33
3/28/2014 1 Lecture 5 Slide 1 EE 4395/5390 – Special Topics Computational Electromagnetics Lecture #5 Transfer Matrix Method Using Scattering Matrices These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Instructor Dr. Raymond Rumpf (915) 7476958 [email protected] Outline Alternate matrix differential equation (no mode sorting) Scattering matrix for a single layer Multilayer structures Calculating reflected and transmitted power Notes Implementation Advanced scattering matrices Alternatives to scattering matrices Lecture 5 Slide 2 Bonus

TMM Using Scattering Matrices.pdf

Embed Size (px)

DESCRIPTION

TMM Using Scattering Matrices good lecture

Citation preview

  • 3/28/2014

    1

    Lecture5 Slide1

    EE4395/5390 SpecialTopicsComputationalElectromagnetics

    Lecture#5

    TransferMatrixMethodUsingScatteringMatrices Thesenotesmaycontaincopyrightedmaterialobtainedunderfairuserules.Distributionofthesematerialsisstrictlyprohibited

    InstructorDr.RaymondRumpf(915)[email protected]

    Outline

    Alternatematrixdifferentialequation(nomodesorting) Scatteringmatrixforasinglelayer Multilayerstructures Calculatingreflectedandtransmittedpower NotesImplementation

    Advanced scattering matrices

    Alternatives to scattering matrices

    Lecture5 Slide2

    Bonus

  • 3/28/2014

    2

    Lecture5 Slide3

    AlternateMatrixDifferentialEquation

    Lecture5 Slide4

    RecallDerivationfromLastLecture

    0

    0

    0

    0

    0

    0

    yzr x

    x zr y

    y xr z

    yzr x

    x zr y

    y xr z

    EE k Hy zE E k Hz x

    E E k Hx y

    HH k Ey z

    H H k Ez x

    H H k Ex y

    StartwithMaxwellsequationsfrom

    Lecture2.

    AssumeLHI.

    0

    0

    0

    0

    0

    0

    yy z r x

    xx z r y

    x y y x r z

    yy z r x

    xx z r y

    x y y x r z

    dEjk E k H

    dzdE jk E k Hdz

    jk E jk E k H

    dHjk H k E

    dzdH jk H k Edz

    jk H jk H k E

    Assumedeviceisinfiniteanduniforminx andy directions.

    x yjk jkx y

    yy z r x

    xx z r y

    x y y x r z

    yy z r x

    xx z r y

    x y y x r z

    dEjk E H

    dzdE jk E Hdz

    jk E jk E H

    dHjk H E

    dzdH jk H Edz

    jk H jk H E

    Normalizez andwavevectorskx,ky,

    andkz.0

    0 0 0

    yx zx y z

    z k zkk kk k k

    k k k

    2

    2

    2

    2

    x yx xx r y

    r r

    y y x yr x y

    r r

    x yx xx r y

    r r

    y y x yr x y

    r r

    k kdE kH Hdz

    dE k k kH H

    dz

    k kdH kE Edz

    dH k k kE E

    dz

    Eliminatelongitudinal

    componentsEz andHz bysubstitution.

  • 3/28/2014

    3

    Lecture5 Slide5

    DerivationofTwo22MatrixEquations

    2

    2

    x yx xx r y

    r r

    y y x yr x y

    r r

    k kdE kH Hdz

    dE k k kH H

    dz

    2

    2

    x yx xx r y

    r r

    y y x yr x y

    r r

    k kdH kE Edz

    dH k k kE E

    dz

    Wecanwriteourtwosetsoftwoequationsinmatrixformas

    2

    2

    1x x y r r x xy yr y r r x y

    E k k k HdE Hdz k k k

    2

    2

    1 x y r r x xxyy r y r r x y

    k k k EHdEHdz k k k

    Note:Theseequationsarevalidregardlessofthesignconvention.

    Lecture5 Slide6

    CompactPQFormWecanwriteourtwomatrixequationsmorecompactlyas

    2

    2

    1x x y r r x xy yr y r r x y

    E k k k HdE Hdz k k k

    2

    2

    1 x y r r x xxyy r y r r x y

    k k k EHdEHdz k k k

    x x

    y y

    E HdE Hdz

    P

    xx

    yy

    EHdEHdz

    Q

    2

    2

    1 x y r r xr y r r x y

    k k k

    k k k

    P

    2

    2

    1 x y r r xr y r r x y

    k k k

    k k k

    Q

    Note:WewillseethissamePQformagainforothermethodslikeMoL,RCWA,andwaveguideanalysis.TMM,MoL,andRCWAareimplementedthesameafterPandQarecalculated.

  • 3/28/2014

    4

    Lecture5 Slide7

    MatrixWaveEquationOurtwogoverningequationsare

    Wecannowderiveamatrixwaveequation.First,wedifferentiateEq.(1)withrespecttoz.

    x x

    y y

    E HdE Hdz

    P

    xx

    yy

    EHdEHdz

    Q

    Eq.(1) Eq.(2)

    22

    2

    2

    00

    x x

    y y

    E EdE Edz

    PQ

    Second,wesubstituteEq.(2)intothisresult.

    2

    2 x xx x

    y yy y

    E EH Hd d d d dE EH Hdz dz dz dz dz

    P P

    2

    2x x

    y y

    E EdE Edz

    P Q

    Lecture5 Slide8

    NumericalSolution(1of3)Thesystemofequationstobesolvedis

    22 2

    2

    0

    0x x

    y y

    E EdE Edz

    PQ

    Thishasthegeneralsolutionof x z zy

    E ze e

    E z

    a a proportionality constant of forward waveproportionality constant of backward wave

    aa

    Note:Herewearefinallyassumingasignconventionofejz forforwardpropagationinthe+z direction.

