 if, A lt'mMY VFCTOR WITH ST(ORAfl N.OR M'(LARGF.R)r A Ic, -4 DIMMY VFrTOR WITHl STAEW~f No (Nt,+l / 110 N*-(M4i (LARGFR)

A-R IS A n!IMMY VFCTOR W ITH -STORAOP 0'O M (LAkOF#)r C is A OiIY qFTO WI-I~~AF N ORM (LARCIER-)

C N:~'o. nr NORMAL tPISPIArCE00NTSr Pm; nF ROTATIOnAl D0.V. Ir h IPI CnNlAINS Kll MA10lXYr C nTmf Or A IP pi C12 MA-TPIX

c II: SCPAICPI 'APEr KTI'I STfl"Fq K1'.K7**(-1)

C A lITIIAILy riJNIAINS K92r*** RFttiirr-r e:TIFrNFSS4. MATRIX IS STORFD ON ITPE

SIJPRf'I1IIIF /ROMAK (AR,roll, N,H,N7PF~t'TPE,# ITPEKTPFKKK)

IF(fH'K.Ffi.1 ) I;() TO 5RFWINII H;PFWRIH1(ITP1F) (A(I),I~i,MMAX) Ll

Ii CAll SYMTNV(A,M)R~MfMpF

RFWj'fl IIPFPFIl~! NTPFRF''lt'II K1PF

I10 i~ KI K- N .JI =nn ilinIK~

I CH'11 CNT+1 fJ J- 'II-1

111) 30 .1=1 P.J.j

iF(,i i.ro.ni n6i TO 30

I )- 1 P 4'.I ,

50 C I I IlMFllc?Sl I : SlIM 01)1

1000 IN))1=INIF

IF( KK.Fr).?) in TO ItI RTI F (IPF) (P( )",u1 *m)ii Ri ir (I IPF) 0(l(),j1,M)

1n C0'T I N1F

IF(AKK.Ffl.1 ) 1fl TO 12

r O T n 1 O n- 4 6 -

Page 52: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

RrU IR MI MPF-00VlOD NTOFPrF14jIfl KTI~F

NFAIP (NTPrF) (()J1NA

Po 60 :~:,

APFAD (ITPF)([UI1)*

flr, 7fl K:V'

IF(' ;'.1 T.KI ((I T 0 70

Snnj fin RP=1.

sn~~~ DPI~~j np*f)P?

7n I'jSJII F

QFW!II tMlPF

UPrt1 i~n mvpF-V~W RI't* 0 MIPF

6'RI If(1F) (Af 1), 1:1,PMAX)R i- w oi n I I PF

-47-

Page 53: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

T r)PTRAl IJFcKri Ifr, RFuitireq STTFFNF-Sq MATRIX AND, INVERTS IT9 ~RDCS Ass NATOIX

C nFTFPMINFS E1flENVALUFS ANP -0OFNVEITO mR LaEN60fi 1005

r 7IIF hRfhII~mFNTS AIRF=C A - vr>I'.fR OF LFNSOTH NRfDtNRI)FD/t',~C 'A1.l - VFrTnR 11F I FN TH NJEI4 J

r 1rmp,4b,numX, - VFC(.tOPS OF L'ENrTi4 NRDF OR WA~SS (,SMAL-LF-R)r F - M~ATRIX Or flIMtNS-10t4Q (Nr,i.3

r ni)"m4 - 11C lAP (IF I ENC'TH 00n OR~ NIASS (StiALLFR)r !IA PF,.ITAPF, NTAPE, M7 APE., - THISE ARE VAR I OUSl -TAPFSr NRfiF - NIIMRFR nF nFrRFF:S -Or FREFDO-M (ff 'THE SYSTEMr NF1(; - NIIMRF-R Ar EISF.NALUFS OFE-qRFDUc NVPC - NIIMArR OF ETOENVECTOPS PPSIREFnr NMASF5=N(. orF NOPMAl D1RPL.Ar-ENTSr NOn4A!'S=N,. ()r ROTATIONAL nFlERFEc O or FEDOMr STIFI Is AN MIAlPF IN CnMPAC~t FORM i

r MA' e IS (IN IUTAPF IN COMPACT FORP'S IjFlI'r.IIT NF F 1ICFt(A , VAI 11, TEMP,R, I', PlI3,F, 1010J4i TTAPF,,, .ITAFPEDK TAPE.

1NhTAIIF,MTAPr DNP0F,NFiADNVF1.,NMASI,NOMASS,MMTAF,NNTAIFIK22, IM2

nimtnto' 11 nM:( 1 oil) InII(1 hAC).At(1)o( ,( ),nRF3)

JNTF-CER VPUTIIATA 0c/1H(FFI/,06/4HFEX/,r7/4WGHT/,O8/4HFRFQ/

11TI I 11j56 II'rI'( I )NMA!;vS

Pr-utltf mtAPF LRFI'IJ) NTAPFN1TI MP=NMASSCAll fl!vifII(MA!,NOMASqMTAPEJ1APF,I1APFA8.I*4TAPE.IK?2) IC~il I7Pfw.AK(A.,,,lJM3.N4ASSNfltASS, JJAPF,,i1APF',MTAPF,K1APE,KKK)CAllI)Ifl(NMASS,,NnmAS,NAPE,.IIAPF,I'TAPE,A,8.oNIITAPE.!m2p')rAll Zg:4AM(4,4,C.,fllM3,NASS,NOASS,ITAPFJ1TAPF,NTAPFPKTAPF)

RFL'I1 11l WFAPFPF*Wlfr) FTAPF

r RFtfl IN TUF ST!fFNFSS 14ATRTYRr-AIj(MTAVF) (A(I),I:I,.JRMX)

55011 F0PmATf///R~iHR 1) 11I C E If If P P F R T R I A N G U L A RIS F r N F S q M A T It 1 ')

TI' o hi 1I=1 , N4lW1:11

NF= (*MRl I I1-1 )*NPEIDl-I 1))/2ImR I I (AnlIT , 5tinfl? I I (A (.11 , J=NS , NF

!5l n) 70'MA T I/';IPOW, 14 /(QF14 .5)

IF'I Ni" JT,l 0.6It) r.( 1(1 379i

I It 1-IIF( I .FQ.11) 11.0 n68APn 367 1-1,1It

N117? (mti (J1-1 )*?Jl /.Jl)*(NRFPII-1 i-48-

Page 54: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

j1 il J=14

(A11S~lVANPD1"H hl~l?I Trnl1 D5'fli'i'i 9, rni'm Td///RQHP 1. 0 11 C E 1) UI P- .P F R 4 A NG fi 11 A R~

IF iI rxylIR IL I T V t T P y

LI Irct~r.,T.i:T.0) flo Tn Rln3ir Imm'l..Fo.nl) (.n Tn 81100

Boo, c 01 4 : Nlullt

Sflv IF 'Pti11N.I.F0.1 ) (10 70 R03

ph (" fl 11 :1~Rl

IF I .Frl.0) All TO 51508

J~ I

I nJ= 141r~ I P1ir1r (P.l1 RFFOI1etJA, ?t

n jf7 rrit'1 I NIIF

F~ C(I olI t NiirC 05 All IN M~F MASS MAIRIY

60 FApl(NTAPF) (A(i), = ,NRPX)APOl 6F111 ,lsjflij)

S 0 'i FnflPAT(///7QHR F ni P C E P 11 P P F R I ~I A h ( U L. A RI

NIF= ( ?*tPR IA11 1) (P*NPF1flil- I) /5 50 dlFfhl,0? ,(()JNNF

IrtNp'iJiN.Fn.fl) r0010 7n0I F I nfliNj1 7fP1,7 PI, 702

I-49

Page 55: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

70l? 1F(NPtUtJ..O.I)Go Tn 70o itj.

7fnf sil 11 p ij

IF(If.Fv1.f) Gil TO 5512

(I Ru i I = , i

nn0 1,514 .IJ=NS,Ni-

5914 .I-."

CAl I PIINf' (At I ,tiREI)II007, 1C)59511 rO!PIN1111

I Fu (1,,-I ,. r .0) RV TURNAI~ I F IA T (N TFP, A,VA 1J),TFMP',8,C,1HV3',F, f JM4,1TAP .,NTAP IT APF

noI f-fl T=', NF-TIfPI F( :A 1 11 I I f. 0. 0) 110 TO '59n hiw.i ( I QR(A (1)64385-U

6 n CCf'1T I -NM-

6 R Ii 1(fnlIT 90OFl) (I , PUMI ( I) =1j F 1)IF(MC.T.HQ.o) nil TO 3ien

CAI Ipimr (WlIM3,1,NFTCOg, It'3RA0 COP' f I IF

9 n ) FOPMAT (/ // 43~X ,A.14IFH'RARF- THE 'ATIIR+AL FRFOI)EtNrI FS ") '9001, F0PMAT(3X,?9IIF NATURAL Fr'EOII-NCY NUMPFR !5.?X,2HIS 1'l2..3,2X*

RI- I IIPN

F Nn

50-i

Page 56: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

T FAPIRAN PECKCCCORflN 4SF.1ONS A COORD NO. tO EhCM fFCRFF OF FRPUFOM *kT EACH -JOINTr FOP TF,IIE - 180 c

C ~ ~ ~ ~ ' APAY Ci~k'K STRAINT 'INr~n. F~OR FACHI DFURCEr F FPFFDI(IM AT f- A rH .1OI114 "FN~t~a:i; .14

r NI .N',N.3 = 1riPlI. No. rOeR tI&CHI'FOEPFF OF, fi'RM~O CNORN4ALr Ol"H A11POPN1S ArP NIIMIjFRFI) FARST)r k.IIS N04! uFJITr NRFl In~. OF MnfRNA. njjPIACF0FNtSc NDV = TOW~ No. WW"OFl IS 117' 0406014 (iNCIAtMfINS ROTATION)

IT I N I I F .I jOTn 1ho W. ' T

~ I: ifCNPI. F. ) TO

110 30 1=1 N.ITS17 fFr'tP;)(J1 .F j.1) RO4 TO 10

.3', rotWi INIIFnl o10 I ' If .1T

3 T ~N. 11j ~ ~~~ 11 1 P S "n~j,,

i 3 l in 11'NC .I TN1KP I )=10

3prnN-N"C I II

IF(NP2( .Ff1.l ) r.0 Il '40N? ( I )MD

-I rnlT IN tflF

TF(NP3(I).FiIt) (110 TO 4P

SNnr=t'n-iA F Ill NIII I

Page 57: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rr 1, AT Fi' ri ilrNc- 100 C Lr' SYMNI TRJII MASS AN T

r I- OnIM Or MATRICES.r s-1 1111M VF-lnRWIT14 1IMFNSION IN F AlNk PRO11PAM Of' N*(N.1)/?

VAl Ui- STORAGIF FFlR FT(QFNVAJLiFSt, MI.S 4 "F IItESI n IN T14U MAINr 'PR(I4140:AS tA VE,QqO Of LENGTH: 16J. Lr T(bpnl lU"#.ny -vEC-T9RAWi.TW,.VI1KNSION fl N I N_ MAI'N PROGRAM.r n- lliMY ARRAY W-J-TH. QtkkO-S'TNS, 0F (N,3) IN MAIN PROGR0AM.r )]'I'M- III1MMY INTIGER VECTbR W'TH bj~thSrok WN IN AKIN PROGRAM. jr V'!APF- TAPF WIIERF STIFFNFSS I ATRIX IS STORED IN COMPACT FORM.

r tTAPF- TAPP WHEPE MASS MATRIX IS STORFO IN COMPACT FORM.r TAPF,JTAPF- SCRATCm TAPES.

r Mr- 11- NiimRFR OF FIGPNVAtIJES r-ESIRFO. iV l"VFC- N1116RiZ-R OF FTGrNVECToRs DEiSIRFD. MUST RE EQUAL TO OIR LFSS

r THAN N1-IG.r Y1F mA.R ANnI sTIFFNFSS MATRICFS ARF STORED IN COMPACT FORM AS i

C vEr (i. ON! Y TIlE IIPPFii TRIANUI3 or TI'EsF MATPTCFS(BY ROWS) IS

I nl TIll F '7 GlT (N, A, "A LUIE MP, R, r,D1,E, 101M. NTA PE,NT APE, J TAP E11 1PrNF 10, N VVFCI NCJ T )

r, 1 [ 1 1; 1 ill A ( 1 ) TFMP(I ) VA L U (I) I ),pC( (I n I )F (N, 3 1 IDJM (I)jiI) 'Il F PPFC I S I ONJ Slim* SIMI

PFIN JTTAC P l

RF1,11 11 JTAPF jRFI..III)1 MIAPFI

r SUIP Ir RFAn INl - RY RFIWS TN CnNPACTED FORM Lr AF:PI ACr I' RY ( )TRANSPnSF, lNE ,1p4L*(l_)TRANSPflSF(I CAllf"ILAT- FiRsT ROW

RFAt' (NTAPFI (A( I), TI1JMAX)RF~lIk11 NJrApr

h(1)rsflT(A(1))

In AC I)=A(Il/A(1)r Chi rillI AIF All 1 HF OTHER ROWS

FIO mli I.?IN

Ki1-l I I

N.1(1: 1J) (I - 11/21

JTFl(jO 1'1,Nm ))r TO 110SiI II ( NI 1,

DOlMQOl .1=1l 1-12-

Page 58: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

pn on .1j~zI I1

I~ ~ IA Vl *I4 1

KVnKrip4tI NCl

r CI-(K Fn .1Sl RMASM T I

611 CIT':(FI1.A(Ki)AO T 191

109 rIPJJ I II11Fit~~ 0 IHI rfit lF:S qTF 1'~

n**** *:~r( cn IN~~ AR *AS * **** *T* ****C

ItKTFN)F.l)OTO1.10~ fl lThnlIIi~ ~ n iH1 o jfl'IFS N TP 444 4* 4 4 4.*

33 TAm 1F NT A F

I .34n1 ClNT I NIjI::C 1lJ1'z rnWPIFTFS SlFP ?

r FPrmlISINFY ATC11, FISTWRKNG UP THE COLUMINni)) 410 1-1,N

ITNTI= ( m+3 ,i4I ) /P-M

TI 409 .1:2?,14TEA 400 V,.~

SKi 1 rj I- I + 7nA 41,0 Kt1.~

tK-Im-K)*(K-1 )/?+J.1I451" SlWiM~kuM tirK)*A(MK

INIItND+* J

4921 A(TtP)=-lM*A( Ifil

419 COP STF I4

r R~ SUP A 1

f6 kRI T F (I IAPF ) (A (I)D , 'JMAX)

-53-

Page 59: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

r F IN ISIJFTI W I Th STI P 4

r STFP 5 ir' 0Ml If fiN IAPr AY rOLIOMNS START TNA WITH (H4E LI.ST rOfUHN FIRST 4c PIIT P' (IhST cm lmN rIR1RT) INTO TF14P AND TUFN WRITE ON 'TAPE;

PO F)5~5 K=1l.M

I 1l- +1ori n 1.ri,,i

7FPP(1NP)=A(MI2)9511 Cfl"T INIIF -

l011 Tr.MTPF) (TFNp(.jJ) .JJ=1tIND)

v ir rKI I N I I

r FNT4 Or 'qTrp,

r F6M V i p. - -i

c PFAII 11 INTO rn~r A COL UMN A T A T IMF I N RFVtRSE ORDERr RFpi ArF K Fly Kii cnL.IIMN fly COLUMN STARTING WITH THF I AST COL UMNr tAkll krilPK r 1MGP THPI COLIUmN

RVAb(MTAPF) (AC I)0 1:1,'J4AX)

PO 690 ,.1=~1 ,N.= t+ 1 -. 1.1

RAI).JTAI2 E) (1IMP( II),I Iu1,J)

nil 68i0 Kz-1, I

A5n : CI r lM+ (MK1)I1FMP(K

irn I%.Fn..1' fG TO 690

S+1nn 660 K- I, j

ki 1 +4-K

66n1 IIIM~cIIMA (KI K I1FHP( X68nl rI1iT I NIIF

AC (INt ) SIM69", rONT I 1JtI

r* * e* * * * * * * * * ******

r SUF1' 7r 1I'l(! (I )I1NVf RS-F )*KlI

C Ku1 IF, IN CORFr NPFIj IN i rnflImtI flY CO0 IJMN AND CALCUI ATF ((L)INVFRSF )*KIJr Rf'j Piy Owwr rAI.rIlI ATI TH-F r IPSI POW

RFWIMO) NlAPFPr*AVONTArF) TI 1 11 (nn0 710 1 1i'M

7 1 AC )A( I T/FMP(1 IC 1NU. rAI CiII A IF Tlip PFS T OF T'WE R. WS

-54-

Page 60: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

[ RFAI1 (NTAPF) (TFMP(,JJ-),,.JJzlo.)

JJ-. 1-1

7 S I 5I t'qI IM 4- tF P P (-K) MK2)

f. TvfU'LIIN FTAFFNVAI 11-1, AkJD FiftENVi CTORS OF rI4E IIFW MATRIXr r1Ahr-r-T;-F SIOiN Or A jIt DO!R TO' (IPTAIN THIF SMALL ES!

r Al 1 I HCNA T (A .V41U, TFMP, R, C,F,flIPd, NNF I As VFC t4TAPE

05fl VAt l(I )=-VAI 11(l1

r mSTM01 F$ tFNrC.O T(PIF HAF

r RFA11 if INTO rORF RY POWC,

f. PF-r' '1Nrt~NFf FirENVFC1O)RS INTO (PRE ONE AT A TIME

r rtIANrF A'JI) PRINT FiAPNVF(rTORSI~IF(FCtrf,Ofl T0

RI A)( ITAPF) (AC I),1=1I .IMAX)I: ArF'ajmn P4TAPr-Ii~*~IT~.Q~f) o TO 8t6r

nATA IJ?6/411Mflrlf/

nn ciog II)lNv([ INIn=

nnd 4ono J=hwN

r NOPPMALI7T TiiF rIAENvF(1ToR

ir(APS(StlM)-ARS(TEMP( II))) n3flo')399939

4 IF(SiIM) c-4f,947,94I)

r94n CONlJI IF

71:"~P( ITI): rFMP( I I )/SIIM941 CONTII NIF947 rCIT'IINIF

IF(trCjT.FO0fl) SO Tn 990I CrAllI PIINC (TEMP,1,I4,O?A*!(:' 5

Page 61: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

S9 RTF 0 U COPIF1 W iS~O in poon

4000I~ fflPHAT (1110,19H FiGFNVr.CTdR NUt4AR 1-5/12Xv17W CORRESOOND146 TO

4001 roPMiArc1I'1,38XP43I4NRE AR THE r-trFNVAL(JC-S-ANl -E.IGENVtCTORS //400- f11? 14IA T (1 Il 38X,7741THE MASS SUAR IX 1-t STNOUtLAP t/~l).10911 U'I1F-(nliT,40fl?)

'p ?QI~ RETIIPN -

.~ ,. . --

5 6-~

Page 62: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rovstRTAN DPIrK

FCIA I'S IIPQO!jT INO FrORI4S ltHE C K~T'- TUI! CORHFR

Pit.*PI Ar?'FN5T', TO THF POm~A. FT104, IC'Fn, T11 tR-NG AR PAr

r r rSIIIPflh~ltJ CI4T(Y ,-X,YrL

r f r PQ'' 99)R

( 1,.1) zi .

W 07, )=IX..

C(R,")=I,

r (f1,:C): j i*

J

Page 63: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

0iF RnT AT 119t yfHr N 7 F.?-,nNrTApL. t 7l$ V S j F ES~ qUR Ft!'*WiaN07,11.4 i

tP T-III - Kt STOPF7

A- w~immy STOAsr- VFCn .RE fl, -N(IdC41/ 4~-em.1/ 4

PF4PF''f I IIPN'TE-

RFW I' i-nI IPFAr-V n NTPr

NKH Y N * 01+11/2

NH=N4k1

I1( 10 I Z! 0

RF4'flfNTpr ) (R (j) j~2 I )

P0 -I~ 20 .= I

?l A(IC TR(JI

I= D4.1

JC#M1 JCNI1

nn 3OI~n 1 III

kRTFL1f TPF)

InrnIo IN11,1?

READl (WItTPF)MM4?,ASA ( lM? ) AMM? )4AS

RF I 1IRNJ

I FOlRTRAN T)FrKrPF A t, Ft IIANF nR ID HFAM 9:1.EMF.T S?!VVNFS MATRIX IN SYSTFM COOROSV j

Ft ri FAll LFN(;TIIc Y11IING*S HOI)IIIJSr Anti11 tS OF PIU1l1Yfl XI =AqFA MIIMFNT nF INrHTIAr YJ =FrFrCTIVU- 1lRS~lNiL I4OVENT nF INERTIAr qTlAl' TIFFNFSS MATRIXr Prc' = IIPECTII)N COqINES

SlIIPRITI#F ArFAMK(FI.,E,,l,XI ,VJp,SDICS)

7tzF4XI/ I

ST'(Pi )4.7*rS()n?)72*lS1*fC(

Page 64: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

-1Io I m - - -2

5, U-4i- t(

F- ' 1 T

Mt TT~(I U~ST' S

IS Ty C6 ' tiP

no i

HiNi

'I~o"sq-

Page 65: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rfFAIk P1 ANF O ~ j iSARI NYTHORS

r ^R110 DFJSITYr A CRh§Sz qFCt--tONA r i ~

-0r l 40FA - MMFNT OF 1Nr-R'TJAr C OF1rCTI-VF -TnRSiO(N,-AL -OISENf 0' INERtIVA

72-Vi iL

7, 1,,X .I ni3il.vf

TT=/1 *Y./(-3.*Al-

~~MI~~~1 1)-n I

SM!A(A ,3):A A 1S ( I

st*(44)TSMM(I.1) I

5Mm(%,7)-SMM04,3) L

no lp ImL0

5 ~ FnY, fly DlY F I

rPUi'prtpAi AXFS W/O TRIANGLF LOCA'L AXFSr O rf I rCIION COSINFEqr j Pgt. ST IFVI4FSq MAIRIY

FIIPI~nIITwl. l TKY.3Y.JD1 II.lYRTC.LKflimi ajsinO Pt

-60-

Page 66: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

VN C y - Y1VCCN,,

n 1:0 J=i,,1 r -i v-(iU L.)

7-1 rIv E (. 1 i = .1

~ 1. PC'nfj 1i1r 9

I V( , - )4.iP~~NvQ-sr#:

T (A ,A =-I1

If 4, A 1)flls(?=pr (

T14,-T r. )x PcTF (l )=n C (ii49)=r(I1;=pS(I

i-nIP)=fs(I-61- MAmYS1F,1CQ

Page 67: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

A ~~ H~i- I iIIA

F Ii'PCu ti.-- orIIO4. • U^T r) -€. ,"

P-1I mf* PS ION4 A^.( ,9,)-, .U (-9',9 1 -

ill I STOJJ I( ,9 -ii)=-IO "

K=TIT qP?,l 90117,9091

110 42.1=1 ,NM-

01107 n I ,.)-A ( ,.I )+A(K,,) II0,i 9lno 1=1 ,NM o

91100 A(1,.II,/ V

p0 (in IS 4M= iMnr IIA(=M, i)IF (ARq(:.PFI.T)-FPS) Qfi'.901t,9f16i

9fl16 IF (MM'-I) 9P1f0,Q01,90I10Ofnf1 n n(I 9011 I=l,NM

I (Mm, I)=II(M, o. 'I1( I, J),DF. T()nllI A (klm, 1)=I, (M , .1)Z-A ( I ,D )rFLT

D1O1 9P33 .1=1, NM

PFI IIPNPF I lP

I

-62-

K -

Page 68: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rnP1VRAN DFVi'

r Jill-! SIPPAflhf1,NF .fi~FPRMTNFS:_1-F f~hiJlf- INTF'aw, MAIRIV FOR711 TIt F0'A01ON_ FnR' TI4 ToAG1RIAF'L

C y?.x3,*3 MR'ODS 'fV -60-4 'CO-ZR i OL r.6RO(R AFSP l~,Yn1n'yFT FrXJRAL i-i1'tT4 S:Aifi "ANOUh'41F *ATERVhL

r, PR1Nr'IVAI AXF% -lJ/j TRI-AkNOLE LOCA~L -AXFSC t - P61!11-F -1 I I fRA. -MATRIX

A I:-'IPI. IN T(Y?t 3 xiYSPD III

Ali-:'1rI TO1; ( 9 Xi,Y3.fl,2)

P(4)4.*(I(1)*A4l(,)A?.f13.A2A)

P(4r1 ,)= 4.*11( 13)1 *A+3?.P2*~3t2Af

P P 4 1 1 A 11 f 2~ A ) A AI1

?I .1 )=I,( .1 )*A4(32*6~.O33eA4%

QifTIIPN

-63-

Page 69: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FnfPTRAN IUCK 'PH~n F Og NiN

O(il 1 A T'= I T) 0 1IP K=1,NI" ('.()+ UI KJ~~ ),~A -J,)RCK,J)

RFT1111F~LI

-64-

Page 70: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I rflI)hRAN IIFCK

Tils smirrrljIN nFTRMINTS THE fl.FXtJRAI RIGIDITY HATRIX INI i TRIA14ILF lOCrAl COIORDINATESr xll'Y~nl.,nxy.iirUTA z:FrlxjRAl R1"'IDITY TFRMS AN?) AWALP or MATERIAL

r ptiriNCpm AxF-S W/().TRIANaLE LnCAL AUFSr Pi - rl.FYI'HAI Ifl(;IDTY mATRIW IN TRIANbLE LOCAL COORDS.

