22
TMpro: Transmembrane Helix Prediction using Amino Acid Properties and Latent Semantic Analysis Madhavi Ganapathiraju, N. Balakrishnan, Raj Reddy and Judith Klein- Seetharaman Carnegie Mellon University 6 th International Conference on Bioinformatics, Hong Kong, PR China, August 29 th , 2007

TMpro: Transmembrane Helix Prediction using Amino Acid Properties and Latent Semantic Analysis Madhavi Ganapathiraju, N. Balakrishnan, Raj Reddy and Judith

Embed Size (px)

Citation preview

TMpro:Transmembrane Helix Prediction using Amino Acid Properties and Latent Semantic Analysis

Madhavi Ganapathiraju, N. Balakrishnan, Raj Reddy and Judith Klein-Seetharaman

Carnegie Mellon University

6th International Conference on Bioinformatics, Hong Kong, PR China,August 29th, 2007

2

Outline

Introduction Membrane proteins Transmembrane helix prediction

Previous methods Drawbacks

Amino acid properties Approach

Algorithm Features and models Evaluations

Web server

Introduction Properties Approach Algorithm Web ServerPrevious Methods

3

Membrane Proteins

Important class of proteins Many important functions carried out by them Provide access to cell for drug targeting

Embedded in the cell / organelle membrane

Cell Membrane

Membrane Protein

Soluble Protein

Introduction Properties Approach Web ServerPrevious Methods Algorithm

4

Transmembrane Segment Characteristics

Cytoplasm(Aqueous medium)

Transmembrane 30Å hydrophobic coreA helix has to be 19 residues long to go from one side to the other

Extracellular(Aqueous medium)

Side view

Questions to be addressed by prediction algorithm How many transmembrane segments are there? Where are the transmembrane locations in primary

sequence?

Introduction Properties Approach Web ServerPrevious Methods Algorithm

5

Transmembrane Helix Prediction

Important protein family structure and function regions accessible from extracellular side

Challenges Little available training data Overtraining Difficulty in discovery of novel architectures

Introduction Properties Approach Web ServerPrevious Methods Algorithm

6

Hydrophobicity scale

9 residue window average hydrophobicity

Limitations: segment boundary unclear & low accuracy

KD scale, GES scale, WW scale…

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Kyte-Doolittle hydrophobicity profile

7

Current best methods use HMMs

Limitations: too many parameters & restrictive topology

Hidden Markov Model Methods (TMHMM)

Introduction Properties Approach Web ServerPrevious Methods Algorithm

actual predicted

Potassium channel

TMpro: TMpro:

property based algorithm for property based algorithm for

transmembrane helix transmembrane helix

predictionprediction

9

Opportunities for Improvement

Previous methods: Do not employ all possible property distributions Find average occurrences of amino acids

Nonpolar residues

Charged Residues

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Aromatic Residues

Amino acid properties

10

Properties We Studied

Introduction Properties Approach Web ServerPrevious Methods Algorithm

11

Modified Representation of Primary Sequence

Amino Acid Property Sequences

Charge

PolarityAromaticity

Size

Electronicproperties

Introduction Properties Approach Web ServerPrevious Methods Algorithm

12

Predictive Capability of Each Property Adjust parameters of TMHMM (v 1.0):

To make it emit one of the property values Properties considered

Polarity : polar, non-polar Aromaticity: aromatic, aliphatic, neutral Electronic properties: strong donor, weak donor,

neutral, weak acceptor, strong acceptor

Sequence representation

Number of symbols

Segment F-score

Segment F-score as % of that with amino acid representation

Q2 Q2 score as % of that with amino

acid representation

Amino acids 20 92 - 81 - Polarity 2 59 64 % 65 80 % Aromaticity 3 84 91 % 74 91 % Electronic property 5 85 92 % 76 94 %

3-valued property observations achieve 91% accuracy of that of 20-valued amino acid observation

Introduction Properties Approach Web ServerPrevious Methods Algorithm

13

Approach

Biology-Language Analogy

Mapping

Biology:

Knowledge about a topic

Language:

Multiple genome sequences

Raw text stored in databases, libraries,

websites

Expression, folding, structure, function and

activity of proteins

Meaning of words, sentences, phrases,

paragraphs

Understand complex biological systems

RetrievalSummarization

Translation

ExtractionDecoding

Mapping

Biology:

Knowledge about a topic

Language:

Multiple genome sequences

Raw text stored in databases, libraries,

websites

Expression, folding, structure, function and

activity of proteins

Meaning of words, sentences, phrases,

paragraphs

Understand complex biological systems

RetrievalSummarization

Translation

ExtractionDecoding

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Ganapathiraju, et al (2004) LNCS 3345