    Nomodesorting! Here,wesolvedasecondorderdifferentialequationwherethemodeswecalculateareoneway.Wesimplywritethemtwiceforforwardandbackwardwaves.Beforewesolvedafirstorderdifferentialequationthatlumpedforwardandbackwardmodestogether.

  • 3/28/2014

    5

    Lecture5 Slide9

    NumericalSolution(2of3)RecallfromLecture4

    1 1 z z z ze e e e W W W W

    Sotheoverallsolutioncannowbewrittenas 1 1x z zy

    E ze e

    E z

    W W a W W a

    2

    2 2

    Eigen-vector matrix of Eigen-value matrix of

    W

    21

    22

    2N

    z

    zz

    z

    e

    ee

    e

    1f f A W WWecanusethisrelationtocomputethematrixexponentials.

    Lecture5 Slide10

    NumericalSolution(3of3)Sotheoverallsolutioncannowbewrittenas

    1 1x z zy

    E ze e

    E z

    ccW W a W W a

    Thecolumnvectorsa+ anda areproportionalityconstantsthathavenotyetbeendetermined.TheeigenvectormatrixWmultipliesa+ anda togiveanothercolumnvectorofundeterminedconstants.Tosimplifythemath,wecombinetheseproductsintonewcolumnvectorslabeledc+ andc .

    x z zy

    E ze e

    E z

    W c W c

  • 3/28/2014

    6

    Lecture5 Slide11

    AnalyticalExpressionsforW and

    Usingthisrelation,wecansimplifythematrixequationfor2.2 2 2

    2 22 2 2

    010

    x y r r x x y r r x zz

    r r y r r x y y r r x y z

    k k k k k k kk

    k k k k k k k

    PQ I

    Sincethisisadiagonalmatrix,wecanconcludethat

    2 2

    1 00 1

    W I

    Thedispersionrelationwithnormalizedwavevectorsis2 2 2

    r r x y zk k k

    0

    0z

    zz

    jkjk

    jk

    I

    0

    0

    z

    z

    jk zz

    jk z

    ee

    e

    1 0 identity matrix

    0 1 I

    Wedontactuallyhavetosolvetheeigenvalueproblemtoobtaintheeigenmodes!

    Lecture5 Slide12

    SolutionfortheMagneticField(1of2)

    Sincetheelectricandmagneticfieldsarecoupledandnotindependent,weshouldbeabletocomputeV fromW.First,wedifferentiatethesolutionwithrespecttoz.

    Themagneticfieldwillhaveasimilarsolution,butwillhaveitsowneigenvectormatrixV todescribeitsmodes.

    x z zy

    H ze e

    H z

    V c V c

    x z zy

    H zd e eH zdz

    V c V c

    Weputtheminussigninthesolutionheresothatbothtermsinthedifferentiated equationwillbepositive.

  • 3/28/2014

    7

    Lecture5 Slide13

    SolutionfortheMagneticField(2of2) x z zy

    H zd e eH zdz

    V c V c

    Wenowhave

    xx yy

    E zH zdE zH zdz

    Q

    Recallthat x z zy

    E ze e

    E z

    W c W cand

    Combiningtheseresultsleadsto z z z z

    z z

    e e e e

    e e

    V c V c Q W c W c

    QW c QW c

    Comparingthetermsshowsthat1 V QW V QW

    Lecture5 Slide14

    CombinedSolutionforEandHElectricFieldSolution

    1 0

    0 1x z z

    y

    E ze e

    E z

    W c W c Wamplitude coefficients of forward waveamplitude coefficients of backward waveeigen-vector matrix

    ccW

    CombinedSolution

    1 x z zy

    H ze e

    H z

    V c V c V QW

    xz

    yz

    x

    y

    E zE z e

    zH z eH z

    W W 0 cV V 0 c

    MagneticFieldSolution

    Doesthisequationlookfamiliar?ThisisthesameequationwehadattheendofLecture4.

  • 3/28/2014

    8

    Lecture5 Slide15

    TwoPathstoCombinedSolution

    0

    0

    r

    r

    E k H

    H k E

    MaxwellsEquations FieldSolution

    2

    2

    yz yz zy x y yz zx yz zyzx x

    y x x yx yyzz zz zz zz zz zz zz zz

    zy yxz zx xzxy x y

    zz zz zz zz zzy

    x

    y

    k k kj k k jk k

    kE jk j k kEHzH

    2

    2

    x y xz zyxz zxxx xy

    zz zz zz

    x y yz zx yz zy yz yz zyx zxyx yy y x x

    zz zz zz zz zz zz zz zz

    y x yxz zxxx

    zz zz z

    k k

    k k k j k k jk

    k k k

    x

    y

    x

    y

    xz zy zyxz zx xzxy y x y

    z zz zz zz zz zz

    EEHH

    jk j k k

    2

    2

    2

    2

    1

    1

    x y r r x

    r y r r x y

    x y r r x

    r y r r x y

    k k k

    k k k

    k k k

    k k k

    P

    Q

    44Matrix SortEigenModes

    PQ Method

    Nosorting!Isotropicordiagonallyanisotropic

    Anisotropic

    E E

    H H

    zz

    z

    ee

    e

    W WW

    W W

    0

    0

    x

    y

    x

    y

    EE

    HH

    zE E

    zH H

    z

    z

    ez

    e

    ez

    e

    0W W cV V c0

    W W 0 cV V 0 c

    Lecture5 Slide16

    ScatteringMatrixforaSingleLayer

    R.C.Rumpf,ImprovedFormulationofScatteringMatricesforSemiAnalyticalMethodsThatisConsistentwithConvention,PIERSB,Vol.35,pp.241261,2011.