T11:(COnq(RFT4) )*?Till=( TNWRFTA ) **2J TI 4=:iN(flFTA )r:rls.(PFTA)

T? ,=Tll

12 '::- T13

71 4=fiX*T3l +111 *T3?P

?31 :PXY*Tj1

P.(l,i'.)=Tl*7114112*7?1,T1i*732

Pl(l.,i)=T1I.71.i+ 11234TIS3?3

n( s, I 1-1 il*71 1+ 1 32.721 T3.3*73t

n( (.%= i 71iF1 * P3 T .* 3Aii:P

-65-

Page 71: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

r THIS S111110oITTNF FVAIIliiTE9 TVE DrOURU 1iwTERAL~t APPFARINO IN THE

r 1F,tl: PlWF~R nF.-N PRFSFCIVL'OZE'MENFOCKI, OAGE Mf

FliII'1 n~' fin, INT(Y2,X3;Y3,N!i'.)P I Fi KS fI Al1 (2 1,1(7 i,pi'(;,ipP2 7 ),F'S 0

JFIM-ti 40,41,4?

40 P1(1 ~1 *

r.11lo1 43

4 1 :1 =- .

SO) 10 43

4Al (n1 ~1 .0

toIi K,-

CAI I Pil Y4 p (Al,,Rt,Ml,PlsNI )

KN I =INi

11 VOI I NIIF

iinT ii

P2(2 ):Y3N?~=IIsn Til S53riii rtI NIlFAjl (1 -Y3-+Y?Al l?i:Y3III (I )=-Y i.Y2)Rli(?)=Y31.1 -1N~ N - M - I110 ?p 1=1 N~

rAllI PLY'-P(Ai,#1,Rlpl,p2,N?)

pn P0 I=i,Nm?

2nrii I I=P?( I

2') copI Jil 41F

CAlt PLY P(Pl.NI,P?,N?.P3,N3)NNlr 3+1

nn i 1=1 , NN.3

-66-

Page 72: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I

i

11

.

jIII

1 -67-

Page 73: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

F(;RiRAN DFrK PLMrpi ytp pl/65

I1IMFN iYHOMIN ACT),R1 ) ) PYN PLYMP

r r crwnj,,3Pi'iI)'MTNql'NPI

M

11 r N 4 1 fLYiP

1)' 7 I jn p. m

rU r(n ) P Y14P

1 j I PLYMiP

M')I M 4 TF1 5 1M11 1 ' ? 'm

C ~ At-11 -A STA-) ON A( *PJ NFt CAHD

? rNC ~TI11 PLYMt PN O C LNC4P

i Ct! ( H 11IAIIEI IpNI1CTO 1)O FORTH MATIX

NC .1 -Ifr FtfC NIMTF I TFFRS AD FS01.

(= NC I. 'FTl HS APFRTI ARXjSTlR EUFCI .

7 A )5YPNII = 1PfiT' Pii (A.I S.N.O IC

ovFA".-Ai rlll1lymlXp4,4

rTN w N~ 1~ 5

ltrSAFFTMS FI OP

f. 6-ri Qn. STRS/6AN AD

r PA ;Tu nwvrn n FPNH

t,-)II I

S I, Tir- jQ,; F~tMFN (IF A TORE IINC4F)

ro4Inp- 1, pltr (A N .E, .C

-68

Page 74: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

in NO-NT-U -" tIr.F= O.NCl " TO -,f.

MI IP(1 .4 )

71 l ll 5,0 I..INF), ,ICrgs in i S 0

;" 2 piit~'cl; 4,'M 1), :1NE.f);O.IC 5~

nn l 51s.i 11~'l 4, 1 ),I Nl .NF} I As 1S

iI I

i r III INt

4 F'. IF.

. 9

U

I

L

[4

I -69-

Page 75: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FnlTRAN flFEK _

r TfllS SIIRPO[ITINF nETERMTiNES. THE rASS -KATRI"Ot Ar TRIANG1fr F P1ATF F1 EMFNr IN- SYSIFI t6ORDS.r P%3Y en~RI)S. OF PLATE CORSERS IN LoCAL lC00RDINATESr PRIII) OPNSI TY 4LI

r P114 PI ATE TtilIKNFS-SIr nC nlS DIFCIION C~OSINESr P17m Mt.SS MATRIX -d.

cijnfl~lr1IF PLATFM(Y?epXi*Y3,PRHQ, PTWDCSpLTP)

wat w;TnN T((Q,9),FMASS(9,9);DGS(?)U

rAll rMAT(Y?pX-3,Y3,C)

CAll lflNMTl4(Y?.XSY3S;PPH0,PTH,P)VAll MATHPY(P#(-*TNV*R*9)nn in t~~

* 1C:VV(., )1

lnCOMI I IIFCAll MAT'PYICINV,R,FMASS,9)

1 0 40 1 1,

T ( l, 7)=tWS1

T01,11 )=:DCS(P)

T (" 3 )rS (2 IjT(0 ) =-TICS ( I

TC'..I)-UVS(t

7 ((*, P ) =flC5( I)CAl I MATIPY(FImA!S,T,C,))

(Al I MATmPY(T,C,PLTA,9)RF 'I 1P.4F Ni'1

q FnPTRAN IIFVKCrlINIRP I1c THIS SIIRl'OIITINF DETFPHINES lHF OiiRLF INTFORAL- MATRIX FORr Tlff 1RTI':llIAR PI.ATF H MATRIX -PR7FMIFEtV~KI, PAGF 304r Y?.X3DYS = :oRnPIS. OF PLATF COP. FRS IN LOCAL cflOCRIINATFS

-70-

Page 76: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rr P PF.I JWSITYIr P r 11011111F INTFl4RAI 14ATRIX

P 0 p fI )=hL MT ( YX3, Y3. O.D)

P(9,?):IIPLINT(y2,X3,Yi.,flA)Hi; P('D?)=1IPIHT-(Y2,X3,Y3,t?1t)P(*4,1 )=Dill INT( Y?%,3.1,2)

P(*A,7)=PI IHT(Y2#X X3,i3.O)

P(CA.=P1~ ITd(YP,X3#Y3,2*-1)

P(I #,3):PIE.TIJTCYPX3,Y3,1?)I~ PC' ,A)=P)I.IINT(Y?,X3,YS.3#j)PfJL)WIfNT(YP,X3,V3.2#2)

1C D)=P f 3 .

P 0.

1 4?.0flhI mT Y , X3, Y41 J3)

6(, )DFL I NJT V?, X3, Y .?j4)

F =P '~A)~l~( Y? ,,~ i 43P( 7 ,4 )=:lPI. 11T Y?. X3, YS0P(",P)xflI JrNT(Y?,X5i,Y,3,3s,2).lL 1 TY D Y3 24

II '1 P PC , I )= P ( 5 , ) P P 4 O 'P3

no 0'f' j?;,9)

t N1-14,S.s4

I, PC,,l P' Ij)* 'i c no r 1=1,o'j ~ ~ ( 1Ft~ 7n

P ( , 1=P( .1 *PPH OPT

Page 77: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FflPIRAN DECK .~.

r.71(lAPIN nf' r NOPt'tA1 1DISP1AEEL$j,.

r o~:mv. orF ROTA floNAU D 04 o~r' KTpt CONIAINS NI-t MA T-P iX

r ITPI SrPuNjTCr TAPF '.',

r KT'" CnNTAINS KlP*K22...1) ~re 4, gFmirpF. MA5I- MgATRIX is STor-p O1TP F

RFWIM) 1IPFAFLtlkfl 11PFNF4'i~'r NTPFFFVI"') KTPF

n(') 1'fl IK=1.M

?fl CC I)=A(11CT)

JA=M

jr~j.Fn~) AOTO 30

nFin ir'+a .

loon c rmi wi~rin cm, i 11 wi'r

NFUMINII) ITPF

IFVIhID MiPFRPWI '1 NTPF

RFAI)CNTPI) CA.I),J=1,,NMAY)*InIo 60 Kl.:1PrFAh(MTpr) fj)jIMRUAI(ITPI )(TCIJ::4Tno 70 K.I:t.N 1 1RFbIJIKTP1 ) (r(I1),.J=l,N)

no Ant~ ':0. flnP1 =Q KRI

np9 =n K R A. 2

Page 78: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

SIM !.~im +i OTIfP3

jq mt1 . PF 1 .1 KK') MA)YA t *J4K-3 ~ S )/

F j(g. . I F. K 1M=Ak) 0

1~ RF%I) KIPF6(s r noii INur

AFMImnf NtPF

Rr~iiI pin I TPF

hilIITPE) (A(I),I:1.'JIIAX)

pFWI I'p

Fli73-

Page 79: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FARIRA&N r1FCK £

C PR1.A1I4OPS HIFI SI AND R.E*IJNDERI tC.-CFRTJRALDA'TA PROCFSSI~,4#1 '.63 AIGHOSIIp nT I 00~A T (A, VA[1LUs ~ DDAlVD.T~N~i)4Y~

N7rn IGOL

Tr'.I.,?)lflT() 49

NM I =0-1 J~ l

110 0 j:H NM

K T' I'l 1RiOMAfl

r11,z I J

T( 1,7)~JGM'i' IGM0l L

l'(AOS(SIGM.A).fT.AHS(A(JiPl )))Gr- TO 7 Pm

I PP Uf( I1~A(I Ii )BIOM'i

(rf) TjiI' ii 1010'

SA( 1I)PI)= OPT( 1.+ARS;(A( I IP) )/SJ.MA) RIM10

I P?= 1+2 910140 dP() 3 .,I11P?,N 910140

I.h I Y+.1 910110

A A( IJ) =A ( tj )/,(iTAM pIAom I

JX-J(I.BIGt40

I I Y=.IKI P1011

nn 4 K=JPI , .1 iGmfl

Vil I (.I)=%VAI I (J)4+A(,IIC)*A( 1K)4 ,jK-, tN- F11 m

!F ( .F.l)r7 vro 6 PIamN

r Ali 1. ,nfnlv1 ( j + 7 fP I , V A I 1(. (J XA( I X)

FJ j X +N-. I PIANO

A nr rlAm:0. P1ismo

flu 7 I=III DN 810110

7 flFf*Am~fFLfAM+A(1J)*VAII(J)1I'il: riPI(AM PIAmnO

Of) h .J=TIN~ R I Am (I

P H11 ) =VALI C )firo?*A I J)-74-

Page 80: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

ill Q) I1:TP1,N RAf

J~~~~~l I: CA A .-I P~I

L tPPFP I) Wil )=A (M-I) pInlI( kitj41 -7)/UP' 0( W1 )W

Il IA(, M A0-Pl I AV~ fN11= (M 8) (1149FtI('I1'=AAX1 (Ait(fIAf)AS(IPPRr )APS(DIAG(k))4A9S(UPPRD(WI1))) PIAop

FN)P1ImP~',SltnM1 )ASII~R( 810110'F~f,1) IT

11 IFcrh'pTMP'.uN(RM)rNOQMwENRTMP sPIANOPfA 1" 1 =1 , NF 11 P 111,40VAt Il( I )=f NniM PIANO'

1'VAt I( =-FN(lRH IAO

ni 2' 4 1=1 ,NF fit'pI;~'L 1Rft-.S.(VAI IUI 1)VAI 1(t)) RIGNA'

IrI(n)T.Fn.VALg(I).nR.POOT.F.VA.tJ(1))0O TO 24 810110'K, A "iP PIGHO,PM9'0. RIMNILM=1 pii i*pIAmo

nil ?1 .I11, N 9 I Gt'i 1r (tm? . .,.)I' M TO 115 p/GMn

14 I1If r (t. , P41 )pIamn1rA In 17 WIMPO

1I I r ( pmt. Nf n .n) r.n 7 p 17

LPM?11. SIMNI F ( T (.1-1 - 2) 1 A , 14 , 1

1?7 p~tIlAr,(.1) -prn I-T(J-1 D? i*pm/PNI

1 r (PM2 )1 P 11. P10110nif NAl:t~r- NA QPFF +1 RI 1AMil

21 P'4i =p IGNOlRil ?A IIN1. INIFf.II.F.MtAfPFF-)r TA 21" mI rVA I ii( l),I F. Pr'flT )lf TO 0~ RIANO1VAI it(,J)=,'Oni 010140("I TO ?~3 91011

r~ 0A~ 1 n 1. RIGMl

24 ('flft INIIF PiANO

ri" IMI FrN=Fflpli'*1 if) 4017,P 1 rflOI ( 1 G- PaO110 4 P1 :iI (1) PIANO

R1GM 0T nIA'1 1)V*.1 1~IF~jI-n~j~c,(i i pA810110~ (.,.'):tIP~pfl .1)P1011

?r, ( 14 j )Il~p-Rll,)P IRA0; 7(:;)tPFI(t IN

il' 20 .J::1 ON 8P9ANOIF~hr'VT(J.2)).IT.1.F-17)T(j2?)sFPSION INt

-75-

Page 81: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

HIH

Pn 27 K1,3 flM

T* m 1 K& RIA'HIGHF)

* 7 1( I1 , K):--Tr-HP R IO UMI*?A I"IJ TP=T (JP1 ,1 )/T(.1,1 ) I U~

* VAI I .I)=R RHN[F1RCj,AI~pTMIJtTP,"flHL

3 1 0i 3 .1=1 DN IM'

I= VP 1 . RJ I39 Ip : (V( 1( ( 3 V( 2 T( Ri PI aN

3 3 VN"Pl'fVN(JIRMI.V( )**? 4 PIMPO

VNi'4PV=:~OPT( VNOIW ) H1 Ifl' Anlo =1 *tI N s1mo

i r I irp. . p(;nl To 36 "lamp,I Tr Prp RiTmn:1n n i; I ,N R 10 M :I MI =1 -1 1MJJQY: VAI 1 (1-14)

I F (A 1 V(TIP Y ,1 )F 03.1 00rf T 0 3,v Tr I V V(I M 1V(I MI )=VCL)GO )--VTF'M1

3'5 V(l )?V(L)-VMI-(t.$i)*V(IMI)

P10 37 KK-I.NM9 10G L

rAi I1.n0, 3(IITVA( ITX)P%(NZ). !IPIlNPI ) P10MIrAll iflfl4(A(IX),V(N71,NPl,IIPl+t,IJTV) 80G

*37 IlIV:IIX+TIP1-4~-2 (410MG

VP ((M I I NIIIF

F Np

-76-

Page 82: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Cl Copi itl

cTMN1 T 'l1 " 1 1 0J (1 ) P NhIX(A PJ X AIX PlIAN

fn fI L=.Jt'2,NPI BRIOI SGMM.A=SrAMP I+AJy(l )*AIX(l.) PlGA

It FnPIRAN nC

~'"IflI~~FI OhlP2(AJ lXs 41X,S#SI l 411to IP1IDNPI) ElIAnmonF IV~S 10 AlIIl ~(1 )A I X ( I SI ) P1014nnfl 2 1.=ilP,1 PI Nl sAn?

'A I I % .1) :-Al I)((J-1)-A I I I.S (.)-S I A I Y ( P1G I miIPFII p NpI mI.r- N11r'opi'lmi nrFK

rl roriSliI'!rIjTI'.F I noP3(ljTVAl IX,Vg I 1PPNPI ) lomn,n Iii v'S I w. Al IX(1 ), V(1 ) R I GM1111) .lP? .NPI PompOP I "111rV+ A I x ( J) *V PImNORr-IllPN4 P I ANOF nJ

i FOPIfAN nFrK

r ' fI;45MlIrT1MFt I nP4( AlI X, ,NPI.o I IP;?.UTV) RIGMO

110 K=11P-API IN4V( e)-:V( '-AlI lX( 1)IT I

FNPIt FPIRAN nFCK

(TgAhq TPANqrl?tAT1ON OIRtTION "'Ol~NFSr l Yi ~'rpovn nF POtINT I

r x rnotOs. nF POW~l 2r Fl I11(;tANrF &ITWFFN DOINIS I ANDf 2

C flC'r nIPFrIoIN COSlNFI; OF VECTiR FPOP POINT I Inl POINT 201)10rJTPJE. TRANS(XI,X? Yl,YP#Fl.,DrfS)

rtl TtiP'qFNII

Page 83: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Ml~rI'pr4AN DFrKx y~1Rf~TX1

r A I(Z THI tIPPFP TRIANG E OFTHE SYIITI"TI ORF INVENTED*. SYNVr F1 I MftlTS ARf %1nRFO ROI.WISF, Symv

r K. - nAQplP Ofr MATRIX S .

r PRII(:PAm INVFRIS IN PI.ArF. SYMYSifllI'MIT j F ('YMI tV( A#*N) SYPIVPIt"F ,,sin., W ) S y mV

rfl 1I*) QQ

7' rfw'luc(11 , SX. 31SA NFGI.TfVF VAIIF APPE-ARS IN FIFMENI ,I,11x,1171)"11F VFrTOP 10 RE iNVFzRYF0,/6W,6'5HSIhCE EI.E1FNI FALI.S ON I1IAiANAL -

2. m~A~tIUY Is NnT pIISITI"E pIEVINI1E,//6X,.)l4PROORAM ENnED ANr, innR DF

P0l 49- j=l,N

l..R ITT(,~ IIfI, 1A (F14 .5, N

4~ r r~imi I lir

rAllI 1-Y Ij

A Cl) :0P1 (A (1)) SYmV110 I nn I =2,N SyNV

1 ilA( I~I)=A( .J)/A(1 ) SymVA(1 )=1 .flA(1 ) SYMY

I Ml ~ ,SYMV

Io i-Nn ,N SYMV

no ilon =PNSYMV

AC I( I )A( + 1*~J SYMY

nl i +I SYMV1 ?'l I-I +IMISYMV .?ni .1-11.1SYMV

A ('II :~I. T I. II))SYMV jnil-I0 1 m SYMV;'A(1.11=A * (.I SYMV

AC -!tI +:A NI.)A I SYMV:Iir1- 1l 3flfi.111 4 SYMY

2011. j + SYMV

ji :j~l SYMV .if - I1 SYMVAlO -~f I-J.Ii Symv

A( 11 )=(+1 r t1 SYMVIII .N- .1SYMV

If1 ACl j 111(=,I + ,(I C I SYMV42 JA I):(uI/AI) SYmv

jj .1 - - i SymvJnil 4tn Ir PI.I-78-M

Page 84: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

15( jr 1+-4 +1Oe~ff SYNV60fl P1~*1SYI4V

I sIlfl

IM:

rn o o-i p1.1- 1 141S "

9111 A ( I nAJ.)SYMV

.if'' '.1SYMV

IJ- -II SY,4V 1

13T1-1 SYMY

JIZ -1+1 SYI4Vi ri .1r1- l n10 SYMV

1101, JSYI4VI SYIIY

~l I'llni .p SYHY

7 A0 I r ~ I SY)

3 11 rr)"PAT 1I110 39,111'r- 7IMF FL.APSEPI OR PA1RIV INVF*PSION FP.24.IKX,74S

Fr 11NSMF I

£79

Page 85: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

3.0 CSYN - COMPOE rMODESYISWIS POGRAM

3.1 Introduction

The component mode synthesis technique provides, the ,structural engineerwith a valuable analytical tool for obtaining the dynamic response of largecomplex structures. The basic approach requires that the structure be dividedinto a number of smaller interconnected components each of which can beanalyzed using a small number of degrees of freedom. The total systemresponse is then obtained by coupling the component modal data. The principaladvantage of the approach is that the order of the final system of equationsto be solved is substantially smaller than the total number of degrees offreedom of the system. The order of the final system matrix depends on thenumber of component modes selected, and the number of comon joints.

The program presented here is orientated for use in flutter analyses.As such, only planar structures may be analyzed. Consequently, only three!degrees of freedom are used in the analysis; they are the translation normalto the plane of the structure and the two rotations in the plane of the struc-ture. The program yields the natural vibration modes and frequencies for thecomposite structure, and generalized mass values for each mode. In addition, Athere is an option to calculate generalized aerodynamic forces when AICs areentered into the program. Note: When the generalized aerodynamic forcescalculated by COMSYN are used in a flutter analysis, it is necessary to use :the mode shapes and generalized masses calculated by COGSYN in order that themagnitude of all the parameters be consistent.

32 Theoretical Dberivatiod .1Assume that the structure under consideration is subdivided into

interconnecting components as sho belo

(Body 4)

Junction J3

Junction J3

(Body 1) .

Junction J1 Junction J1

ei F/ (Body 2)Region F "

Junction J2

(Body 3) - IJunction J2

2t

-80- • " |

Page 86: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Each component may be attached to one or more components by junction nodes.Junction nodes (common joints) are structural points that exist on two or

more components. The components may also contain physically restrainednodes (boundary attach points), and nodes that are free to move. It is noted,that when dividing a structure into components, common joints cannot beboundary attach points.

The basic approach to the solution is as follows:

1. The structure is divided into components,

2. The stiffness and mass matrices are derived for each componentwith the common joints restrained; also a vibration analysis isperformed for this condition.

3. The stiffness and mass matrices are derived for each component withthe common joints free.

4. The absolute displacements of each component is expanded in termsof the fixed modes, and the rigid body and constraint modes. Thefixed modes are calculated in Step 2 above. The rigid body andconstraint modes are derived from information calculated in Step 3above. These modes are defined as the displacements, XF , inRegion F, due to motion of the junction displacements, Xi's,individually, when no external forces are applied in Region F.

5. Using Step 4 a transformation is established that takes the com-ponent from physical coordinates (absolute displacements) to thesystem component mode coordinates (the generalized coordinatesand junction displacements).

6. The transformation matrix derived in Step 5 is used to transformthe component stiffness and mass matrices to the system componentmode coordinates.

7. The dynamical matrix for the entire structure in system componentmode coordinates is assembled by combining the component stiffnessand mass matrices of Step 6.

8. A vibration analysis is performed for the entire structure insystem component mode coordinates,

9. The system component modes are transformed to the absolute dis-placements which are the mode shapes for the entire structure.

10. Using the mode shapes the generalized mass and generalized aerody-namic forces are calculated.

Steps 1 through 3 are performed by the program FLUENC-100C. Steps 4 through 10are performed by the program COMSYN.

[ -81-

Page 87: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

The equilibrium ,equation for a typical component can be written in

the formP ° -,KFF K j KF° " X. ' I

- FF FJ TO)J JF" Kjj Kj@ " (I)0 K9F Kj K99

where the matrices have beeh partitioned such that and refer to the

forces arid di~placements in region F., Pkj and Xj refer to the forces and dis-

placements of the nodes in Junctions J, and 0 refers to the rotations in

region F. If the common joint normal displacements are restrained, the

above matrix equation can be written as

KF F KF9 DFJ,

P 'K F K O K "K 0

Ji JF JO JJ

which is equivalent to the partitioned matrix equation

(3a)

and

P YJ? LKJF Kjg ] (3b) J

-82- :i u

1'

Page 88: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

The second row of Eq (3a) can be written as

~Ii %=KF XF +K %9-I - (4)

or 9= -K9 G %F 2

Substituting back into the first row of Eq (2) yields

f 1K FF - K F9 -09- %F] {XF} (5)1

The reduced component stiffness matrix with joint nodes restrained

is

[}R =[KFF - FO KOO 1 KF] 6

I The component consistent mass matrix can be written as

m [FF MFJ MFG"IMjF M (7)

IiLMOF MG3 HGQJ

I If the common joint normal displacements are restrained, Eq (7)

becomes

(8)

IUsing Eq (4) we can write

X(9)4

I A

-83-

Page 89: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Wian te edce ms mtrxRecm1 (10) [1IHI R [R)T [o: H]e 1 (i

where f 1 KR1 KF -

In order to perform a component mode synthesis analysis, it is necessary jjto expand the absolute displacements of each component in terms of the fixed

modes and the rigid body and constraint modes. The fixed modes, X , are jJgiven in the form

where Il are generalized coordinates and the modes , stored columnwise Iin the modal matrix I#] satisfy the following equations of motion

[K7JRfyj -W2 [MIR fyj lol0 (13)

Equation (13) gives the modes of the component with the junction nodes

fixed.

The rigid body and constraint modes are determined simultaneously 1from Eq (3) by defining these modes as the displacements in region F, XF,

due to the motion of the junction displacements, Xi, when no external

forces are applied in region F. This condition is represented by the

equations

j K jF Kjj Kj9 (14)

0o LKep %J 1~g

-84- 1

p 1~-

Page 90: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Lwhere Kj are the junction displacements including the rational degrees

of freedom. The third equation of matrix Eq (13) yields

U KOF +ej JK I 1 0 U 101(|T (15)

or 0 -~g IK9ol 1K, ,i

1- Substituting into the first two equations of Eq (14) yields

0I (KpF -KFO Keg- %0 ) (KFJ - Y-, K.- ) XE

jI (KF - K O KO F ( % -K 9j - K %g %j) j XI

or 0o [ FF KFJ 1 !F1- _

P K JF K jj X i

it is noted KIIwhere 1, KF" KFO Ka"g-II

-Fj K 1 K % ' % (17)

K JF K JF Jg -l %Q %

in ,- -K., KO " %

XF - displacements in region F due to motion of jointdisplacements

- -7

Page 91: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

The first equation of Eq (16) yields

+ 2

' [K Aj .

orKF 1 £FJ) )XJ(

[]I i

where

[T IK-'K ]Fl IKjThe absolute displacements of each component may be written in the

form _I

,X + (19)

or

= >1 :1(20)Let T

Let (21)

which is the transformation matrix which takes the component from physical

coordinates (absolute displacements) to system component mode coordinates

(generalized coordinates and junction displacements). The transformation

matrix is exact if the modal matrix [401 is complete; however, for a com-ponent mode synthesis analysis the modal matrix is truncated to reduce the

number of degrees of freedom. To this extent the 18J matrix is approximate.

