18
Question Booklet Series :– ç'u iqfLrdk J`a[kyk %& A Question Booklet No. :– ç'u iqfLrdk la[;k %& 963328 Time Allowed: 90 Minutes Total No. of Questions : 120 vuqer le; % 90 feuV PAPER – II ç”uksa dh dqy la[;k % 120 Roll No. : (Paper–II) OMR Answer Sheet No. : vuqØekad % -------------------------------------------- ¼isij&II½ vks-,e-vkj- mÙkj if=dk la[;k : --------------------------- Name of the Candidate (in capital letters) : vH;FkÊ dk uke % ---------------------------------------------------------------------------------------------- Candidate's Signature Invigilator's Signature vH;FkÊ ds gLrk{kj % ------------------------------- d{k fujh{kd ds gLrk{kj % --------------------------------- POST CODE NAME OF THE POST SUBJECT F MT (CIVIL) CIVIL IMPORTANT:– Read the following instructions carefully. Do not mark answers on the question booklet, otherwise you may be debarred from the selection process. 1. Before commencing to answer, check that the Question Booklet has 120 questions. Each Question Booklet will be in different series (combination of question booklet number and series). You must write correct Question Booklet Number and Question Booklet Series on your OMR Answer Sheet. Further check that there is no misprinting, overprinting and/or any other shortcoming in it. If there is any shortcoming in the question booklet, intimate the same to your room invigilator and take a fresh question booklet and a fresh OMR sheet. No complaint in this regard shall be entertained at any later stage. IMPORTANT NOTE: The OMR Answer Sheet will be evaluated with a combination of question booklet series and question booklet number hence you must write correct question booklet series and question booklet number. Any mistake in filling any of them will lead to invalidation of your OMR Answer Sheet. Also in case of non filling of question booklet series and question booklet number the OMR Answer Sheet will not be evaluated and its sole responsibility lies on the candidate. 2. Question paper is bilingual (Hindi/English). In case of any variation in Hindi version, English version will be taken as final for evaluation purposes. 3. Ensure that your admit card and OMR sheet is signed by you and the invigilator. If the same is not signed, your candidature is liable to be rejected. 4. All Multiple Choice Questions carry 1 mark. No Mark will be awarded or deducted for not attempting a question. Darken ONLY ONE OVAL for each answer. If you darken more than one oval or any stray mark is found on more than one oval, no mark will be awarded for that oval. 5. This is an objective type test in which each objective question is followed by four responses serialled (1) to (4). Your task is to choose the correct/best response and mark your response in the OMR Answer Sheet only as per the instructions given and NOT in the Question Booklet. 6. Use Blue/Black Ball Point Pen for all your work on the OMR Answer Sheet. The ovals on the OMR Answer Sheet are to be completely filled by Blue/Black Ball Point Pen only. ANSWERS ONCE GIVEN CAN NOT BE CHANGED. Cutting/overwriting the answers are not allowed. 7. Use of Calculators, Slide rules, Mobiles, calculator watches or any such devices and any other study/reference material is NOT allowed inside the examination hall and prohibited If found carrying, it shall be punishable offence. 8. Rough Work is to be done in the blank space provided in the Question Booklet, not on the OMR Answer Sheet. No other paper will be allowed/provided for rough work. 9. Handover OMR Answer Sheet to the invigilator on completion of the test. Do not take OMR Answer Sheet outside the examination room. Doing so is a punishable offence. The candidate can retain question paper after exam is over. fgUnh esa vuqns”k vfUre i`’B ¼Back cover½ ij fn;k x;k gSA

Time Allowed : 90 Minutes Total No. of Questions : 120 90 ... · question booklet number the OMR Answer Sheet will not be evaluated and its sole responsibility lies on the candidate

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Question Booklet Series :– ç'u iqfLrdk J`a[kyk %& A Question Booklet No. :–

ç'u iqfLrdk la[;k %& 963328

Time Allowed : 90 Minutes Total No. of Questions : 120vuqer le; % 90 feuV PAPER – II ç”uksa dh dqy la[;k % 120

Roll No. : (Paper–II) OMR Answer Sheet No. : vuqØekad % -------------------------------------------- ¼isij&II½ vks-,e-vkj- mÙkj if=dk la[;k : ---------------------------