  • 3/28/2014

    9

    Lecture5 Slide17

    MotivationforScatteringMatricesScatteringmatricesofferseveralimportantfeaturesandbenefits:

    Unconditionallystablemethod. Parametershavephysicalmeaning. Parameterscorrespondtothosemeasuredinthelab. Canbeusedtoextractdispersion. Verymemoryefficient. Canbeusedtoexploitlongitudinalperiodicity.Matureandprovenapproach.Muchgreaterwealthofliteratureavailable.

    ExcellentalternativestoSmatricesdoexist!

    Lecture5 Slide18

    GeometryofaSingleLayer

    thfield within layeri z i th

    th

    mode coefficients inside layer

    mode coefficients outside layeri

    i

    ii

    cc

    Indicatesapointthatliesonaninterface,butassociatedwithaparticularside.

    0i

    0i

    iL

    i

    i

    cc

    1

    1

    0i ik L

    0i ik L

    2

    2

    cc

    1

    1

    cc

    2

    2

    i iz

    i iz

    Medium 1 Layer i Medium 2

    z

  • 3/28/2014

    10

    Lecture5 Slide19

    FieldRelationsFieldinsidetheith layer:

    ,

    ,

    ,

    ,

    i i

    i i

    x i iz

    y i i i i ii i z

    x i i i i i

    y i i

    E zE z ezH z eH z

    W W c0V V c0

    Boundaryconditionsatthefirstinterface: 1

    1 1 1

    1 1 1

    0i

    i i i

    i i i

    W WW W ccV VV V cc

    Boundaryconditionsatthesecondinterface:

    0

    0

    0 2

    2 2 2

    2 2 2

    i i

    i i

    i i

    k Li i i

    k Li i i

    k L

    ee

    W W W Wc c0V V V Vc c0

    Note:k0 hasbeenincorporatedtonormalizeLi.

    Lecture5 Slide20

    DefinitionofAScatteringMatrix11 121 1

    21 222 2

    S Sc cS Sc c

    1c

    1c

    11S

    12S

    22S

    21S

    11

    21

    reflectiontransmission

    SS

    Thisisconsistentwithexperimentalconvention.

    reflection

    transmission

    2c

    2c

  • 3/28/2014

    11

    Lecture5 Slide21

    DerivationoftheScatteringMatrix

    11 1 1

    1 1 1

    i ii

    i ii

    W W W Wc cV V V Vc c

    0

    0

    12 2 2

    2 2 2

    i i

    i i

    k Li ii

    k Li ii

    ee

    W W W Wc c0V V V Vc c0

    Solvebothboundaryconditionequationsfortheintermediatemodecoefficientsand.ic ic

    Bothoftheseequationshave1 1 1

    1 11 2

    j j ij iji i ij i j i j

    j j ij iji i ij i j i j

    W W A BW W A W W V VV V B AV V B W W V V

    Wesetsubstitutethisresultintothefirsttwoequationsandsetthemequal.

    0

    0

    1 1 2 21 2

    1 1 2 21 2

    1 12 2

    i i

    i i

    k Li i i i

    k Li i i i

    ee

    A B A Bc c0B A B Ac c0

    Wewritethisastwomatrixequationsandrearrangetermsuntiltheyhavetheformofascatteringmatrix.

    1 1

    2 2

    ? ?? ?

    c cc c

    Lecture5 Slide22

    TheScatteringMatrixThescatteringmatrixSi oftheithlayerisdefinedas:

    Aftersomealgebra,thecomponentsofthescatteringmatrixarecomputedas

    1 12 2

    i

    c cS

    c c

    11 12

    21 22

    i ii

    i i

    S S

    SS S

    1 1

    1 1

    ij i j i j

    ij i j i j

    A W W V V

    B W W V V

    0i ik Li e

    X

    11 111 1 2 2 1 2 2 1 1

    11 112 1 2 2 1 2 2 2 2

    11 121 2 1 1 2 1 1 1 1

    11 122 2 1 1 2 1 1 2 2

    ii i i i i i i i i i i i

    ii i i i i i i i i i i

    ii i i i i i i i i i i

    ii i i i i i i i i i i i

    S A X B A X B X B A X A B

    S A X B A X B X A B A B

    S A X B A X B X A B A B

    S A X B A X B X B A X A B

    iS

    i isthelayernumber.j iseither1or2dependingonwhichexternalmediumisbeingreferenced.

  • 3/28/2014

    12

    Lecture5 Slide23

    ScatteringMatricesintheLiteratureForsomereason,thecomputationalelectromagneticscommunityhas:(1)deviatedfromconvention,and(2)formulatedscatteringmatricesinefficiently.

    1ic

    1ic

    ic

    ic

    11 121

    21 22 1

    i i

    i i

    S Sc cS Sc c

    12S

    11S

    21S

    22S

    reflection

    transmission

    Heres11 isnotreflection.Instead.itisbackwardtransmission!

    Heres21 isnottransmission.Instead,itisareflectionparameter!

    Scatteringmatricescannotbeinterchanged. Scatteringmatricesarenotsymmetricsotheytaketwicethememorytostoreandaremoretimeconsumingtocalculate.

    Lecture5 Slide24

    LimitationofConventionalSMatrixFormulationNotethattheelementsofascatteringmatrixareafunctionofmaterialsoutsideofthelayer.

