17
ESS 265 Time Series Analysis1 Time Series Analysis of Particles and Fields data Potential subtraction Density computation from three sources (Ne, Ni, scpot) Cold plasma detection Next opportunity: Velocity, pressure corrections from SST Waves analysis Suggested reading: McFadden et al, THEMIS ESA instrument and calibration (Space Sci. Reviews) McFadden et al, ESA first results (Space Sci. Reviews) McFadden et al, Structure of plasmaspheric plumes (GRL) Materials in: http://www.igpp.ucla.edu/public/vassilis/ESS265/20080519 class_notes_time_series_analysis_B.ppt thm_code/thm_pot2dens.pro, thm_part_dist.pro, thm_part_moments.pro (for cleanup) esa_particles/get_th?_pe?r.pro potential_correction.pro; density_all.pro; cold_ions.pro

Time Series Analysis of Particles and Fields data

  • Upload
    kolya

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Time Series Analysis of Particles and Fields data. Potential subtraction Density computation from three sources (Ne, Ni, scpot) Cold plasma detection Next opportunity: Velocity, pressure corrections from SST Waves analysis Suggested reading: - PowerPoint PPT Presentation

Citation preview

Page 1: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis1

Time Series Analysis of Particles and Fields data

• Potential subtraction• Density computation from three sources (Ne, Ni, scpot)• Cold plasma detection• Next opportunity:

– Velocity, pressure corrections from SST– Waves analysis

Suggested reading:McFadden et al, THEMIS ESA instrument and calibration (Space Sci. Reviews)McFadden et al, ESA first results (Space Sci. Reviews)McFadden et al, Structure of plasmaspheric plumes (GRL)

Materials in:http://www.igpp.ucla.edu/public/vassilis/ESS265/20080519class_notes_time_series_analysis_B.pptthm_code/thm_pot2dens.pro, thm_part_dist.pro, thm_part_moments.pro (for cleanup)esa_particles/get_th?_pe?r.propotential_correction.pro; density_all.pro; cold_ions.pro

Page 2: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis2

Potential Subtraction• Automatic subtraction:

– Read spacecraft potential (Vsc)• From spheres: Vsc=-(V3+V4)/2.

– Add 1V offset• Accounts for spheres driven

above plasma potential– Correct to infinity ( x 1.15 )

• Sensor voltage is not exactly atzero+offset because Debye lengthis very large. A +15% correctionto account for plasma potentialat infinite sphere distance.

– Reduce electron energies• E'elec= Eelec – Vsccorrected

– Increase ion energies• E'ion= Eion + Vsccorrected

– Cannot do if EFI is not deployed• Right hand side is an example• Must do manually

– Determine Vsc from spectrum– Manually correct potential

Ni

Ne

Page 3: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis3

Potential Subtraction• Manual scpot subtraction:

– When EFI not deployed:• Read scpot value (~0)• Correct based on spectra• Recompute moments

– Use full or reduced distributions» From peef get N,V,T» From peer (6 angles): N,T Ne = Ni

;>>>>>>potential_correction.pro<<<<<<<<<<<<<<<<<<<<<<<<<<<<timespan,'7 11 07/10',2,/hourssc='a‘thm_load_state,probe=sc,/get_supportthm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm'thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl'thm_load_mom,probe=sc ; L2: onboard processed momsthm_load_esa,probe=sc ; L2: ground processed gmoms, omni spec;; Modify sc potentialthm_load_esa_pkt,probe=scget_data,'tha_pxxm_pot',data=tha_pxxm_pot,dlim=dlimtha_pxxm_pot.y(*)=10. ; eVstore_data,'tha_pxxm_pot_corr', $ data={x:tha_pxxm_pot.x,y:tha_pxxm_pot.y}, dlim=dlim;; Recompute momentsthm_part_moments, probe = sc, instrum = 'peer', $ scpot_suffix = '_pxxm_pot_corr',$ mag_suffix = '_fgs_dsl', tplotnames = tnoptions,'tha_peer_density','colors',['b']options,'tha_peim_density','colors',['r']store_data,'tha_pexm_density', $ data='tha_peer_density tha_peim_density'options,'tha_pexm_density','colors',['b','r']options,'tha_pe?m_density',yrange=[0,2]options,'tha_pexm_density',ylog=0tplot,'tha_fgs_gsm tha_pexm_density tha_pe?r_en_eflux'

