86
TMD and collinear functions for transverse and longitudinal spin observables at RHIC Daniel Pitonyak Old Dominion University, Norfolk, VA supported by TMD Topical Collaboration RHIC & AGS Users Meeting Brookhaven National Lab, Upton, NY June 12, 2018

TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Embed Size (px)

Citation preview

Page 1: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

TMD and collinear functions for transverse and longitudinal spin observables at RHIC

Daniel PitonyakOld Dominion University, Norfolk, VA

supported byTMD Topical Collaboration

RHIC & AGS Users MeetingBrookhaven National Lab, Upton, NY

June 12, 2018

Page 2: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

OutlineØ TMD and collinear twist-3 (CT3) functions

Ø The proton spin at small x

Ø Sivers and Collins effects & AN in pp collisions

Ø Toward a global analysis of transverse spin observables

Ø Summary

D. PitonyakD. Pitonyak

Page 3: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

TMD and Collinear Twist-3 Functions

D. PitonyakD. Pitonyak

Page 4: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

H pol.q pol.

f1

U

U

L

T

L T H pol. U

U

L

T

L Tq pol.

D1

D. Pitonyak

f?1T g1T

g1L

h?1

h?1L

h?1T

h1T D?1T G1T

G1L

H?1

H1T

H?1T

H?1L

TMD FFs (z, )p?

(Boer, Jakob, Mulders (1997))

TMD PDFs (x, kT)

D. Pitonyak

(Mulders, Tangerman (1996); Goeke, Metz, Schlegel (2005))

Page 5: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

H pol.q pol.

f1

g1

h1

U

U

L

T

L T

Collinear PDFs (x)

H pol. U

U

L

T

L T

Collinear FFs (z)q pol.

D1

G1

H1

unpolarized

helicity

transversity

Integrate TMDs over kT (or ) è collinear PDFs and FFsp?

D. Pitonyak

Page 6: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Hadron Pol.

U

L

T

intrinsic kinematical intrinsic kinematicaldynamical dynamical

CT3 PDF (x) CT3 PDF (x, x1) CT3 FF (z) CT3 FF (z, z1)

e

hL

gT

E, H

HL, EL

DT , GT

h?(1)1

h?(1)1L

f?(1)1T ,

g?(1)1T

D?(1)1T ,

G?(1)1T

H?(1)1L

H?(1)1HF U

HF L

FF T , GF T

H<,=F U

D<,=F T , G<,=

F T

H<,=F L

D. Pitonyak

Page 7: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

The Proton Spin at Small x

D. PitonyakD. Pitonyak

Page 8: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

COMPASS (2016)

STAR (2014) & PHENIX (2018)

STAR (2018)

PHENIX, Talk by R. Seidl (DIS 2016)

valence & sea quarks gluons

Page 9: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

How much of the proton’s spin comes from small-x quarks and gluons?

D. Pitonyak

only data down to x ~ 0.05(now x ~ 0.001 from new STAR data)

only data down to x ~ 0.001

Aschenauer, Sassot, Stratmann (2016)

Page 10: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Which trajectory will the quark and gluon spin follow?

D. Pitonyak

Aschenauer, Sassot, Stratmann (2016)

Page 11: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Which trajectory will the quark and gluon spin follow?

No data yet to tell us (need EIC!)

D. Pitonyak

Aschenauer, Sassot, Stratmann (2016)

Page 12: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Which trajectory will the quark and gluon spin follow?

No data yet to tell us (need EIC!)

Use small-x helicity evolution!

D. Pitonyak

Aschenauer, Sassot, Stratmann (2016)

Page 13: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Derived and solved small-x helicity evolution equations in the “large-Nc” approximation (Kovchegov, DP, Sievert: JHEP 1601 (2016), PRL 118 (2017), PRD 95 (2017), PLB 772 (2017), JHEP 1710 (2017))

D. Pitonyak

These are direct inputs from theory!

�G(x) ⇠✓1

x

◆↵Gh

with ↵Gh =

13

4p3

r↵sNc

2⇡⇡ 1.88

r↵sNc

2⇡

↵s=0.3⇡ 0.712

<latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit>

�q(x) ⇠✓1

x

◆↵qh

with ↵qh =

4p3

r↵sNc

2⇡⇡ 2.31

r↵sNc

2⇡

↵s=0.3⇡ 0.874

=) �⌃(x) ⇠✓1

x

◆↵qh

<latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit>

Page 14: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Derived and solved small-x helicity evolution equations in the “large-Nc” approximation (Kovchegov, DP, Sievert: JHEP 1601 (2016), PRL 118 (2017), PRD 95 (2017), PLB 772 (2017), JHEP 1710 (2017))

D. Pitonyak

These are direct inputs from theory!

