36
Chapter 4. Velocity distribution with more than one independent variable β€’ Time-dependent flow of Newtonian fluids β€’ Solving flow problems using a stream function β€’ Flow of inviscid fluid by use of the velocity potential β€’ Flow near solid surface by boundary layer theory

Time-dependent flow of Newtonian fluids Solving flow

  • Upload
    others

  • View
    29

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Time-dependent flow of Newtonian fluids Solving flow

Chapter 4. Velocity distribution withmore than one independent variable

β€’ Time-dependent flow of Newtonian fluids

β€’ Solving flow problems using a stream function

β€’ Flow of inviscid fluid by use of the velocity potential

β€’ Flow near solid surface by boundary layer theory

Page 2: Time-dependent flow of Newtonian fluids Solving flow

4.1. Time-dependent flow of Newtonianfluids

β€’ Three methods to solve the differential equation.

PDE is transform in one or more ODE

β€’ Combination of variables, semi-infinite regions

β€’ Separation of variables. Sturm-Liouville problems

β€’ Method of sinusoidal response.

Page 3: Time-dependent flow of Newtonian fluids Solving flow

Flow near a wall suddenly set in motion

β€’ Semi-infinite body of liquid

β€’ Constant density and viscosity

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot

Page 4: Time-dependent flow of Newtonian fluids Solving flow

Equations

πœ•π‘£π‘₯πœ•π‘‘

= πœˆπœ•2𝑣π‘₯πœ•π‘¦2

β€’ For the system

β€’ Equation of motion

𝑣π‘₯ = 𝑣π‘₯ 𝑦, 𝑑 ; 𝑣𝑦 = 0; 𝑣𝑧 = 0

Page 5: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ Boundary conditions

β€’ Dimensionless velocity

Page 6: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ New equation

β€’ Defining (from dimensional analysis)

πœ•πœ™

πœ•π‘‘= 𝜈

πœ•2πœ™

πœ•π‘¦2

πœ™ = πœ™ πœ‚ πœ‚ =𝑦

4πœˆπ‘‘

Page 7: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ Introducing derivatives

β€’ New boundary conditions

πœ•2πœ™

πœ•πœ‚2+ 2πœ‚

πœ•πœ™

πœ•πœ‚= 0

π‘Žπ‘‘ πœ‚ = 0 πœ™ = 1BC1

BC2 + IC π‘Žπ‘‘ πœ‚ = ∞ πœ™ = 0

Page 8: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ Integrating

β€’ Integrating again

πœ•πœ™

πœ•πœ‚= 𝐢1𝑒

βˆ’πœ‚2

πœ™ = 𝐢1ΰΆ±0

πœ‚

π‘’βˆ’π‘₯2𝑑π‘₯ + 𝐢2

= 1 βˆ’2

πœ‹ΰΆ±0

πœ‚

π‘’βˆ’π‘₯2𝑑π‘₯ = 1 βˆ’ π‘’π‘Ÿπ‘“ πœ‚

β€’ With BCs

πœ™ = 1 βˆ’0πœ‚π‘’βˆ’π‘₯

2𝑑π‘₯

0βˆžπ‘’βˆ’π‘₯

2𝑑π‘₯

Page 9: Time-dependent flow of Newtonian fluids Solving flow

Velocity Profile

𝑣π‘₯ 𝑦, 𝑑

π‘£π‘œ= 1 βˆ’ π‘’π‘Ÿπ‘“

𝑦

4πœˆπ‘‘= π‘’π‘Ÿπ‘“π‘

𝑦

4πœˆπ‘‘

β€’ Since erfc(2) β‰ˆ 0 01β€’ We define the β€œBoundary layer thickness”, Ξ΄

as: Ξ΄ = distance y for which vx has dropped to 0.01 vo

𝛿 = 4 πœˆπ‘‘

Page 10: Time-dependent flow of Newtonian fluids Solving flow

Results

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot

Page 11: Time-dependent flow of Newtonian fluids Solving flow

4.2. Resolving problems using a streamfunction(equation of change for the volticity)

β€’ Taking the curl of the equation of motion:constant density and viscosity

β€’ No other assumptions are needed

β€’ It may be applied to different geometries

πœ•

πœ•π‘‘π›» Γ— 𝑣 βˆ’ 𝛻 Γ— 𝑣 Γ— 𝛻 Γ— 𝑣 = πœˆπ›»2 𝛻 Γ— 𝑣

Page 12: Time-dependent flow of Newtonian fluids Solving flow

4.2. Resolving problems using a streamfunction

β€’ For planar system, introduce the Stream Function, e.g.,

𝑣π‘₯ = βˆ’πœ•πœ“

πœ•π‘¦π‘£π‘¦ = +

πœ•πœ“

πœ•π‘₯

Page 13: Time-dependent flow of Newtonian fluids Solving flow

4.3. Flow of inviscid fluids by use of thevelocity potential

β€’ Inviscid fluid = without viscosity

β€’ Applicable for β€œlow viscosity effect (fluid)”. Inadequate near the solid surfaces