Page 4: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis4

Density from S/C Potential, Other

Ne = Ni

Nscpot

;>>>>>>density_all.pro<<<<<<<<<<<<<<<<<<<<<<<<<<<<timespan,'8 1 16/14:00',6,/hourssc='d'thm_load_state,probe=sc,/get_suppthm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm'thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl'thm_load_mom,probe=sc ; L2: onboard processed momsthm_load_esa,probe=sc ; L2: ground processed gmoms, omni spectrathm_load_sst,level=2,probe=sc; NOW CONSTRUCT DENSITY FROM SCPOTtinterpol_mxn,'thd_peer_t3','thd_pxxm_pot',newname='thd_peer_t3_int'get_data,'thd_pxxm_pot',data=thd_pxxm_pot,dl=dlget_data,'thd_peer_t3_int',data=thd_peer_t3_intthm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens, $ Te=total(thd_peer_t3_int.y,2)/3. ; New code, in class materialsstore_data,'thd_pxxm_potdens', $ data={x:thd_pxxm_pot.x,y:thd_pxxm_potdens},dl=dl; NOW PLOT UNCORRECTED DENSITIESstore_data,'thd_peer_en_eflux_pot',data='thd_peer_en_eflux thd_esa_pot'options,'thd_fgs_gsm',yrange=[-150,150]options,'thd_peer_density',colors=['r']options,'thd_peir_density',colors=['b']options,'thd_pxxm_potdens',colors=['g']options,'thd_pxxm_potdens',ylog=1options,'thd_peer_t3',ylog=0options,'thd_pxxm_pot',ylog=0options,'thd_pe?r_en_eflux*',yrange=[7.,25000.]store_data,'thd_densities', $ data='thd_peir_density thd_peer_density thd_pxxm_potdens'tplot,'thd_fgs_gsm thd_peer_t3 thd_pxxm_pot thd_densities '+ $ 'thd_psef_en_eflux thd_peer_en_eflux_pot thd_peir_en_eflux'

Page 5: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis5

Correct Densities: Issues• Photoelectrons on Ne:

– Have been corrected already, as EFI operating– Both on board and through ground processing

• Primary and secondary electrons from >10keV electrons entering i/e aperture– Electron ESA, primaries and secondaries (below about 40eV): Ne>Ni

• Primaries, grazing incidence, degraded energy• Secondaries from electron collisions with walls

– Secondary electrons in ion ESA (below about 500eV): Ni > Ne• Must be >2keV to overcome post-acceleration in front of McP

– When significant flux of energetic electrons is present• See 16:00 and 16:30 UT injections on THD, 2008-01-16• Can result in either Ne>Ni or Ni>Ne depending on

– Scattered flux relative to electron/ion fluxes– Correct by integrating density above secondaries

• > 40eV for electrons• > 100eV for ions

• Background radiation near radiation belts– Penetrates ESA walls– Produces constant background eflux as function of energy– Most evident in ions which have lower flux– Correct by removing constant eflux background at all energies

Page 6: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis6

Correct Densities: Solution;>>>>>>density_all.pro(continued)<<<<<<<<<<<<<<<<<<<<; CORRECT DENSITIES; load L0 omni spectra, all ESA data in memorythm_load_esa_pkt,probe=sc ;; PEIR MOMS/SPECTRA; Remove radiation and integrate above 40eV to remove scattered electronsthm_part_moments, probe = sc, instrum = 'peir', scpot_suffix = '_pxxm_pot', $ trange=['8 1 16/14:00','8 1 16/20:00'], erange=[0,31], $ mag_suffix = '_fgs_dsl', tplotnames = tn, verbose = 2, $ /bgnd_remove ; names are output into tn New code, in class materials;; PEER MOMS/SPECTRA; Remove radiation and integrate above 40eV to remove scattered electronsthm_part_moments, probe = sc, instrum = 'peer', scpot_suffix = '_esa_pot', $ trange=['8 1 16/14:00','8 1 16/20:00'], erange=[0,24], $ mag_suffix = '_fgs_dsl', tplotnames = tn, verbose = 2, $ /bgnd_remove ; names are output into tn New code, in class materials;; scpot determination of density, with (now/see above) better temperature;tinterpol_mxn,'thd_peer_t3','thd_pxxm_pot',newname='thd_peer_t3_int'get_data,'thd_pxxm_pot',data=thd_pxxm_pot,dl=dlget_data,'thd_peer_t3_int',data=thd_peer_t3_intthm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens, $ Te=total(thd_peer_t3_int.y,2)/3.store_data,'thd_pxxm_potdens', $ data={x:thd_pxxm_pot.x,y:thd_pxxm_potdens},dl=dl;tplot,'thd_fgs_gsm thd_peer_t3 thd_pxxm_pot thd_densities ' + $ 'thd_psef_en_eflux thd_peer_en_eflux_pot thd_peir_en_eflux'