�G(x) ⇠✓1

x

◆↵Gh

with ↵Gh =

13

4p3

r↵sNc

2⇡⇡ 1.88

r↵sNc

2⇡

↵s=0.3⇡ 0.712

<latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit><latexit sha1_base64="VSKakyRVrwJEk8hvGZsjXWY+DMc=">AAAC1nichVJdaxNBFJ1dv2r8aNRHX64GIX1ZdtNCA6VQVKhPUtG0gUy6TCaz2aGzu9OZu5qwrA+K+Opv880f4X9wkqxfreCFgcO55547c+9MtJIWw/Cb51+5eu36jY2brVu379zdbN+7f2yL0nAx4IUqzHDCrFAyFwOUqMRQG8GyiRInk7Nny/zJW2GsLPI3uNBinLFZLhPJGToqbn+nz4VCBofd+RZQKzOgSiTYpYlhvIpqqOY1NXKW4tZpRR9RpnTK4vT0sAZ6XrIpVNRk8E5i+pP4LYF9aGy262qH2nOD1XZdr8E604gtvIy569WjWtbOiGltijlEQb8P/5XTPadBxs+MUL8U+2HgmjZGznEvDHajXtzuhEG4CrgMogZ0SBNHcfsrnRa8zESOXDFrR1GocVwxg5IrUbdoaYV2rdlMjBzMWSbsuFqtpYYnjplCUhh3coQV+2dFxTJrF9nEKTOGqb2YW5L/yo1KTPrjSua6RJHzdaOkVIAFLHcMU2kER7VwgHEj3V2Bp8wNEN1PaLkhRBeffBkc94IoDKJXO52Dp804NshD8ph0SUR2yQF5QY7IgHDvtbfwPngf/aH/3v/kf15Lfa+peUD+Cv/LD+7I4zg=</latexit>

�q(x) ⇠✓1

x

◆↵qh

with ↵qh =

4p3

r↵sNc

2⇡⇡ 2.31

r↵sNc

2⇡

↵s=0.3⇡ 0.874

=) �⌃(x) ⇠✓1

x

◆↵qh

<latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit><latexit sha1_base64="jo8tdNlrJAx0wskpsJul3icJvQY=">AAADLniclVJdb9MwFHXC1ygf6+CRF0PF1L1ESVtpk6ZJE+yBB4SGoNukuotuXKexZiep7bBWUX4RL/wVeEAChHjlZ+A2ER8bEuJKlo7OPb7X91xHueDa+P4nx71y9dr1G2s3W7du37m73t64d6SzQlE2pJnI1EkEmgmesqHhRrCTXDGQkWDH0dnTZf74DVOaZ+lrs8jZWMI05TGnYCwVbjgHm+SACQN41p1vEc0lJoLFpktiBbQMKlzOK6L4NDFbpyV5SEDkCYTJ6azCmMwKmOCSKInPuUmqhvilwXu4rjOoSqJnypT9qqpBzTdSjV+E1LbqkZxXtgzkucrmuOf1A/xPOdm1GgP0TDHxU7Hne33bsy5kK+763s72gJCR7wVUjlub5HmWTldzgVLZeWMCecWnEqwT+L+sCNsd3/NXgS+DoAEd1MRh2P5AJhktJEsNFaD1KPBzMy5BGU4Fq1qk0Cy3I8GUjSxMQTI9LlfrrvBjy0xwnCl7UoNX7O83SpBaL2RklRJMoi/mluTfcqPCxDvjkqd5YVhK60ZxIbDJ8PLv4AlXjBqxsACo4vatmCZgzTH2h7WsCcHFkS+Do54X2B28HHT2nzR2rKEH6BHqogBto330DB2iIaLOW+e989n54r5zP7pf3W+11HWaO/fRH+F+/wFdwwXZ</latexit>

Universal (flavor-independent) intercept! è all quark/antiquark helicity PDFs should have the same small-x behavior

Page 15: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Page 16: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

More work to do…

-Need to go beyond the large-Nc approximation

-Must include these results in the next fits of helicity PDFs

D. Pitonyak

Could these pieces be even greater due to spin at small x?

What about OAM?OAM and helicity could cancel at small x (Hatta and Yang (2018))

Page 17: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Sivers and Collins Effects & AN in pp Collisions

D. PitonyakD. Pitonyak

Page 18: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Drell-Yan Sivers effect

STAR (2016) COMPASS (2017)

Page 19: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

SIDIS Sivers effect ( sin(ϕh – ϕs ) )

HERMES (2009) JLab, Hall A (2011)

COMPASS (2015)

F sin(�h��S)UT = C

"� h · ~kT

Mf?1T D1

#

Page 20: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

TMDs in Collins-Soper-Sterman (CSS) evolution formalism

Echevarria, et al. (2014)Anselmino, et al. (2017)

Page 21: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Belle (2008)

Also data from BaBar (2014) and BESIII (2016)

D. PitonyakD. Pitonyak

e+e- Collins effect ( cos(2ϕ0 ) )COMPASS (2015)

Also data from JLab Hall A (2011, 2014) and HERMES

SIDIS Collins effect ( sin(ϕh + ϕs ) )

F sin(�h+�S)UT = C

"� h · ~p?

Mhh1H

?1

#

F cos(2�0)UU = C

"2h · ~pa? h · ~pb? � ~pa? · ~pb?