    Thismakesitdifficulttointerchangescatteringmatricesarbitrarily.Forexample,thereareonlythreeuniquelayersinthemultilayerstructurebelow,yet20separatecomputationsofscatteringmatricesareneeded.

    Threeuniquelayers

    20layerstack

  • 3/28/2014

    13

    Lecture5 Slide25

    SolutionTogetaroundthis,wewillsurroundeachlayerwithanexternalregionsofzerothickness.Thisletsusconnectthescatteringmatricesinanyorderbecausetheyallcalculatefieldsthatexistoutsideofthelayersinthesamemedium.Thiswillhavenoeffectelectromagneticallyaslongaswemaketheexternalregionshavezerothickness.

    iL

    Layer iGap Medium Gap Medium

    Lecture5 Slide26

    VisualizationoftheTechnique

    Threeuniquelayers

    Wecalculatethescatteringmatricesforjusttheuniquelayers.

    Thenwejustmanipulatethesesamethreescatteringmatricestobuildtheglobalscatteringmatrix.

    Gapsbetweenthelayersaremadetohavezerothicknesssotheyhavenoeffectelectromagnetically.

    Faster! Simpler! Less memory needed!

  • 3/28/2014

    14

    Lecture5 Slide27

    RevisedGeometryofaSingleLayer

    0i

    0i

    iL

    i

    i

    cc

    1

    1

    0i ik L

    0i ik L

    2

    2

    cc

    1

    1

    cc

    2

    2

    i iz

    i iz

    Layer iGap Medium Gap Medium

    ,

    ,

    r h

    r h

    ,

    ,

    r h

    r h

    Lecture5 Slide28

    CalculatingRevisedScatteringMatricesThescatteringmatrixSi oftheithlayerisstilldefinedas:

    Buttheelementsarecalculatedas

    1 12 2

    i

    c cS

    c c

    11 12

    21 22

    i ii

    i i

    S S

    SS S

    1 1

    1 1i i h i h

    i i h i h

    A W W V VB W W V V

    0i ik Li e

    X

    11 111

    11 112

    21 12

    22 11

    ii i i i i i i i i i i i

    ii i i i i i i i i i i

    i i

    i i

    S A X B A X B X B A X A B

    S A X B A X B X A B A B

    S S

    S S

    Layersaresymmetricsothescatteringmatrixelementshaveredundancy. Scatteringmatrixequationsaresimplified. Fewercalculations. Lessmemorystorage.

    iS

  • 3/28/2014

    15

    Lecture5 Slide29

    ScatteringMatricesofLosslessMediaIfascatteringmatrixiscomposedofmaterialsthathavenolossandnogain,thescatteringmatrixmustconserveenergy.Thatis,allincidentenergymusteitherreflectortransmit.Thisimpliesthatthescatteringmatrixisunitary.Ifthescatteringmatrixisunitary,itmustobeythefollowingrules:

    1

    1 1

    H

    H H

    S SS S SS S S SS I

    HintsAboutStabilityinTheseFormulations DiagonalelementsS11 andS22 tendtobethelargestnumbers.Dividebytheseinsteadofanyoffdiagonalelementsforbestnumericalstability.

    X describespropagationthroughanentirelayer.DontdividebyX oryourcodecanbecomeunstable.

    Lecture5 Slide30

    11 12

    21 22

    S S

    SS S

  • 3/28/2014

    16

    Lecture5 Slide31

    MultilayerStructures

    Lecture5 Slide32

    SolutionUsingScatteringMatricesThescatteringmatrixmethodconsistsofworkingthroughthedeviceonelayeratatimeandcalculatinganoverallscatteringmatrix.

    1S 2S 3S 4S 5S

    device 1 2 3 4 5 S S S S S SRedheffer starproduct.NOTmatrixmultiplication!

  • 3/28/2014

    17

    Lecture5 Slide33

    Redheffer StarProductTwoscatteringmatricesmaybecombinedintoasinglescatteringmatrixusingRedheffers starproduct.

    A A

    11 12

    A A21 22

    A S S

    SS S

    B B

    11 12

    B B21 22

    B S S

    SS S

    AB A B S S S

    Thecombinedscatteringmatrixisthen

    AB AB

    11 12

    AB AB21 22

    AB S S

    SS S

    1AB A A B A B A11 11 12 11 22 11 21

    1AB A B A B12 12 11 22 12

    1AB B A B A21 21 22 11 21

    1AB B B A B A B22 22 21 22 11 22 12

    S S S I S S S S

    S S I S S S

    S S I S S S

    S S S I S S S S

    R. Redheffer, Difference equations and functional equations in transmission-line theory, Modern Mathematics for the Engineer, Vol. 12, pp. 282-337, McGraw-Hill, New York, 1961.

    Lecture5 Slide34

    DerivationoftheRedheffer StarProductWestartwiththeequationsforthetwoadjacentscatteringmatrices.

    A A B B11 12 11 122 21 1A A B B

    3 32 221 22 21 22

    S S S Sc cc c

    c cc cS S S S

    Weexpandtheseintofourmatrixequations.

    A A B B1 11 1 12 2 2 11 2 12 3

    A A B B2 21 1 22 2 3 21 2 22 3

    Eq. 1 Eq. 3

    Eq. 2 Eq. 4

    c S c S c c S c S c

    c S c S c c S c S c

    WesubstituteEq.(2)intoEq.(3)togetanequationwithonly.2cWesubstituteEq.(3)intoEq.(2)togetanequationwithonly.2c

    B A B A B

    11 22 2 11 21 1 12 3

    A B A A B22 11 2 21 1 22 12 3

    Eq. 5

    Eq. 6

    I S S c S S c S c

    I S S c S c S S c

    WeeliminateandbysubstitutingtheseequationsintoEq.(1)and(4).Wethenrearrangetermsintotheformofascatteringmatrix.