Ni requires better background removal (in progress)

Page 7: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis7

Cold Ion Detection, Using Nscpot;>>>>>>cold_ions.pro<<<<<<<<<<<<<<<<<<<<timespan,'7 6 8/21:00',3,/hours & sc='c'thm_load_state,probe=sc,/get_suppthm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm'thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl'thm_load_mom,probe=sc thm_load_esa,probe=sc; NOW CONSTRUCT DENSITY FROM SCPOTtinterpol_mxn,'thc_peer_t3','thc_pxxm_pot', $ newname='thc_peer_t3_int'get_data,'thc_pxxm_pot',data=thc_pxxm_pot,dl=dlget_data,'thc_peer_t3_int',data=thc_peer_t3_intthm_pot2dens,thc_pxxm_pot.y,thc_pxxm_potdens, $ Te=total(thc_peer_t3_int.y,2)/3.store_data,'thc_pxxm_potdens', $ data={x:thc_pxxm_pot.x,y:thc_pxxm_potdens},dl=dl; NOW PLOT DENSITIES (NO SCATTER/NO RADIATION)store_data,'thc_peer_en_eflux_pot', $ data='thc_peer_en_eflux thc_pxxm_pot'options,'thc_fgs_gsm',yrange=[-70,100]options,'thc_peer_density',colors=['r']options,'thc_peir_density',colors=['b']options,'thc_pxxm_potdens',colors=['g']options,'thc_pxxm_potdens',ylog=1options,'thc_peer_t3',ylog=0options,'thc_pxxm_pot',ylog=0options,'thc_pe?r_en_eflux*',yrange=[7.,25000.]store_data,'thc_densities',data='thc_peir_density ' + $ thc_peer_density thc_pxxm_potdens'tplot,'thc_fgs_gsm thc_peir_velocity_gsm thc_densities ‘+ $ thc_psef_en_eflux thc_peer_en_eflux_pot thc_peir_en_eflux'

Nscpot > Ne=NiPlasmasphere !

Page 8: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis8

Cold Ion Detection, Issues

• When Vscpot > Vthion then

– Cold ions cannot overcome barrier– Ni < Vscpot

• When Vscpot < EESAmin then:

– Electrons are missed– Cold electrons missed: Ne < Ni

• Situation is improved when Vi large– Cold ions can be detected– Ni agrees with Nscpot

• When Ekinetic - eVsc > EESAmin

Hot plasma(Ne=Ni=Nscpot)

Page 9: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis9

Cold Ion Detection, When Vi large

;>>>>>>cold_ions.pro (continued)<<<<<<<<<<<<<<<<<<<<;tvectot,'thc_peir_velocity_gsm', $ newname='thc_peir_velocity_gsmt'tvectot,'thc_peir_velocity_gsm',tot='thc_peir_velocity_t‘;tinterpol_mxn,'thc_peir_velocity_t', $ 'thc_pxxm_pot',newname='thc_peir_velocity_tint'get_data,'thc_peir_velocity_tint',data=thc_peir_velocity_tintget_data,'thc_pxxm_pot',data=thc_pxxm_pot;eflow=1000.*(thc_peir_velocity_tint.y/310.)^2 - $ thc_pxxm_pot.y; in eV;store_data,'thc_eflow',data={x:thc_peir_velocity_tint.x,y:eflow}store_data,'thc_peir_en_eflux-n-flow', $ data='thc_peir_en_eflux thc_eflow'options,'thc_peir_en_eflux*',yrange=[7.,25000.];tplot,'thc_fgs_gsm thc_peir_velocity_gsmt thc_densities ', $ thc_psef_en_eflux thc_peer_en_eflux_pot thc_peir_en_eflux-n-flow'tlimit,['7 6 8/22:00','7 6 8/22:30']