Name of the Candidate (in capital letters) : vH;FkÊ dk uke % ----------------------------------------------------------------------------------------------

Candidate's Signature Invigilator's Signature vH;FkÊ ds gLrk{kj % ------------------------------- d{k fujh{kd ds gLrk{kj % ---------------------------------

POST CODE NAME OF THE POST SUBJECT

F MT (CIVIL) CIVIL

IMPORTANT:– Read the following instructions carefully. Do not mark answers on the question booklet, otherwise you may be debarred from the selection process. 1. Before commencing to answer, check that the Question Booklet has 120 questions. Each Question Booklet will be in

different series (combination of question booklet number and series). You must write correct Question Booklet Number and Question Booklet Series on your OMR Answer Sheet. Further check that there is no misprinting, overprinting and/or any other shortcoming in it. If there is any shortcoming in the question booklet, intimate the same to your room invigilator and take a fresh question booklet and a fresh OMR sheet. No complaint in this regard shall be entertained at any later stage. IMPORTANT NOTE: The OMR Answer Sheet will be evaluated with a combination of question booklet series and question booklet number hence you must write correct question booklet series and question booklet number. Any mistake in filling any of them will lead to invalidation of your OMR Answer Sheet. Also in case of non filling of question booklet series and question booklet number the OMR Answer Sheet will not be evaluated and its sole responsibility lies on the candidate.

2. Question paper is bilingual (Hindi/English). In case of any variation in Hindi version, English version will be taken as final for evaluation purposes.

3. Ensure that your admit card and OMR sheet is signed by you and the invigilator. If the same is not signed, your candidature is liable to be rejected.

4. All Multiple Choice Questions carry 1 mark. No Mark will be awarded or deducted for not attempting a question. Darken ONLY ONE OVAL for each answer. If you darken more than one oval or any stray mark is found on more than one oval, no mark will be awarded for that oval.

5. This is an objective type test in which each objective question is followed by four responses serialled (1) to (4). Your task is to choose the correct/best response and mark your response in the OMR Answer Sheet only as per the instructions given and NOT in the Question Booklet.

6. Use Blue/Black Ball Point Pen for all your work on the OMR Answer Sheet. The ovals on the OMR Answer Sheet are to be completely filled by Blue/Black Ball Point Pen only. ANSWERS ONCE GIVEN CAN NOT BE CHANGED. Cutting/overwriting the answers are not allowed.

7. Use of Calculators, Slide rules, Mobiles, calculator watches or any such devices and any other study/reference material is NOT allowed inside the examination hall and prohibited If found carrying, it shall be punishable offence.

8. Rough Work is to be done in the blank space provided in the Question Booklet, not on the OMR Answer Sheet. No other paper will be allowed/provided for rough work.

9. Handover OMR Answer Sheet to the invigilator on completion of the test. Do not take OMR Answer Sheet outside the examination room. Doing so is a punishable offence. The candidate can retain question paper after exam is over.

fgUnh esa vuqns”k vfUre i`’B ¼Back cover½ ij fn;k x;k gSA

1. A soil has a bulk density 2.30 g/cm3 and water content 15 percent, the dry density of the sample is:

(1) 1.0 g/cm3 (2) 1.5 g/cm3

(3) 2.0 g/cm3 (4) None of these

1. fdlh e`nk dk iqat ?kuRo 2.30 g/cm3 rFkk ty dh ek=k 15 çfr”kr gS rks uewus dk “kq’d ?kuRo gSA

(1) 1.0 g/cm3 (2) 1.5 g/cm3

(3) 2.0 g/cm3 (4) buesa ls dksbZ ugha

2. A short column 200 mm × 200 mm in section is reinforced with 4 bars whose area of cross section is 20 sqcm. If permissible compressive stress in concrete and steel are 40 kg/sq cm and 1300 kg/sqcm, the safe load on the column should not exceed:

(1) 4120 kgs (2) 41,200 kgs (3) 4,12,000 kgs (4) None of these

2. ,d y?kq LrEHk 200 mm × 200 mm lsD”ku dks 4 NM+ksa] ftudk vuqçLFk dkV {ks= 20 oxZ lsUVhehVj gS] ds lkFk çcfyr fd;k tkrk gSA ;fn daØhV rFkk bLikr esa vuqes; lEihfMr çfrcy 40 kg/sq cm rFkk 1300 kg/sqcm gS rks LrEHk ij lqjf{kr Hkkj buesa ls

fdlls vf/kd ugha gksuk pkfg,%

(1) 4120 fdyksxzke (2) 41,200 fdyksxzke (3) 4,12,000 fdyksxzke (4) buesa ls dksbZ ugha