    2c 2c

    1 1

    3 3

    ? ?? ?

    c cc c

    Overall,thisisjustalgebra.Westartwith4equationsand6unknownsandreduceitto2equationswith4unknowns.

  • 3/28/2014

    18

    Lecture5 Slide35

    PuttingitAllTogether

    global 1 2

    Device in gap me

    r

    dium

    f trne N SS SS S S

    Wehaveoneremainingproblem.Intherevisedframework,theglobalscatteringmatrixplacesthedeviceinfreespace.Inmanyapplications,wemaywantsomethingotherthanfreespaceoutsidethedevice.Weconnecttheglobalscatteringmatrixtotheexternalmaterialsbysurroundingitbyconnectionscatteringmatricesthathavezerothickness

    deviceS

    Deviceexistswithingapmedium

    Lecture5 Slide36

    Reflection/TransmissionSideScatteringMatricesThereflectionsidescatteringmatrixis

    ref 111 ref ref

    ref 112 ref

    ref 121 ref ref ref ref

    ref 122 ref ref

    2

    0.5

    S A B

    S A

    S A B A B

    S B A

    1 1ref ref ref

    1 1ref ref ref

    h h

    h h

    A W W V VB W W V V

    trn 111 trn trn

    trn 112 trn trn trn trn

    trn 121 trn

    trn 122 trn trn

    0.5

    2

    S B A

    S A B A B

    S A

    S A B

    1 1trn trn trn

    1 1trn trn trn

    h h

    h h

    A W W V VB W W V V

    Thetransmissionsidescatteringmatrixis

    ,I

    ,I

    r

    r

    ,

    ,

    r h

    r h

    0limL

    ,II

    ,II

    r

    r

    ,

    ,

    r h

    r h

    refs

    trns

    0limL

  • 3/28/2014

    19

    Lecture5 Slide37

    CalculatingTransmittedandReflectedPower

    Lecture5 Slide38

    RecallHowtoCalculateSourceParameters

    inck

    TEaTMa

    inc 0 inc

    sin cossin sin

    cosk k n

    0 0

    1n

    incTE

    inc

    0 0

    ya

    k nak n

    TE incTM

    TE inc

    a kaa k

    IncidentWaveVector SurfaceNormal UnitVectorsAlongPolarizations

    CompositePolarizationVectorTE TMTE TM P p p aa

    z

    x

    y

    Righthandedcoordinatesystem

    1P InCEM,wemake

  • 3/28/2014

    20

    Lecture5 Slide39

    SolutionUsingScatteringMatricesTheexternalfields(i.e.incidentwave,reflectedwave,transmittedwave)arerelatedthroughtheglobaltransfermatrix.

    globalref inctrn

    c c

    Sc 0

    Thismatrixequationcanbesolvedtocalculatethemodecoefficientsofthereflectedandtransmittedfields.

    global global

    ref 11 12 incglobal global

    trn 21 22

    c S S cc 0S S

    global

    ref 11 inc

    globaltrn 21 inc

    c S c

    c S c

    ,inc1inc ref

    ,inc

    x

    y

    EE

    c W

    inc c

    rightinc not typically usedc

    ,inc

    ,inc

    x x

    y y

    E PE P

    WegetEx,inc andEy,inc fromthepolarizationvectorP.

    Lecture5 Slide40

    CalculationofTransmittedandReflectedFieldsTheproceduredescribedthusfarcalculatedcref andctrn.Thetransmittedandreflectedfieldsarethen

    ref incglobal global 1

    ref ref ref 11 inc ref 11 refref inc

    trn incglobal global 1

    trn trn trn 21 inc trn 21 reftrn inc

    x x

    y y

    x x

    y y

    E EE E

    E EE E

    W c W S c W S W

    W c W S c W S W

  • 3/28/2014

    21

    Lecture5 Slide41

    CalculationoftheLongitudinalComponentsWearestillmissingthelongitudinalfieldcomponentEz oneithersizeofthelayerstack.ThesearecalculatedusingMaxwellsdivergenceequation.

    0, 0, 0,0, 0, 0,

    0, 0, 0,

    0, 0, 0,

    0, 0,0,

    0

    0

    0

    0

    jk r jk r jk rx y z

    jk r jk r jk rx x y y z z

    x x y y z z

    z z x x y y

    x x y yz

    z

    E

    E e E e E ex y z

    jk E e jk E e jk E ek E k E k Ek E k E k E

    k E k EE

    k

    ref refref

    ref

    trn trntrn

    trn

    x x y yz

    z

    x x y yz

    z

    k E k EE

    k

    k E k EE

    k

    Note:

    0 reduces to

    0 when is homogeneous.

    E

    E

    Lecture5 Slide42

    CalculationofPowerFlow

    2

    trn ,ref ,trn2

    ,trn ,incinc

    Re r zr z

    E kT

    kE

    1 materials have loss 1 materials have no loss and no gain

    1 materials have gain R T

    Reflectanceisdefinedasthefractionofpowerreflectedfromadevice.2

    ref2

    inc

    ER

    E 2 22 2x y zE E E E

    Transmittanceisdefinedasthefractionofpowertransmittedthroughadevice.

    Itisalwaysgoodpracticetocheckforconservationofenergy.

    Note:WewillderivetheseformulasinLecture7.

  • 3/28/2014

    22

    Lecture5 Slide43

    ReflectanceandTransmittanceonaDecibelScaleDecibelScale

    dB 1020 logP A dB 1010 logP P

    Howtocalculatedecibelsfromanamplitudequantity.