The J matrix is now used to obtain the transformed stiffness in the

following manner

-86-

Page 92: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

[where inFinC J . JF Ko J -

The mass matrix for a typical component is given by Eq (7). Likewise,

I using the transformation matrix

L R R21 IeJ4 K~ K 3 (23)

The rotational degrees of freedom can be eliminated in the free

I. region

[MC- [Rc 2] E T ["JF 'J Fe]J [R2] (24)j

LMOF HGj MOO

The [81 matrix can again be used to obtain the transformed mass matrix

i:C [0 -[C (25)

Combining the system component stiffness matrix (Eq 22) and system

component mass matrix (Eq 25) for all the components, one finally forms an

overall stiffness and mass matrix

K K(q I qiqq KqJ Kqq qq MqJ Mq9 q

SKjq Kjj Kjo " WS Miq Mj M O (26)

K q Koj KO Qj MOq Mai H 191

•87or [KS] JXS ,S2 [] X

I *-87-

Page 93: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

where q - component modes

- junction normal displacements

a - junction rotations

The system stiffnesb and mass matrices can be reduced by eliminating

the joint rotational degrees of freedom. This can be done by using the

transformation matrix Ij

nj [. £K -1 [KQq KGJj](7

.4 d

in the following way

w R ] T ] .1 (28)

and the frequencies and mode shapes ~of the entire structural syste is

given by

where

Jxs( =

The deflections in each component can be calculated by using X in conjunction

with Eq (12) for each component.

-88-1

Page 94: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

f Generalized Mass and Aerodynamic Forces

The generalized' mass matrix is' formed ty utilizing the system modalmatrix , which is composed of the system modal shapes Xs stored column-

wise, as a transformation matrix. This can be written in matrix form as

I: follows

G E-~ rSi] (30)The aerodynamic forces are computed from the AIC matrix. For the uncoupled

aero case the AIC matrix is in the form

[Coh] !' Ch 0 )

,ch

L.~

where the diagonal terms are the AIC matrices for each component. The displace-

ments ixFl must be computed for each component by using Eq (19) and the system

modal matrix * The modal matrix i was reduced by eliminating anyunneccessary degrees of freedom when XF was determined for an individual

component. TheXl] for a particular component is computed from

where F1 = [0] [q] of+ [T] [XS] (32)

where q] is the upper partition of the reduced modal matrix and X

is the junction displacement (translations end rotations) matrix for

component i. Once [XFJ is known for a particular component the equation

[Q ] unX ~ c] [F (33)i=

unci J, Ch X

yields the aerodynamic forces for N components. If the AIC matrix is coupledbetween components a and b, then

Chaa Cab

1hba hbb

-89-

Page 95: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

then for a two component system the generalized forces are computed from the

matrix equation

[Q =coupled [ T [haa] [c Fd]

+ X [~]T [Ch] 'b (35)

Iba] [ua + N be ] [ b]

The final aerodynamic force matrix is obtained by adding [ uncoupled and

rQr

L IcoupledIQ] [ l ncoupled + [Q] coupled (36)

components components

The aerodynamic generalized forces as calculated have not been multipliedby any nondimensionalizing factors used in calculating[h]

3.3 Program Description

The computer program COMSYN written in Fortran IV performs a vibration

analysis for a planar structural system using the component mode synthesis

technique. A complex structure can be divided into as many as five components;

each component may have as many as 12 common joints. The order of the system

eigenvalue solution is determined by the number of components times the number of

component modes plus the number, of unique common joints times three. Common

joints may exist in two or more components; however, they are counted once

9-90-

I

Page 96: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I

in determining the order of the system eigenvalue solution. The input

requirements of COMSYN are a modal representation of each component and related

data concerning the junction points (common joints). This, input data is

available as punched output from the FLUENC-100C program.

The program as such is oriented to facilitate flutter analyses by the

normal mode (modal) method. A modal flutter analysis requires the vibration

ffrequencies, the generalized masses, and the generalized aerodynamic forces.The vibration frequencies and generalized masses are the normal output of

a component mode synthesis vibration analysis. A subroutine was added to the

program to calculate generalized aerodynamic forces when aerodynamic influence

coefficients are supplied. The aerodynamic influence coefficients may be

uncoupled for each component or any two of the five components may be coupled.

The only restriction being that the two coupled components must be entered

serially as input data.

3.3.1 Processing Information

A. Operation -- Standard FORTRAN IV processor system.Operable on the GE635 computer.

i B. Core Storage -- The program COMSY requires a minimumof 65,000 memory units for execution.

I C. Tape Units -- Standard input, output, and punch tape

units, and 11 scratch tape units.

1 3.4 Input Instructions

1. Title Cards, Format (12A6) Two cards required.

Column - 72

- Name Any Alphanumeric Statement

Column J 1 . . . . . . . . . 72

Name Any Alphanueric Statement I

9SI -Z

Page 97: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

2. Control Card, Format (615) NCOUP NAT =NV - 0 for

vibration analysis only.

Column 1-5 6-10 11-15 16-20 21-25 -26-30Name

NCOMP - Number of components used in the analysis < 5.

MODE - Number of Modes requested for total system < 9.

NCOM - Number of rows in the matrix that relates the

common joints between two components (See instruction

No. 6 ):5 48.

NCOUP - 0, no aerodynamic coupling exists between components.

- The lowest number of the two components which are

aerodynamically coupled (coupled components must be

in sequence).

NAT = 1, AICs are ent.red as non-zero partitions (strip orpiston theories).

* 2 AICs are full matrices (kernel function or Mach box)

NV a Number of reduced velocities (1/k's)NOTE: When NAT=l then it is required that NCOUPwO; and

when NAT=2 then it is required that NCOUP >O< 5

3. Information Card, Format (915)

Columni 1-5 1 6-10 1U-1

NREDU(i) - Number of translational degrees of freedom

for component "i" when the common joints are

restrained.

4. Information Card, Format (915)

Column I1-5 . 6-10 I11-15Name NMODE i) NMODE2) NODE(3

NMODE(i) = Number of modes for component "i" used in the

analysis.

-92-

Page 98: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

5. Information Card, Format (915)

Column 1-5 6-10 11-15Name NCJT(l) j NCJT(2) NCJT(3)

NCJT(i) = Number of common joints for component "i" used

in the analysis < 12.

6. Information Card, Format (3612) enter data continuously

used as many cards as required. This card/series of cards[_ describes a correlation matrix that relates the common joints

of each component to the overall structure. Four numbers

describe each row of the matrix as follows:

Common Joint No. of Component No. is the same as Common Joint No. of Component No.

1st No. 2nd No. 3rd No. 4th No.

iEXAMPLE: If the third junction point of Component I is common to the fifthjunction point of Component 2, then the set of four numbers are:

Column 1 2 3 4 5: 6 71 8 f

3 1 2 5i

Restrictions

1. Correlation must always be made to a lower numbered component;i.e., in

each set, the 2nd number must always be smaller than the 4th number.

2. If a joint is common to more than two components, all possible

correlations must be made to the lowest numbered component in which

it appears. Additional correlations may be made to higher num-

bered components but are unnecessary.

7. Information Card, Format (6E12.8). If NV = 0 omit this card/s.

Column 1-12 13-24 2536 Ni

Name VEL(l) IVEL(2) VEL(3) VE

VEL(i) Reduced velocity series, i 1, NVNV ! 20 (continue on next card if necessary)

II -93-

Page 99: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

8. The following input is available as punched output from the program

FLUENC or can be derived from any other structural analysis com- iputer program. The output from FLUENO is punched in Format (1M6E12.5),

but any card than can be read in Format (6E12.8) can be used. All

data is presented as full matrices, and each row begins on a new

card. UThe data is stacked in the following order by component:

1. Mode Shapes

2. Frequencies, Hz

3. CKFF - Stiffness Matrix jJ4. CKFJ

5. CKJJ

6. Flexibility Matrix

7. Weight Matrix

8. CMFJ

9. CMJJ

9. When generalized aerodynamic forces are desired, NV> O, aerodynamic

influence coefficients, AICs, are required input. The AIC matrix

or partition is entered by row; each row begins on a new card.

Format (6E12.8) is used.

When NAT = 1 the AICs are entered as non-zero partitions. The iipunched output from the computer programs STRIP and PISTON (Vol.1)

are compatible input for this option. Repeat the following Iinformation for each component.

9a. Control Card, Format (214)

Column 1-4 1 5-8

Name NS.IZE a dj

NSIZE = Size of complete AIC matrix for component "i"

NPART = Number of non-zero partitions for component "i"(nutber of strips)

Repeat the following instructions NPART times I9b. Control Card, Format (14) -"

Column 1-4

Name NS

NS = Size of partition

-94-1

Page 100: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

9c. Data Card Format (6E12.8) Start each row on a new card.

Column 1-12 13-24 25-36 37-48

I Name ARe 1 1 AIm 1 f ARe 1.2 Aiml1 2

ARe - Real part of AICij

SAim - Imaginary part of AICij

Repeat data items 9a, 9b, and 9c for each i/k value.

When NAT = 2, the AICs are entered as full matrices for each

component. The punched output from the AIC computer programs

subsonic, sonic, and supersonic (Vol. III, Ref. 1) are

Icompatible input for this option. Stack the matrices for each

component sequentially as they are entered in Items 4 through 8.

jj Enter each matrix as follows:

9d. Data Card Format (6E12.5) Start each row on a new card.

Column 1-12 13-24 25-36 37-48

j Name ARel,1 Alml,1 ARe 1,2" Alm 1,2

ARe -'Real part ofAIC

Aim - Imaginary part of AIC

When two components are coupled, the coupled matrix is inserted

in its proper sequence in the stack of AIC matrices. The maximum

size for any AIC matrix is 40x80.

Repeat data item 9d for each I/k value.

NOTE: For all input, reference to the common joints, free joints, and

components must be consistent between the structural analysis

[" program and the aerodynamic influence coefficient programs.

The sequence order of the above must be maintained when input into

j COMSYN.

[-95-

Page 101: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

'I

3.5 DESCRIPTION OF PROGRAM OUTPUT

I. Printed Output 0

A. For each component

1. All input data except flexibility matrix

2. Transformed stiffness and mass matrices (component mode

coordinates - generalized coordinates and junction displacements)

3. Normalized mode shapes (for orth-)gonality)

4. Mass matrix for orthogonality check (diagonal elements - 1.0)

B. Results for the total system

1. Relative locations of the degrees of freedom of each

component when combined to form the system matrix by the

NCODE METHOD.

2. Reduced stiffness and mass matrices (rotational degrees of qjfreedom eliminated)

3. Eigenvalues and eigenvectors

4. Natural frequencies (CPS)

5. Mode shapes representing free joints on each component -

printed columnwise.

6. Generalized mass matrix

7. Generalized aerodynamic forces for each Il/k if NV>O. j

II. Punched Output

A. Generalized mass matrix, GENM

B. Generalized aerodynamic force matrix for each l/k, GENA

In both cases full matrices are punched out. Format (1P6El2.5) is used.

The cards, which are sequenced and indentified with the names given above, j

are compatible with the input requirements for MOFA, the Modal Flutter

Analysis Program.

3.6 SAMPLE PROBLEM

The sample problem of Section 2.5 will be used to demonstrate COMSYM. IThe structure is divided into three components, the fuselage, the wing, andthe control surface. There are three common joints: two attach the wingto the fuselage and one attaches the control surface to the fuselage. Thepunched output from FLUENC-100C is used as input to the program.

-96-

4

Page 102: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

"4~V so. ,

IA NY ;F i I!

16 a(r~5ftI No\01[0..1.

?% INr) N '9I

9 ~ Co 1CA I( ~ ~ '

IjL ut J t .

* DC

vN 1 4; .99 ~ c'

Lt I ;~ I

IF I.-1 LL. u

L6 1 . .c2

= LL: W .. U=.

v LL. c*I m

t LL IL; *?. LL L LN U U ..

Ic N.; PC.~C .- t i .

0z :M IfN

I. C. m c ai

I !I I N I C, II "I

1.1 jf ,v .P C, r9'v IC .C% -CI

C. * O ~ C~ .. . s.. C. ! C. . N' . ~ - a ~ : .

or.9 C .- C. 9I

L c

"A LL Ir az cl t.. t- cs v. 2f- m\ er a rI

1 a-to- 1 1.4 CN L 'C ' L. WI C .J or

. .I, ' :, v. I a U, : . ICl~~r M. CC

I! C. IL i~I i

Page 103: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

a ILL *j

LC- Ja Iicc -jlI.; I IIC

Ir C7

K ' 1c

a, IfI.

I I~

c 9 C. c C, , 1

P, 1 C1 ;a C l Ie

UN a V)N c 9. C:

a C% 4-

Or 9i O a I a

Page 104: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

w U K u* I

l op1 .

V4 v 0b C.: * 11 *fl.

~ I~I a OD

CC

wI L w

I 0

C. a I.I C'.

N I I C '

c I

it I

IC , II .-; C e

c 0 I -. i

C CC

VvC IIa C IrIe v C

Page 105: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

- - .w - W W W W VC w w-- mr 'I V- W- -my

w1U% 9

I 0 rn c. 0 ;. *

I wU% 10 .

I* 'C!a CI a lI0C

C2 D C * 0 C , ! c C ,c c C:

NO I I

I Icm

Lo- CD

CC: C,

1 C I ~ 4

I l - I I W.iIU U)* * I IA. w w Iw''.

. 6o I I-e::6 1 ci% .*6

cc

1 0 , N* 0I

I90. *. .. Z: CD 6

j ; .. * 1 , C 210 Q .I 0 C.IC

OI 0;

itc I nC

Page 106: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I If

I cu CD! ;

U..

C3-~ILU Ij 4z

cc cc ccP'. . 1. Q , 11Il 04 I L I h

C" I4 I I N I

cc it w I

Page 107: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

42 Ic

/ Io.

Ii I I

Ix'

ii II

~~c

Page 108: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.4 v

j cu

40 0t

01 F, I

u3; 0 gl

*a N

Ir IL 4v

II, V

TV N.z . 0 8') Ns' Cr5. PICI I

II C c .V ;:

Iit * .,r~4O 8*L. a L a La.u I m

CI i'-C 4L

2. a . 10 !a: a~ wa 't orLC 0 Nc.0c D

Page 109: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

QI04 II 0D

-09 9"652

ww U jJ, tu.4

61 41 R I

V

4

v4 4 * cy', 1 NIq

qra~ i

i ION 09.) IV e

~:II1 %J, II IIV

w m0

. ) cu N

~I I ccd, ;rI

:

'04 j .

w i w w

N.4 6 UC M u9 l I It.. 'cc U% IS oI ' L.*

CCV C' P I I a I. N0 1 C4 C I. - " a . I I

Im w- uI 0 x 10 N

pLL W. U. w! .I s

ON .0C~ M ,1~

L I z

c V,

it . IL. I LL

U. IIi I YuO Oc 0- cc

It cac LP fL

c'I U hU it'

LL FN W. %. -q a IT

-. -v e , I D c~ =-U% Ic . % V 1 oCCIIt I ,I Iw: 1 -c

P)W I .w - a~ x- ii. a .

*~I -1 L m~' C.o Pa . .

Page 110: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

g o I DI

WI W

0. N I. '=4 1* ~I I'

1: 1 . . 1

1.0 C: C:

iIu C, a-2

tv NI. I

Cc Ic

C aY

62 2 t .N

CDo I\ I

CIL 0: N 0

Page 111: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IJ ajCa a N W:.

74 ev1 ~ I

fj ~ J 0 Ca

ICCDICD '0

I"1L II I ' 9*c 0 U, %to %0'6. 'N '

gin 1 =Ii ji j 11C3

U) Li w. LL IIV l cc*4 9.11 ~ )j ~ * I' C'

N0 w4 Go ~ 9w-u

icy*6- ~ % I '

94 4-1 V

9~~ aO I o i9 I

e LL ulUU

.UL. *U. r e 9 Crlo

cC, , I-CV. *w IV0 I. ~ ~c . C

U . Q Q . . I I c - ~ I

'N IIN;

C. c. .C% C . c'. c . *C- c' C.

C ~ ' L ..U C U. LAW LL U. L.. eLL " LL x

OJC .0 V to CLI 4 : r ,1

e- cc IC r. xWU ~ I

V. , I I. .I I V I f'

O CL IV 14 ,, I c v . '. C C CL, q

I ~~ IL 'r~S -

cc CD4 IC J ,1z, I. q q

Page 112: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

j I I

1. I.

U. w W

IC' ,CD a r m 0 C

I w L L'U v * W

N CD g Ia

w C .

C* arv !Y 10 4- aUM.l.I * IV CD I* *

ItI No , c cc~q4- . N I

. m III M. 'I*

Y4

I 1-' cc ~I ' ~ ~ N .

;C a 'w a ar V

L L t L L L LA o - wU . L L L.. I* LU WL

u .

;~C .

I, If CaM ItC

I VS

U "I QU U uI

-~ 41 o" p.'

t, C q It' o* cc~~

C3 cc N t C 4i in C: V: C N

-- .4 C. C4 0.. It

'0* LL ', LL It a- w -4 -4 N 4

'- 0 .1': *~' N

C, OI n ) N I

*~i a 0

I.,C .: Ix cc'. C 1 0 0

Page 113: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.,o I.'

;4 0Z 0

N i I I IpC, qCY

N~'0~ :1

Cy. c a ca a * I

LL. U U. Li L .u

o~. 10 *qV4 *~PN N. C ~ Ifl I

I

V U% cp N *9 * 9 .

-: I ' .c N1 I

N C z ,4 *I

*~~~~~~ II

I .U . . I

fl. I, a'- at C%,

- V

Iu UII IV

,U . IN , a .U . .

10 lo W% NU% .

-~~C Ir.

W.% . 4 .

*9

IL * * *II

I . .; m

o~~~ Nt a:'

* a* 0 *~4~~L zI a 1

Page 114: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

-~ I 1 ;

CDI

,i*J cz CD a C

C- Ii

Lr' I

C.~~c a II

LL AL

MII N, r I I

Iy IV' wC:a , I I

at a ", I a 'm

r C2 0 a a

I PI cc 'O ao c o lCL a'.

La C,q- . c I

. . I: I IC , y

a m

Ia,, a .

Page 115: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

-- mmo

C,~

I2,1

C.

:Li, u VIc X1

C. C -' C3C C C

CY CV' NC

I I c c Ic c . ecc alex a 0:1

Page 116: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

P .

rI~I I mI.m to . CD

u- "C i -U: w Ut U

V. .N

Q.~ cli C Q

10 CI4j ID C,1I4 14*4

CZ 0

1 0 e U'MMu I Nl UNV C) LC

m Vi M. L. c .t

r-~~~..* CK 0 ) L - C .r

jUL

Z.O

'mN NN N 0 C Nv 02

Il N C, .C.C v N C

I= . ;M *: *l C% P:... N c. w c - ' - C L: C C.

C. I -e' u'I a' N C' N c c

11 6 -p ., ft C.. U 5

V C . L C I - c '

r) 4 * I * .c 1 9, I

IN tt

I 3 :3Q UU I . gLL . u. I-c U. I ,L0 c S~U

at~ CcM' ;Cc xQ C

,C t~ U'

Page 117: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

N a. UN01

3% N

Nq NY aq

i3%~LL 1. .

I~ 'q . t 0 : I ~

I0 Iv N Iv

v0 I ,- i cc

LU* * ~ l

N, Na a I I It'C3 .

tC I UI z*' I , ,C: .. I" oN cc !4

OD Ci ac .. l ,

~C-Q C 2

a~~ 1c a1 C *'acc% It cc v a a

LL IL. 1'"L' w Lt. i -! '! - C I

*~L 1. **l **

Ia 10 a' 0 Il aia,~ aI 'r ;rI a

L '. C , C'. J; C'. a

N: tr JL I o C

L, Lj 'IL .aL

-, K, C, U, usC 1C'l- % N -

'ua cc" in 14 a I cc Q IU' ~~ ~ ~ u U%5' 10, ma0. CO N a C C 0 ' t ,

CDa s D ~ l C ' I Q "

ca = = cCl a cc c.a a, %c. C I c CD ar. r C\.

P a c a VE c- (a c I a Ucc C a00 ) 0. cc 0 .- C.

a U' a- CD N0 WJ IC v a,. a c V C .

I U: aN if a' f, c

I ~ ~ ~ 2 :9 aaa'% t~' 0 ra a '

(Z r, aCD N ,a a Ca a c ~ c ~ e , a ~c s

I r I Ir 0: or a0. I pza a : a

Page 118: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

II

II II

I-

1 I it

5 I I * I

* * I II

I *

II I

I I' " I. *"

I I K.-I ~II I

I I ,i

* I i * i

* I*f 'I i q

a, !!

' I I

! , !* ,I1 I ,.,. .

I i] .1'11O11

= " I r." I I Iil

'\ ,. lP .. I

I I I *I I I

Nt I

Page 119: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

.44 V4

(v. CY'e

I I I '2 I I<;C0 v

III 0 . ez 4 (

'_4 Co~~ . ~Ia C2

'1 1 fc, c . ' 1

Lcu Ce

Iler '0

CCI l; CCC

.40 N C" :1- -0 c

C. wC '

T I, i I-

I'~0 C. u'N g'' 0. -C' C .

* I'

'cc a aCC C ot a U, w~ IV LC q m

I=' m cl. O'' C'. C7Ig I, le * S 6 i cc

.' 4 -0" C'. '2cc

1 c, or a~ ccIt CC

*3 . ,-0 1* S * , S *

C, CI

"L Is X tU

v , I-, 4 a .1 C .1.4.w ri It, oj%. . . , ~ C

CCLI 1 CIL 0.I cc C Co. C. . CO . C

VU LL~ U' UU . .. U

U' C'14 '

0C' ISD-

cc 11g -*

*i.' 01 C o, c

cI I

V,~~~~ ~ ~ i1111i tiM rN1out t4

Page 120: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

It u

v.44

N V ca 4m UN 0g. w Si.

NI a - ICcc Vv c .%1 ;*

4c> I rN. '4 P

I~ ~~ c-a .

LL I i 1 1 1 LL lJU. !, %L L

IC IN C' I :C IN CI I,

c, C.I.0 cc1

v - r

IN CC IN cc cc OlP,)cLI cc 0. cc II

cc Nt I N I j -. cc

U4 UN j. I Cc

Iul I a L I I

Ci C cc~

U.' u:u dw i u L, ui ug U. 411 LLw U. 1u. U. L

l U% a cc tI n % w N . 0 2'

c V1 C, '0 .. 'N W. I T5 I'. *: N

NIN xi *

9% or 0: M* Sr -. II xit c

Page 121: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

nT2

IL L

v 2L

to , & t- . %l. II. i

N CD , II-6 1 i I C- Ii C

6L U 1 LL .I CA'4cr

w. a , I I

0' CL': 'Ci .4

iCIC- c

Cv Pz I I. tCKI , N cvI- L I I llNt

CC Cc IL. w' Go

V. Cl, % 'o Cii~0 (x IQI a' * . C * f. I

T *' C Nm C * .CI ~ ICL

cc I 3 C J

Page 122: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

1.F1

cc

II 0

IiU,~~ ~ C, C

'cu

LA; w , I I

t- . I Z.

l Ir 3

CL 0.

I 'i

Page 123: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Cc

4j

cc cr

?I = :cj

CE v

P. 'c *I ccI.~~r C% 1I t

I . I I

I I c K

*n In I~(Ai 0 wI ~:Ii

1:111 , L%

C. c ~ I

Iu LL ICL -LUp

at a a Cf CX 0 1

Page 124: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IIIDU,: w 8

ui I. w Liolco Cc !

N * IWI

a,. 1Cn c%.I A HNJ'Li t %A

N k. I I

CD r- C, CI. C 01I.- LLLI L.

IL i LL LLc

U.L cc N 'o : N I

N0 ccN If'O tc 2.~ ~.

'OLL LLN LL iW. It. LL '

PU% I-4 0,0 q r. N

I N Ic

c - .IV c IcL I I L

4z cc4:.

0 . L I2.

,C L, LL :c Nc 0&'L! ce -L

V, .l cc 'r N Cl '0

0v C%, 04 U.0 t0 ,

V~~~u 4.II . * 2

It.

C- ; ' , - , =L I c

c I - Ij L L L L w I ,I!-.i NL I. W 4LL-. C5L . . ~ . u * a

CL Ic N C m NN I' cr V. CDi-r, r:' - l- - I GOP N ' IU I

CO .0 .-l' i. C. N; - W 1.. IV~' c c rr . r

N.- IL 31~ ~ 01 0 L~ K

c tt

Page 125: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

40

to.0

ww w

CD IIr

*i.. Ir. m II

'C %

c9 , 9 IcII. W: ~ cui w( Ij wCC: 1 Ci V.. I I I't

C~ a. cj 0 C2

a[ II W, C3I' I ~I

C o'C' K ,V.