MaMbH

?1 H

?1

#

Page 22: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Kang, et al. (2016)

TMDs in CSS formalism

D. PitonyakD. Pitonyak

Anselmino, et al. (2015)

Page 23: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Hadron in a jet Collins effect

Theory curves from D’Alesio, et al. (2017) & Kang, et al. (2017)

Transversity from dihadron FF

STAR (2017)

STAR (2015)

Bacchetta and Radici (2017)

Page 24: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

AN in pp -> γ X

(Kanazawa, Koike, Metz, DP – PRD 91 (2015))(See also Gamberg, Kang, Prokudin (2013))

Qiu-Sterman term is the main cause of AN in pp -> γ X

Qiu-Sterman function

d��⇡ ⇠ H ⌦ f1 ⌦ FF T (x, x)

Test of the process dependence of the Sivers function

Page 25: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

AN in pp -> γ X

Anselmino, et al. (2013)

GPM

Twist-3

GPM predicts a positive asymmetry while twist-3 predicts a negative one

Kanazawa, et al. (2015)

Page 26: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

AN in pp -> π X – PUZZLE FOR 40+ YEARS!

1976

Page 27: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

AN in pp -> π X – PUZZLE FOR 40+ YEARS!PHENIX (2014)

STAR (2012)

PHENIX, Talk by J. Bok (DIS 2018)

Page 28: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Qiu and Sterman (1999), Kouvaris, et al. (2006))FFT ⇠ TF

For many years the Qiu-Sterman/Sivers-type contribution was thought to be the dominant source of TSSAs in p"p ! ⇡ X

d��⇡ ⇠ H ⌦ f1 ⌦ FF T (x, x)

Page 29: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

d��⇡ ⇠ H ⌦ f1 ⌦ FF T (x, x)

(Kang, Qiu, Vogelsang, Yuan (2011); Kang and Prokudin (2012); Metz, DP, Schäfer, Schlegel, Vogelsang, Zhou (2012))

Page 30: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Metz and DP - PLB 723 (2013))

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx0Z 1

0dx �(s + t + u)

1s (�x0t� xu)

⇥ ha

1(x) fb

1(x0)

("H?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+1zH

c(z) Si

H

+2z

Z 1

z

dz1

z21

1⇣

1z� 1

z1

⌘2 Hc,=FU

(z, z1)Si

HF U

)

d��⇡ ⇠ H ⌦ f1 ⌦ FF T (x, x)

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 ,H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

We now believe the TSSAs in are due fragmentation effects as the partons

form pions in the final state

p"p ! ⇡ X

Page 31: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

QCD e.o.m. relation (EOMR)

Hq(z) = �2z H

?(1),q1 (z) + 2z

Z 1

z

dz1

z21

11z �

1z1

Hq,=FU (z, z1)

⌘ Hq(z)

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 ,H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

Page 32: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Fragmentation term is the main cause of AN in pp -> π X

(Kanazawa, Koike, Metz, DP, PRD 89(RC) (2014))

Also included the Qiu-Sterman term

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 ,H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

⇡ FF T (x, x) = f?(1)1T (x)

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 , H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

Page 33: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Kanazawa, Koike, Metz, DP, Schlegel, PRD 93 (2016))

Hq(z)z

= �✓

1� zd

dz

◆H?(1),q1 (z)� 2

z

Z 1

z

dz1

z21

Hq,=FU (z, z1)

(1/z � 1/z1)2Lorentz

invariance relation (LIR)

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 , H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

Page 34: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Si

H?1⌘

Si

H?1� Si

HF U

�x0t� xuand Si

H⌘

Si

H� Si

HF U

�x0t� xuwhere

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx

0Z 1

0dx �(s + t + u)

1s

⇥ ha

1(x) fb

1(x0)

("H

?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+�2H

?(1),c1 (z) +

1zH

c(z)�

Si

H

)

(Gamberg, Kang, DP, Prokudin, PLB 770 (2017))

d��⇡ ⇠ h1 ⌦ S ⌦⇣H

?(1)1 , H

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 , H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

Page 35: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Gamberg, Kang, DP, Prokudin, PLB 770 (2017))

d��⇡ ⇠ h1 ⌦ S ⌦⇣H

?(1)1 , H

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 , H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

Fragmentation term is the main cause of AN in pp -> π X

The AN data from RHIC can be used to constrain transversity at large x!

Page 36: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Fragmentation term is the main cause of AN in pp -> π X

The AN data from RHIC can be used to constrain transversity at large x!

(Gamberg, Kang, DP, Prokudin, PLB 770 (2017))

d��⇡ ⇠ h1 ⌦ S ⌦

H?(1)1 , H,

Zdz1

z21

H=F U

(1/z � 1/z1)2

!

STAR had the first data EVER on transversity in 2004!

d��⇡ ⇠ h1 ⌦ S ⌦⇣H

?(1)1 , H

Page 37: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

STAR shows no suppression with A (neutral pions, larger xF region)

AN in pA -> π X

PHENIX, Talk by J. Bok (DIS 2018) STAR, Talk by C. Dilks (DIS 2016)

PHENIX shows A1/3 suppression (charged hadrons, smaller xF region)

Page 38: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx0Z 1

0dx �(s + t + u)

1s (�x0t� xu)

⇥ ha

1(x) fb

1(x0)

("H?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+1zH

c(z) Si

H

+2z

Z 1

z

dz1

z21

1⇣

1z� 1

z1

⌘2 Hc,=FU

(z, z1)Si

HF U

)

2013 expression from Metz and DP

Page 39: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx0Z 1

0dx �(s + t + u)

1s (�x0t� xu)

⇥ ha

1(x) fb

1(x0)