    Howtocalculatedecibelsfromapowerquantity. 2 2dB 10 10 10 log 20logP A P A A

    ReflectanceandTransmittanceReflectanceandtransmittancearepowerquantities,so

    dB 10

    dB 10

    10 log

    10log

    R R

    T T

    Lecture5 Slide44

    NotesonImplementation

  • 3/28/2014

    23

    Lecture5 Slide45

    StoringtheProblemHowisathedevicedescribedandstoredforTMM?Wedontuseagridforthismethod!Storethepermittivityforeachlayerina1Darray.Storethepermeabilityforeachlayerina1Darray.Storethethicknessofeachlayerina1Darray.

    ER = [ 2.50 , 3.50 , 2.00 ];UR = [ 1.00 , 1.00 , 1.00 ];L = [ 0.25 , 0.75 , 0.89 ];

    Wewillalsoneedtheexternalmaterials,andsourceparameters.er1,er2,ur1,ur2,theta,phi,pte,ptm,andlam0

    Inputarraysforthreelayers

    Lecture5 Slide46

    StoringScatteringMatricesWeoftentalkaboutthescatteringmatrixS asasinglematrix.

    11 12

    21 22

    S S

    SS S

    However,weneveractuallyusethescatteringmatrixS thisway.WeonlyeverusetheindividualtermsS11,S12,S21,andS22.So,scatteringmatricesareactuallystoredasthefourseparatecomponentsofthescatteringmatrix.

    11 12

    21 22

    S S

    SS S 11 12 21 22

    , , , and S S S S

  • 3/28/2014

    24

    Lecture5 Slide47

    CalculatingXi = exp(-ik0Li)

    0

    0

    0

    0

    0

    z i

    i i

    z i

    jk k Lk L

    i jk k L

    ee

    e

    X

    Recallthecorrectanswer:

    Itisincorrecttousethefunctionexp() becausethiscalculatesapointbypointexponential,notamatrixexponential.

    X = exp(-OMEGA*k0*L);X =

    0.0135 + 0.9999i 1.00001.0000 0.0135 + 0.9999i

    Approach#1:expm() Approach#2:diag()X = expm(-OMEGA*k0*L);X =

    0.0135 + 0.9999i 00 0.0135 + 0.9999i

    X = diag(exp(-diag(OMEGA)*k0*L));X =

    0.0135 + 0.9999i 00 0.0135 + 0.9999i

    Lecture5 Slide48

    EfficientStarProductAfterobservingtheequationstoimplementtheRedheffer starproduct,weseetherearesomecommonterms.Calculatingthesemultipletimesisinefficientsowecalculatethemonlyonceusingintermediateparameters.

    1AB A A B A B A11 11 12 11 22 11 21

    1AB A B A B12 12 11 22 12

    1AB B A B A21 21 22 11 21

    1AB B B A B A B22 22 21 22 11 22 12

    S S S I S S S S

    S S I S S S

    S S I S S S

    S S S I S S S S

    1A B A12 11 22

    1B A B21 22 11

    D S I S S

    F S I S S

    AB A B S S S

    A B A11 11 11 21

    B12 12

    A21 21

    B A B22 22 22 12

    AB

    AB

    AB

    AB

    S S DS S

    S DS

    S FS

    S S FS S

  • 3/28/2014

    25

    Lecture5 Slide49

    UsingtheStarProductasanUpdateVeryoftenweupdateourglobalscatteringmatrixusingastarproduct.

    Whenweusethisequationasanupdate,weMUSTpaycloseattentiontotheorderthatweimplementtheequationssothatwedontaccidentallyoverwriteavaluethatweneed.

    1global12 11 22

    1global global21 22 11

    global global22 22 22

    global21 21

    global global12 12

    global global11 11

    global1

    1

    2

    1 21

    i i

    i

    i

    i

    i i

    D S I S S

    F S I S S

    S S FS

    S FS

    S DS

    S S DS S

    S

    1global global12 11 22

    1global21 22 11

    global global global11 11 11 21

    global12 12

    global global21 21

    global global22 22 22 12

    i

    i i

    i

    i

    i i

    D S I S S

    F S I S S

    S S DS S

    S DS

    S FS

    S S FS S

    global globali S S S global global i S S S

    reverseo

    rder

    standard

    orde

    r

    Lecture5 Slide50

    SimplificationsforTMMinLHIMediaInLHImedia,

    1 00 1i W I ,i z ijk I

    1 0 identity matrix0 1 Iand

    Nowwedonotactuallyhavetocalculate becausei i

    Givenallofthis,theeigenvectorsforthemagneticfieldscanbecalculatedas1 1

    i i i i i i V Q W Q

    Whencalculatingscatteringmatrices,theintermediatematricesAi andBi are1 1 1

    1 1 1

    i i h i h i h

    i i h i h i h

    A W W V V I V V

    B W W V V I V V

    Thefieldsandmodecoefficientsarenowrelatedthroughref trn

    1inc ref ref 11 inc 11 inc trn 21 inc 21 incref trn

    x x x x

    y y y y

    P P E EP P E E

    c W W S c S c W S c S c

  • 3/28/2014

    26

    Lecture5 Slide51

    InitializingtheGlobalScatteringMatrixBeforeweiteratethroughallthelayers,wemustinitializetheglobalscatteringmatrixasthescatteringmatrixofnothing.Whataretheidealpropertiesofnothing?