Cp'

al CI, I Cc I

Page 126: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

C; .0 ag .1 ;j ~

3 *I 0* a . * CD a ca c

io ca 0 m*0 ao~ I a

CMD r C :mC.1 wC.

'CCC I ID C. :I Il:

Ca 4r a- C c

I; C; *o, * C

41 C D i i r- c c cC .,C . a

Page 127: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

v & w V ,40 r40W%

IVIT o 0 1 WI! r -- leto ~. U% . CD . 1V%.

C;0ac 2 C ; .0.~ ;C;ea

1 IV C,

CCC C ~~ ~ ~ ll CCCOCCC~.C CC1 1 tI.CCCC;C;a C;cj CC;; CDC CC ca cl 0 *z4.;C];;c D C D * C 07

ClN ) C J LCIS oi I

6 a' c o C cD*!.l IL ,** w .m L Wv o 01 N .-1 jq N4 . IV.

CI r-:: c r c c

f, ci .1 r.V cM c 4M0Ir It cc

N J, %.CIC

I iI W JWLL U. L. LL L. W

IL'L LA. tirco a~O M 00rmf

CI c ~ ~ c rca C NI L I

C -C

.. Z.

LLJuLl. U. L L

LL IL L

c~cec4r 1 cc ~ ac~c

as..:~c C, 1 g£ *I !c~lI f

0. LI cm fl VI I~C Q, uJcz. Nuu. N WUW h

L, cc oc) c c C -I' C% I

C, r-IIL jL L uL U LLIi .1.14VVC W r-tNI C ,-. mIl1

Page 128: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

49

c aIIC N~% rN.4P

4vC 40 C2 CD CD.. 0 o

CC CD C ' a II V W'C' LL I I .1lU:

- .4 .o r, N. () ; *% -0 UMi %N 9 . ,r

N CDD) N .P N

I *

'-accac -0Ca P-- CDc .c

Il , *y %00 va

-. 4 C! a. c,4 QC* = .= I I I *19

*~~~i W &UU. WWW

LLL).W W J

0- 0'4r 0 '0 0 . It . NC% C I

CY N 9% U% C &I S INC, t, 4 N .4NC J' .4 a, .4e - % CVI

000. 01 cc V

0 *

4 n *v c N .. *I Il CD V1 I 1

C I 144 *1 C ~ C;CC

0NC.C. C :

Ll LA .-.ur LL -UWL A LL

Lu LL U LL W LN

m m 0' c M I* r. * ac *4 CD t, 4L n ,

IS rIN I. c- t,c* c0 vC~ CC CCa~e vc ~ c V.C~ - 1 -T

U. I

*l Nl I"'

LL .. LL LL LL k L1L.U LL .L. -LLIL U .L

Ilc. ,0O OMa"I ,6 O Ir m t

tr 01q' Ir M vJ.-'

a U% 0, C, M: a, I.ca * 1C'I . I

.. .* 1 . .I . . I

C; c.. C: dc c c. .c CDC c. C C Q C

c C- -.C .

I L J.j LL WuLLI

u I..U .wWL LL I -.. I "C0 - .VC N

T1.1 I a' qcs r, cNC' N zU

a ~ ~ -c'ccc c~~~ ale occ

*f M. ins: ggss W Ir t"a I. Sl -

C.C cC Cm.C 0c C! C CD*':c C C

U.U'U LLI L l. U.Wwu A

m r)c~ ol.0 A W c-

c C;CIC I.!C;IC

Page 129: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

It77

I11no~~ IOI. ij

I CDC .. C, I a f

tu,~ U t 1ww wwL ~ LULW UW w W iw UJW WW

LOS*1* *U * *) W-.4**ITt I** w iw '

Ie C' %A 10 IV J% ajev IA ji-

10Cr,.=. C-21"I- mCDJ ' aJN V-C.- Nf ,c -f Ucy, 0 ~ ON

WW U W U W WILL AWU. U: 2W LL. U, WWW WL.LL LLWWUL U. U.ULU. W j L .LL WU.'r 'occ c 4 C v'o f-r 'o G t . N: .' ' W C 3 o" a ,N -P) 1,MLN 0C e' %v

01UOIC c. 1" a-= " MCC Co~ a,1v "vTN ca oo C' coaoc z C=OOCCON C Cr.0 vr,.L'-( 9 ,I,"ac V)v a , c cc a. "C ra,a 81 U

N*e Oq U el*q Poococ c 0 v - rcooc o ac e4 co o ococ-0 4 U c l C m

* . .. . ~. . . . . . . . .* S * * . . . .a a a3 a. aD C; 51 41 SI C) = I

1, CD CD=a0m- 2 'I5a ' M C

J C C' 4 c =ICY C Ci. a . cc c: C I CC . CYCCma c; a ' a a a a Ii

N N CN I 8 a . I I IU) ~ ~~~~~~ ~ ~ ~ ~ U) NN.- W\ CU *U WC Cu CLL U LrL.L .U )wwWU L ;wwWLL L LL &,j LW

"' acc4 1 v0 c-0 %. 't.Na'Lt. vO U-CI, Cr'rNCC Lt ZCLt,- t 0 t t, %C m I

C CCN C C%.U NO C. Q VCC fl COuI P.C r. m nC IcC m

I i I 1 .1 . I II. I I I 4 I 1 1.vCY u *C .4C 4 - l CY. -Y "C 4D , u 4 , m CC C q C 4CC.... .-UCN .. CY. CCm--

a 0 C ) aC C=(Dcm c ~ l w . C .= c r-C C 3, CD . CD. a m m DLC, , C- .a C3

W- LU a; L. L; Lu L U %u d . LI LL U. . I U a; u) W U w. I LU U. U Ji IL U tw Ui L U .W L1 U LL a- L: U * U)IILI'.' r) . i a , CC- L .; r ~ CL, C a o' W., C r, .COC\.- - C, N- 4= \ ,'C CL. c -,I

c) ) t. 0: Lt - C I.... ............ m w N cca t Swr C C P. V.U v

aC ac CC3t CD DC C.C oC coc oc C> ~ ac - c a a

II II M. C~ Ca . a Q'la c a a a Ca z.c L Zc c c -

pn CX . ,'% ,- Cr 0 ,ar - : %m , C W-." ' W% P V V c CI NrN . N 's c t ,'C' v- CCC zCCWCNO CUIC C C C CCr. CcO C cc Ic -cc -. CC r rt C - c C

K mUmJv U aI' \C.1 N: ..:t CX*Ca\t'cc ( .\ . I C"

M.C cC C' C C a c. c N cy N. tI CVC C',C CC C vC CC c a

'macNrU, ' a ar IL , a isc Q*aa 1 P a am ar a c a 6 ,tf . .C ,r

I, I. r-'. r,3

a;, C o:v U CC ') U 'q Q r , J

Page 130: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I I o .CLWW w I. u wuw i l i w ;U W J~.uU

C. '0VI %i r ,. 0 4WN 44 a4 %C .0Vc'0 v C2- ~ "0 C,3 49 nC hae .K0 0.69 P

a.4 % w n* -v -9 (44: vi"i r .424Y N CYN P NN=60 ~V4 ** *V cy00 ty* T. V49 mq94V

T4I 'aV. 14 I 'aCD * a6 a a C. PD C 2 X P

4A 0- .N # .CN0 1%. t% 0"4 -tita " t o

C3 l a~40 T 0. 40 a N 1.64940CV4q*4u1

oa vI-Q r-CO CCCr CC Ce ?, WC C4 '1 V CI C0I

MO 40-Cv. v N 14Vq -4 e P

04~~~~~e C1OOo -N,--N gtCoca c* 0 0 00200 0 a 0 0 0 0Pc C m0 C )C * c0=q C. C c .C 10C~ 1. 1

* I IC w I0 a :C pa 0CC0C D a C CSC I ?I'mOZC .

UP ~ a U www * U:c r.: wc c~ %aC CC U)W U1UPWU ) P U ; Uwv e SU WwuPC U , ai. 1 ULL.LL6L WIUUI 'L 0U WLU.LL L. tWI CL

N~ ~ ~ ~ CCC.C UCNC VN oK4CV NJ'aj .I C%o~~ Cy- aw6%tf N C' U% ~ C~ P. % 4 - u U

06cC v .vf a NmC . ^* ccI DCI I1T cc .113,WC I4 vS -C M. M r,

** C2 * 0. 0 -C> cacp00C 04 000 0 aI-C!=C

UP A PX& P U'U:A CU CA UPI PWWtJJi L iwU Pj:%. C% Iv1, Nu.=a % cl r . Mf c lW - .lt 1itn=C: c-IVNX. *I aci%1; %'' .0 ~ .'CI a "- : :C ), V%-N-v-C c-.- 4.-c n % cC, CP le. cli w a, 0 l ~