("H?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+1zH

c(z) Si

H

+2z

Z 1

z

dz1

z21

1⇣

1z� 1

z1

⌘2 Hc,=FU

(z, z1)Si

HF U

)

2013 expression from Metz and DP

~ A-1/3

~ A-1/3

Include small x multiple-rescatteringsto calculate pA TSSA (Hatta, Xiao, Yoshida, Yuan (2017))

~ A0

Page 40: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx0Z 1

0dx �(s + t + u)

1s (�x0t� xu)

⇥ ha

1(x) fb

1(x0)

("H?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+1zH

c(z) Si

H

+2z

Z 1

z

dz1

z21

1⇣

1z� 1

z1

⌘2 Hc,=FU

(z, z1)Si

HF U

)

2013 expression from Metz and DP

EOMR + LIR è

~ A0

2z

Z 1

z

dz1

z21

1⇣

1z �

1z1

⌘2 H⇡/c,=FU (z, z1) = H

?(1),c1 (z) + z

dH?(1),c1 (z)dz

� 1zH

c(z)

Page 41: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Eh

d��Frag(ST )d3 ~Ph

=� 4↵2sMh

S✏P0PPhST

X

i

X

a,b,c

Z 1

0

dz

z3

Z 1

0dx0Z 1

0dx �(s + t + u)

1s (�x0t� xu)

⇥ ha

1(x) fb

1(x0)

("H?(1),c1 (z)� z

dH?(1),c1 (z)dz

#S

i

H?1

+1zH

c(z) Si

H

+2z

Z 1

z

dz1

z21

1⇣

1z� 1

z1

⌘2 Hc,=FU

(z, z1)Si

HF U

)

2013 expression from Metz and DP

Calculate pieces involving the (first kT-moment of the) Collins function to get an updated estimate for the term in blue

~ A0

2z

Z 1

z

dz1

z21

1⇣

1z �

1z1

⌘2 H⇡/c,=FU (z, z1) = H

?(1),c1 (z) + z

dH?(1),c1 (z)dz

� 1zH

c(z)

EOMR + LIR è

Page 42: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Fragmentation term as the cause of AN in pp collisionsis not inconsistent with the RHIC pA AN data.

Reduced theoretical uncertainties is needed.

(Gamberg, Kang, DP, Prokudin, PLB 770 (2017))

Page 43: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Sivers ~ sin(ϕh – ϕs ), Collins ~ sin(ϕh + ϕs ), ...Collins ~ cos(ϕa + ϕb ), ...

AN ~ dσL – dσRSivers ~ sin(ϕs ) (lepton pair) / Sivers ~ cos(ϕW/Z ) (boson)

Page 44: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

H?1h1, f

?1T , H

?1

f?1T h1, FF T , H

?(1)1 , H

Page 45: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

H?1h1, f

?1T , H

?1

f?1T h1, FF T , H

?(1)1 , H

Page 46: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Figure from EIC Whitepaper

One naively expects that we can obtain collinear functions by integrating TMDs over kT

Page 47: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

Zd2kT f1(x, kT ;Q2, µQ) = f1(x, bT ! 0; Q2, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Zd2kT

k2T

2M2f?1T (x, kT ;Q2, µQ) ⌘ f?(1)

1T (x;Q2, µQ) = f?(1)1T (x, bT ! 0; Q2, µQ) = 0 !

Takes into account “complications” of QCD (e.g., parton re-scattering and gluon radiation)

Page 48: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

Zd2kT f1(x, kT ;Q2, µQ) = f1(x, bT ! 0; Q2, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Zd2kT

k2T

2M2f?1T (x, kT ;Q2, µQ) ⌘ f?(1)

1T (x;Q2, µQ) = f?(1)1T (x, bT ! 0; Q2, µQ) = 0 !

TMDs lose their physical interpretation in the “Original CSS” formalism!

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Takes into account “complications” of QCD (e.g., parton re-scattering and gluon radiation)

Page 49: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

Zd2kT f1(x, kT ;Q2, µQ) = f1(x, bT ! 0; Q2, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Zd2kT

k2T

2M2f?1T (x, kT ;Q2, µQ) ⌘ f?(1)

1T (x;Q2, µQ) = f?(1)1T (x, bT ! 0; Q2, µQ) = 0 !

TMDs lose their physical interpretation in the “Original CSS” formalism!

hkiT (x)iUT =

Zd2kT ki

T

~kT ⇥ ~ST

Mf?1T (x, kT )

!

avg. TM of unpolarized

quarks in a transversely

polarized spin-1/2 target

A. Prokudin (2012)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Takes into account “complications” of QCD (e.g., parton re-scattering and gluon radiation)

Page 50: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

D. PitonyakD. Pitonyak

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

Zd2kT f1(x, kT ;Q2, µQ) = f1(x, bT ! 0; Q2, µQ) = 0 !

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Zd2kT

k2T

2M2f?1T (x, kT ;Q2, µQ) ⌘ f?(1)

1T (x;Q2, µQ) = f?(1)1T (x, bT ! 0; Q2, µQ) = 0 !