3. The incorrectly indicated value of maximum sagging and hogging moments of a slab carrying uniformly distributed load w kg/sqm from the figure given below is:

(1) Hogging BM at the right penultimate support (2) Hogging BM at the central support (3) Sagging BM at the interior support (4) None of these

3. uhps fn, x, fp= esa leku :i ls forfjr Hkkj w kg/sqm dks

ogu djus okys LySc ds vf/kdre vkueu rFkk mÙkyu vk?kw.kZ dk

xyr n”kkZ;k x;k ewY; gS%

(1) lgh mikfUre lgk;rk ij mÙkyu BM

(2) dsUæh; lgk;rk ij mÙkyu BM

(3) vkUrfjd lgk;rk ij vkueu BM

(4) buesa ls dksbZ ugha

4. The breadth of the flange of a T-beam is taken as:

(1) One-third of the effective span of the T-beam (2) Twelve times the depth of slab plus breadth of rib (3) Centre to center distance between the adjacent beams (4) Minimum value of (1), (2) or (3)

4. ,d T&/kju ds ¶ysat dh pkSM+kbZ buesa ls fdl :i esa yh tkrh gS% (1) T&/kju dh çHkkoh foLr`fr dk 1/3 (2) LySc dh xgjkbZ dk ckjg xquk tek fjc dh pkSM+kbZ

(3) fudVorhZ /kjuksa ds chp dsUæ ls dsUæ rd dh nwjh

(4) (1), (2) vFkok (3) dk U;wure eku

5. A cantilever beam of length L and carrying concentrated load W has the deflection at the free end of value WL3/16 EI hence the load must be located at:

(1) The free end (2) Center of the length L (3) Any where between distance L/2 and L from the fixed

end (4) Any where between fixed end and half of the length of

the cantilever

5. L yEckbZ rFkk ladsfUær Hkkj Wogu djus okyh ,d çkl /kju

WL3/16 EI eku ds eqä fljs ij fo{ksi gS vr% Hkkj dks buesa ls

fdl ij fLFkr gksuk pkfg,%

(1) eqä fljk

(2) yEckbZ L dk dsUæ (3) vpy fljs ls L/2 rFkk L nwjh ds chp dgha Hkh (4) vpy fljs vkSj çkl dh yEckbZ ds vk/ks ds chp dgha Hkh

6. In Limit States Design method for RC members, the Concrete is utilized upto stresses corresponding to:

(1) Its peak value (2) Certain predecided strain value (3) Lower than its peak value (4) Higher than its peak value

6. vkj-lh- esEcjksa dh lhfer voLFkk vfHkdYi i)fr esa buesa ls fdlds

laxr çfrcyksa rd daØhV dk ç;ksx fd;k tkrk gS%

(1) blds f'k[kj eku

(2) dqN iwoZ fu/kkZfjr foÑfr eku

(3) blds f'k[kj eku ls de

(4) blds f'k[kj eku ls vf/kd

7. Principal Plane is a plane in a stressed body of material on which

(1) Shear stress is zero (2) Shear stress is maximum (3) Shear stress is minimum (4) None of these statements is applicable

7. fdlh inkFkZ dh çfrcfyr ckWMh esa çeq[k ry og ry gS ftl ij%

(1) vi:i.k çfrcy 'kwU; gS

(2) vi:i.k çfrcy vf/kdre gS

(3) vi:i.k çfrcy U;wure gS

(4) mi;qZä dFkuksa esa ls dksbZ Hkh dFku ykxw ugha gksrk gS

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–1 ]

8. An RC Slab cantilevers from an RC beam. The beam is framed into a system of RC columns providing restraint against torsion to it. The choice of projecting the slab from the top level of the beam or from the bottom is to be made. Structurally, it is better to project the slab from