C.~~~~-. C, "C'..C C.IC Al* CV CCCC C C..~4 C

C C ".,. cv IL J . N.UP WU ,U . ) U 6 J L- L .U . - J PU ... LU pU w W . U

-CVC, ,C p.vr c~%~r Ml a CC 6 t C Q a t. CP O .cfl9

M* 6** 0 *Z 0l 0*l * w *f .0;A N .l1 v 00

N aW

~~~~c rr,-(% NC' -1 Q..,-c 0., C ,~

WI~ LLU.LULL &L U.U . LJ1. LLW U W~WIU aLL LL L .L LA

'4 -C AI-N a m C.I .V " ~ ~ -* U pt C C -C -

ra -- v -l n. tv It- rI>Q Ya VC 4 0) c f=c IP-I-mVn l 9 - 0 d .

cc C C3 0 K 0-, N v4 CC Caj z c. z 0. a I

i U. U, a!L ,L . u L Jjiu lU .VL L

ICI

Page 131: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

w ~ .- w lip- - - %

Ii 1;

em3I .0 c C* cco C cc c cc

lbI

of 1 9- :

LL. CD IN ** mc (A C; I; C2 C- CD C*

U . .I

a CD C!WI -=IC ;

- I: IC : "L:

C.1 I=U. I

VIC *. Sl U'l LL * I *

CL c CL j.

LL C: cc~ c c0:; 1 CY I 0V cc

No I' 91 W

,ig .C 0

IU QiS Lo I . 1 C; c Iw Z W a 6: 14

Page 132: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

~~It

I I C~ 1 H eHr I .4

II I .11 j I 4ArIII w1 LL: Il, lj j

. a ~@ )%14

cc! L iiI I I IjUN

:01 cu0 . I 4 ~ * I* . , U,

29 4. . .4 . . 4 1 ~. 2a,I cc

Page 133: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

L - L

-Y Ij ID-

U) Il v0 I4

I 11)1 Qj..:o C' 00. C5 Iim 42 c CD' 0 1 CD 94

I 4* *' 4 4 4* .. .. . :0 0 0

I cq ICCC ~ ' .W

4 111111. II

C , C% I

w' '.4 w

w~. I IA* J .

I. u ~i .

C~C

!-; C; cr It

*0. C; C; *; .p c,. c Cc'2

CC

4 ~~C C-1 C . *

iw* 0 wC CCC 40. 00 ' C I'Q

*c 0. c . C.c

c.4 I In0. CU

'4 000 IC .004 CN C~ C 0 CC CC'Cl

it i

Page 134: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

N I

PS y4 -I

10 ca

U)I

~:j i~0.PO--

tr--i

a * a

II'

CC . - w I c I j..00 w I t . 4 . 0 % . I

Iw I %e O ,I

9~. N CM~I7 V")

c. c

1 I I

Page 135: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Col a 40C I Is as t 1 " a,0,1

-. LLItV''J LL IU uU , w -M L LW-.

A* =0 ,RcW *v 4

N 6,=- Q ; % a - IP!' 0 Mrl N1.W

IN C P)?10 V41 'WU% 5W'0P4 03 qevqo 4O.C Z aa

I cuO

V4I*IScrc S i'l aW js4a C- M. U 4 r o 4- 4 -o ,C.

V.a in1 4-410r. v-CW

I* C,. op.ie N % QC, c~ aC4 W ag 41 -,v

.11 lW ,L*WLiLjW W LIU.C Wuf .C1O I N *-I .1 cp-.a-

.) Y * "A co * - e. 0% " N* *w *4 -W r* n* z

* 4%C 1%O@ IP3 =N X V I

CD cot.It NI~ c DN It-4 ?1 "C c Jr

Ile;' lz 1*N - . AI~ It'cy. vO O -a .- 0 v I

a ~a *- z* S

6.31~ LI I4~* I*~J 'I (.-.t

4IS I ' L. '. * .Iu5t'C S t. -gC ' *. U C L

U, c~~c. dtc. c MC'I w C\ N

4l C. Ia1 .o

MSS 0.t** *r C. * * O. le &- a cc X 91 P) *C ~ U as~-t C I4 1, ! ,t qI

V4 I(4C 1 M v, NS v- M zC . cc ;

t ~~~~ ~it N, cu5 N I J c cLN- 0 c. a, ~ e 910 v v ~C N

x 511 , 1 "51 551..1 IS. 1 515WI " w, a151 %L6

. I, v ACa &NI

IV = f- N 'L, *c r- C U% 1' r. a . . ~ *

t"r~..~ o~:~ %r % a 9% c I, WU zc C O* CC~- N...C N!,-cc~ ;rc~t 0.tCM ev *c UIr

N, u sr 1 1, 1 -Z I ai 71 ic 1 S% l a Z l 55 20

U% Jr In,-N %~ f(.t' C: N,'V r'! 6rc I- I, r.N~ C - M'%L' L.1 U.*j ~ ~ ~ ~ ~ ~ c c aVL' C. rrPa UU , Uu a~

g 4 a ~ c a ca C. S _- @C a L U% cM 0&~y cc.) ~ I~I.W ~ II ~ l

W,; I. C: x oIw q INH.t -n .S%0 goV4 a ac vcIIr c -MUI ii I: .4 Ivq . C pq 4CLMcc- ocNJ

Page 136: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

0 - 2

e~~I c:C IFI-; 41 D a I*tc. ou~~.~.. oc.,

1,cC~c cCC ;W IU LLU 00a ccm awwm LW N COCCOC

W WL L W W UIU 'u Wwhuutw Ww ww w

9%C 1v~ In nnl onI 1cp I 0 W0 a ay0 t, U INt - lNW4 U . \,"

I, *4 W W 0 '0 " C NN ,0 NW4 l at

c; 1 ' 8I I I I

aj I. C 4 vc ' c t

Ca 4D.2 9b a W~' C a 0 aI 1 W DC

: a Z.

*4* It ft? 4. 9 9. 94 *P v44 CV * 4 * 4 v, I 4 4 * . cy ft N *

fai~.1 10 111 Is~ I !

Uj mttz z- )CJC cy:W f I n a " * rL J , v- v

V~~t.UUc~ c. C C U

c- L) C CtI ~ t ~U1 U) tr Ul a CDCCCL *cC .=cCCC C , c 4:

v i . NN V- 4 I I' 'IN' I Ia Ne *

V~ a1 a, t.0 r- I- 0l c0 oo -4 6 C, Or c Cl m0.. N

U. .0 . . L IL. r-

CC, It O *C I t C 'U C

CC- CD C-4U.U.LSA c .Qe. c, c . * *.c.a ==.=c . A*

32 32 av U0 0 C6W0 a6 0 C UiL U L WP U cl cIL l UWU ' L li 7 W L L I -L

Er. . tiv. c -ZI- " =m Itc % IC tr c Lr V 7.F' OtN Z:tr . c W v c -7 01:

Page 137: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

:w t -' il' -w~- 7 --

C.UC0

CV N r N "g

Ip4 9% 1* C. C " I I

.. ~~C " (v .. S I

iU CoI I

n C 0 C C Ni

I oz It * I:

ty C, N, jl oC. C) I.

'r, C C %. C

LL, 1.6 LL LL M

C.: C-C ~ J c

I, P IV'=' * *cc I CNI-

C CC r-C

C. UU.UUc!c c.. vK'C cL1 ! SLL l LL

11 Il N Il 0:rg: I

Q c

.; W LL 1. W &

Page 138: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

v w w Ii "!

N CY "1 1% v

CY 6A 0 -1 w

,4v tv w .m 59C 4 4*u w w w4 W .

01 toa, %No c 1

tv a. 40 I . I1-4-"U% N. N V , 1; . NCh cl

l 0) 10P 9inC% P 4%

0 C2 I0 0 a b00 140r I I

CO4 em I4a N~ %G~ No. 9% ru4 Da aw 40 ac 04W W, Wu W viWVon o'. U.u u .-rwL

M-Cjs I . N.4 0. 1%0 C )~ 0"0 V) w4 1 4 Y 00.N NI ,~ Ms9 , F% 434 qN N

CY ~ ~ 0 vC .4P .4C ne vP n 0 aP- qwv q

CQ OC w * @ C. 0,

ft ItN .E Kw N4 v v

'C, "o-0dLA. U. WO fi&w 66 La1 .4 L& w

4.Cft0~ UNN NP W. cu I40 014 CC~4 C N ' O

1%. 41-. cq vL ~ @I N .NN l0 g0 'u 04 N 1

W% V1C 0 W 0n 0

3. a0.-.1 .aC ,4 10 P U Yv aC sCjLA.. LA w m WL Wu Ww P.u cM ..

-a C CC 44 wp 400 ..01

c* II v M v* le Ne I 4COc CC CC CC C CC O

vc4IP a ix pp somu vw 179 cm .

IC = v I v..U 1M Mi~ l.4W v.U " f

l 1 0 V s ' C 1 ~ % C'I

4 *O * * * 4 4* * I 4

w L WU-.C w 1&i 0, rp Op 101 IC v I v a q

P) %P 4U ' N 40 N 5 to KO 4 4 l

U. F)I W-i -0 "24 VDI1 @4 r oV V40

WU V0 ftm w4* m ew e a a

Page 139: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

3.7 PROGRAM LISTINGS1

(XOMSYN COMPONENT HOPE SYNTHESIS DROGRiP

C NCOMP m O FCOMPONENTS INY THF TOTA SYSTEM (L.IMITE.D TO 5),a

C ODE=NES OF MEE DEIE IN' THE ANALYSIS OF 7H EATAL SYS4PNEN1 2s

C NCJT NO. OF COMMON JOINTS ON f ACH COMPONENT (LIMITED T0 12). 30r THF FOLLOWING INFORMATION 119 NEEDED IF TH4ERE IS9 AERODYNAMIC INPUT.C NC00P =fl IF NO AERODYNAMIC COUPLING EXISTS BETWFEN THE COMPONENTS 12c NC611P =THE LOWER NUMBERED OF THE TWO COMPONENTS FOR WHICH THERE 13C IS AFRODYNAMIC COUPLINOl (COUPLE COPPONENTS M!JqT BE IN SEOIJENdE) 14c NAT =AERODYNAMIC THEORY USFD IN' THE COMPONENr ANALYSIS 16~r NAT = , A IC-S ARE FORMED BY NONh-ZERO PART1T1614S (STRIP OR PISTON) 17 ~c NAT =2, AIC-S ARE FULI. MATRICE (KERNAL FUNCTION OR MACH BOX) 18C NV =NO. or REDUCED VELOCITIES CONSIDERED rOR THE AERODYNAMICS. 19 j

DIMEILISIOtJ TITLE(24),NRFDU(5),NCJT(5),NMODE(5),cKF97,97). 401CMFF(97,97),CK12(97,36),qM12(97,36),CK22(36s36),CM2?(36,36). 45

2XMODE (97,9),XMnfEN(97,Q),T(97,36).XP(9,97),XMX(9,9). TTK1(36.36). 503XKr(1 035), TTM1 (36,36),XMC(1035),WI(9,97),PMT(9,36),PM12(9,36), 554TM(36,97),TMT(36,36),NCODE(O#44,),XKS (9180)PXMS (9180),A (9180)0 60 45ROnT(9),VALU(9),TEMP( 75)10( 97),-( 97),PUN3(135),F(135,3) 65 '7561Dl1M4( 75),PKT(9,36)8 W9(9,9),,CKFFI1(97,97),CMTC36,36) 717,FPFO(9),ONF(9),GM(9*9),. 721

8AP(4,8),AIC(40,8D ),XF(Q7,9),XFT(9,97),VEL(20) 7

C INTFAER COM(48s4) 73~

1.(CK2(1,E)CM2(1~i,)),(XFIO(l.),XMOD(,),1).X(1.1),M111) so

P(TTK1 (1,1 ),TTM1(1,1)),(XKS(i),XMS(l),A(lhv AIC(1,1)) 82

4,(XMI1.1 ),W1(Il1 )pXFT(1,1)) B4C FORMAT' 00

1 FORMAT(1JO P5X,12A6//26X.12A6///) 9P FOPI4AT(915) 1003 FOPMAT(11HI 42Xp33HCOMPnNENT MODh SYNTFESIS ANAl YSIS//48X,I1,22H CO 1057IMPANFNTS CONSIDERED/I) 10 6A4 FOPMAT(1H0 46X.24HINPUT DATA FOR CnPPCNEN7*12///49X,12,19H DEGREES 1101 or FRFEIIOM/5OX#I1,6H MOIIESI49X#12,14 4 COMMON .1OINTS/f) ill -

5 FOPMAT(1110 2X,III4MODE SHAPES/I) 1156 FORMATUItI0 2X,4HvODF*I9a14H - F FOUENCY =F12.3*4H CpS//(3X, 12011PBF.15.5)) 121

7 FORMAT(///. 3X,90HIJPPER TRIANGLF or REDUCED STIFFNESS MATRIX FOR CO 12511PANFNT (COMMON JOINTS RESTRAINED) K-Fr/I) 126

A FO)PtAT(III0 2X,3WROW 13 /(3X4P8F19.5)) 13011 FORMAT(/// 3X,83HSTIrFNESS PATRIX - RELATES COMMON JOINTS TO FREE 135

IJOINTS (COMMON JOINTS FREE) K-FJI/)1313 FOPNAT(/// 3X.57l4UPIAR TRIANGLE OF STIFFNESS MATRIX - COMMON JOINT 140 i

is K-JJi//) 141 .16 FORMAT(/// 3Xs87HUPPER TRIANGLE (IF RFDIICFD NE111HT MATRIX FOR COMPO 145 '

INENT (COMMON JOINTS RESTRAINEO) M-FF//) 146 j~18 FORMAT(/// 3X.7RHMASS MATRIX - iFLATES COMMON JOINTS To FRFE JOINT 150

IS (CnmmO!' JOINTS FREE) M-FJ//) 15121 FORMAT(/// 3X,52HIIPPFR TRIANGLF OF PASS MATRIX - COMMON JOINTS H 155

?3 FORMAT(/// 3X,4OHNORMA, IZED MOfl. SHAPES FOR ORTH4OGONALIY//) 160

-134-

Page 140: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

25 FORIAT(/// 3XP23HCHE7K FOR 6R7HOGONALITY//3X*52HUPPER TRIANGLE OF 1651THF (AENERALIZED MASS MATRIX IS NOW/) 166

27 FORMAT(/// 3X,60I4UPPER TRIANCLE OF~ TRANSFORMED STIFFNESS MATRIX FO 170

2L FO~T( 3X2,54UPPER TRIAPOLE Of TRANSFORMED HASS MATRIX FO-R COM 17

IPONFNT 12//) 176U 3n FOPMAT(6F12.8) 18O

33 FORMAT(12A6) 18134 FORMAT(1141) 18237 FORMAT (3612) 18338 FORI4AT(1IN1 4OXD22HAIC mATRICES r 11K IPIEI,1.4) 1843Q FORMAT(214) 18540 FORMAT(/// 9HCOMPONENT 12 1)186

1. 41 FOPMAT(1140 514STRIP 1; //) 18749' FOPMAT(1l40 /(3X,2E14*6t2X,2E14.6.2X,2E14.6,2XoE14.6)) 18841i rOPMAT(/// 33HICOUPLED AIC MATRIX VOR COMPONENTS 12*4H AND 12 1)189

rDISC ASSIONPENTS 200KDISC=7 205

141ISC:8210TISC=9 215JDTSC~1o 220KKD I SC~l 225IKDISC=12 226ImPIsc=13 227NMODISC:14 228FcI'1sc:15 229I. MTflISC=16 230MAlI ISC=17 231r RFAD INPUT DATA AND. PRINT 234

[1000 READ(5,33)(TITIF( I),f tl.24) 235REWIND KnISC 240REWIRD MInISC 245REWIND IflISC 250REWINDI JPISC 255REWIND KKDISC 260REWIND IKDISC 261REWIND ImD!SC 262L RFWIM'D NHDISC 263REWIND MCDISC 264REWIND MTDISC 265REWIND MADISC 266READ(5D2) NCOMP,HODE;NCOMvNCOUPsNAT,NV 269READ(5,2) (NREDlI( I), 1:1 NCOMP) 270REAII(5,2) (NHODE(I),I:1,NCO4P) 275

READ(5A7) (NC01(I),j1,4),I1CO) 280READ5,3)((OM(,J)#=1*)oll#NO")281

IF(NV.FO) GO 70 199 282REA1(5,30)(VEL(I),I~l,NV) 283

199 WRITF(6,3) NCOMP 285WRI'rF(6,1) (TITLE(l)oI=1,24) 290DO 100 I=1DNlrOMP 295N=NRFDU( I) 300NC=NCJT( I)*3 305NNMODEC 1) 310

00 200 K=1*NM 314?O00 READ(5,30) (xmODF(J,K).Jm1,N) 315

RFAD(5,30)(FREO(L),wlINM) 320DO 210 .1=1,N 324

21n REAfl(5.30) (CKFF(J*K),K=1,N) 3251DO 2?0 J=1,N 329

-135-

Page 141: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

220 REALI(5,30) (CK12(J,K),9:1,NC) 33000 230 .i=1,NC 334

230 RF.AD(5,30) (CK2?(JjKt0,K:1,NC) 335 jlF(1.E0.I)RO TO 231 336 jWRITF(6,34) -337

931 IWRITF(6,4) IP,NM,~INCJHI) 340kRTTF(6,5) 344 fDO 9 K=1,NH 345

9 UR1TF(6,6)K,FREOCK), (XMObE(JK),Jn1,N) 350WRI TF6,7) 3551DO 19 L1-l,N 360 L

1? WRITF(6,8)L,(CKFF(t,J),JvLdJ) 365kR!TF(6,11) 370Do 14 1.=1,N 375 1

14 WRIJF(6,S) 1. (CK12(L ;J)*J:1,NC) 380URITF(6,13) 385DO 15 L=INC 390

15 WRITF(6,S) 1, (CK22(L#J,J=LoNC) 395 LDO ?40 J=1,N 399

240 READ(5,30) (CKFFT(J.K).Kwldh) 4001r FREPATF TRANSFORME~D STI1fVNFSS I'ATRIX 404

CAI.L MATMPL(CKFFTCK12,T#97*97,97s36,97,36#N,NCND1) 405D0 46 .I=I,N 41000 10 K=1#NC 415

46 WRITr(MTPISC) (T(J#K)pK=IPNC) 421 -

CA? L MATMPL(T,CYl2,TTK1,97e36,97,36,36,36,NCPNC,N,?) 4251DO .3r .I~t,NC 430DO0 35 K=1,NC 435

35 TTK1(J,K):TTKI(JPK)+CKP2(Jpg) 440-Nmr:NM+NC 445jD0 3? I-lANM45

32' RnnT(L)=(rRFQ(L)*6.2831853)*#24500 36 J=I,NM 460DO0 36 K=1,NC 465

36 PKT(.I,K)=CD 470CALL GFNr(NMNMC,NCXKC,*TTK1,PKI,RO0T, IKfISC) 475,

r' PRINT TRANSFnRHFD STIFFNESS MATkIX 476]hRITF(6,77) I 477DO ?A I=1,NL4C 478NSr(?*t +(L-1)*(2*NMCoLl)/2 479NE=(2NMl+([I1)*(2*NMC-L) )/? 480

PA~ WRTTF(6,P)L9 (XKC(J) ..I=NS,%'E) 481110 250 J-.1,N 484

25nl REAlH(5.3P) (CMFF(J,IO,K:1,N) 485 _

110 260 J=1#N 48926nl PFAD(5,30) (CM1?(J,K),K~iNC) 490

DO 270 J=1,NC 49427n REAn(5,3l) (CH22(.J,K),K=1,Nr) 4951

WRITF(6,16) 496DO017 I1 1N 497

17 WRITF(6,F0)I(CMFF(I,J).J*Ld.) 498WRI TF (6,18) 499DO 19 1=1*N 500

19 WRlTF(6,R)L. (CMl?CI,J),Jm1, C) 5011WRI TF(6,21) 502D 0 27 I1, NC 503

27 WRITF(6,B) L,(C?422(IsJ),J-L.NC) 5043r NORMAL 17F HOnF SHAPFS rOR OPTHOIO0WAL1Y 505

DO 51 K=1,N 506

-136-

Page 142: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

00f 51 .1=1 ,N 50751 CMFF(K,J)=CMFF(K,.J)/(32.j74.12.) 508

CAt I HATMPL(XMODE,CMFF,XH.97,9,97,97,9,97,NN,,N,2) 509I -~ CA!IL MATMPL(XM,XM()flFXMX,9,07,97,9,9,9N4,NMN,l) 5i0

DO 47 .I=I,N 515DO 20 K=1,NM 520

2A xmfnFN(.,K)=XMfD(JK)/SQRT(XMX(K,K)) 547 WRITr(I4CPISC) (Xt4ODFN(.i*K),K:1*,M)52

CALL MATMPL(Xt4ODFNoCNFF,197,97,97,9,97,NM.N,N,2)53jCAlIL MATMPL(W1,XMOOENW2,9,97,97,9,9p9,NN,NN,N.1) 535

NIRTF(6,?3) 540aDO 24 K=1.NM 545

24 kRIlF(6,6) K,FRFO(K)'#(XMODEN(J,x)sJIDvN) 550WRTTF(6,25) 555DO ?6 t~lNt4 560

2 A WR1TF(6,$R) L,(W?(L,J)*.I=L#NIA) 565I..C FNEPATF TRANSPARMED.MASS MATRIX 570

CAl I MATIPL(Wl,T,PHTA9,97,97o36,95 36,NPJMNCDNsi) 575CAll MATMPI.XMODEN,CM12,PM12D97,9,97,36,9,36,NM,NC,N,2) 580

DO 5~ :1,NM585nO 55 K~lvNC 590

55 PMT(.J,K)=P14T(J,K).P1412(JpK) 595CAl I MATPPL(T,CMVP,TM4,97,36,97,97,36,97,NC,N.N,2) 600

I. AIL MATMPL(TM,T,TMT.36,97,97,36,36,36,NCNC.,N,1) 605CAIl MATHPL(T,r.M12,TT1,97,,36,97,36#36,36,NC,NCoN,2) 610CAl I MAT'4P1(CM12,T.CMT,97.36,97,36,36,36,NCN(PN.2) 615n O 6n J=I,NC 620DO 60 K~lANC 625

69~ TTM1(J,K )=TMT(JK).CM27(JK).TTMj(JDK)*CHT(JDK) 630DO 65 M=1,NM 635Ii 65 ONF(I4)=1.O 640CAIL GFNC(NM,NMC,NC,XMCDTTMIPMTONE.IMDISC) 645

r PRINT TRANSFORMFI) MASS MATRIX 6496RITF(6,?9) 1 675D0 31 W=,NMC 680NS=(P.L .(I)*(?*NMC*Lfl/2 65NF=(?*Nmr+(L-1 )*C2*NMC-L))/2 690

31 NIRTF(6,R)L.,(XMC(J) P-I:NS,tVE) 695Ion CON71NLIF 700

IF(NV.FO.0) 60 TO 101l 701r FOP FACH REDUCED VFLOCTTY, READ AIC MATRIX FOR EACH COMPONENT 702

DO 109 K:1,NVURITF(MAI)ISC) VFI (K)IWRTF(6,38) YFI (K)

DO 108 I~1,NCOMPIF(JI.FO.I) GO TO 108

N2=2*NIF(NAT.FtJ.?) 0O TO 105RFAI(5.3Q) NSJZE,NPARThRJF(MADJSC) NPARTNIRTF (6,40) TDO 104 1=1,.NPARYN P*READ(5.39) NS

[ DO 203 1.1=1,NSRFAD(5,3P)(AP(JJ#KK)#KK:15 NS2)

03~ hITF(A.42) (AP(J.jDKK),KKS1.fS2) 17

Page 143: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

WRIF(CMAD ISC )NS, NS?

GO TP 10A105 fF(N(llP-NF.!) 00 To 107

N=NREOtf(lI)4NREDUC IT)N2=2.N iWRTIF(6,45) 1,1100 1A 121

107 WRTTF(6,40) I i12*1 DO 106 JA=:1,N

WRTIF(MAJ1ISC)(AIC(JAKA),KA;1,N2)10AI WRTTF(6,42) (AIC(JApK ),KAzIN2) [ICA4 CONTINUIE109 CONTINUE

C GENFPATF THE NCODE MATRIX 704101 KK=D 705

DO 110 l.1,NCONP 710NM=NMODE(J)71DO 120 J=1,NM 720-iKK=KK+1 725

Ilfi NCnDFC.I):KK 730 ~NTM=V~K 731 jDO 120 I=l,NC0MP 735JI1=NI'OPi(1). 740Ncc:mnMD. (I )+NCJTC 1) 745JIDO 119 J:JM,mCC 746.VF(l.EO.1) GO TOl 118' 74700 117 K=IPNCON 748 '

L~v)m(,4)749 'tF(L.EO.I) 0O TO 115 750GO Tn 117 751

115 JCrJ-JM.I 752LI.=CPM(K*3) 753IF(LI .FQ.JC) GO TO 116 754GO TO 117 75

JJ=COH(K,1 )+NMODF(! 1) 757NCnDF( I,)=NCOVF(Il,JJ) 75800 TOl 110 759J

t17 CONTINUE 760-11A KK=Kk,1 761

NCrIDF( I,..)=KK 762110 CONIIN1IF 763l~n CONTIUE 764

00 130 J:1,NCONP 765 jJM=NMOnFC I )NCJT( I).1 7701Ncr=NmnDF( I)+2*NCJT( 1) 775DO 12*9 I=JMP;CC 776TF(l.EO.1) GO TO 128 777jOn 12*7 Kz1.NCON 778 .L=COM(K,4) 779IF(I.EOI.1) on TO 125 780GO Tn 127 781

125i JC=J-.IM+I 782Ll.=CnH(I(3) 783IF(LI.FO.JC) GO TO 226 7843GO TO 127 785U

IPA% if=CnM(K.2) 786

-138-

Page 144: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

JJCO(K )*N F(II-),, N@Jt$ 1,111 787

GO TO 129 7',9127 CONTINUE 79

S 128 KK=Kg41 7921NCODF(I,.J)=KK 792i

129 CONTINUE 70,~13n CONTINUJE 794

W RI T F( A ,13 1ii 131 FOPj4AT(IN1 2X,59FOFECTiVE f-CAttOm OF' COMP'ONWT DrO.F. IN THE SYS

17EM MATRIX//)00 140 I=15NCOMP 795[1JMNMODF(!)4.2*NCJT(I).1 80NcC=NMflDF( I)+3*NCJT(I) 805DO 139 J:JM*NCC 806IF(I.EO.1) GO TO 138 807DO 137 K:1,NCOM se8L~("OM(X,4) 809T(L*E0,I) GO To 135 810

00T, 3 81113'5 JC=J-.Jm+I 812

LL~cnm(K,3) 813JiF(IL.FO.JC) 00 TO 136 814GO TO 137 815

136 I1=COM(K,2) 816[1 ODF(,I):NMODF~tIIJJ, (1) 818

137 CONTINUE82I~i 138 XKKK. 821NcnDF(J,.I)=KK 822

139 CONTINUE 823L 150 1RITF(6,150) I1 (NCODE(I,J),Jz1dkCC)10FnRMATC1HG 2X,194NCODE 1'GR COMPONENT 12//(2515))

140 CONTtN1UE 824c TWF FINAl KK RECOMFS THE ORDER Or THF SYSTEP MA7RICES-XKS AND XI4S 825

c EFAEAND RFDIJCF SYSTEM PATRICES AND SOLVE FIGENVALUE PROBLEM 830CAl L GFNSq(KK.NC;OMP,N4OnCflsNCJTNCODEXKSXKCKDISCIKnlSC) 835CA11 GFNS(KK,NCOMP,NMODIEsNCJT,NC0DEXP4SXMCMDISC.#IMD)ISC) 840N TfK K- NTM 845

C~T=KlLFtI 8651KDTSrKK,MODE,MlDE,NREnUS,NROT,NI)ISC) 866

r TRANSFORM SYSTEM MODE SHAPE BACK TO COMPONENTSCAll. TMOD)E (KKPISC,MCDTSP,MYDIS(;. IDISC,NMODENCJT*NREU#NCO4P,

1MOr1FNV,NCODF,NTMNREDIISNRQTDxF)SCDu,43)C GENERATE GENERALIZED MASS MATRIX FOR SYSTEM

CA1L GFNM (IflISC,NMD!SroNREI'US,PODE-,ADBC,JFIISCeflUM3.GM) 867I(NV.FQ.0) GO To 999I EFRT GENFRALIZED AERODY'NAMIr FORCES FROM AIC MATRICES IF INPUT

CAlIL GFNA (KKDISCNMAI)ICMTDISCSVELDNCOMP,MOCDP.NCOUPNAT,NVNRED~sIAP.AIC. xr,XFTR)j 999 GO in 1000

END 875

-139-

Page 145: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

* FORTRAN DECKcEirGrN RFOUCES STIFFNESS K(ATRIX AND I#VERTS- IT-o REDUC~ES' MASS MAtRIC DETERMINES Et6ENVALUES ANDI !isE0VECT6*S FOR CON'SYNWC' TIE ARAHMENTS ARE= IC A - VECTOR OF LENGTH NRDF*(NRPF+1)/g

*C VALII - VECTOR OF LENGTH NEIdC TE14PDBC.DI1H3, - VFCTORS OF LENGTR NRbF OR WHASS (SMALLER)c F - MATRIX OF DIMENSION (NRDF,3)Cl TDIIM4 - VECTOR OF LENGTH NRDF 0R NNASS (SMALLER-)

r IrAPF,.JTAPE, NTAPED, ITAPE#D w THESE AR0 VARIO16US TAPES ]r NRPF - NUMBER OF DEgR*EES OF FREEDOM OF THE SYSTEM

c NFTG - NtUMBER OF EIS ENVALUES DESiuE

C NVFC - NuIMBER OF EIGENVECTORS DFSIRFDr, NMASS=NO. OF NORMAL DISPLACEMENTSr, NOMASS=NO. OF ROTATIONAL DEGREES OF rREEDOMr STTFF IS ON MJAPF IN COMPACT rOPMc MASS IS ON NTAPE IN COMPACT FORP

SlJPRr'tTTNE EIGEN(AVALII.TEMPD8,CrsDUM3,E, IDUM4, ITAPE,ITAPEKTAPE,IN TAPFMTAPE, NRDF, NE IARN VEC, tIASSPNOMASS, NMTAPE)DIMENSIONJ DIJM3(NRDF), IfUM4(1 ),A(1)iVALU(1 )e9(1),C(1),E(NRDF,3)e

INTFnER OUTOUT=6REWIND MTAPE LREWIND NTAPENTFMP=NMASSCAlL rjVID(N'ASS,NOMASSMTAPEDJTAPF,ITAPF,A.B) ICAl t ZROMAK(A,8,C,D)UM3.NM4ASSDNOMiASSITAPEJTAPEMTAPE,KTAPE)CAlL OIVTD(NMASS,NOMASS,NTAPEDJTAPEITAPE,ADB)C41 L ZROMAM(A,BDCDIIM3,NMASS,NOtASSITAPEJTAPFNTAPF,KTAPE)

* REWIND MTAPE LREWIND NTAPENRFIINMASSINRMX=NREPU*(NREDI1)I2

* C READ IN STIFFNESS MATRIXREAD(MTAPE) (AC I), r:1,NRMX)uWRrTF(OUT,5500)

550n FORMAT(/// 3X,63HUPPER TRIANGLF OF REDUCED STIFFNESS MATRIX FOR TH LIF TOTAL. SYSTEM/I

DO 5501 Izl,NREDIJNS=(2*I,( I-1)*(2.NREDU-I ))/2NE=(?*NRFDUi( I-i)o(2eNREDU- ) )/2 LWIRTF(niIT,5502) I, (A(J),J=NS*NE)

5509 FORMAT(1140 ?X,3HROW 14 /(3XPBF19.51)

C READINE THE MASS MATRIXRFAI)(NTAI'E) (AC I), I=1,NRMX)00) 6010 I=1,NRMX

WRITF(nUT,5505)5505 FORMAT(/// 3X,60HUPPFR TRIANGLE Or REDUCFD HEIAHT MATRIX FOR TNE T

ICTAL SYSTEM/IDO 5506 I=l,NRFDUNS=(2*.( I-I )*(2*NRFPU- ) )/2NE=(?*NRFDIi.( I-I )*(2*NREnU-I ))/?

5506 WRITE(OUT,5502) I, (A(J),JzNS#NE) -

TF(NFltn.FQO) RFTURNCAl L EI rMAT( NTEMP, A, VAIUsiTEMPs BCo DUM, E, IDUM4,MTAPE, NTAPE, JTAPE*

I ITIPNFTGDNVEC,NMTAPE) 1DO 60l I=1,NEIG

-140-

Page 146: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IF CVALtl(I ).1T 0!,) 60 TO 39-flU43 ~gRT VLUI( o))/ 28 185

r-0- TO 60

6 n CONTI NUFK II WRITF(OUT,90009)MITF(OIT,0065)(IfJ13tIZeE

9009 FORMAT(/// 3X,S3HNATURAL FREC.-ENCIES'.OF THE SYSTEH 1/41 905 FOOMAT( 3X,29HTNE NAtURAL t"OUNC -itWU0600R 0 iA~2T-S- F12i3s2Ho

RETUP

114

Page 147: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FORTRAN DECK 20(CMATPOPL MATfRIX MULTIPLICATJO RA W W-lNNI L -2011

21,92C MA-TRIX A DIMENSION (14AN)I ANPORM20

PC9 ,WiD) 204

c (k;,Nwe) Is-5 -

Pc =RO n OWS IN PRO"U:T H A to fk ~C 2

L = I0090 0 S0IONfl Or A AND 8

C 3, A X B(TRANSPOSE) a C 21

SlIIRPUdTINE HATMPL (A;RC.HMADNAMB.WDD*MCHCDMWN IOP) 2115DIMENSION A(HA#NA)#BlMRWB)sC(NC#NC) 201

C 2025GO TO ClrI,200,300),IOP 2630

ton DO 175 1=1,1 03100 150 Jz1,N P048

DO 125 K=l,L 2050

29C(1,)CINJFIK.BKJ 2060

1 50 CON'TINUE 06 J

t75~ CONTINUE 210

409)RFTIP'4209

DO22N K10 29

210729 CNTINU 210250 CNTINU 211275 CNTINU 211

-142-5

325 CNUNU 215

Page 148: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FORTRAN: n:CK .90

tt Ut T PRPWF POTMJfP43 AMOPE AIX Y RE.AL MATRCESU A IS THt (REAL) OV SI7ErWRE4N.iS cOMPLEX HATRX 'OF SIZE. ,NC) X'~3I E~.MTTIx91

.1- S -THE "ATtlU tIPI E1)OSZNi"/ l .W 9020 I

Ij IIIS RESIILTikT (C9HPLEi) OFSZ RX2RI EL TATIOW 020 PR 40. dt CoLUMIH ' ' AS- DIAENtl OkEb Aij,4 1AW0R9 9039.

c Nn 6F ROWS IN, C--AS- DIHNIOE IN0 MAIN 9ROBRA

c PA NO. OF ROWS IN R AS DioEosICNED- I" "'A IN PORAM 9640

c PS No. OF COLUMNS IN 8 AS GUMEN31ONED IN MA4 PRwoGM9

SUPROUTINE CMULT(A,8oCD*MRmMAD PIKRiNCN D) 90!55

litDIINSION A(9,MR),B(MAMR),CCNMR,9),D(9,18)DE(9.SS,)-. 9065

NR?=2*RR 9 075

IiN014:NTJ/2 9080DO 20 KzloNR 98DO 20 t11ND 9090

EtK~l)x0.09095

M) 20 J:IeNC 910020 ECK*I)=ECKp-L)GA(K,J)*B(J#L) 90

00 31 K=1.NR 91

F DO0 25 L=1,0R2.2 Q114M=([.1)/2 9120

ffDo 25 J=1.NDH 91-30U 5D(K,t.)=fl(K,L),E(K,2*J-1).C(JHMM) 9135

DO 30 L=PNRP*2 9140

PH4L/2 9145

00 30KD )21,N.O 9155

-f 30D(K9 )=D(K*L)+E(K.2*J)*C(JPM) 9160

RETURN 916'5

END 9170

-143-

Page 149: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

1ONC --6ENERATES- TOE TR*ANSVFOE'~kASS,' OR S-,tT4VtFNE~SS'",Tl. '3005FOR EACHrm t(~poNEt'31.

NHr = OR4ER'OF Til -IA HARX X)015THF FINAl M4ATRIX PS"T~E witcI oPc ONR ONS-) 32

C 3020StIPROUTItE GFNCINW*WMCNCT',TDA4IC 0030 1 ONSI-Oh xcit)D r3.6,T(~'iJB1 3035

On0 4n .II,NMCT40 XCCJ)=O.P O

00 49 M1.,NKJ(2.,(M~)*(2NMC~))/23065

t4M=M-1 300H4mm=J+NH-Hml 3075DO 44 K:1.NC 300XCCHM4)=PT(H,K) 3085

44 HM=MH M~l309045XC(J)=ftlAG(M) 30,957&L=(2*(NM,1)+NM*(2*NHC-(NM1) ) )/2 3100g00 50 J=1*NC 30

DO 50 K=.lNC 3110

XCCL) TTI(JK) 3115 I1:1.1 3120

50 CONTINUE 3125UIRTF(IDISC) (XC(I)s,11,NMCT) 3126 IRETIIPN 3130

FNP 3135

-144-

Page 150: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FflRTRAN-DECX 41340i-v 'at-ktRATtS, _THE -410 ORSJrEI-:RX 0THl TOTAL SYS01J 5j KK =dorDFR OF THE, SYSTE 4015 (S)

I'D ISr C06N T kANS THE CflPWN KAR0 1 II C,0 _t 'oo iy* _04111 HFSYSF 'MATRIX IS STORE OWNICINC ATFOKMST." S(X) 4820s

c 4030SUiREPUINE GOE(NS- (1),~ft f 00 SCX(1.X(1) I 'SC) 4030

REWIND NDISC 404tREWIND IDISC 4044KKK=Kf'(KK*.)/2 4045

20DO 200 -11KKK A00O20xstI n ee. 4855

DO 500 !:1sNCONP 4060NM'WNNDFI),3*NCJTCI) 4065NMCT=NMC*(NMC+1)/2 4n66READ(IDISC)(XC(K),K~t#NMCT) 4W6

I tDO 400 !Iz1,NMC 4070KI~NOnEII)4075

00 375 JJ.IfNMC 4080

LA=4IIF(LTeflFoKI) GO TO 370

KI=LALI=KA

i L 1~KA4095XS(Nn)=XSCNO)+XC(MO) 4100

375 CONTINUE 4105Ii 400 CONIJTNUE 4110

500 CONTINUE 4115D0 510 ji,KK 4120NS=(2#t+(1-1)*(2*KK-I))/g 4125NE=(2.KK4 C1-1 )*(2*KK*I ))/2 4130

51n WRlTF(N1)ISC)(XS(J)#JVN9PNE) 4135I ETIJPN 4140

1145

Page 151: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

41-451

VFnlTRAN, DECK 60

CGENV GEtNERATES TH EEAIZDMS xAt*il ff-ok THE TO-TAL -Y6460161c USED IN THE MOPAL FLU?7TERW'PRO@6A'6

N SIZE r REDUCED MS ~RX I H YSE O7

C Nvrc -No. OF MODES 60:06C SDnISC - SYSTEM NOtIF SHAES1TRE 6009

C NDISIV CONTAINS-REDUCED MASS MATkll Or 7HF SYSTEM 601,0C GENERALIZED MASS "MATRI -i FORMED. RiNfTliD? A-k PUNCHED01

6 015