TMDs lose their physical interpretation in the “Original CSS” formalism!

hkiT (x)iUT =

Zd2kT ki

T

~kT ⇥ ~ST

Mf?1T (x, kT )

!

avg. TM of unpolarizedquarks in a transversely

polarized spin-1/2 target

Takes into account “complications” of QCD (e.g., parton re-scattering and gluon radiation)

A. Prokudin (2012)

Page 51: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Zd2~kT f1(x, kT ; Q2, µQ; C5) = f1(x, bc(0); Q2, µQ) = f1(x; µc) + O(↵s(Q)) + O((m/Q)p)

Zd2~pT D1(z, pT ; Q2, µQ; C5) = D1(z, bc(0); Q2, µQ) = D1(z; µc) + O(↵s(Q)) + O((m/Q)p)

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = f?(1)

1T (x, bc(0); Q2, µQ) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0)

Zd2~pT

~p2T

2z2M2h

H?1 (z, pT ; Q2

, µQ; C5)= H?(1)1 (z, bc(0); Q2

, µQ)= H?(1)1 (z; µc)+ O(↵s(Q))+ O((m/Q)p00

))

At LO in the “Improved CSS” formalism we recover the relations one expects from the “naïve” operator definitions of the functions

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))“Improved CSS” (Unpolarized)

Page 52: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Zd2~kT f1(x, kT ; Q2, µQ; C5) = f1(x, bc(0); Q2, µQ) = f1(x; µc) + O(↵s(Q)) + O((m/Q)p)

Zd2~pT D1(z, pT ; Q2, µQ; C5) = D1(z, bc(0); Q2, µQ) = D1(z; µc) + O(↵s(Q)) + O((m/Q)p)

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = f?(1)

1T (x, bc(0); Q2, µQ) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0)

Zd2~pT

~p2T

2z2M2h

H?1 (z, pT ; Q2

, µQ; C5)= H?(1)1 (z, bc(0); Q2

, µQ)= H?(1)1 (z; µc)+ O(↵s(Q))+ O((m/Q)p00

))

The “Improved CSS” formalism (approximately) restores the physical interpretation of TMDs!

At LO in the “Improved CSS” formalism we recover the relations one expects from the “naïve” operator definitions of the functions

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))“Improved CSS” (Unpolarized)

Page 53: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

The Qiu-Sterman function can fundamentally be understood as an avg. TM, and the first kT-moment of the Sivers function (using “Improved CSS”) retains this interpretation at LO

avg. TM of unpolarized quarks in a transversely polarized spin-1/2 target

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Recall also the Burkardt sum ruleX

a=q,q,g

Z 1

0dxF a

FT (x, x) = 0<latexit sha1_base64="mETthIR5tAVnMkp8kJ5YY/Tikzw=">AAACO3icbVDPSxtBFJ61/ozVxvboZTAIFkLYlYJ6EKSC9Kg0qUI2Wd7OTnTI7Ow681YShv3DevGP6M2Tlx5UvHrv5MehGh8M8/G9H997X5xLYdD377y5D/MLi0vLK5XVj2vrn6obn3+ZrNCMt1gmM30Rg+FSKN5CgZJf5JpDGkt+HvePR/nzG66NyFQThznvpHCpRE8wQEdF1Z9hnMnEDFP32dAUaWTh8LoexqDtdVm/LEOhMPK7QTII6yHyAY41rRvDFUJpTyJ70iy7sDOoD76W9JD6ZVSt+Q1/HHQWBFNQI9M4jap/wiRjReomMgnGtAM/x44FjYJJXlbCwvAcWN9pth1UkHLTseNFSrrtmIT2Mu2eQjpm/++wkJrRfa4yBbwyb3Mj8r1cu8DefscKlRfIFZsI9QpJMaMjJ2kiNGcohw4A08LtStkVaGDo/K44E4K3J8+C1m7joOGffasdfZ+6sUw2yRbZIQHZI0fkBzklLcLIb3JPHsijd+v99Z6850npnDft+UJehffyDx+/r10=</latexit><latexit sha1_base64="mETthIR5tAVnMkp8kJ5YY/Tikzw=">AAACO3icbVDPSxtBFJ61/ozVxvboZTAIFkLYlYJ6EKSC9Kg0qUI2Wd7OTnTI7Ow681YShv3DevGP6M2Tlx5UvHrv5MehGh8M8/G9H997X5xLYdD377y5D/MLi0vLK5XVj2vrn6obn3+ZrNCMt1gmM30Rg+FSKN5CgZJf5JpDGkt+HvePR/nzG66NyFQThznvpHCpRE8wQEdF1Z9hnMnEDFP32dAUaWTh8LoexqDtdVm/LEOhMPK7QTII6yHyAY41rRvDFUJpTyJ70iy7sDOoD76W9JD6ZVSt+Q1/HHQWBFNQI9M4jap/wiRjReomMgnGtAM/x44FjYJJXlbCwvAcWN9pth1UkHLTseNFSrrtmIT2Mu2eQjpm/++wkJrRfa4yBbwyb3Mj8r1cu8DefscKlRfIFZsI9QpJMaMjJ2kiNGcohw4A08LtStkVaGDo/K44E4K3J8+C1m7joOGffasdfZ+6sUw2yRbZIQHZI0fkBzklLcLIb3JPHsijd+v99Z6850npnDft+UJehffyDx+/r10=</latexit><latexit sha1_base64="mETthIR5tAVnMkp8kJ5YY/Tikzw=">AAACO3icbVDPSxtBFJ61/ozVxvboZTAIFkLYlYJ6EKSC9Kg0qUI2Wd7OTnTI7Ow681YShv3DevGP6M2Tlx5UvHrv5MehGh8M8/G9H997X5xLYdD377y5D/MLi0vLK5XVj2vrn6obn3+ZrNCMt1gmM30Rg+FSKN5CgZJf5JpDGkt+HvePR/nzG66NyFQThznvpHCpRE8wQEdF1Z9hnMnEDFP32dAUaWTh8LoexqDtdVm/LEOhMPK7QTII6yHyAY41rRvDFUJpTyJ70iy7sDOoD76W9JD6ZVSt+Q1/HHQWBFNQI9M4jap/wiRjReomMgnGtAM/x44FjYJJXlbCwvAcWN9pth1UkHLTseNFSrrtmIT2Mu2eQjpm/++wkJrRfa4yBbwyb3Mj8r1cu8DefscKlRfIFZsI9QpJMaMjJ2kiNGcohw4A08LtStkVaGDo/K44E4K3J8+C1m7joOGffasdfZ+6sUw2yRbZIQHZI0fkBzklLcLIb3JPHsijd+v99Z6850npnDft+UJehffyDx+/r10=</latexit>