β€’ Assuming constant density and 𝛻 Γ— 𝑣(irrotational flow) potential flow is obtained

β€’ Complete solutionβ€’ Potential theory away from the solid surfaces

β€’ Boundary layer theory near the solid surfaces

Page 14: Time-dependent flow of Newtonian fluids Solving flow

Potential flow

𝛻 βˆ™ 𝑣 = 0

β€’ Equation of continuity

πœŒπœ•π‘£

πœ•π‘‘+ 𝛻

1

2𝑣2 βˆ’ 𝑣 Γ— 𝛻 Γ— 𝑣 = βˆ’π›»π‘ƒ

β€’ Equation of motion (Euler equation, low viscosity limit)

Page 15: Time-dependent flow of Newtonian fluids Solving flow

Potential flow

β€’ For 2-D, steady, irrotational flow

1

2𝜌 𝑣π‘₯

2 + 𝑣𝑦2 + 𝑃 = 0

β€’ Continuity

β€’ Irrotational

β€’ Motion

πœ•π‘£π‘₯πœ•π‘¦

βˆ’πœ•π‘£π‘¦

πœ•π‘₯= 0

πœ•π‘£π‘₯πœ•π‘₯

+πœ•π‘£π‘¦

πœ•π‘¦= 0

Page 16: Time-dependent flow of Newtonian fluids Solving flow

Stream function and velocity potential

β€’ Stream function

β€’ Velocity potential

β€’ Cauchy-Rieman equations

β€’ Analytical function(complex potential)

𝑣π‘₯ = βˆ’πœ•πœ“

πœ•π‘¦π‘£π‘¦ = +

πœ•πœ“

πœ•π‘₯

𝑣π‘₯ = βˆ’πœ•πœ™

πœ•π‘₯𝑣𝑦 = βˆ’

πœ•πœ™

πœ•π‘¦

πœ•πœ™

πœ•π‘₯=πœ•πœ“

πœ•π‘¦π‘Žπ‘›π‘‘

πœ•πœ™

πœ•π‘¦= βˆ’

πœ•πœ“

πœ•π‘₯

𝑀(𝑧) = πœ™ π‘₯, 𝑦 + π‘–πœ“(π‘₯, 𝑦)

Page 17: Time-dependent flow of Newtonian fluids Solving flow

Analytical functions

β€’ Any analytical function w(z) may be the solution for some flow problem, and it yields a pair of function:β€’ Velocity potential

β€’ Stream function

β€’ Equipotential lines Stream lines

πœ™ π‘₯, 𝑦

πœ“(π‘₯, 𝑦)

πœ™ π‘₯, 𝑦 = π‘π‘œπ‘›π‘ π‘‘ πœ“ π‘₯, 𝑦 = π‘π‘œπ‘›π‘ π‘‘

Page 18: Time-dependent flow of Newtonian fluids Solving flow

Potential flow around a cylinder

β€’ Complex potential

β€’ Introducing

𝑀 𝑧 = βˆ’π‘£βˆžπ‘…π‘§

𝑅+𝑅

𝑧

𝑧 = π‘₯ + 𝑖𝑦

𝑀 𝑧 = βˆ’π‘£βˆžπ‘₯ 1 +𝑅2

π‘₯2 + 𝑦2βˆ’ π‘–π‘£βˆžπ‘¦ 1 βˆ’

𝑅2

π‘₯2 + 𝑦2

Page 19: Time-dependent flow of Newtonian fluids Solving flow

Potential flow around a cylinder

πœ™ π‘₯, 𝑦 = βˆ’π‘£βˆžπ‘₯ 1 +𝑅2

π‘₯2 + 𝑦2

β€’ Stream function

β€’ Velocity potential

πœ“ π‘₯, 𝑦 = βˆ’π‘£βˆžπ‘¦ 1 βˆ’π‘…2

π‘₯2 + 𝑦2

Page 20: Time-dependent flow of Newtonian fluids Solving flow

Streamlines

β€’ Using dimensionless variables:

Ξ¨ =πœ“

π‘£βˆžπ‘‹ =

π‘₯

π‘…π‘Œ =

𝑦

𝑅

Ξ¨ 𝑋, π‘Œ = βˆ’π‘Œ 1 βˆ’1

𝑋2 + π‘Œ2

Page 21: Time-dependent flow of Newtonian fluids Solving flow

The stream lines for the potential flowaround a cylinder

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot

Page 22: Time-dependent flow of Newtonian fluids Solving flow

The velocity components

β€’ Using the complex velocity𝑑𝑀

𝑑𝑧= βˆ’π‘£π‘₯ + 𝑖𝑣𝑦 = βˆ’π‘£βˆž 1 βˆ’

𝑅2

𝑧2=

βˆ’π‘£βˆž 1 βˆ’π‘…2

π‘Ÿ2π‘’βˆ’2π‘–πœƒ

𝑑𝑀

𝑑𝑧= βˆ’π‘£βˆž 1 βˆ’

𝑅2

π‘Ÿ2cos 2πœƒ βˆ’ 𝑖 sin 2πœƒ

Page 23: Time-dependent flow of Newtonian fluids Solving flow

The velocity components

β€’ x-component

β€’ y-component

𝑣π‘₯ = βˆ’π‘£βˆž 1 βˆ’π‘…2

π‘Ÿ2cos 2πœƒ

𝑣𝑦 = βˆ’π‘£βˆž 1 βˆ’π‘…2

π‘Ÿ2sin 2πœƒ

Page 24: Time-dependent flow of Newtonian fluids Solving flow

4.4. Flow near solid surfaces by boundary-layer theory

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot

Page 25: Time-dependent flow of Newtonian fluids Solving flow

Flow near solid surfaces byboundary-layer theory

β€’ Equation of continuity and Navier-Stokes equations

πœ•π‘£π‘₯πœ•π‘₯

+πœ•π‘£π‘¦

πœ•π‘¦= 0

𝑣π‘₯πœ•π‘£π‘₯πœ•π‘₯

+ π‘£π‘¦πœ•π‘£π‘₯πœ•π‘¦

=1

𝜌

πœ•π‘ƒ

πœ•π‘₯+ 𝜈

πœ•2𝑣π‘₯πœ•π‘₯2

+πœ•2𝑣π‘₯πœ•π‘¦2

𝑣π‘₯πœ•π‘£π‘¦

πœ•π‘₯+ 𝑣𝑦

πœ•π‘£π‘¦

πœ•π‘¦=1

𝜌

πœ•π‘ƒ

πœ•π‘¦+ 𝜈

πœ•2𝑣𝑦

πœ•π‘₯2+πœ•2𝑣𝑦

πœ•π‘¦2

Page 26: Time-dependent flow of Newtonian fluids Solving flow

Equations by dimensional analysis

β€’ Considering orders of magnitude of the different terms, based in Prandtl boundary-layer approach

β€’ Continuity

β€’ Motion

β€’ Modified pressure is assumed to be known

πœΉπ’ β‰ͺ 𝒍𝒐

πœ•π‘£π‘₯πœ•π‘₯

+πœ•π‘£π‘¦

πœ•π‘¦= 0

𝑣π‘₯πœ•π‘£π‘₯πœ•π‘₯

+ π‘£π‘¦πœ•π‘£π‘₯πœ•π‘¦

=1

𝜌

πœ•π‘ƒ

πœ•π‘₯+ 𝜈

πœ•2𝑣π‘₯πœ•π‘¦2

Page 27: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ Boundary conditionsβ€’ no-slip condition at the wallβ€’ no mass transfer at the wall

β€’ Solving equation using continuity equation

𝑣π‘₯ = 0 π‘Žπ‘‘ 𝑦 = 0

𝑣𝑦 = 0 π‘Žπ‘‘ 𝑦 = 0

𝑣π‘₯πœ•π‘£π‘₯πœ•π‘₯

βˆ’ ΰΆ±0

𝑦 πœ•π‘£π‘₯πœ•π‘₯

π‘‘π‘¦πœ•π‘£π‘₯πœ•π‘¦

= π‘£π‘’πœ•π‘£π‘’πœ•π‘₯

+ πœˆπœ•2𝑣π‘₯πœ•π‘¦2

Page 28: Time-dependent flow of Newtonian fluids Solving flow

Equations

β€’ Von Karman momentum balanceβ€’ Multiplying ρ and integrating with regard to y from 0 to ∞