SlJRRnUTINE GENM (NSfISCNDISC,NNVCA,B,C*LL0ISC*DE) 6020

DIMENSION 6028()C( .DI.E99'G96030

10 FORMAT(1H1 2Xo44HOFNERALIZED MASS MATRIX FOR THE TOTAL SYSTEM f14 603511 FORMAT 0IH 1P9E14.5) 6840

REWIND NDISC 6045

REWIND MSDISC 6050

REWINDf LI DISC 65

NHjAX =N*(N.1)/2 6060

RFAT)(NDISC) (AC I)D I:1.NMAX) 6065

DO 900 K=:1AVPC 6078READ(MSDISC)(C(L),LZ1,N) 6075

DO 800 1=10N 68II:I~1 6085 j

IF(fl.EO.0) 00 TO 600 6090

DO 595 J=1,11 6095

NUl=(2.1.(J-1)*(?*-J) ),2.(J.1)*(N.I) 6100-

60n CONTINUE 6110 '

NES(?*N,(I-1)*(2*N-I))/2 61150NF:?N( -=.2e- / 61205

DO 650 JI=NS,NE 6130

9(.I)=A(JJ) 6135 I65fl J=J~i 6140

DCI :0.06145

00 750 Li.:1,N 6150

756, D(1)=nfl).C(LL)*R(tL) 6155 T

WRITr(ILDISC)(D(!),Iv1,N) 6165

90q CONTINIIE 6170

REWINDi LI DISC 6175

REWIND Mq0IsC 6185 3

AEAD(Ll.DISC)(I)(I),t:1,N) 6190

DO 950 KK:1.,NVEC 6195

READ(MSDISC)(C(L),i:1,N) 6200

E(r,XK)=0.fl 6205

D0 930 1.1=1,N 6210J 1930 E(K*VK)=F(KpKK )+D(LL )*C(LL) 6215

950 CONTINUE 6220

1000 CONTINUE 62253

WRI TF(6,1 0) 6230- jDATA 01/4HOFNM/ 6235

!C=0 62403

DO 20 ki=,NVEC 6245

IuRTF (6,11)(E( I,J),J~1 ,NVEC) 6250

DO 15 J=1,NVEC 6255

IS G(.I):E(I,J) 62603

CALL PUNC (0O1,NVEC,0l,IC) 6265

20 CONTINUE 6270

-146-

Page 152: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

:1 6275RETIIPN 68LN

-17

Page 153: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FORTRAN DECKCTIAODF TRANSFORMS SYSTEM 14ODE SHAPIS To EACH COMPONENT

r KKPISC CONTAINS (K-NW) X (KMH) INVERSEr ?4cDisc CONTAINS THE MODE SHAPES FRf EACH COMPONENTr MTDISC CONTAINS THE T MATRIX FOR EACH4 COMPONENTr MSPJSC CONTAINS THE MODE SHAPES FOR THE TOTAL SYSTEMc SM MATRIX -SYSTEM HODF SHAPES INVOLVING MODAL DEGREES OF FREEDOM.r STP MATRIX -SYSTEM MODE SHAPES INVOLVING TOANSLAYIOMAL ANDr ROTATIONAL PFORFES Or FREEDOM.*r YF - TRANSFORMED SYSTEM MOOF SHAPES FOR EACM COPPONENT,r XF STORFrI ON KKnJSC FOR SUBROUTINE GFRA IF AERO INPUTr

SURRrIUTINE THODE (KKDIqCMCDISCMTDISC,MSDISCNlODENCJTNREDI.I NCnmp,MODE,NV,NCODF,NTmNREDUSAkROT,XF,SDCDD)

DIMENSIONJ NMODP(l),NtJT(l)sNREDb(1),St(4,9).STP(9O,9)sNCODE(5,45)lDXF(Q7,9),8(1),C(),D(I)

DATA 05/4HSYSM/300 FOPMAT(/// 3X,47HSYSTEm HOOF SHAPES FOR FREE JOINTS ON COMPONENT

11211)301 FOPMAT(lIl 9E14.5)307 FOPMAT(// 6X,6HMODF IRXs6HIMODF 2s8X,6HMODE 3#8X,6HMODE 4p8X#

16HMOflE 5,8X,6HMflDE 6;8y,6HMODE 7,mXD6HHOnE 8,AX,6HMODE 9//)RFWIN) KKDISCREWIND MCDISCREWIND MSDISCREWIND MTD!SC

C GENERATE XF, TRANFORMEn SYSTEM mODE SHAPES TO EACH COMPONENTNT=NTMe1DO ?nl .1=1MODlEREP DCMS0ISC) CRC I), K:1,NRED$JS)DO 11 K=1,NTM

11 SM(KJ):R(K)

DOl 1.? K:IJT,NREDIJS

t =1 +1

DO 15i M=1,NROT

DO 14 N:1,NREDLJSREADCKKDTSC)(CCKK),KK=1*NROT)

14 D(M)=fl(M)+R(N)*C(M) 1REIIIND KVDISCL=1 +1

19i CONTTNIIF20 C ONTI NIJE

REWINO KKDISCNNIA=0on 100 I=1,NClMP

N:=JRFDI)( I)NMrNMODEC I)NO=NNM,1N NM=N' 0.NM-INC=3*NCJTC I)JJ=NM,1JK=NM. NCDO 30 K=IkN

-148-

Page 154: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

AD(RnoIse-) to(K) III) NNKjA)}DO 2A I~dO~

26 CONdTINUE

00 29 JL=J.1,JK

JMNCfOFl( IJL)-WTN24 cMfk K)+8MN*STR414,L

311 C~ONT1I4IFIF(t4V.FQ.O) 00 TO 39

38WRITF(6,302)?II DO 40 KiC:1N40t NblF6D301)(XV(K#L)#Lzl#MOPE)

10n C OffT IJRFTIIRN

E NTI

-19

Page 155: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FOR~TRAN BECKJ

r A 15 T11F UPPER TRIANGL.E OF THE SYN"EIRIC NATAIX TO RE INVENTED* SYNV CC ~C. WHFNTS ARF STORED WOw51ISEeC. N rORflFR flF MATft~x *SYII CC

r PROlGRAM INVFRTS IN PLAtEe SYNV CCSHO~rWTINE SYKIt4V(APH) SY#9V $IDIPEMSNjI A(1) SYNY isCAIL ECtnCK(ITI)

IF(Aft).T.0*0) 00 TO 'PS00 TO 99

25 11=1

27 FORtIAT(Jkt*5X.36HA NF4GTIVE VALUE APPEARS IN 91-ENENT IDX125140t VECTOR TO BE INYFRYED*/6X 6SRSINCE ELIEW~T FALLS ON DIAGONAL2, MATRIX IS NOTT POSITIVE DEFIWIYEs/16X,3OHP1O6RAH ENDED AND 404 OF3LFTFP. )D0 4F, I#1N

IR1TF(6,78fl.CACJ)#J4NSsNE)28 FflINAT(/3RW,14/(qF14.51)45 CONTINUE

CAlL FXIT9q CONIT1411E

DO In0 1.1=2,N SYMY 30100 A(1J)=A(IJ)/A(t) SYMY 40 -

flu =1 SYNY 60IJ=N00 1oan T=2#NI I=1.1+1j

no 200 J=I*N

I. 1 I1. jr JDO 120 L=1,ItulA(1J':A(IJ)-A(LI)*A(LJ)

120 LJ=LI,.IMl200 1 J=I.t

fF(A(IT).LT.0o0) 00 TO026A(11I)zSORT(A( II))

DOl 500 J=1,1N1A(.I )=A(.IJ).ACJI )IF(J-1941)300#420#420 i

300 JPI:J+i

LI=JfDfl 400 L=JPIDIMIJL=JI .1

400 A(JI )=AUI ).A(J. )*A(LI )420 A(.Il )=-A(JI )/A(1II)

-150--I

Page 156: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

[ lF( IuN)6f0,960#9SI

On 7(14 J=IPIPN

704 A(IJ):A(lJ)/A(ll)900 A(II)xl ,ft/A(1I)

DO 2000 falsN

DO 1410 .jZJ,N[ ACIJ)xA( J)*A(.iJ)

IF(JP1..N)1lo0,110140ft

JL=JJno 1280 IjjPl,N

JL=Ig.1

, 100fJ.IGI +

CAI I FCLflCK( 1T2)TIMF = rt0AT(IT2-ITl)/A40009

V 3000 FPA(H39 T!TME ELAPSED FOR MATRIX 1WVFRSION :E12.4#lXPNSIECnNnS)

II RETUPN

I -151-

Page 157: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

s FnRTRAN DECK

r N=NO. ftF NORMAL DISPI.ArEVIENISC P=NO. nF ROTATIONAL D,OsF. iC NTPF-CnNTAINS STIFFNESS (OR MASS) MATRIXr MTPF-Kl2 (Ml?) STOREDr. ITPF-KI1 (Mil) STORED Lc A- DUMMY STORAGE VFCTflR*LAROER OF (N*(N.1)/2 OR NO(M+1)/2)

SIJRRrUTJNE DIVID (N,N*NTPEPH'TPE*ITPE*AB)DIMFNSION AW)PPC1

REWIND HTPEREWIND MTPE

NMAX=N*(N+l )/2HMAX=M.(M,1 )/?NM: N+MICN1~oDO Ill I=1,NII=NM-I11READ(NTPF) (8(J),J=1PIT)ID:I I-mDO ?p I=I,!D LICNT: ICNT+1

20 A(1CNT):fl(J)

DO 30 J=1111,1I.JCN.TJrNT~l

30 R(.JCNT)=P(J)

10 CONTINUE iWRITF( ITPE) (A(J)DJ=1..NMAX)REWIND MTPEREWIND !TPE LI D=0ICNT=0DO 5n I=l,MI I=M-ICNTRFAD(NTPF) (8(J),J:1D IT)ICNT:ICNT.IDO 60 J=1*II

60 A(Ifl)=R(,l)50 CONTINUE

FNP :

-152-

Page 158: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

CIATFnRTRAN DECK

C THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGFNVECTORS FORC SYMMETRIC MASS AND STIFFNESS MATRICES*

r THF ARCUMENTS ARE--C N- ORDFR OF MATRICES.r A- nlUMMY VECTOR WITH DIMENSION IN MAIN PROGRAM OF No(NW41c VAIU- STORAGE FOR EJOENVALUES. MUST BE DIM(ENSIONED IN THE MAINC PROGRAM AS A VECTOP OF LENGTH NEiG.c TEMP,B,C,Ds- DUMMY VECTORS WTTM DIMENSION OF N IN MAIN PROGRAM.rC r- DUMMY ARRAY WITH DIMENSIONS OF (N,3) IN MAIN PROGRAM.r TDIIM- DUMMY INTEGER VECTOR WITH DIMENSION OF N IN MAIN PROGRAM.C MIAPF- TAPE WHERE STIFFNESS PATRIX IS STORED IN COMPACT FORN,

Ir C tTAPF- TAPE WHERE MASS MATRIX IS STORED IN COMPACT FORM.r ITAPF,ITAPE- SCRATCH TAPES.C NEIG- NUMBER OF FIGRNYALLJES DESIRED.ri NVFC- NUMBER or FIOFNVECTORS DESIRED. MOST HE EQUAL TO OR LESSC THAN NFIG.r THF MASS AND ST-IFFNFSS MATRICES ARE STORED IN COMPACT FORM ASC VECTORS. ONLY THE UPPER TRIANOLFE OF THESE MATRICES(BY ROWS) ISC STORFD.

SIJAPOUTINE F!GMAT(NAVAILU,TEMP.R$,DE, IDUN,I4TAPE*NTAPEJTAPE.ITTAPF,NEtG,NVEC,NMTAPE)I)IMENSION A(1),TEMP(I),VALf(1),;RCI),C(1 ),D(1)DECND3), IDUM(1)fl0liRi E PRECISION SUMOSIIMIINTEGER OUTI, QUT:6REWIND ITAPFREWIND JTAPERFWIND NTAPFREWIN MTAPEREWIND NmTAPE

NMAX=N*(tJ+1)/2co * * #414 * * * 1 * 1 4 * 1 * 41 * * 1 0 1 * 1 * 1 * 1 4 * * * 0 1 *1 *1 4 *1 *1 * * 0 *1

r STFP IC READ IN M BY ROWS IN COMPACTED FORMC REPIACF M BY (t)TRANSPnSE, WHERE MxLo(L)TRANSPOSFP SAVE M ON NMTAPEC CAlCIULATF FIRST ROW

READ (NTAPE) (A(I),I81lNMAX)WRITF (N?TAP)(A(I),I:1NMAX)REWIND NTAPE

5 CONTIUE

DO 10 1=2,Nin A(I)=A(I)/A(1)

C CALrUI ATE ALL THE OTH4ER ROWSI Ntl=N0O 101 1=2,NINP=IND+1

DO 50 JJ=1,KtHJ=(M-JJ).CJJ-1 )/2' I1250l SUM=SUM.A(MJ)*A(MJ)A( INP)=DSORT(A( IND)-Stl4)IF(IND.FA.NMAX) GO TO 100SIIMl =A ( I ND I

DO 99 Il[.l1,N-5-

-153-

Page 159: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

SINI1:INDo

DO 6(1 J.1=l,119:(M-JJ).(JJ-I )/2

CONINUE(N)-U)S~99CONTINUF

CHFCK FOR SINGULAR MASS MATRIXDO 102 I=1DN

0CONTINUE

THIS rOMPIETFS STEP 1

r StEP 2WRITE (I )TRANSPOSE ON TAPE BY COLUMNS

rPUT (t)TRANSPOSF INTO TEMPORARY STORAE CYEk4P-*A VECTOR)r AND THEN WRITF TFMP ON TAPE

K TA PF:NTA PE30n INP=0

00 340 J=1,N00 330 I11J

INnT~:ND,1 iTFt4PCIND):A(MIl)

330 CONTINuEFINRITF(KTAPE) CTFMPCJJ).Jjx1.INDIINP=0

340 CONTINUEC THIS COMPIETFS STEP 2

c STFP 3C CCL)IRANSPOSE) INVERSE REPLACES (L)TRAWSPOSE IN CORErC REPIAf*EMENT IS DONE BY lAST COLUMN FIRST-WORKINO UP THE COLURNI

DO 410 iI,NTND=( IftM.3- ) )/2-N i

41n AC INP)z1./AC IND)DO 499 J:2,NJ J=0(1+ 2) -JDO 490 1=2,JjiINP=(NJ4I-3)*.JJ-I )/2

DO 450 K:KI*JJ

"K:CM-K )*(K-l )/P.JJ450 SIJM='UM, A( IDK) *A (MK)

I NnI1ND..IJ

490A(N)-1NAI)490 CONTINUF

C END OF STFP 3

C STFP 4C U: ((.) TRANSPOSE)! NVFRSE

-154-I

Page 160: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

C WRITF If ON TAPE BY ROWSj; tf

r INTSW1n W14SE4

r51 PUNT 1 (T CLM IS)ITIPFN HNWIEO AF

C TEMPAlD=~42

C RAP K TOPE CORE JJjz#I

E ND OrKSINGP T ECLM

c REPKINTO CORA E

D0 690 J.I=1,N

DO 650 = l1K1:U4-K)*(K-l)/2+1

6511 Stim:=,q"A(MK1)ftTEMP(K)

IF(l.E00 I) GO TO 680

DO 660 K=IJI

6601 SUI4SUM*A(K1K)*TEMP(K)6811 CON7NIIE

I 69n CONTINUIE 0 0 * ftft0 0 Otft * 0 *

c ORM((I)IVREOIc KU 1IS IN CORE

c READ IN I COLUMN BY COg UMN AND rALCULATE C(L)INVERSE)*KU

r CALrIIATF THF FIRST ROWREWIND NTAPEREAD(NTAPE) TFMP(1)DO 710 I=I*N

7111 A(l)=A(I)/TFMP(l) RS FTERW

-155-

Page 161: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

INI1:NDO 799 I=2*NRFAD (NTAPE) (TEMP(JJ).JJx1.I)DO 799 J=I*N

J.JI1-1

DO 750 K:1,JJ

75n SIM:SIIMIEP(K)*A(MK2) i799 A(INnU:(A(IND)-SIIM)/TEMP(I)

c STEP 7 IS COMPLETE

c STEP Fc DETFRMINF FIOENVALUES AND EIOENVECTORS OF THE NEW MATRIXr CHANClE TWE SIGN Or A IN ORDER TO OBTAIN THE SMALLESTr EinFNVALIIE FIRST i

11o 800 I1,NMAX80n A(I)=-A(l)

CAl I RTIMAT(A,VALUJ,TFMP,B,CaDEuIDUMNsNFIsNF.CiNTAPE)jr CHANCE VALU BACK

DO 850 TI1,NEIG85n VALU1(I)=-VALU(I)

c STEP A IS COMPLETEC.* * * * * * * * * * * * 0 * * * * * 0 * * * 0 0 * * * * * 0 * * * *

r SUFP9r CHANGE FIOENVECTnRS BACKr REAn 11 INTO CORE BY ROWSr READ 1INCHANGED EIGENVECTORS INTO CORE ONE AT A TIME

C CHANCE AND PRINT EICENVECTORS

IF(NVEC.FQO.0) GO TO 2000 IWRI TF(nUT,4001)REWIND ITAPFREAD( ITAPE) (A( I), b1,NMAX)REWIND MTAPF

REWIND ITAPFDO 999 JJ=1,NVEC 1READ(MTAPE) (TFMP(I)olIN)

nO 910 I11NSIJP4M Dno IlDO 9n9 J=I,NIND=IND~t

90q SUM:SIJ)MA(IND)*TEMP(J)91n TFMP(I)=StJM -

r NOPMALIZF THE ETOENVECTORSUM:TEMP( 1)DO 939 11=2,N -

IF(ARS(SlIM)-ABS(TEMP( II))) 938,939*939938 SUM=TEMP(II) i99CINUEM)9094,4940 lM 940,947,94D4 ON91 T:1,NDOMP 941 11T=(1 /

941 CON TIN EM1)/O

941 CONTINUE

WRITE (ITAPE) (TEMP( I), 121N) '999 WRTTF(OIjT,4000) JJ#VALII(JJ)#(TEPP(J)o, Iz1,N)

C STEP 9 IS COMPLETE

-156-1

Page 162: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

00 Tn ?COO40l00 FORMAT(IHO 2X,18HEIGENYECTOR NUP.RFR 15/12X,174 CORRESPONDING TO

4001 FORNATCI4 2i.420E,rFNWVALUE§-ANn EIGOEV~OS OF THE SYSTEM IiV 400P FORMAT(1H1,38X,27hTkFI MASS OPAtRIX I'S" INGULAR IIV 1090 WRITF(CUT,4002)

?00n RETIJPNEND

1157

Page 163: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

C7ROPAK FNERATFS REDUlCEft STIrF'NFSS MATRIX FOR CONSYN

c A S ADOMY VCTO WIH 1ORAF O H 4(H,1)/2 (LARGFR) .r CIS ADMYVCOWIHSROFN OR H4 (LARGER)

r NTPF CONTAINS 1(11 MATRIXr MTPF CONTAINS IV12 MATRIXr ITPF SCRATCH TAPEc .KTPF STORES K12*K2?*,(-1)

c NtTIAlLY CONTAINS K,72 aC... REDUCED STIFFNESS MATRIX IS STORED ON IIPE

SURRnIfTINE RMKABcQNiNPTFTPvP)

DOIIRIE PRECISION SIIMsDPIDpp2CAIL SYMINV( AdiH)REWIND HTPEREWINDl ITPFAREWIND NTPFRFWINn KTPENMX:N(N+1)/2 AMMAXM(H.1 )/2flO 10 1K=1NRFAfI(MTPF) (R( I, I1#eM)jICNT=ODO 10,00 IK=I,M

JK=IV'AICNT= ICNT.1

20 C(.I)=A(UCNT)

IF(J-I.FO.0) Go TO 30C(I)=A(liD)JA=JA-1I D= I l.JA

30 CONTINUESUm~fl * ODDO so 1=1.14DPI =A U)

50 StIM:c~ijl4np1DP2D(JK): SUM1

1000 CONTINUEIWRITF (ITPE) (P (J), J21 M)WRITF (KTPF) (D(J),JS1.M)

10 CONITIERFWINDI ITPFREWIND MIPEREWIND NIPFREWIND KTPEREAD (NTPE) (A(J)tJlaNMAX)ICNT=x IDO 60 KK=1,N

-158- f

Page 164: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

READ (ITPE) (D(J)#J~1d4)

DO 70 K J~1 PN

KP=K.I

L IF(KP.LT.KI) Gfl TO 7t1

on a0 KR=I,MDpi=1 ~( KR)DP?=C(KR)

a0 StIl~qiM +DPI.DP2I C !Tt I CNT 41

L A(ICNT):A( ICNT)-S470 CONTINtJF

REWINDl mTPE

60n CONTINUEREWIND NTPEREWIND ?4TPEREWIND ITPFWRTTF( !TPE) (AC!), I:1,NMAX)REWIND !TPERIETUIRN

FN?'

1 -159-

Page 165: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

$ FORTRAN DECK

C N=NO. nFl NORMAL DISPLACE"4NTSr P=Nn. ftF ROTATIONAL D.D.V.

rNTPFJ CJONTAINS Mil MATRIXr PTPE CONTAINS M12 MATRIXc ITPE SCRATCH4 TAPEC KTPE CONTAINS K12*K22**fel)C** REnl~rEn MASS MATRIX IS STORED ON ITPE

SIIPROIITINE ZROMAMA.BCDNMNTPEMTPED ITPE*KTPE)DIMFNSION Ai~~h()D1DOIIBI E PRECISION SllM1,SUM2DIVP1,DP2,DP3NMASI~qN

REWIND ?4TPEREWIND NTPEREWIND KTPFNMAX=N*(PN+l )/200 In ICK=l,NREAD(KTPF) (8(I),I=lH)

DO 100n IK=IpM

J Kj-: I V~no ?p J=.1J1MliIC I I:IC NT +1

20 CL(I)=A(ICNT)

JA=M

DO -So .1=i, JJ

IF(J.)IFO.0) GO TO 30C(JI)=A( I T)

JA=JA-1

.3n CONTINUE

DO 50 J:1,MnPi :R(J)

5n SUMI =SIM1.+DP1.*DP?fl ( .lK ) :SllII lA

100n CONTINUF1iRIIF( ITPE) (D(.1),.:IM)

10 CONTINUEREWIND ITPEREWIND MTPEREWIND NTPEREWIND KTPERFAD(NTPF) (A(J),jz:1,N4AX)DO 60 KK=l,NREAD(MTPr) (RJ),jz1lm)READ(ITPi) (D(J),J:1,HM)D0 70 KJ.l,NREAD(KTPF) (C(J),J=1,M)SIiMi:O .DOStiI42=0 .DCDO 80 KR=l,MDPI:D(KP)DPi :R(KR)

-160-

Page 166: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

DP3.FC (KR)

80 S1112SIJ?eDP2*DP3

SII?=SUN2

IF(K.I.r4E.KK) A M.K4.KMM)* (2H rAS S.K)

IV(K-J. IF.KK), AM(HKaA(N.S4H,)*2NASJ /eIF(K.J.LE.KX) Al M k):A lk)'"SIH1I 70 CONTINUJE

REWIND OtP60 CONTINUE

REWIND NTPERFWIND MTPE

[ REWIND KTPEWRTTF(ITPE) (A(IbI~l,MMAX)REWIND ITPERETIIRN

Page 167: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

$ FORTRAN PECK 58

CPIJNC PUNCHFS FULL. MATRIX IN (lPfS12.5) FORNAT ANI SEOVNCIS CARDS 5915

THP rAtt PUNC STATEMENT MUST BE IN A LOOP*FAH O STARTS ON A NFW CAN10

c A IS THE ROW VECTOR TO It PUNCHED.Cl NS 15 THF FIRST ELEM4ENT Or A T0.SI PUNCKE'D*C WE 19 THF LAST FLENFNT Of A T6 SE PUWCHM~C 0 IS THE ALPHANUMERIC IDENTIFICATION CODE FORt THE MATRIX.C IC IS THE SEQUENCE WINRER FOR THE FiRT CARD LESS ONE-C IC = 0 IF THE FIRST CARD FOR THI! MATRIX-IS Td RE SEGUENCED 1. IC .

SUROUTIME PUJNC (A,NSPNE#OIC) 5010DIMENSION A(l) 5015

1 FGPMAT(1P1EI2*5#60X.1A4#14) 50202 F0RMtAT(P2E12*5s48Xs1A4e 14) 5025

.3 FOPMAT(lP3Fl2.5o36X,1A4vI4) 5030 L4 FOPMAT(lP4f12e5,24X.1A4,14) 50355 FORMATC1P5EI2.5,j2XDIAAS 14) 50406 fOPMAT(1P6Fl2.5#tA4,14) 5045 ~

C 50s0NT=NF-NS+l 5055

N6=NT/6 5060jNC=N6*6 5065

NI=NSq 5070N2=NI +5 '5075jIF(NT.LT.6) GO TO 20 Soso

DO 1n .i:1.N6 5085Ic:1Er,1 5090PUNCI6,(A(!hl'=NIN?),flIC 5095

In N2=N?.6 5105IFf NT.FO.NC) GO TO 50 5110

20 NO=NT-NC 5115 jlc~lr~l5125

GO Tfl(p1,22,23,?4,5)NO,* 513021 PUNCH lA()IN N),.C51351

GO TO 50 5136~2? PUNCH ?,aA(I),1:-N1.NE),Q.IC 15135

GO To So 5141j21 PUNCH 3,(A(I),I=N1,NE),OIC 53140 J

on 7n 50 5146

24 PUJNCH 4,(A(I),I=NlDNE),Q*IC 51501-GO TO So Si151

?li PUNCH 5,(A(IhI:N1I,NE).Q#IC 515550 RETIIPN 5160

ENTI

-162-1

Page 168: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

$ FORTRAN DECKCR1GP'ATC FPCrO.ATHORS I.ELSON AND R.E4fUNDEPLICS.CEWPAL DATA PAWCSSNSP4.1,69 B10H9883

SIURRM1TINE BiONAT(AeVALU.VALL&UPPf~tDoI1A@,V.T INTER.NNNEIG.NVEC.IP4TAPF)

V DIMENJSION A(l).VALU4I),YALL1)tJPPERD(1),DIABl(1)vV,(1.).T(NN.3).jJ I INTFP(I)

REWJIND tITAPEW'Z~ o BIGHOO07

IF(N.LFP)GO TO 49NPl :N*1 BIOHoolO11141 N-1 RoNoooI1NI1P=t-2 910110612NTPP1 :152+1 BIGNfl0l3IX~o 610140014DO 10 121DN142 610140015S1An4A2=0. 6101M0016

DO I Jz!P1,N 610140018tJ=1X.J 910140019

I SIAMA2xSIGI4A2+A(IJ)*.2 910140020SInHA=5ORT(SIGIA2) p10H0021111)+ 61010022

fIAO(1):AU~ 1) 10140024

UPPFP0fl)=-SfGN(S1Ol4APA(IIPJ)) 8J0GM0025

IF(ARS(STGMA).GT.ARS(AUIIPI)))fl TO 2 610140027UPPERO I )sA( IIPI) 61I1M0028AC? IP1):fl. PIRIQ0f29GO TO 10 980l0030

7 AC J1PI):5;RT(1..A8S(A(1IP1))/S1OHA) 810140031SgT;AI4-SJU'N(SIOI4A.A( JTPl),UPPFR(I)) 610140032

DO 3 4:1P2,N 81I1M0034

3 A(lJ)=A(IJ)/SOTGA4 8101M0036JKI=!*(P.N-I-1 )/2 81IOM0037JX=JKt 810140038I1 =,JK1 910140039no 5 Jz1P,N 8101M0040

DO 4 K=IP1,J 810140043IK I X+K 81I1M0044VAl(J)=VALL(J).A(.iK)*A(IK)

4 JK=,WKN-Ie F1IGM0046IF(J.EQ.N)GO TO 6 RIGM40047 4

CAlL 1LOP1(.2,NP,VAL(J):A(JX)*A(1X))'5 JX=JY.N-.1 BIOMO049

6 DELGM:0.910140050D0 7 J=IP1DN B10140051I J= I X..l 81I1M0052[ 7 DEl OAMDFLGAt4A(!J)*VAI 1(J)flG02=.5*ELGAM 81IGM0054DO 8 J=TP1,N 810140055j J J IX+J 810140056

8 TCJI,1 )=VAI.L(.)D0I~O2.A( IJ)DO 9 11IP1,N 810l40058

-163-

Page 169: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

ti:N*(N+1)/2 101M0063

UPPMP(NI)=A(111) -81M11064

1(11111,P)=IPPFR(N11)**9nIAC(NMI)=A(M-2 )

010066

* rIA('(N):A(t4) BI01M0067

FNtIRM=AMAXI (ARS(DIAO),AOS(UPPERPO)AS(DIA(W"IABSCUPPEROCNNI))) 810110068

FNRIMP:ARS(PIAO())+ARS(UPPrRD(1))#AS(UPPEDII-l)) 810110070

11 IF(FNRTMP.GY.FNDR11)ENOR11ENPTMP 810110071

VAIII1(1 )=NOR1 81011073

1" VAI I i)=-'+NORM BI01M0074

n0 ?4 T=l,NF1G; B 1011075

13 ROOI=.S*(VALU(I )+VALL(l)) 9101M0076U

IF(RnOT.FO.VALL(t).OR.ROOTF~oVALU(I))OO TO 24 01M0077

Pm?=9101I10079 ~PHIfl. Bons

DO0 ?I .I=I,N 910110081

ir(rH?.Nr.c.)GO TO 15 810110082

14 PM1=1S1ON(t..PHI) 910110083

GO TO 17 810110084

15 Ir(P~t.NF.n) 00 TO 1791106

PMP=A9 0110087

17 P=PIAG(J)-ROOT-TCJ-1#2)P2/PMlPM7=1, *

8GM0090

18 IF(P)21,i9,20 810110091

10 PMP:PMI 80110092

IF(PM221,20810BIGN093

20 NAnRFE=NAGRFE+1 810OM0094

21 PMI:P 810110095

D0 23 j=INFIG RO09

IF(J.LF,NAGR1FF)G0 To 2P 8101M0097

IF(VALMA(I)LF.POOT)GO TO 13 910110098

VAI II(.)ROOT 810110099

00 Tn 23 910110100

29 VAI.L(.))=ROfT 810110101

23 CONTINUiE 810110102

GO TO 13 810110103

24 CONTINIJF 8101M0104

IF(NVEC.FQO)GO TO 49FPqI fN=EN0RM*t.F-8 810110106

COMPI.1:CnMPL(1 ) 810110107

nO 40 1:I,NVFCno 25 J:1,N 810110109

V(,I)=81011G0110

T(l4,)=flJAG(J)-VALI ) 810110111

IF(JI.EO.N)00 TO 26 810110112

T(.I,3i)=LIPPERD(J) 810110113

25 T(.+1,I)UtPPERP(J) 91011114

D00 PQ J=1,N 9j01M0116

IF(ARS(T(J,2)).LT..E-17)T(JD2)3EPSLON 8101M0117

IC~ T(.)-1.64- I

Page 170: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IF(J.EQN)GO TO 30 et98I2

jJP1 *I1 110940123tF(ARS(T(JP1,l)).LE.ABSCIC(J,1)))0O 10 28 8 10am40124

- 1NTFR(J)=l 910940125DO 27 WA, 910940126

17 YFP=T(J,K) 1090127ff L (.I,Kh=T(JPIPK) 810140126

2- 7 (.iPI, K)TEt4P 89"012928l TMIII.TPT(JPI#1)/T(J,1) B 1090130u VAI L(J):flR( INTE-R(J),ANDCTHULTPC94PL1))

r(.IPI ,P):T(jP1,2)-Tt4ULTPeT(J,*2) 810940132?9 T(JIP1 ,3):T(.JPIj3)-~T9ULTP.T(Js3) 810940133

I30 ITER=1 810940134L31 DO 3? .i1=,N 9109135

L:N.1-.j RI006

L YNnRM=O. 810940138DO 33 L:IDN 810940139

33 VNORP4:VNnRN.V(L)**2 9B0940146

VNnRH:SQRT(VNnRM) 8109M0141DO 34 j~t*N BI1090142

34 V( I)=V(J)/VNOiRM 810GM0143IF(ITER.FO.2)GO TO 36 8109401441I ITFR:2 010940145DO 3R~ L=2,N B10940146111I 6109401471

TRY: VALIC tHI)1F(AM0f(TRY,1).EO.0) 00 TO 35fVTFMP=V(L941) 610940149'L V(I 141):V(L) 619940150

315 V(L.)rV(L)-YALL(LM1)*V(941)GO Tn 31 8109M01531

36 IF(VNORM.EQO.)V(1):1. BI0GM01541

I. 37810942 IG01561IP1:N-KK 8109401571

CAlIL L00P3(IJTVA(IIX),V(NZ),11PI*P1.1,ldpl)5CAII 100P4(A( I X),V(NZ),NP1I IP1.1,IJTV) RG06

3711)(=IIXT!P1-N-2 6109401611WRITF(I4TAPE) (V( ICWl),ICHa1,N)

4A CONTINIuE

EN?)

-165-

Page 171: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

FORTRAN DECK

C LOOPt Sqm10H0Al)"I"167SIJRRPUITINE LOOPl(JP2#NP1.s0A9JA~~DIMENSION AJX(l), AIX(1) 60418-

60 1 LzJP2,NPI 11B4

I SGAMPJ=SrA1Hpj*AJX(l ).sAIX(L) bla1$17p JRETURN

FRRNDECK90187

LIFSO AP2C)AI1X~l,A1,SID11.P9Wl

no 2 jjilpl,NPI t10167

RET URPN 1417

ENDFORTRAN DECK

StIRROIJTINE 100P3(UTVsAIIXVoIIP2NPI) 0911

DIMFNSION AIIXCI), V(1)90918on 3 J:11p2,NPI81116

j3 1TV=IITV.&1!X(J)*V(J) 0104

RE.TURN j906

ENDFnRTRAN DECK

CI.00P4SUpROITINE 100P4(AIIX,V,Np1,IIP?#UTV) 9101101890 1 F-NS ION A I IX(I ), V (I)9008DO0 4 K=11p2,NPI 819146190

4 VCVV(K)-A1Ix(K)*UTV 910110191 j

RETURN H 91010192 I

END

-166-

Page 172: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

s ORTRAN DECKCGFNA (lENERATES 'TI4, -6E ttA Lf.t,URfA A N C.c ,Fl"Rc E S

FOR THF SYSTU#" rAOR AUC PATRICESc KKDISC CONTAINS XF - TOANSVOINED S -fEWWOt1 SHAPfS FOR CONPONENTSC IeADISC CONTAINS THE Ale 1WATRtX FOR EACH COMPOWENiTr PTDISC - SCRATCH TAPEC GAC - (FIRALIZED AFROIITNANIC FORCES FOR EACH CO~IONENT*C CA -GENFRALIZED AFRODYNAMIC TORCh Vrom TiDE SYSTEm.

L C SIIRRnUTItE DENA (KKOSDWAIOASC4TDISCVEL,NCMPMODE.NCOUP,NAT.NV,1NRFDIIAPAIC#XF*XFT,9)

DIMENSION NREDUi(l).XFPT(9,4),XFP(4.9),XF(97.9)DOAC(9h16)DOA(9D18)D18(1 ),VFL(1)DXFA(9,18),AIC(46,80)SXVT(9D97),AP(4,8)DAC(40,80)

I FORM4AT(/// lX,40OGFNERALIZEI AEROiaYNANIC FORCES FOR 1/K I PIEII.4

FOPHAT(lI40 /(2EI6.8DIX,2E16.SD1X.2E16.8DIXI2EI6.8))

DATA 01/4IIGENAIREWIND IIADISOD0 200 K=1,NVREWIND KKDISCi READ(I4AD1SC)VFL (K)WRTTF(6.1 )VFL(K)D0 175 JA=1,MODF

16 DO 175 KA:1,M2175 CA(JAKA):fl.0

DO 198 I=1,NCOMP!F(I.EO.NCOUP.1)0O TO 198I N=NRFDJ( T)N2=2*NDO 176 JA=1,MODEDO 176 KA=1,M2

176 GAr(.JA,Kh)=O.ORFAD(KKD1SC)((XF(M,-)L), 5NDE),M31,N)

( Tr(NAT.FO.?) GO TO 191c PAPTITIONED AIC MAVE~1CFS (FROM CTRIP OR PISTON THEORIES)

REAII(MADISC) NPART

NSS~1DO 190 J=l,NPART

READ(MADISC)( (AP(J.lKK)KK21,WS )sJJI.,NS)NSF:NSENSDO 185 NF=ld4ODE

In ri15 Imr:NSSNSELF=LF.1

1895 XFP(IF,Nr):xr(mrNF)NSS:PJSF.1DO 1R6 JA:1,NSDO 186 KA=1,MODE

186 XFFT(KA,.)A):XFP(.jA,KA)CAlL C?4JT(XFPT,AP,XFP,XFA,4D4.14,MODE,NS,NS2)DO 180 JA=1,MODFDO 180 KA=1,t42

180) 6At'IAKA ):GAC(JIA.KA).XFA(JAKA)190 CONTIN1IF

GO 7n 196

-167-

Page 173: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

191 IF(NCOUP.EO.1) 00 To20* C FULL AIC MATRICOES (FRdA AERMW6I,-FUNCTION OR 'ACN -8OX THEORES)

no 193 IA=I#N193 READ(MADJSC)(AJC(JA,KA)s KA2t'*N2)': I

DO 194 JA=1,NnO 194 KA=I*tIODE

194 XFT(KA,JA)=XF(JADKA)'CAIL CM1IIT (XFTDAIC,XF,0ACe97,40oODSONDE;,NDW2)00 TO 196

C OPTION FOR AERODYNAMIC COUPLING 91TWEEN TWO CONPONENTS

ll:NRFDlI(I )+NREDUII!)

N2:2*N

DO 251 JA=1,N i251 READ(PIADISC) (AIC(JA;KA),KAnI,N2)

NC=NPEnlU(I)N C? 2* NCNCC=NRFDIJ( II)NCC?:2*NCCNCC3=NC2+1Ncr4=NC+1 1REWIND MTDISCDO 275 JK=1,4

GO ln(357,355,357,361),JKilnO 252 KA=1,NC2

252 AC(JAKA)=AIC(JA,KA)DO 253 JA=1,NdDO 293 KA=1,MODF

253 xrT(KA,JA)=XF(JA,KA),CAlIL CtULT(XFT,AC.XF4XFA497,4O.8I3.moDENC,NC2INdRT TN MTnlI SC)( ( XF(JA. KA ) KAsI, NrOEK),JA:DNC )Go 1n 36?

355 DO 255 jt&=1,NCDO 255 K&=NCC3,N2 -I A=KA-NcrC3*1

25r5 AC( ,IAPI.A)=AJC(JA,KA)RFAI)(KKDISC)((XFCM,L),lzi,IIODE),Ns1DNCI,)pCAlt CHIJIT (XFT.ACDXFYFft.97D4O,8@,PODENCNC02)WRTTF(MTPISC)((XF'(JA.KA),KAulNODE)DJASINCC)00 TO 36P

357 RFWIND) MTDISC iDO 258 JA=1,NCCDO 258 KA:1,NODE

258 XFT(KAPJA)=XF(JA,KA)RFAD(tTDISC)((XF(JA,KA),KA:1,NODE)DJA:1,NC)DO 259 JA=NCC4*NLA=.IA-Ncr4+1DO 2'59 KA=1,NC2

259 AC(LA,KA):AIC(JA,KA)CAll CMILT(XFT*AC#XF# XFAD97&40*80*NODFDNCC#NC2)GO TO 362 3

361 READ(MTDTSC)( (XF(JAKA)DKA:IDMODE)DJAat.NCC)DO 261 JI=NCC4,NLA=JA-NCC4+1DO 261 KA:NCC3,N2Ll3:KA-NCC3+1

261 AC(I A,lR)=AIC(JA,KA)CAlL CM11IT (XFTAC,XF,XFA,97D,40,8OPODE,NCC.NCC2)