14

Text Domain Equivalent

Words: Property-values

VQLAHHFSEPEITLIIFGVMAGVIGTILLISYGIRRLIKK----ppn-n-n-----p--pp-p----p---.-.RRR....-.--OOO.OOO.O.OOoOO

W1: positively chargedW2: polarW3: nonpolarW4: aromaticW5: aliphatic

W6: strong electron acceptorW7: strong electron donorW8: weak electron acceptorW9: weak electron donorW10: medium sized

Documents and Words

Documents: 15-residue windows

Introduction Properties Approach Web ServerPrevious Methods Algorithm

15

Latent Semantic Analysis

Words

Documents

Build Word-Document Matrix

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Dimension 1D

imen

sion

2

Distinct features of TM and nonTM achieved

W = USVT

For classification feature vectors SVT can be used

Reduced dimensions: 4

16

Different Classifiers/Models

Support vector machines Neural networks Linear classifier

Hidden Markov modeling

Decision trees

Neural network with LSA features is called TMpro

Method Qok Segment F Score

Segment Recall

Segment Precision

Q2 # of TM proteins misclassified as soluble proteins

High resolution proteins (36 TM proteins) 1a TMHMM 71 90 90 90 80 3 1b TMpro LC 61 94 94 94 76 0 1c TMpro HMM 66 95 97 92 77 0 1d TMpro NN 83 96 95 96 75 0

Without SVD 1f TMpro NN

without SVD 69 94 95 93 73 0

Introduction Properties Approach Web ServerPrevious Methods Algorithm

17

EvaluationsPHDpsihtm08 84 98 80Tmpro 83 95 73DAS 79 97 72TopPred2 75 90 77TMHMM 71 90 80SOSUI 71 87 75PHDhtm07 69 82 78KD 65 91 67PHDhtm08 64 76 78GES 64 93 71PRED-TMR 61 87 76Ben-Tal 60 84 72Eisenberg 58 92 69Hopp-Woods 56 89 62WW 54 93 71Roseman 52 88 58Av-Cid 52 88 60Levitt 48 87 59A-Cid 47 89 58Heijne 45 87 61Bull-Breese 45 87 55Sweet 43 86 63Radzicka 40 86 56Nakashima 39 85 60Fauchere 36 86 56Lawson 33 82 55EM 31 84 57Wolfenden 28 52 62

Method Qok Q2 Fscore

Uses evolutionary information and many more model parameters

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Benchmark Server Resultshttp://cubic.bioc.columbia.edu/services/tmh_benchmark/

17995929360TMpro NN9

57890878866DAS TMfilter8

78287918968SOSUI7

58494899166TMHMM6

MPtopo (101 proteins, 443 TM segments)

28193939357TMpro NN 4

108591909062DAS TMfilter3

1787868760SOSUI2

138490899068TMHMM1

PDBTM (191 proteins, 789 TM segments)

% prd% obsScore

Confusion with

solubleQ2

QhtmQhtmFQokMethod

17995929360TMpro NN9

57890878866DAS TMfilter8

78287918968SOSUI7

58494899166TMHMM6

MPtopo (101 proteins, 443 TM segments)

28193939357TMpro NN 4

108591909062DAS TMfilter3

1787868760SOSUI2

138490899068TMHMM1

PDBTM (191 proteins, 789 TM segments)

% prd% obsScore

Confusion with

solubleQ2

QhtmQhtmFQokMethod

Evaluation on larger datasets

18

TMpro Web Interface

Novel featuresfor manual annotation

http://linzer.blm.cs.cmu.edu/tmpro/

Introduction Properties Approach Web ServerPrevious Methods Algorithm

19

Acknowledgements

Co-authors:Judith Klein-SeetharamanRaj ReddyN. Balakrishnan

Web-site Development:Christopher Jon JursaHassan A. Karimi

Introduction Properties Approach Web ServerPrevious Methods Algorithm

Thank you!

21

Larger training data does not improve TMHMM

60708090

100

F-score %Membraneproteinspredicted

Q2 Recall Precision

TMpro STMHMM TMHMM

STMHMM is TMHMM trained with recent 145 TM proteins

Introduction Properties Approach Web ServerPrevious Methods Algorithm

22

Performance on Recent Large Dataset

  

Method Qo

k

F Qhtm QhtmQ2

Confusion with soluble

Score

%obs %prd

PDBTM (191 proteins, 789 TM segments)

1 TMHMM 68 90 89 90 84 13

2 SOSUI 60 87 86 87   17

3 DAS TMfilter 62 90 90 91 85 10

4 TMpro NN 57 93 93 93 81 2

MPtopo (101 proteins, 443 TM segments)

6 TMHMM 66 91 89 94 84 5

7 SOSUI 68 89 91 87 82 7

8 DAS TMfilter 66 88 87 90 78 5

9 TMpro NN 60 93 92 95 79 1Introduction Properties Approach Web ServerPrevious Methods Algorithm