Page 54: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

H?1h1, f

?1T , H

?1

f?1T h1, FF T , H

?(1)1 , H

Page 55: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Toward a Global Analysis of Transverse Spin Observables

D. PitonyakD. Pitonyak

Page 56: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Recall the current phenomenology of TMD observables...

H?(1)1 (z, bT ; Q2

, µQ) ⇠ H?(1)1 (z; µb⇤) exp

h�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

H?1

NP(bT , Q)

i

f?(1)1T (x, bT ; Q2, µQ) ⇠ FF T (x, x; µb⇤) exp

h�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

f?1TNP (bT , Q)

i

The CT3 functions (along with the NP g-functions) are what get extracted in analyses of TSSAs in TMD processes that use CSS evolution!

(Echevarria, Idilbi, Kang, Vitev (2014); Kang, Prokudin, Sun, Yuan (2016))

gf?1T(x, bT ) + gK(bT ) ln(Q/Q0)

gH?1

(z, bT ) + gK(bT ) ln(Q/Q0)

Page 57: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

H?(1)1

This is NOT a “new” function!

FF T h1, FF T , H?(1)1 , H

h1, FF T , H?(1)1

Page 58: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Asin �S

UT in SIDIS integrated over PT (Mulders, Tangerman (1996); Bacchetta, et al. (2007))

in e+e- è h1h2 X integrated over qT (Boer, Jakob, Mulders (1997))

F sin �S

UT /X

a

e2a

2Mh

Qha

1(x)H

a(z)z

Fsin �S

UT /X

a,a

e2a

2M2

QD

a1(z1)

DaT (z2)z2

+2M1

Q

H(z1)z1

Ha1 (z2)

!

And also the TMD version of these (and other) observables (but with many more terms)

Asin �S

UT

Page 59: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

FF T

H?(1)1 , H

h1, FF T , H?(1)1 , H

h1, FF T , H?(1)1 , H

Page 60: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

SummaryD. PitonyakD. Pitonyak

• The proton spin could receive a moderate enhancement from small-x quarks and gluons, although one must also study carefully OAM at small x to get the full picture. Longitudinal spin data from RHIC and a future EIC will help us better understand this region.

• TMD and collinear functions are highly interconnected, especially for observables involving transverse spin, and we should treat both observables on the same footing.

• The current TMD formalism using “Improved CSS” allows one to rigorously connect these two different types of functions, and at LO we can restore the physical interpretation of (integrated) TMDs.

• A global analysis of TMD (Sivers and Collins effects ) AND collinear twist-3 (AN in pp, in SIDIS) transverse-spin observables is possible.Asin �s

UT

Page 61: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Back-up Slides

D. PitonyakD. Pitonyak

Page 62: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Ø The “sign mismatch” issuep"p! h X

RHIC, STAR (2012) CERN, COMPASS (2013) `N" ! `0 h X

⇡ FFT (x, x) = f?(1)1T (x)

RHIC, PHENIX (2014)

D. PitonyakD. Pitonyak

Page 63: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Ø The “sign mismatch” issuep"p! h X

RHIC, STAR (2012) CERN, COMPASS (2013) `N" ! `0 h X

⇡ FFT (x, x) = f?(1)1T (x)

RHIC, PHENIX (2014)

D. PitonyakD. Pitonyak

Page 64: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Ø The “sign mismatch” issuep"p! h X

RHIC, STAR (2012) CERN, COMPASS (2013) `N" ! `0 h X

⇡ FFT (x, x) = f?(1)1T (x)

RHIC, PHENIX (2014) �sign mismatch� (Kang, Qiu, Vogelsang, Yuan (2011))

D. PitonyakD. Pitonyak

Page 65: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. Pitonyak

Proton-proton data from BRAHMS for π+ (left) and π -(right)

Kang and Prokudin (2012)

D. Pitonyak

Nodes in Sivers cannot resolve issue

Page 66: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Sivers input agrees reasonably well with the JLab data FIRST INDICATION on the PROCESS DEPENDENENCE of the Sivers function (see also Gamberg, Kang, Prokudin (2013))

