28
James P. McFadden, Cluster SWG 1 May 19, 2010 Putting Together the Pieces of the Substorm Puzzle using Observations from THEMIS and FAST J. P. McFadden Title Collaborators: The Entire THEMIS and FAST Teams

Title

Embed Size (px)

DESCRIPTION

Title. Putting Together the Pieces of the Substorm Puzzle using Observations from THEMIS and FAST. J. P. McFadden. Collaborators: The Entire THEMIS and FAST Teams. Is Current Disruption a viable candidate for substorms?. - PowerPoint PPT Presentation

Citation preview

James P. McFadden, Cluster SWG 1May 19, 2010

Putting Together the Pieces of the Substorm Puzzle using Observations

from THEMIS and FAST

J. P. McFadden

Title

Collaborators:The Entire THEMIS and FAST Teams

James P. McFadden, Cluster SWG 2May 19, 2010

Ignoring the issues of THEMIS onset timing for the moment, are there other reasons to reject CD?

CD instabilities require high (Vi-Ve ~Vi >Vith~1400 km/s) cross tail flows associated with growth phase current sheet thinning.

Are such flows observed?

CD requires breaking the frozen in condition so that dipolarization occurs without inward plasma flow.

Do the BBFs associated with dipolarization satisfy E=-VxB?

Is Current Disruption a viable candidate for substorms?

James P. McFadden, Cluster SWG 3May 19, 2010

Growth phase currents, Viy < 400 km/s Dipolarizations

Viy<400 km/s

GrowthPhase Currents

James P. McFadden, Cluster SWG 4May 19, 2010

Currents Break Frozen In

James P. McFadden, Cluster SWG 5May 19, 2010

BBFs generally satisfy E+VxB=0 on 3 second time scales

James P. McFadden, Cluster SWG 6May 19, 2010

Dipolarization BBF are Frozen In

James P. McFadden, Cluster SWG 7May 19, 2010

Caution – must include both ESA and SST ions in moments.

James P. McFadden, Cluster SWG 8May 19, 2010

1. How does the NENL model generate the substorm aurora?

2. What is going on during growth phase? Is there pre-existing structure? What is the source of the southern-most arc?

3. How does Substorm onset produce so much auroral structure? Does onset arise from a single NENL or is reconnection foamy?

4. What are the energy sources for FACs associated with arcs?

5. What are the dynamics of the Recovery Phase?

What Can THEMIS/FAST say about NENL Model?

James P. McFadden, Cluster SWG 9May 19, 2010

Dipolarization does not make aurora.

B B

E

Electric fields associated with the dipolarization are inductive and do not map to the ionosphere. It is like a poloidal mode. Dipolarization makes BBFs but not aurora.

E

E

B

B

V

No dipolarization in steady state!!!

Dipolarization is similar to Drakes bubbles.

Dipolarization does not necessarily produce FACs since E does not map to ionosphere.

James P. McFadden, Cluster SWG 10May 19, 2010

So where does all the substorm aurora come from?

James P. McFadden, Cluster SWG 11May 19, 2010

1. Kinetic Alfven Waves (problem - most aurora are discrete arcs)

2. Large scale, 2-cell convection (associated with quite time arcs, not substorms)

3. IMF By induced field aligned twist (Ostgaard 2004,2005) produces a mismatch in reconnected field-line footpoints and associated FACs between ionospheres (this may play a role but Substorms happen when IMF By is small -- so can be major source of FACs.)

4. Toroidal Resonant Mode Oscillations – prime candidate.

5. Interchange instability – prime candidate.

Five Major Phenomena that Generate Auroral FACs

James P. McFadden, Cluster SWG 12May 19, 2010

Substorm Growth Phase – Pre-Midnight

During substorm growth phase, the latitude of Region I currents moves south of the open-closed polar cap boundary (indicated by ion precipitation) and becomes adjacent to the Region II current.

Shown to the left is a pre-midnight FAST pass during growth phase as determined from AE.

James P. McFadden, Cluster SWG 13May 19, 2010

Substorm Growth Phase – Post-Midnight

High entropy flux tubes prior to substorm onset results in a return flow to the dayside with a small magnetic flux content. The return flow, which maps to the magnetopause at >10 Re on the flank, is restricted to ILAT less than ~67o.

Shown to the left is a post-midnight FAST pass during growth phase as determined from AE.