36? no 262 )A=1,MODF

-168-

Page 174: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

DOP 26 AlM

262 T(A,K)(GA(JA,K)KA(JAN2)

16DO 197 jAz1,NODELI DO 192 KA:1,N2197 RA(,KA):A(JAKA)+GCJPA

10CONT-INUEF

DOf C99 JTYNUED

19 ENTINUf

200 IOTNI

144

Page 175: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

4.0 MOFA MODAL FLUTTR ANALYSIS PIOGRAM

4.1 Theoretical Development

The flutter problem can bq solved with either a collocation or .normal-mode formulation. The collocation approach is attractive if an accuratestiffness and aerodynamic influence coefficient matrix can be generated forthe system. The normal-mode method =eits consideration when mode shapes andnatural frequencies for the structure are known.

The equations of motion, in matrix notation, for a lumped para-meter, linear system acted upon by aerodynamic forces is

[m] {h) + fk] {h) {F} (4.1.1)

where m)-symetric mass matrix

k) = symmetric stiffness matrix

thl - control point deflection

IFI - aerodynamic force

The aerodynamic force matrix can be defined as a complex matrixof osoillatory aerodynamic influence coefficients such that

{F - W2 b2

a b s [ChJ{h) (4.1.2)

where p- air density

w - oscillatory frequency, rad/sec

b1 - reference semi-chord

s - reference semi-span

[Chl-aerodynamic influence

coefficient matrix

Assuming harmonic motion, {h) {} eit the equations of motion become -I

- ml { + [k] {i - P 2b2 s {l(} (4.1.3)

• T'e collocation method solves the flutter problem with the equations of motioncast in this form. I

170 1I

Page 176: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

For the modal approach, the equations of motion can be uncoupled with theLlinear transformation(4.1.4)

whereIlis the modal matrix and {J} the normal coordinates. SubstitutingEquation (4.1.4) into Eqution Sjj) and premultiplying both sides of theresulting equation by j

f. ~ [~ fmr& ip}+{ i~ Ms :s - P W2 b~ [ 1 j1j]~ (4.1.5)

By virtue of the orthogonality of the modal matrix with respect to the mass

and stiffness matrix, [ E ] [ml [OJand [ ]T [Ocibecome diagonal matrices.

With the following definitions

I m:O - generalized mace matrix

TthejL j - generalizd stiffness matrix

I Wa br sD Lch ] generalized aoe matrix

2 [Te rad forcemttri

Equation (4.1.5) can be written as

-1 -o) ( (4.1.6)

W

fEquation (4.1.6) can be written in a slightly different form by notingthe generalized stiffness matrix can be expressed in te am of the generalizedmasses and natural frequencies of te st i ucture. If is a diagonal matrix

and equation (3.2.6) becomes

(MI + Qi - 2 [W 0 (4.1.8%/W n

I Adding artificial structural damping, g, to the system of equations, we

I arrive at the classical normal-mode formulation of the fluter problem:

(LM:7 + Fr] w +g ~ r~i, 0 (4.1.9)

or

IJ17]+ [- w2 [ { O (4.1.10)

1 171

Page 177: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Equation (4.1.10) can be solved for the co.lU eigasva uu and cwaplez

eigenvector {*). From the complex elseuvalue (js * | the flutter

frequency isLie " 1 (4.1.11)

real

and the artificial structural damping is

g - rea (4.1.12) .

g A

real

.1

172

Page 178: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I

4.2 Program Description

The notation usd In the cosouter program W )A for 3#uation4.1.9 or 4,.10 is:

M + F B i)-A~ i Pij 4 . 0 4.2.1

or

[A jAi P1 ii IQ -Ia 4.2.2

!here:n - number of generalized coordinates (RAx 20)

£ - rowindex, I L nj . column index, I <J n

Hij - generalized mass matrix

B - generalized aerodynamic force mtrixij

A ij-sum of mass and aero-matricemP " diagonal stiffness parazietar matrix - H

F - factor for tero matrix

Wi . modal frequency

Wr - reference frequency, usually W1 or Wn

!The sum of mass and aero-matrices, Aij or the generalized mass Hj, and

the generalized force Bij must be input. The stiffness armeter Pii may be

input or computed by inputing w1 , the modal frequencies and the diagonal

generalized mass matrix Xii (if the generalized mass Mij is not input). In

addition to the complex Eigenvalues, the program computes the following:

A - Eigenvalues - Areal + £img

W f = flutter frequencies - Wr/I4Xri)

g = artificial structural damping - imag/ ' real.

V - flutter velocity - wfx ref. chord/Strouhal No.

A vibration analysis may be performed by entering zero aerodyniamic

I forces, and zeros for all parameters associated with determining the

aerodynamic forces.~173

Page 179: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

4.2.1 PROCESSING INF0RNATION

A. Oparation..tandard FOlTAAN IV Processor System operableon the GE 635 computer.

B. Core Storate - The program MIOM requires a minum of20,000 mewry units for execution.LI

C. Tape Units -Standard input and output tapes.

1741

Page 180: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

IJ4.3 Input Instructions

The following instructions describe the input data, the physicalunits and the input format to be used.

Title Cards - 2 title cards are required at beginning of eachcomputer run.

Item 1 Control Card Format (1513)

Column 1-3 4-6 7-9 10-12 13-15 16-18 19-21

Name W b 'NDEG j Mi ,PiField (1) Q)_Q) (4) (5) (6) (7)

Column 22-24 25-27 28-30 31-33 34-36 37-39 40-42 42-45

Name NOK F Bij Aij

Field (8) (9) (10) (11) _

(1) Input Reference FrequencyIW = 1 -Input

0 bNo Input

(2) Input Reference Semi-Chordb = 1 Input

I.(3) NDEGA Number of modes to be used in the analysis, generalizedcoordinates (Max 20)

(4) Input Coupled Generalized Mass2- Input, all real elements

M ij = 1 -Input, both real and imaginary elementsJ 0 -No Input

(5) Input Uncoupled Generalized Mass

" (M Input, all real elementsM = iInput, both rel and imaginary elements

u No nutMi mus, equa ero if Mi 1 or 2

S(6) Input Modal Frequendies

W i = 1- InputO-No Input

(7) Input Stiffness ParameterPii = 2- to be computed. In item 1, (1), (4) or (5), and (6)

must be input or available in core from previous problem= lInput= ONo Input

175

Page 181: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

(8) Input Reduced VelocityNOK - 1- Input

0 -No Input (Vibration Analysis)

(9) Input Factor for Aero MatrixF -1 -Input

0-No Input

(10) Input Aero Matrix2 -Input, by rows loaded in a continuous manner (to

accommodate the output from programs in Vol. II)Bij - lInput, by rows - each row starts on a new card0- No Iput

(11) Input Sum of Mass & Aerodynamic Matricies it2 to be computed. In Item 1, (4) or (5) (9), and (10)

must be input of available in care from previous proolemA 1- Input

0- No Input

Item 2. Reference Frequency, Wr, Format 1E12.8

Column 1-12

Namer

w must equal the value used when computing the unsteady generalizedr aerodynamic forces (RAD/SEC).

Item 3. Reference semi-chord, b Format IE12.8

Column 1-12

Name brr iField (1)

must be same units used in calculating aerodynamics

Item 4. Coupled Generalized Mass Format 6E12.8

fin Item 1, M = 1, use the following format

Column 1-12 13-24 25-36 37-48 49-60 61-72 --

Name ReMI I IMI I ReMI1 2 IMI 2 IMINDEGA

Field (1) (2) (3) (4) (5) (6)

Continued on next card if NDEGA'>6Start each row on a new card JReM = The Real Part of M i,

IM, j = The Imaginary Part of M (pseudo-IM 0.0 in all cases) I

176 1

Page 182: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

If in Item 1, Mij- 2, use the folloving format

Column 1-12 13-24 25-36 61-72

Name M1 1 M12 ", 1 ,NDEGA

I All mass elements are real numbers. Continue on next cardif NDEGA>6. Start each row on a new card.

I

I

17a

Page 183: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Item 5. Uncoupled Generalized Mass Forzat 6E12.8If in Item 1 Mi U 1, use the following format

Column 1-12 13-24 25-36 37-48 49-60 61-72L I Name Rell,, 1 I"' R______ M' ReM2 2 __2_2____

Field (1) (2) (3) (6)

i - 1,2, ..... NDEGA

Continued on next card if necessaryReMi i W The Real Park of Mi i

IMi = The Imaginary Part of Mi (pseudo-IM 0.0 in all cases)

If in Item 1, Mi i = 2, use the following format

Column 1-12 13-24 25-36 61-72

Name Mii 2.2 M3 3 M

Item 6. Modal Frequencies Format 6E12.8 (RAD/SEC)

Column 1-12 13-24 25-36 37-48 49-60 61-72

Name W 1 W 2W fi i i NDEGA ___

Field (1) (2) (3) (4) (5) (6)

I Continued on next card if necessary

Item 7.

Column 1-12 13-24 25-36 37-48 49-60 61-72[ Name ReP 1 1 IP1.1 ReP2 2 IP 2 , 2 '"' IPii

Field (1) (2) (3) (4) (5) (6)

RePi'i is the Real Part of P

IP is the Imaginary Part of P (pseudo-IP - 0.0 in all cases)

where i - 1,2, " NDEGA

Continue on next card if necessary until IP is entered

177I

Page 184: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Item 8. Reduced Velocity, Format 1E12.8

Column 11

Name /K

Field (i)

1/K - Reciprocal of reduced frequency used in calculating theunsteady aerodynamic generalized forces

Item 9. Aero Matrix Factor Format E12.8F = Nondimensionalizing factor, F # 0

Column 1-12

Name F

Field (i)

F depends on method used to calculate aerodynamics.If the programs presented in Volume ii are used, F i/n-where n = 1 when the generalized mass matrix is cal-culated for the entire vehicle (nonsymmetrical mode shapes)

n = 2 when the generalized mass matrix is calculated for one halfthe vehicle (symmetrical or anti-symmetrical mode shapes)

n = 4 when the generalized mass matrix is calculated for 1/4the vehicle (anti-symmetrical mode shapes of crusiform planforms).

If the generalized aerodynamic forces are obtained from COMSYN,F = the non-dimensionalizing factor for the aerodynamics,equals -

br2S, where s is the semi-span.

NOTE: The air density, p , should be included in F for altitudevariation, if not already considered in the aerodynamics.(Length units should be consistent with br.)

Item 10. Generalized Aerodynamic Force Matrix Format 6E12.8Input by RowsA

Column 1-12 13-24 25-36 37-48 49-60 61-72

Name ReB IB ReB IB i titField1,1 1,1 1,2 1,2 ____

Fed(1) (2) (3) (4) (5) (6)

ReB = The Real Part of Bi'j

IBi,j The Imaginary Part of Bij

Continue on next card if necessary until IBI,NDEGA is entered

Start each row on a new card if in item 1, Bij - 1

178 J

Page 185: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

Item 11. Sum of Mass and Aerodynamic Force Matrices Format 6E12.8ji Input By Rows.

Column 1-12 13-24 25-36 37-48 1 49-60 { 61-72

Name ReA 11 IA R 1 2 fit__1 1' #A2 ______

Field (1) 2) (3) (5) (6)

I. ReAlij " The Real Part of Au

IAi' j - The Imagkary Part of A, j

Continue on next card if necessary until IANDEGA is entered,Start each row on a new card.

The basic use df the control card is to minimize input when stackingcases. Once program has been initialized, you may use information fromprevious case by entering a zero or leave blank on the control card thequantity you want to use from the previous case. Any new input, indicateinput as such on the control card and input that quantity. Any number ofcases may be stacked. A control card must be present for each and everycase.

4.4 Program Output

All input, computed data and results are printed.

1,. The complex eigenvalue problem is solved by the subroutine ALLMAT.

| -l The flutter results are presented in tabular form, the units beingconsistent with the reference semi-chord used in the input. The outputfrequency is in radians per second (as required for input), and the velocityis in inches or feet per second depending upon the units of br.Ir4.5 Sample Problem

A sample problem is presented; the input data is presented on thefirst page of the computer output. The control card input is shown below:

1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27Wr br NDEGA Mij Mii Wi Pii NOK F

1 1 7 2 0 1 2 1 1

28-30 31-33 34-36 37-39 40-42 43-45 11 Bi Aij ..

1 2 IThe punched output of the sample problem in Section 3.6 is usedas input in MOFA.

*41179

Page 186: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I I II

ILI

JI C. I. . IalI

I.- L' Lo I'' IU 1 . , ' L' ' IIII III,,cclr oc 2 Dcc C ,r , C .

iuWi; Ir;4 0 %ca ac ,a vIcr DM 4 .0f o .C ,C1U* ,j I I

CC Ce fr1 4m I- a coT V - :- on I vU .v

w- I%, I CD CO -- rM 0 \IC r

* iC- Il0 CIl- ,

02 I IL 18

Page 187: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

HI1 I 1

I~i~ II III '.;

I Ir

IC

I: K% I t j i1.NIC'y

NI v NO mnlag = ) C 0Caa ,CCC aaC ,cc C

I. jL LL )I LtL.L LLL L L LL L L1.L.L Lu LL LL LLc - c;cc

aa -='L CUN IN NaP) m %!..O c0-NO U .(

I. C. V

0 on IO a~c cc cc -c c a c a~ c cc cc cc e-

I"u IIU 1L 1 LU L ILLJUU ,U L. U~cc c c c c .L L L LLLLLU ,L.1. %4 L

,c Q

' NI i "N fl' = m2 N' 'C&.c ' N r CCi C W N T.'C' ' N

I cv 1. . 1

a. 1 ~ 1. ll o * 1 :11, t I I IjN 4 W ~ . r N

NI~..z.,~c V) IxIccr j a ao 0 4o d r,' cl m c a or c , -i c, c c c%, v it c

IU.LUU&ALL~~U..LU I g i- I c c c c a c ~ C c c ~o 2 IL u I

C.Cl cN%*NaI.0.N U u,4QN. IQ CV~ "" w WV WV V W *W

Page 188: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

c. C, l 0 cw 2

9L 3q W4 ,, -% U% -I

4 C IN, N,

P) no oj ?IN N.Sa r) v C

.4 NQ .4 .

v ~ 4 N NJCV4 ja I.N2 CD I cz j ia N

a1 IV~0

'N% N- UN NCY - 0 NQ CY.

1~i:~ ~ ~ w ILuLL W 5%wu uJ ~~~~C IN N U d.4S

N V4' C' 4 Col 14 C',~ CI''<HCC CK ES N1, .. Ic

CY le le e 'c lit N

0.4 T4~ SCC cv c 0' U

c~ 'N N~ I' U'LL wI" CO, U, IV U '.3 .j U', U -r

UiC C CC c a~ - Y C O , a 'O'C OV

'to N c

Iu I Iu IL 'II' IUuLU jL

API~W CCU 'CS' fa .C 0C -

.4. IN1 UNc 1,CI~~C a, a, 0% 000 4r, co M 0C 4aa4-s p p'

u ~ I CA

in. W W. U W U W W W. Ui. IL

NO cc UNN -CcIV CI S4 C C Np M.' 0, qN cOI "0 V i ' '

CP~~~ Iq' aCU cU'~t' U I ~ C" '

LL.~~~~~ ~ ~ ~ ~ Is .L -'L .L S LL LL JI

w cc rcN.%PPN1N r,

N r,0 0c j

Page 189: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

1

4., 40 I %

I uj w Wm ~ C5 N t OD

0U 0. a- 'ci V

CD 40 CI ca Cw I ., w

'0 1 tN * '0Ca CD*

rZ icc IrvN O~

. qo V0.S i

V) v"~ m y*Ix 1c

1.4 a -4 cr4D I4 II

C.o~W,- w L. L

1 a 1 0 IV 'Cm

UN r. PICY. Lt .M r ND.M c

U% I Sc-a

CC,

U% 10 r) -.

cc ~ '. 4 *

SW ' I,0 1 I IIles N0% I'

LA 10r IcP% c J:cr

C) ~ ~ ~ ~ 5- CDvco v N M4 T a0

1 II r. %C' 0,% .V

cc c, cc .Nc Uv

NC -wN ICCa-. ccm' 'zCa

1 ~ ~ ~ ~ - 11 -. II- III

S. NS IvU 0r. Nw r

* 83I i

Page 190: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

ev I N

all Ic

C-1 II' I .

NN

0~w CY

PN N 4D

I% . =eLe

I S LU M

SNV . N.- C M c,

,a LL. W0 W LYC

ci I14 (I4 4N: N:: Nr co m 10w

1 ils .N i N, 1

U, i N,~ : A iZ ~

C. if Woz W. coIL " ,w I I

cI C' I 4 1:C D CID 00 1

N1' I , i LUI w8 I L

Page 191: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

4.6 PROGRAM LISTINGS

q ND1TIAt! 'irf'K

*~r 1'nr ,IONATifl-,q -- IPTAPF =STANOIARP INPuIT TAPFC IWTAPF =SIANflARE OuTPUT TAPF

I~t' '(1) =R,' Ff RFo4('F TIO INPUT 'ER= Pi PjrRF~lrF TO INPUT RR

r =l(~ Rfrtppr.F TO) INPUT DFARFF OF MATRIV A-M* ~ i(4) pFmegF TA INPUT MIJ(IDj)

= PiP ;( P F-NrF TO INPUT MI1J.(l1, I)(:(w' 7A ) =PlFIrFrIgF T I INPUT WI (I)ir n.V'f91 7 ) =Rl'F; R~lrF TO INPUT PIICT,J)1"fli 1 ~) =Rru RINr'F TI) INPUT i / IOf" A'.1(O) = 01FFRFIIrF: T 0 INPUT Fp FMrTOR Fnp AFRO MATRIX

1.,*~ :1 =i Air FF VP pJFlF TO INPUT Hqd (I, J)NF IV'* H I RF TirF T 1 INPUT AftI( T.J)

C' -*"/s11i I /IF1APr:, IWTAV F

ITr"l ( AT ( fnl.4 0)P I I SAV fl0 2 T ITI F 24),RI1.1211, 4f A

fr I L I PF ' (TIli rt (I) . 1=1 2 4)I12 ~~ ~ 1''' 1 1 5A6 'i ('.*APr 1I (1 T I TI r- (II 1:1 s24)

r "", I T(1T?11r,"?'I 1 (N'll T( I) * 1:1,11)

7 ~T Q , )

rr')f ~? (')I 'p1 I o ft) WP

9 r 11'r V I T "in ,l~ jP)rnFf~mrr- FRFnIIF N(Y 1l16.*R, 414 )PS)1o"" rriLlm.AT I F1 2.14)

1i 11 Gr P T T AllI . 1 fl') 14'V

I ' I ( .IT A 1:r , 1 '1 ) DOfl fl

r. I ( I !

I t r fiw; (VM I I !.i) o I .,jQ,: \X?,?

Page 192: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I V~F (101",P T ( I N110 1 U NFPAW F11 14ASS ItATRI X MI

P(I 1 14 r1 l, Vnr PA

Pff 134 1= P

60t It ( iPTlA1'9133) I. Ks C14!J( IJ)* CPJIJ( IJ+1)I1 rjlptt, I (?UI1,F1I".R 1

-1" r i'r 1 1 ii r

TFllr(i .". I =1f ,f m15'j.

:1' 1 7 11 ,0

t) I- n t.1 rn T 5

('*AiT Il * 1) T, i 'n)

I f. r. r .t. I PTBIolil (TFMPT.1 ) , T

STT

r1i T~141 T PNI I' ?A4

SI ! (1, k~ ~ fl

2 r I J(t. r I

11ror-t'A7iiin 2wflIAI~lW ST-QIFNFSS (PS) //flF 'ART /((I,3'"E

r(I" 1 1pA

6 1 1T r lWTtPFr,?'1l (1, 1 T(PJJ),J1),=1,9s1 # lF(OA"2131 r I""T(1110 2 1,IlA00NA41 STJFFNFSS PARAFFTFR MATRIX /~F684

nilr 9~ 111r..

I'''~ *7 Y,

i rH ~l( 1 11+1 186*

n f, P, I Nip-4

Page 193: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

I; I~' I? ., API o Q r

2~ r"'3r~ 11.FArTntt r, AFROnYNAMic rn =F F16,R//)

(11 W11 C q 3 9 3 1 A 3

A I - I Aj' QTAPF.1 Il9)(41.I(1I.J),!z1#NA)

;40 1,, Q ~ AF3' T I, (IJ TAP FJ) PJ(

.'iK4 I

17, ire& ''rpT(11 *,.1 ).9) on TO )9

F(41 t rA1 IT A PC v 0'f )A 1 .1 (. ,j 1 N? A(.~I (I. TMr r,31-1 )

4~'r~''T(1100l (~~i 11 vASS AND AFR(I11YNAMIC, MATICFS)rat 11 ~,,i l

[ ..~~ut Ti I 'rAlP.31-9 ) I, K, ALAJ I ,J), AIJ( I ,J+1

' 1,1 1

rn f 4 ) V9 1,

r Al I vA (rt11, T,9r,41 , Ali)

)4u' i r(1'' T(/// j)I,4tICinP~iFfl SII'd 01 MASq Aknf AF~r.TYNAMIC MATPTCES)

A itr .~I??I ( I TAPr,?4flr))(T(,)J1NAr.4f' riliv I T ( l /' I IP?-1 R. 7 'X 1 Pp5.y?F1 S72 .l57 PY 1 PFl 5 7)

4 1" N 1. 11p - j r*

kil , 1! q r- 1,w1, A

j 01~ 1(I i 1 , 111Pr-f A

4411 V ?* I - 1X0 K +1

Ti ~j1111 )AI~( 1 ,.) -AIJ( !KP1 ).ATJ(11i,J+1)7')~ ~ j I+ I JI"(#IIII 11 1.* 1 IJ ,KI)~l 11 , J

3 187

Page 194: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

T1AIt(11,K)*A1J(J1,K1 AIJUI1aKPiOAVJ(Il.KPi)To, I = A 1.1It,.1 (AIJ(1IieK)*T1 AIJ!II(Pi)*T?)/T3 ETU ( .ITi(D.=1 (AIJ(11*K)*T2 "AIJflloKPI)*Ti)/T3

n (1 41,1 i~i,plF,4A I011 AI J( 1, .1 = T( hI)

%~i Ti' to, FWA

KPiiA NFWA - I

PIT"'AV(T,1) PITSAV(1+1,1)PT1S'T,?) =PITSAV(141i,2)

A LifI ,.j) = .( J?

'WI' ni ~I= K: , IF WPAru n I,N1-WA.

Ai A )=PTI.)( I,1)PTAVI1 PJSVI)PIAVJ

AMr(,.nl) 11A0 I(,I)P!AVI1 * T(JII.PJAVI2)/T

69T 1r ( 11T4AlF~~ )

n 601 P ( H'TAPF,?4fl51 (A1TRXIJ),Jz1,KFW2A)

rP, (I T Fs 7 0 )= mlW A

61'I~ I( TinfoPr;

110 0'i I P 11

188

Page 195: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

r"~ t~ e')1inr IOmvAiHFFS~rU71ON AliYl F.LIITTFR PFSlIL7S

r(im,.I14AIN1/AmTRY?pf.4f),fNFKNFWA, 'R,CR

J A!A ill /6111MArI/, 11/64ARY /,O3/Al4TNFUTl/,Q4/6HTF~ 05r/614V Rn

ji 1 10- 1/?1 r ~ =r~ x XAMTX m 7 rx iA M IRX( I ,J + I

I'Al I A I IIA T ( A ir-I Vr mWAP7n0,NCAL)~i (I' I .i * 1 .11 iP~ A rP TO 17PL~~1 A~ ( 'Pr , 11I NrA I

11r i~rTl 01 1~ y 1 14W'IMRP OF F T rFNVA1. UFS A N n F I .FNvr-r oRq CAl CULAT7 r-

r~ 1) 1- 1 4

i ~ii (I i I A PP * 1 A "rt 11 fir ri~ 1i hii1 t~,itl't'RFP flF FIOFNVAI t!FS ANn FrFNVFC1ORSq CAL CULATF11

1 = i'//4v,791lP01 VFPA*F~'f nin NOT (1rriI WITH4IN TFN 11FRAIJNS FOlP fFh T I I M'NVAI IF.//

II t, 1l 1 (I * I' )P11 F11"W(J

r" r - A r(1 ill ';Y. '1 4Frr-CN~lFrTflR cnRRFSPCnI1IjrA 7n FIG[.NVAI li IP7F19.1 7//)

r1'. r'I T(/f//I 4 Y ,6IF 111TFP SLIT IflN FOP I /K PI I 3. AI- IJ It (T I Il API I

It ro"Wr, T(11- 3X,,1FP fpr:N~lAI II- , X 1 P l~ ~~.j- , X QIR IIIN,, ,

1 x ,1 I .17 Y , 1 IJV//

P1A'1=1 NrCAI 0,9

1Av1 rv 1 I+41fA TI M 35Iir

I ~ ~~ o ,11 1~ =II I ,~ ! r1~A *F ~ l v A I ( I )A

F IflVAl (11 )=SAYlIi c r iIwr ,

'I 189

Page 196: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

0i R T IJUTAPFP 7nI F IeVAI ( I)*FI(VAtI.11OIDnpD65

r(I Tn 170i

op nru~m rI 11 1 Pr.15. 6, 1PI F1 R6, XAgX2 XP-A6)rfl I' 1 7fnIl

1 n 6~r =WP/SOjRr(FISVAI(I)) 117" , F(M I nV.'1JI'r(IAL l

171, ~lt)T .NII

rolll

190I

Page 197: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

rnr?1qAm T)FCK

c iI IV "1T I NP t I MAT( A,lI A WrIA pMa I AtNCA I A AL 1. HO

v Prfr..All .CiJS JfLN RINZFl ,p.F.FtNDFRL fro UNION CARRPiFlr CORP. At I 40

Uk PF A[; F ~N I I~MP

* r'I~y A(JA H) I( .0, 311 1 HL (30, 311) 1.AHRAAfI)DVFCT(311) AlILMA*111 I in l). I F 3It, TFMP S IN, eOS, TFPlTFMPP AI LMO

I i -nisl PT1(3f), TWIrF Al LMA

tvrr t wrhM Al. 1. MOx =V AtLMfil CPi r'i Atl .MI111Tr (t.. NF. )rn O i At I M

If( It rm' 7 At ClA( )LMIIAC T~)=11. AtIIMA

J 1lro1 i',Al LM h

T (i'.,Jr.2)r Tn 4 Al 1. Mfl

I F(I.iA(7rmii.t.O.fl..P.AIMAl(FMP).NF.O.)GA Tn 3i A I tMnI A ?41 % ( ) z I ,11F T CI) Al l.mfl

' I A(C1) PC 1)+A?,?) SHIFT7(l)* AL I.Mn

Orlh7 37

I A r r-Ir + q IFT 1 All M'

* S'TTC) Al. IMr'(~If 17 Al LMA

r rIr r mt iP I X A TO 1lIFcsqF"JFPG FORM Al 1.140

_ ~1~ ? AlAtMp

fill 1' 0=1 1 r.*) Al I MOIr D1 ~~W At I.140

A I Iff A L tMO

I IC =lit 1 AL 1. IMP

I'( TI P ' AtLMO

1 1 I M0I~A I~' l'in

r I -,i rAt ll I

IITFpp.Vfj.PoI1 .(i1f roI Al l.MO

IC n ,I P C' 1~ 'I'1 Al IMP.11 -A r I=P , I )A I I MP

A (F'I- , T )= A (I N IF~ At I mOlAC' ( IF0 I )=TF,n Al I _m npfA / I~ -T , Al IMn

TI IT- 1, I PP 1 Al 1 4OA ( ,O1C~ )? ACI I I I AL LMO

7 A( 1, l'UP) TP4 Atll MI,

C'' :1)P , K, Al LmIIIIiI)=A (~ I / C HP P1 Al Mnl

191

Page 198: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

A A( IV.)=41LT( I At LHP~nnr 11 i~i,pP1 A L ."ra

7FmPtn. ALLMOn n 1ir .l:Pp? N .AJIf

1~ n FM;'-z r"P+AI ,J )*Mill T(.J) A

1111 1' " P, ALLIHOTr mro At 1.11vn 12 j=PP'7,1 AL INOL

Pri JA 1topp,N ALLM 0jon j/ .lzpp?,N A 1.114

1 4 A ( I , I= A( .1 ,~)Mll. T( )A(RP, J) ALIMOp

r ALLMP

17r tjz=,' hJM+rAlS( A (1 ,j I ALL-Mflr

I~ fl'T(F IlTI)*FSIF A L LM -

iFI; ,s.rr q0. )FP!=1.F-1P AlI L M ripq 11, 1=1 , N ALIM)nf 1'. i=1 , i Al LM(R

1 C; =')A(,) Al LM(_m;rt~~:.~ 0fl Tn 91 Al 1140

I APPI'A(M) =A(1,1 ) SwIFTUl)A L4(rf ' P 1 ALLM N

21 PF.O2fO1 At L-Mfl29 'JI ,+ At 1.1,111

;ri~' l (A (N,;) ).NF.fl..R.AIMAG(A(NotJ)).NF.0. ) ALl 1M1

1 1 414Z (1AI( A( t, N-1)/A(N,N) ) )ARS(A TlAGA(N,,j1 )/A(N,N))-14E-0) Al. 1 M6

7 PAP"4.?)4 Al 1140IrF( A I VtrAl(A(NN-1))),ARS(AIMAG(A(l,DN-I))).GvF.FPS)GO TO ?S At I.M7j

:0 4 1 AM" A (M01lI = A(N,N) 4 SI4IFTCI ALL 14li II r'm' T=O AL l.MTtN=01-~1 AI.LMI

r~o 11 91 Al 114jr ~Al LM ,

r flrTrt 1iJF 1'T AtL MIr Al l.M1

9' 'Ii17:( '-,N-1 )+A(N, N)+CSORT( (N-I ,N-I )+A(N,N) )*#P ALLM]

0 ApIA(elliFT(2)). 1F.f..n.AJHAG(SHIFT(2))eNFen.)Co TO 26 Al.l. M11 411 IF 1 ) .3j~ 1 ) + A (M N AlLMj

rf, Tf 17 ALl MI

Ir((A,4irri(2)-a&',N)).LT.CARS(SHI(3)-A(NN)))fl Tf 28 AILM~aki I* ' At1 IM.-

rn If 9f 7) At tMi

q9 IliJP n I AtII.Ml20 Ar(.l U(N-1 N-2) ).flF.PS)OO TO 311 At LM , 1

1 k4li*A ('t I) S1'1T? P + SHT(I At I1114

1921

Page 199: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

AqWit:!~ iITFT( 3) + ISHIFIT( I) A.L!r'nis rr' , A l 4

i ff r. ( , +-hTT e4lF) Al 1.14

FrI~'.ArjvrpjS IflTAT1OMiS, OR ITFRATtS At LI

t r T iIfT 0 1f )rlf0 Tn 3? L

1 V 7 Al 111

Ir .I ' - C A L L 1

T~ V =A i, 1 Al 1.14

P'rl ,:nT(PF1T~IP)**+A lAG(TFMPl )**? At 1141

r .1* * I TO 36 ALL1

rrv :k-s.j /per1 At 1141i