α‰€πœ‡πœ•π‘£π‘₯πœ•π‘¦

𝑦=0

=𝑑

𝑑π‘₯ΰΆ±0

∞

πœŒπ‘£π‘₯ 𝑣𝑒 βˆ’ 𝑣π‘₯ 𝑑𝑦 +𝑑𝑣𝑒𝑑π‘₯

ΰΆ±0

∞

𝜌 𝑣𝑒 βˆ’ 𝑣π‘₯ 𝑑𝑦

𝑣π‘₯(π‘₯, 𝑦) β†’ 𝑣𝑒(π‘₯) π‘Žπ‘  𝑦 β†’ ∞

Page 29: Time-dependent flow of Newtonian fluids Solving flow

Approximate boundary-layer solutions

β€’ Approximate solutions starts assuming expressions for the velocity profile

β€’ Example. Laminar flow along a flat plate (approximate solution). It uses

𝑣π‘₯π‘£βˆž

=3

2

𝑦

π›Ώβˆ’1

2

𝑦

𝛿

3

π‘“π‘œπ‘Ÿ 0 ≀ 𝑦 ≀ 𝛿(π‘₯)

𝑣π‘₯π‘£βˆž

= 1 π‘“π‘œπ‘Ÿ 𝑦 β‰₯ 𝛿(π‘₯)

Boundary-layerregion

Potential flowregion

Page 30: Time-dependent flow of Newtonian fluids Solving flow

Approximate boundary-layer solutions

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot

Page 31: Time-dependent flow of Newtonian fluids Solving flow

Solutions

β€’ By substitution of profile into von Karman integral balance give

β€’ Boundary layer thickness

3

2

πœ‡π‘£βˆžπ›Ώ

=𝑑

𝑑π‘₯

39

280πœŒπ‘£βˆž

2 𝛿

Ξ΄ π‘₯ =280

13

𝜈π‘₯

π‘£βˆž= 4.64

𝜈π‘₯

π‘£βˆž

Page 32: Time-dependent flow of Newtonian fluids Solving flow

Solutions

β€’ Velocity distribution

β€’ Drag force

𝐹π‘₯ = 2ΰΆ±

0

π‘Š

ΰΆ±

0

𝐿

πœ‡πœ•π‘£π‘₯πœ•π‘¦

𝑦=0

𝑑π‘₯𝑑𝑧 = 1.293 πœŒπœ‡πΏπ‘Š2π‘£βˆž3

𝑣π‘₯π‘£βˆž

=3

2y

13

280

π‘£βˆžπœˆπ‘₯

βˆ’1

2𝑦

13

280

π‘£βˆžπœˆπ‘₯

3

Page 33: Time-dependent flow of Newtonian fluids Solving flow

Laminar flow along a flat plate(exact solution)

β€’ Solution uses Stream Functions. Table 4.2-1 β€’ Equations are solved by combination of variables

πœ•πœ“

πœ•π‘¦

πœ•2πœ“

πœ•π‘₯πœ•π‘¦βˆ’πœ•πœ“

πœ•π‘₯

πœ•2πœ“

πœ•π‘¦2= βˆ’πœˆ

πœ•3πœ“

πœ•π‘¦3

β€’ BC’s

Page 34: Time-dependent flow of Newtonian fluids Solving flow

Solutions

β€’ Variable (by dimensional analysis)

β€’ Stream function that gives this velocity distribution

𝑣π‘₯π‘£βˆž

= Ξ  πœ‚ π‘€β„Žπ‘’π‘Ÿπ‘’ πœ‚ = 𝑦1

2

π‘£βˆžπœˆπ‘₯

πœ“ π‘₯, 𝑦 = βˆ’ 2π‘£βˆžπœˆπ‘₯𝑓 πœ‚ π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑓(πœ‚) = ΰΆ±0

πœ‚

Ξ  π‘₯ ′𝑑π‘₯

Page 35: Time-dependent flow of Newtonian fluids Solving flow

Solutions

β€’ Substitution into equation and new BCs

βˆ’π‘“π‘“β€²β€² = 𝑓′′′

β€’ Drag force

𝐹π‘₯ = 2ΰΆ±

0

π‘Š

ΰΆ±

0

𝐿

πœ‡πœ•π‘£π‘₯πœ•π‘¦

𝑦=0

𝑑π‘₯𝑑𝑧 = 1.328 πœŒπœ‡πΏπ‘Š2π‘£βˆž3

Page 36: Time-dependent flow of Newtonian fluids Solving flow

Predicted and observed velocity profilesfor flow along a plate

"Transport Phenomena" 2nd ed.,R.B. Bird, W.E. Stewart, E.N. Lightfoot