Return of magnetic flux is limited by dynamic pressure and high entropy flux tubes - pressure catastrophe

James P. McFadden, Cluster SWG 14May 19, 2010

THEMIS observations during growth phase

Growth Phase

Plasmasheet appears uniform - no density structure.

Plasma beta shows little variability other then slow trends caused by current sheet thinning

James P. McFadden, Cluster SWG 15May 19, 2010

FAST Observations of Onset Arc (Mende et al., 2003)

Onset arc at northern boundary between dense PS and tenuous PS.

Ions fill the source cone.

Arc is bounded by a pair of FACs.

James P. McFadden, Cluster SWG 16May 19, 2010

Substorm Expansion

The auroral expansion generally consists of pairs of FACs as determined from cross-track B.(note dipole field not subtracted)

Auroral arcs are primarily inverted-V type, not Alfvenic.

Expansion boundary is delineated by the transition between hot-dense and cooler-tenuous plasma.

Downward currents, small-scale Alfvenic currents, and EMIC waves produce ion conic outflows.

James P. McFadden, Cluster SWG 17May 19, 2010

Substorm Expansion

East-west deflections consistent with electron flux indicating east-west aligned FAC sheets.

A net current may be observed across the substorm expansion, but most currents close locally.

The expansion is characterized by sharp transition from a dense to tenuous plasma sheet as the s/c moves northward.

James P. McFadden, Cluster SWG 18May 19, 2010

After Substorm Expansion

James P. McFadden, Cluster SWG 19May 19, 2010

Mid-tail NENL indicates “foamy” reconnection

Multiple current sheet crossings in vicinity of NENL.

Rapid variations in ion & electron flux.

Variable density

Bursty flows.NENL flow reversal

Large variations in plasma beta.

James P. McFadden, Cluster SWG 20May 19, 2010

THEMIS D substorm dipolarization

Dipolarization

Pseudo-breakup?

Counterstreaming field-aligned e-

BBF toroidal and poloidal oscillations

Pressure increase

Large variations in plasma beta can lead to interchange.

James P. McFadden, Cluster SWG 21May 19, 2010

THEMIS E substorm dipolarization

Dipolarization

Pseudo-breakup?

Counterstreaming field-aligned e-

BBF toroidal and poloidal oscillations

Pressure increase

Large variations in plasma beta can lead to interchange.

James P. McFadden, Cluster SWG 22May 19, 2010

Complex Azimuthal Structure during Dipolarization

James P. McFadden, Cluster SWG 23May 19, 2010

Westward Traveling Surge with a Fold

Fold in the arc produces a pair of FACs.

The inverted-V arc has a dip in the middle where the FAC reverses.

Is the WTS the upward current portion of the current wedge?

Is the current wedge just the combined interchange vortices?

James P. McFadden, Cluster SWG 24May 19, 2010

Toroidal Resonant Mode Oscillations or Folds?

James P. McFadden, Cluster SWG 25May 19, 2010

Signatures of Interchange along Plasma Pause

James P. McFadden, Cluster SWG 26May 19, 2010

What about aurora during recovery?

PBI

James P. McFadden, Cluster SWG 27May 19, 2010

PBIs appear to be Untwisting Equator-moving Arcs

Downward current

Upward

E-fieldFlow

FAST

James P. McFadden, Cluster SWG 28May 19, 2010

1. Weak cross-tail flows associated with current sheet thinning and dipolarizations that exhibit frozen-in (E+VixB=0) plasma invalidate the CD model.

2. Substorm growth phase shows uniform, quiet PS while Region I FAC moves south until it is adjacent to Region II FAC. The narrow return flow channel is bordered by the southern-most arc.

3. Mid-tail NENL at substorm onset indicates “foamy” reconnection. BBFs reaching inner magnetosphere contain large variations in plasma beta that should lead to interchange instabilities. BBFs at dipolarization produce toroidal oscillations that likely produce aurora.

4. Substorm expansions observed at low altitudes contain numerous paired currents indicating local flow channels and vorticies. The northern boundary of the expansion is the transition between dense PS and tenuous PS.

5. Azimuthal expansion of dense PS away from midnight, due to a combination of interchange and return flow, creates a sharp N-S boundary between dense-plasma dipolar field lines and tenuous-plasma stretched field lines, with FACs and arcs at the boundary.

6. Recovery phase contains residual arcs, including PBIs, which appear to have locally closing FACs. This indicates that interchange instabilities and/or field-line twist (mis-matched field line footpoints in the northern and southern hemisphere), maintain aurora long after dipolarization is complete.

Summary