KQVY input gives the wrong sign Qiu-Sterman function cannot be the main cause of the large TSSAs seen in pion production from pp collisions

JLab E07-013, Hall A (2013)

Neutron TSSA in inclusive DIS

D. Pitonyak

Metz, DP, Schäfer, Schlegel, Vogelsang, Zhou - PRD 86 (2012)

Proton-proton data from BRAHMS for π+ (left) and π -(right)

Kang and Prokudin (2012)

Nodes in Sivers cannot resolve issue

D. Pitonyak

Page 67: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

“b-space” correlator

�[�+](x,~bT ;Q2, µQ) = f1(x, bT ; Q2, µQ)� iM✏ijbiT Sj

T

1M2

1bT

@

@bTf?1T (x, bT ; Q2, µQ)

⌘ f?(1)1T (x, bT ; Q2, µQ)

Boer, Gamberg, Musch, Prokudin (2011)

Page 68: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

“b-space” correlator

�[�+](x,~bT ;Q2, µQ) = f1(x, bT ; Q2, µQ)� iM✏ijbiT Sj

T

1M2

1bT

@

@bTf?1T (x, bT ; Q2, µQ)

Boer, Gamberg, Musch, Prokudin (2011)

Collins (2011); ...

⌘ f?(1)1T (x, bT ; Q2, µQ)

Page 69: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS” (Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

“b-space” correlator

�[�+](x,~bT ;Q2, µQ) = f1(x, bT ; Q2, µQ)� iM✏ijbiT Sj

T

1M2

1bT

@

@bTf?1T (x, bT ; Q2, µQ)

Boer, Gamberg, Musch, Prokudin (2011)

f?(1)1T (x, bT ; Q2, µQ) ⇠

⇣Cf?1T(x1, x2, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ FF T (x1, x2; µb⇤)⌘

⇥ exph�Spert(b⇤(bT );µb⇤ , Q, µQ)� S

f?1TNP (bT , Q)

i

Aybat, Collins, Qiu, Rogers (2012); Echevarria, Idilbi, Kang, Vitev (2014); ...

Collins (2011); ...

⌘ f?(1)1T (x, bT ; Q2, µQ)

Page 70: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

perturbative Sudakov factor

different for each TMD

universal

non-perturbative Sudakov factor

same for unpol. and pol.

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS”

� ln(Q/µb⇤)K(b⇤, µb⇤)�Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

Page 71: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

perturbative Sudakov factor

different for each TMD

universal

non-perturbative Sudakov factor

same for unpol. and pol.

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS”

� ln(Q/µb⇤)K(b⇤, µb⇤)�Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

b⇤(bT ) ⌘

sb2T

1 + b2T /b2

max

µb⇤ = C1/b⇤(bT )

Page 72: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Note: problematic large logarithms in Spert

D. PitonyakD. Pitonyak

perturbative Sudakov factor

different for each TMD

universal

non-perturbative Sudakov factor

same for unpol. and pol.

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS”

� ln(Q/µb⇤)K(b⇤, µb⇤)�Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

b⇤(bT ) ⌘

sb2T

1 + b2T /b2

max

µb⇤ = C1/b⇤(bT )

b⇤(0) = 0 and (µb⇤)b⇤!0 = 1(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Page 73: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

Note: problematic large logarithms in Spert

D. PitonyakD. Pitonyak

perturbative Sudakov factor

different for each TMD

universal

non-perturbative Sudakov factor

same for unpol. and pol.

gf1(x, bT ) + gK(bT ) ln(Q/Q0)

f1(x, bT ; Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bT );µ2

b⇤ , µb⇤ , ↵s(µb⇤))⌦ f1(x; µb⇤)⌘

⇥ exph�Spert(b⇤(bT ); µb⇤ , Q, µQ)� Sf1

NP (bT , Q)i

“Original CSS”

� ln(Q/µb⇤)K(b⇤, µb⇤)�Z µQ

µb⇤

dµ0

µ0 [�(↵s(µ0); 1)� �K(↵s(µ0)) ln(Q/µ0)]

(Collins, Soper, Sterman (1985); Ji, Ma, Yuan (2005); Collins (2011); ...)

b⇤(bT ) ⌘

sb2T

1 + b2T /b2

max

µb⇤ = C1/b⇤(bT )

b⇤(0) = 0 and (µb⇤)b⇤!0 = 1(Bozzi, Catani, de Florian, Grazzini (2006); Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Page 74: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))*

Place a lower cut-off on bT :

µb⇤ ! µ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡C1C5Q

b0

*Other modifications are discussed in this reference that attempt to improve the agreement of the CSS W+Y formulation with the differential cross section over all transverse momentum regions.

bT ! bc(bT ) where bc(bT ) =q

b2T + b2

0/(C5Q)2

“Improved CSS” (Unpolarized)

Page 75: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Place a lower cut-off on bT :

µb⇤ ! µ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =q

b2T + b2

0/(C5Q)2

“Improved CSS” (Unpolarized)

f1(x, bc(bT ); Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦ f1(x; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� Sf1

NP (bc(bT ), Q)i

Page 76: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Place a lower cut-off on bT :

µb⇤ ! µ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =q

b2T + b2

0/(C5Q)2

“Improved CSS” (Unpolarized)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))“Improved CSS” (Polarized)

f1(x, bc(bT ); Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦ f1(x; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� Sf1