    1. Transmits100%ofpowerwithnophasechange.

    2. Doesnotreflect.

    global global12 21 S S I

    global global11 22 S S 0

    Wethereforeinitializeourglobalscatteringmatrixas global

    0 IS

    I 0ThisisNOTanidentitymatrix!Lookatthepositionofthe0sandIs.

    Lecture5 Slide52

    CalculatingtheParametersoftheHomogeneousGaps

    2 2 2, , ,

    ,

    1

    z h r h r h x y

    h

    h z h

    h h h h

    k k k

    jk

    W I

    IV Q W

    Ouranalyticalsolutionforahomogeneouslayeris2

    , ,

    2, , ,

    1 x y r h r h xh

    r h y r h r h x y

    k k k

    k k k

    Q

    Wearefreetochooseanyr andr thatwewish.Wealsowishtoavoidthecaseofkz,h = 0.Forconvenience,wechoose

    2 2, ,1.0 and 1r h r h x yk k

    Wethenhave

    2

    2

    1

    1x y y

    hx x y

    k k k

    k k k

    Q

    h

    h hj

    W IV Q

  • 3/28/2014

    27

    Lecture5 Slide53

    BlockDiagramofTMMUsingSMatrices

    CalculateParametersforLayeri

    2 2,

    2

    2

    1,

    1

    z i i i x y

    x y i i xi

    i y i i x y

    i z i i i i

    k k k

    k k k

    k k k

    jk

    Q

    I V Q

    CalculateScatteringMatrixforLayeri

    0

    1 1

    11 111 22

    11 112 21

    i i

    i i h i i hk L

    i

    i ii i i i i i i i i i i i

    i ii i i i i i i i i i i

    e

    A I V V B I V V

    X

    S S A X B A X B X B A X A B

    S S A X B A X B X A B A B

    UpdateGlobalScatteringMatrix

    global global global global11 12 11 12 11 12

    global global global global21 22 21 22 21 22

    1global global global global global11 11 12 11 22 11 21

    global global12 12 1

    i i

    i i

    i i

    S S S S S S

    S S S S S S

    S S S I S S S S

    S S I S

    1global1 22 12

    1global global global21 21 22 11 21

    1global global global22 22 21 22 11 22 12

    i i

    i i

    i i i i

    S S

    S S I S S S

    S S S I S S S S

    Done?

    no

    yes

    CalculateTransmittedandReflectedFields

    ref

    11 incref

    trn

    21 inctrn

    x

    y

    x

    y

    EE

    EE

    S c

    S c

    CalculateLongitudinalFieldComponents

    ref refref

    ref

    trn trntrn

    trn

    x x y y

    zz

    x x y yz

    z

    k E k EE

    k

    k E k EE

    k

    CalculateTransmittanceandReflectance

    2

    ref

    trn2 reftrn ref

    trn

    Re zz

    R E

    kT Ek

    CalculateTransverseWaveVectors

    inc

    inc

    sin cos

    sin sinx

    y

    k n

    k n

    InitializeGlobalScatteringMatrix

    global 0 I

    SI 0

    Start

    Finish

    CalculateGapMediumParameters h h hj W I V Q

    CalculateSource

    TE TE TM TM

    inc

    1

    x

    y

    P p a p a

    P

    PP

    c

    ConnecttoExternalRegions

    global ref global

    global global trn

    S S S

    S S S

    Loopthroughalllayers

    Lecture5 Slide54

    HowtoHandleZeroLayersFollowtheblockdiagram!!Setupyourloopthisway

    NLAY = length(L);for nlay = 1 : NLAY

    ...end

    IfNLAY = 0,thentheloopwillnotexecutetheglobalscatteringmatrixwillremainasitwasinitialized.

    global 0 I

    SI 0

    Forzerolayers:ER = [];UR = [];L = [];

  • 3/28/2014

    28

    Lecture5 Slide55

    CanTMMFail?Yes!

    TheTMMcanfailtogiveananswerandbehavenumericallystrangeanytimekz = 0.Thishappensatacriticalanglewhenthetransmittedwaveisverynearitscutoff.Wefixedthisprobleminthegapmedium,butthiscanalsohappeninanyofthelayersorinthetransmissionregion.

    2 2r r x yk k

    Thishappensinanymediumwhere

    Lecture5 Slide56

    AdvancedScatteringMatrices

  • 3/28/2014

    29

    Lecture5 Slide57

    LongitudinallyPeriodicDevicesSupposewejustcalculatedthescatteringmatrixfortheunitcellofalongitudinallyperiodicdevice.

    UnitCell1 UnitCell2 UnitCell3 UnitCell4 UnitCell4 UnitCell6 UnitCell7 UnitCell8

    UnitCell

    1 A B C S S S S

    Thereexistsaveryefficientwayofcalculatingtheglobalscatteringmatrixofalongitudinallyperiodicdevicewithoutcalculatingandcombiningalltheindividualscatteringmatrices.

    A B C

    8 A B C A B C A B C A B C A B C A B C A B C A B C S S S S S S S S S S S S S S S S S S S S S S S S S

    Bothareinefficient!!! 8 1 1 1 1 1 1 1 1 S S S S S S S S S

    Lecture5 Slide58

    CascadingandDoublingWecanquicklybuildanoverallscatteringmatrixthatdescribeshundredsandthousandsofunitcells.Westartbycalculatingthescatteringmatrixforasingleunitcell.

    1 A B C S S S S A B C

    Next,wekeepconnectingthescatteringmatrixtoitselftokeepdoublingthenumberofunitcellsitdescribes.

    2 1 1 S S S 4 2 2 S S S 8 4 4 S S S

  • 3/28/2014

    30

    Lecture5 Slide59

    AlgorithmforArbitraryNumberofUnitCellsStep1 Calculatethescatteringmatrixfortheunitcell.