(1) The top level (2) The bottom level (3) The middle level (4) Any level

8. ,d vkj-lh- Lysc ,d vkj-lh- che ls çkl gSA che vkj-lh-

dkyeksa dh ç.kkyh esa cuk;k x;k gS rFkk blesa ejksM+ ds fo:)

fujks/kdrk miyC/k djkbZ xbZ gSA p;u bl ckr dk djuk gS fd Lysc

dks che dh 'kh"kZ Lrj ij j[kk tk, vFkok lcls fupys Lrj ijA

lajpukRed :i ls Lysc dks buesa ls fdl Lrj ij j[kuk csgrj gksrk

gS%

(1) 'kh"kZ Lrj ij

(2) lcls fupys Lrj ij

(3) e/; Lrj ij

(4) fdlh Hkh Lrj ij

9. In a bituminous pavement, alligator cracks are mainly due to:

(1) Fatigue arising from repeated stress applications (2) Inadequate wearing course (3) Use of excessive of bitumen (4) Use of inadequate bitumen

9. ,d fcVqesuh Q'kZ esa ,yhxsVj njkjsa çeq[kr% gksrh gSa%

(1) ckj&ckj çfrcy ls gksus okyh JkafUr ls

(2) vi;kZIr ?k"kZ.k gksus ls

(3) fcVqesu ds vR;f/kd mi;ksx ls

(4) vi;kZIr fcVqesu ds ç;ksx ls

10. The kerosene oil is used in the preparation of:

(1) Emulsion (2) Slow curing cutback (3) Rapid curing cutback (4) Medium curing cutback

10. buesa ls fdlds cukus esa feêh ds rsy dk ç;ksx fd;k tkrk gS%

(1) bey'ku

(2) /khek lalk/ku dVcSd

(3) Rofjr lalk/ku dVcSd

(4) e/;e lallk/ku dVcSd

11. A rectangular beam is 24 cm wide and 50 cm deep, its section modulus is given by:

(1) 1000 cm3 (2) 50000 cm3

(3) 10000 cm3 (4) 100000 cm3

11. ,d vk;rkdkj che 24 ls-eh- pkSM+k rFkk 50 ls-eh- xgjk gS bldk ifjPNsn ekikad buesa ls fdlds }kjk n'kkZ;k tkrk gS%

(1) 1000 cm3 (2) 50000 cm3

(3) 10000 cm3 (4) 100000 cm3

12. The maximum percentage of water absorption of class I bricks should be limited to:

(1) 10 (2) 15 (3) 20 (4) 25

12. oxZ I dh b±Vksa esa ty vo'kks"k.k dk vf/kdre çfr'kr buesa ls fdl

lhek rd gksuk pkfg,%

(1) 10 (2) 15 (3) 20 (4) 25

13. The slenderness ratio of a long prismatic cantilever column of length L having circular cross section of radius r is given by:

(1) L/4r (2) L/r (3) 4L/r (4) 8L/r

13. f=T;k r dh o`Ùkh; vuqçLFk dkV okyk L yEckbZ ds ,d yEcs fçTe çkl dkye dh ruqrk vuqikr buesa ls fdlds }kjk n'kkZ;k tkrk gS%

(1) L/4r (2) L/r (3) 4L/r (4) 8L/r

14. A viscous fluid (µ = 0.60 kg/m.s) flows over a flat plate. The velocity distribution over this plate is given by

2 – y y32 u = in which u is the velocity in m/s and y is

the distance in m above the plate surface. The shear stress in N/m2 at y = 0 is:

(1) 0.40 (2) 0.60 (3) 0.90 (4) 1.00

14. ,d lery IysV ds Åij ';ku rjy ¼µ = 0.60 kg/m.s½ çokfgr

gksrk gSA bl IysV ds Åij osx forj.k 2 – y y32 u = }kjk n'kkZ;k

x;k gS ftlesa µ m.s esa osx gS rFkk IysV dh lrg ds Åij y m esa

nwjh gSA y = 0 ij N/m2 esa vi:i.k çfrcy gS%

(1) 0.40 (2) 0.60 (3) 0.90 (4) 1.00

15. Unit hydrograph method is generally used to transformation of:

(1) Excess rainfall into direct runoff (2) Excess rainfall into total runoff (3) Total rainfall into direct runoff (4) Total rainfall into total runoff