NP (bc(bT ), Q)i

�[�+](x,~bT ;Q2, µQ) = f1(x, bT ; Q2, µQ)� iM✏ijbiT Sj

T f?(1)1T (x, bT ; Q2, µQ)

Page 77: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

�[�+](x,~bT ;Q2, µQ) = f1(x, bT ; Q2, µQ)� iM✏ijbiT Sj

T f?(1)1T (x, bT ; Q2, µQ)

D. PitonyakD. Pitonyak

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Place a lower cut-off on bT :

µb⇤ ! µ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =q

b2T + b2

0/(C5Q)2

“Improved CSS” (Unpolarized)

f1(x, bc(bT ); Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦ f1(x; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� Sf1

NP (bc(bT ), Q)i

NO bT -> bc(bT) replacement –kinematic factor NOT associated

with the scale evolution

bT -> bc(bT) bT -> bc(bT)

“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 78: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

�[�+](x,~bT , bc(bT );Q2, µQ) = f1(x, bc(bT ); Q2, µQ)� iM✏ijbiT Sj

T f?(1)1T (x, bc(bT ); Q2, µQ)

D. PitonyakD. Pitonyak

(Collins, Gamberg, Prokudin, Rogers, Sato, Wang (2016))

Place a lower cut-off on bT :

µb⇤ ! µ ⌘ C1

b⇤(bc(bT )) so µb⇤ is cut o↵ at µc ⇡C1C5Q

b0

bT ! bc(bT ) where bc(bT ) =q

b2T + b2

0/(C5Q)2

“Improved CSS” (Unpolarized)

f1(x, bc(bT ); Q2, µQ) ⇠⇣Cf1(x/x, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦ f1(x; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� Sf1

NP (bc(bT ), Q)i

f?(1)1T (x, bc(bT ); Q2, µQ) ⇠

⇣Cf?1T(x1, x2, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦ FF T (x1, x2; µ

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� S

f?1TNP (bc(bT ), Q)

i

“Improved CSS” (Polarized) (Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 79: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

H?(1)1 (z, bc(bT ); Q2

, µQ) ⇠⇣CH

?1 (z/z, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦H

?(1)1 (z; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� S

H?1

NP(bc(bT ), Q)

i

Analogous modification for fragmentation functions...

D1(z, bc(bT ); Q2, µQ) ⇠⇣CD1(z/z, b⇤(bc(bT )); µ2, µ, ↵s(µ))⌦D1(z; µ)

⇥ exph�Spert(b⇤(bc(bT )); µ, Q, µQ)� SD1

NP (bc(bT ), Q)i

Page 80: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

We then define the momentum-space functions...

f1(x, kT ; Q2, µQ; C5) ⌘Z

dbT

2⇡bT J0(kT bT )f1(x, bc(bT ); Q2, µQ)

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) ⌘ kT

ZdbT

4⇡b2T J1(kT bT ) f?(1)

1T (x, bc(bT ); Q2, µQ)

D1(z, pT ; Q2, µQ; C5) ⌘Z

dbT

2⇡bT J0(pT bT ) D1(z, bc(bT ); Q2, µQ)

~p 2T

2z2M2h

H?1 (z, pT ; Q2

, µQ; C5) ⌘ pT

ZdbT

4⇡b2T J1(pT bT ) H

?(1)1 (z, bc(bT ); Q2

, µQ)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 81: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 82: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

D. PitonyakD. Pitonyak

(Boer, Mulders, Teryaev (1998); Burkardt (2004); Meissner, Metz, Goeke (2007))

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 83: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

D. PitonyakD. Pitonyak

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

“Naïve” TMD operator – UV renormalization at LO and soft factor at LO, Wilson lines on the lightcone

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 84: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

D. PitonyakD. Pitonyak

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

This is NOT the operator that defines TMDs in CSS “Naïve” TMD operator – UV renormalization at LO

and soft factor at LO, Wilson lines on the lightconeX

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 85: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

D. PitonyakD. Pitonyak

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

“Naïve” collinear operator – LO term of the UV renormalized correlator, Wilson lines on the lightcone

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))

Page 86: TMD and collinear functions for transverse and ... · h with ↵q h = 4 p 3 r ↵ s N c 2⇡ ... (Hatta and Yang (2018)) Siversand Collins Effects & A Nin ppCollisions D. PitonyakD

hkiT (x; µ)iUT

=12

Zd2kT ki

T

Zdb�

2⇡

Zd2bT

(2⇡)2eixP +b�

e�i~kT ·~bT hP, S| (0)�+WDIS(0; b) (b)|P, Si����b+=0

=12

Zdb�dy�

4⇡eixP +b�hP, S| (0)�+W(0; y�)gF +i(y�) W(y�; b�) (b�)|P, Si

= �⇡ M✏ijSjT FF T (x, x; µ)

D. PitonyakD. Pitonyak

This IS the operator for the Qiu-Stermanfunction that enters the OPE within CSS

Zd2~kT

~k2T

2M2f?1T (x, kT ; Q2, µQ; C5) = ⇡ FF T (x, x; µc) + O(↵s(Q)) + O((m/Q)p0

)

“Naïve” collinear operator – LO term of the UV renormalized correlator, Wilson lines on the lightcone

(Gamberg, Metz, DP, Prokudin, PLB 781 (2018))