~~~~1~~4 14 II'm4 l.14

1 =&1 ' 'A Yfl ('-1 1) MMI

At MIi

-I -o w if; A (I P 1, I" )r t .(, S I N * P A l 1141

A j .1 I )1 =:-ql..I. P~j~ ) , I. )eC I~t, r+tis *A RPI *) 1 Al 1141

.~A(" t, :r MP A I L1.1

.r- ,- nrCfl r ( in +4; C! P1 T, PI At LMI

At 1.141

I P=. C.1m4, .A ( II M

Al 1141

3 ni) =r (* I , in A , P1AlI I mlIil rw I Wi 1 At I''

Irm z nl! + J , 1 Al I ml

f.lophi" AI 14

At 1.11

IIr TO 3 q A ( 1

M1 *I

At LMI

Page 200: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

i r(cpqqwj.I1 (+1,l)L.~R(LJI)G TO 42 AL*M

I Wrll I)=.ALUM)4

11 (14C 1 *J)=41 C 1,j) ALI41 W41 (I .I)=TFMIIPLI4) 9TUF(rrAI (;Il ( I I) ) FO, 0..AND-* A~4L(J,! 4 A)GO TO 44 ALLIi

w'Ii ):--41 ( T +1 , I )/14L ( I,!) ALL

4 ALL HI44r m T0 1mi Al 1141

n:~n 4, ALLMj

i' )vr-rj'l)=VI ()l4C.+).FTJ1 AIIM

4 T(PrAIl (I:fkl) ).FO(.O..ANDl.AJMAG(IL(N,K)).FQ..)HI(l(,N)=EPS Al Lrin'

vrrTt~i=vrr r~4)/l.(,N)A L.1. 41

11 40 , = ,R NMAI(FT))AS(IA VIt1 ALLM~1tlC l IFCMCTII~l1~Sl A LL Mg-

rjI 4, lf~iA4 A L AL 141

Al. 1. M1svirf.,qr:Vrl(vT))AR(MGVrTl) A IIML

4 TUim~Fj)IIr:. iPIIF. A I LIf

~'TF(7'.Fl.)Onf T N5 A ILM],

fli ' I T =1 , NMI Al.LM?~

I r1~ r-T . I NI O5 ALL",.

r,' 1' Vw:r) (jNHVrT 1!)VC(J TIr P~ V~j IIT (t.J F)Al IW,

V-TF T+1PVF.'T NiF At ILmvirTUJ1 l1)VFC(Jfl) AIIM?)*FC~

~4 V1I~!r4hTFMPALIL10d

pi) vrr1 I 1 J, NJI )*AIJ1+ *FT AIIM?

I ,11 =T:T I ) Al I~j

9 n o r-, i I , 1r4 A1. L

7 F = AP(A 1 ,J AlIIM?

I r crF .111. Irm nnlf TO 59 Al ItFI I Al t i

rPrTFM A Ilh

194

Page 201: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

c: r At LM?Mq ; ,-D Al LM7

, ','i A(I, !) A(i,.J) / TFNP1. Al 1.14s~t z~qT i lil A Lli?

jAL L142I N~ TtI ' i A 1

SAl I M

1

:

ii 195

Page 202: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

PEf.RENCES 31. Hughes Aircraft Co. MSD-P69-144, Collocatlon Flutter Analysis

Program, Vol. I-IV, NSC Contract 0019-68-C-0274, dated April 1969.

2. Hughes Aircraft Co. SSD80319R, Research- Riport No. 32-MARS-COMOSand DYNOPT Computer Programs, datedA August 1968.#

3. Hurty, W. C., "Dynamic Analysis of Structural Systems Using ComponentModes" AIAA Jounal, Vol. 3, No. 4, April 1965, p 6784685.

4. TRW Inc. Project Appollb Interim Rpt Structural Dynamics CharacteristicsDocument, Contract No. HAS 9-4810, MSC-TRW Ta'k.ASP-I7, dated 1 March 1966.

5. J.P.L. Tech Rpt. 32-530, Dynamic Analysis of Structural Systemsby Component Mode Synthesis, date January 1964-.

-I

ii

I]

196

Page 203: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

LScdrcmiicto ftte body ot~ahatrwct aid faDeSaIW hi4 must 6. A~keed wbme iA* Ov*U =tis clisaemd

1ORIGINATING ACTIVITY (colpomtOeauthor) - S&. 4111"T 5XCLXI TV CLSSIFICATION

Hughes Aircraft Company, Hissile; Systems Division Undlassif iedFalibrook and Roscoe BouleVards zb 7 ", OU _Canoga Park, California 91304

3. REPORT TITLE

Collocation Flutter Analysis Study 11

14 . 0 CSC R IP T IV N*T ES (7T.p" of report and Incluolve Wet)

Final Report (April 1969 through April 1970)S.AU THORIS) (PItt nae, mniddle IRS 511, led# name)

Dynamics and Environment Section, D. R. Ulb rich

0, REPORT DATE 78. TOTAL NO. OF PAG6 17b. NO. OP RZPS

April 1970_______________________8.CONTRACT OR GRANT NO. SO. CIPOINATOWS REPOSIT NUMSERIS)

b. X ~ k~ TO MICA~PrT

c h I~O ~, O . ?. " .M VAL ;o f W 0 ( firCO i

I0 DISTRIBUTION STATEMENT

In ad 'tio. to secu~r.t reqit svtc apyo is %409ment~-4 tmt, e tralsmil of this cuuiet .#ude tb ageci o th.A.S. mn

mus t.ave prior approval of ah o ansis.II. UPPI.EMNTAR NOTS U. SPON3ORING MILITARY ACTIVITY

Naval Air System CommandsDepartment of the NavyWashington, D.C.

18. ABSTRACT

This study covers the development of a set of computer programs to perform flutter

analysis. These programf supplement those of collocation flutter Analysis-Study I

Contract No. 00019-68-C-0274. This study is presented in three volumes. Volume I

contains a subsonic strip theory unsteady aerodynamics program and a supersonic

pison theory unsteady aerodynamics program. Volume 11 contains unsteady aero-dynamic generalized force programs for subsonic, transonic, and supersonic flightIregimes. Volume III contains the structural analysis progra= , FLUENC-100C

and COMSYN, and the modal flutter analysis program. (

DDI 'N1t" 14 73 UNCXASSIFIED

Page 204: TO - DTIC · 4.0 Joint Coordinate Cards, format (IOX, 2E0.3) Input NJTS number of cards,, one for each joint. Also, the structure is assumed to lie in the x-y plane. Column I -10

UNCLASSIFIED

Vibration

Onsteady aerodynamic forces

LI

* IiI11

* LI

S. I.]

* L

V|

UNCLASIFLI5ec~it Clss~|¢non