•Situation is improved when Vi large

–Cold ions can be detected

–Ni agrees with Nscpot

•When Ekinetic - eVsc > EESAmin

Page 10: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis10

Multi-spacecraft Analysis: Calibration

• ESA instruments received first an absolute calibration– In the sheath, avoid unmeasured plasmaspheric cold ions, electrons, or solar wind beam– Correct for energy dependent efficiencies– Detector anode relative efficiencies (north/south asymmetry)– Electron-ion relative efficiencies (based on density, account for solar wind composition)

• FGM calibration was done independently for each spacecraft– Spin plane offsets determined routinely– In the solar wind determine spin axis offsets– Spin axis offset variation ~0.2nT over the mission

Page 11: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis11

Multi-spacecraft Analysis: ESA Inter-Calibration

– On all spacecraft, ions and electrons– Detector anode relative efficiencies (north/south asymmetry)

• Sort ions and electrons separately in pitch-angle• Apply low-order polynomial fit to pitch angle• Determine anode efficiency that minimizes variance (a 1-2% effect)• Large angle variance (systematic asymmetry) checked further

– Look at systematic flows during times expected to have zero» Found none for ions in the magnetosphere» Adjusted electron asymmetry (1-3%) in the sheath such that Vi = Ve

Page 12: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis12

Multi-spacecraft Analysis: ESA Inter-Calibration

– Detector energy relative efficiency• Based on published data, private communications and simulations• Main effect on ions is increase in g-factor due to fringe fields at grid

– Field from –2keV McP pre-acceleration potential leaks through zero volt grid into detector– Collects scattered electrons, increases sensitivity of detector at low (<2keV) energies

Electrons Ions

Themis, ionssimulated

Page 13: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis13

Multi-spacecraft Analysis: ESA Cross-CalibrationTHC was the trailblazer (EFI out); used as reference• THC Electron sensor selected as reference• THC Ion sensor cal’ed for energy, anode efficiency• THC Ion sensor g-factor adjusted to match electron• All other spacecraft also internally calibrated• Cross-calibration as follows

– Use early string of pearls configuration– Adjust Ni/Ne (0.99) based on WIND/SWE ~4% alphas– Adjust THD/THC electron densities to match– Adjust THE/THC … etc.– For THA

• Time varying calibration– ESA McP scrubbing

• Efficiency decreases due to water molecules venting• Stabilizes after few months of operations

Ignore

Page 14: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis14

Multi-spacecraft Analysis: ESA Absolute Calibration

THC and THD electrons versus WIND-SWE

• Time-shift WIND data– WIND has plasma waves– WIND density calibrated from plasma frequency

• Five intervals found in summer of ’07

• Correct deficiency due to scpot below Emin– Extend Maxwellian spectra to low energies

• Themis g-factors scaled to ~70% in Fall’07– In retrospect, were due to overestimate of

energy efficiency at low energies

THC electrons

THD electrons

Wind, |B|

THC, THD, |B|THC, THD, Ne

Wind, |B|

Page 15: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis15

Find magnetopause crossings and sheath waves• Expect quasi-static pressure balance• Determine total pressure

– Ptotal = Pion + Pelectron + PB

• Show total pressure is constant across

Method shows that pressure balance is observed

Calibration is working, at least at low energiesHigher energy component has been less tested

PB

Pe

PTot

Pi

Multi-spacecraft Analysis: Calibration verification

Page 16: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis16

Multi-spacecraft Analysis: At the magnetopause

Page 17: Time Series Analysis of Particles and Fields data

ESS 265 Time Series Analysis17

Homework

• Find a THEMIS 2-4 hour interval of your interest• Use at least two satellites• Plot ion and electron density• Plot density derived from spacecraft potential• Explain the differences