    Step2 Determinethebinarydigitsforthetotalnumberofrepetitions.

    Chainof10unitcells 1010Step3 Performcascadingadoublingwhileupdatingtheglobalscatteringmatrixonlywiththescatteringmatricescorrespondingtobinarydigitsof1.

    1 A B C S S S S

    bin bin binb. c. repeat through all binary digits

    S S SLoop#binarydigits

    bin 1

    N

    0 IS

    I 0

    S S

    a.Ifbinarydigitis1 binN N S S S

    A B C

    1.InitializeAlgorithm 2.Performmodifiedcascadinganddoubling

    Lecture5 Slide60

    BlockDiagramforModifiedCascadingandDoublingAlgorithmInputs

    1 S-matrix of one unit cellNumber of times to repeat unit cellN

    S

    ConvertN tobinary10110

    InitializeAlgorithm bin 1 N

    0 IS S S

    I 0

    Done?

    UpdateDoubling bin bin bin S S S

    digit=1? UpdateS(N)

    binN N S S Syes

    no

    no

    Output NSLoopthroughallbinarydigits

    startingwiththeleastsignificantdigit.

    Example

    N = 22 101100: No update to S(N)

    S(bin) now 2 unit cells

    1: S(N) now 2 unit cellsS(bin) now 4 unit cells

    1: S(N) now 6 unit cellsS(bin) now 8 unit cells

    0: No update to S(N)S(bin) now 16 unit cells

    1: S(N) now 22 unit cellsS(bin) now 32 unit cells

  • 3/28/2014

    31

    Lecture5 Slide61

    DispersionAnalysis(1of2)Anoverallscatteringmatrixiscalculatedthatdescribestheunitcell.

    uc uc

    11 110 0uc uc

    1 111 11N N

    S Sc c

    c cS S

    Thetermsarerearrangedinalmosttheformofatransfermatrix.

    uc uc12 111 0uc uc

    1 022 21

    N

    N

    0 S S Ic c

    c cI S S 0

    Ifthedeviceisinfinitelyperiodicinthez direction,thenthefollowingperiodicboundaryconditionmusthold.

    1 0

    1 0

    zzjN

    N

    ke

    c cc c

    Herekz istheeffectivepropagationconstantofthemode.

    uc 1same as on previous slideS S

    Lecture5 Slide62

    DispersionAnalysis(1of2)Wesubstitutetheperiodicboundaryconditionintoourrearrangedequationtoget

    uc uc11 120 0uc uc

    0 021 22

    z zjke

    S I 0 Sc c

    c cS 0 I S

    Thisisageneralizedeigenvalueproblem.

    uc11 0uc

    021

    uc12

    uc22

    zzkje

    S I cA x

    cS 0Ax Bx

    0 SB

    I S

    [V,D] = eig(A,B);Eigen vectors Eigen values

  • 3/28/2014

    32

    Lecture5 Slide63

    AlternativestoScatteringMatrices

    Lecture5 Slide64

    TransmittanceMatrices(TMatrices)TheTmatrixmethodisthetransfermatrixmethodwhereforwardandbackwardwavesaredistinguished.

    lefttrn 11 12 inc

    rightinc 21 22 ref

    c T T cc T T c

    BenefitsMuchfaster(5to10times)Unconditionallystable

    Drawbacks LessmemoryefficientCannotexploitlongitudinalperiodicity Lesspopularintheliterature

    M. G. Moharam, Drew A. Pommet, Eric B. Grann, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, J. Opt. Soc. Am. A, Vol. 12, No. 5, pp. 1077-1086, 1995.

  • 3/28/2014

    33

    Lecture5 Slide65

    HybridMatrices(HMatrices)Thehmatrixmethodisborrowedfromelectricaltwoportnetworks.

    1 11 12 1

    2 21 22 2

    V h h II h h V

    2 1

    2 1

    1 111 12

    2 20 0

    2 221 22

    1 20 0

    V I

    V I

    V Vh hI V

    I Ih hI V

    Intheframeworkoffields,thehmatrixisdefinedas

    , 1 , 1

    , 1 11 12 , 1

    , ,21 22

    , ,

    x i x ii i

    y i y ii i

    x i x i

    y i y i

    E HE HH EH E

    H H

    H H

    ClaimedBenefits ImprovednumericalstabilityMoreconciseformulation Simplertoimplement Improvednumericalefficiency(30%betterthanETM)UnconditionallystableEng L. Tan, Hybrid-matrix algorithm for rigorous coupled-wave analysis of

    multilayered diffraction gratings, J. Mod. Opt., Vol. 53, No. 4, pp. 417-428, 2006.

    Lecture5 Slide66

    RMatricesTheRmatrixmethodisessentiallytheimpedancematrixframeworkborrowedfromelectricaltwoportnetworks.

    1 11 12 1

    2 21 22 2

    V z z IV z z I

    2 1

    2 1

    1 111 12

    1 20 0

    2 221 22

    1 20 0

    I I

    I I

    V Vz zI I

    V Vz zI I

    Intheframeworkoffields,thehmatrixisdefinedas

    , 1 , 1

    , 1 11 12 , 1

    , ,21 22

    , ,

    x i x ii i

    y i y ii i

    x i x i

    y i y i

    E HE HE HE H

    R R

    R R

    ClaimedBenefitsUnconditionallystable Improvednumericalefficiency

    Lifeng Li, Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings, J. Opt. Soc. Am. A, Vol. 11, No. 11, pp. 2829-2836, 1994.