15. lkekU;r% ;wfuV gkbMªksxzkQ i)fr dk ç;ksx buesa ls fdlds :ikUrj.k

ds fy, fd;k tkrk gS%

(1) lh/ks viokg esa vR;f/kd o"kkZ

(2) dqy viokg esa vR;f/kd o"kkZ

(3) lh/ks viokg esa dqy o"kkZ

(4) dqy viokg esa dqy o"kkZ

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–2 ]

16. The coefficient of compressibility of soil is the ratio of:

(1) Strain to stress (2) Stress to strain (3) Rate of settlement to that of loading (4) Modulus of subgrade to the settlement

16. e`nk dh laihM~;rk dk xq.kkad buesa ls fdldk vuqikr gS%

(1) foÑfr ls çfrcy

(2) çfrcy ls foÑfr

(3) lsVyesUV dh nj ls Hkkj.k

(4) lcxzsM ds ekWM;wyl ls lsVyesUV

17. The slope of isochrone at any point at a given time indicates the rate of change of:

(1) Effective stress with depth (2) Effective stress with time (3) Pore pressure with depth (4) Pore pressure with time

17. ,d fn, x, le; esa fdlh Iokb±V ij ledky js[kk dk <yko buesa

ls ifjorZu dh fdl nj dks crkrk gS%

(1) xgjkbZ ds lkFk çHkkoh çfrcy

(2) le; ds lkFk çHkkoh çfrcy

(3) xgjkbZ ds lkFk jU/kz nkc

(4) le; ds lkFk jU/kz nkc

18. Eutriphication of lakes is due to:

(1) Excess nutrients in water (2) Excess hard ion in water (3) Excess turbidity in water (4) Excess iodine in water

18. >hyksa dk b;wfVªfQds”ku dk dkj.k gS%

(1) ty esa iks’kdksa dk vkf/kD; gksuk

(2) ty esa dBksj vk;uksa dk vkf/kD; gksuk

(3) ty esa vkfoyrk dk vkf/kD; gksuk

(4) ty esa vk;ksMhu dk vkf/kD; gksuk

19. Compaction of a soil is measured in terms of:

(1) Dry density (2) specific gravity (3) Compressibility (4) Permeability

19. e`nk dk laguu buesa ls fdlds vuqlkj ekik tkrk gS%

(1) “kq’d ?kuRo

(2) fof”k’V xq:Ro

(3) laihM~;rk

(4) ikjxE;rk

20. If t is time required for 50% consolidation of a clay sample with single drainage, then the time required to consolidate the same clay sample with same degree of consolidation but with double drainage is:

(1) t/2 (2) t/4 (3) 2t (4) 4t

20. ;fn ,dy Mªsust lfgr e`fÙkdk uewus ds 50% lekdyu gsrq okafNr

le; t gS rks mlh fMxzh ds lekdyu lfgr ¼fdUrq nqgjs Mªsust lfgr½ mlh e`fÙkdk uewus dks lekdfyr djus ds fy, okafNr le; gksxk%

(1) t/2 (2) t/4 (3) 2t (4) 4t

21. The net ultimate bearing capacity of a purely cohesive soil:

(1) Depends on width of footing and is independent of depth of footing

(2) Depends on depth of footing and is independent of width of footing

(3) Depends on both depth and width of footing (4) Is independent of both depth and width of footing

21. iw.kZr% lalatd e`nk dh ‘kq) pje fc;fjax {kerk%

(1) uhao dh pkSM+kbZ ij vk/kkfjr gS vkSj uhao dh xgjkbZ ls eqä gS

(2) uhao dh xgjkbZ ij fuHkZj djrh gS vkSj uhao dh pkSM+kbZ ls eqä

gS

(3) uhao dh xgjkbZ vkSj pkSM+kbZ nksuksa ij fuHkZj djrh gS

(4) uhao dh xgjkbZ vkSj pkSM+kbZ nksuksa ls eqä gS

22. A rigid cantilever frame is fixed at C. It carries a load P at A as shown in the figure. Neglecting axial deformation, and considering constant EI throughout, the vertical deflection of the point A is given by:

(1) Plh2/2EI (2) Pl2h/3EI (3) Pl2(3h+l)/3EI (4) Pl2(2h+l)/2EI

22. C ij ,d dBksj çkl Ýse vpj gSA tSlk fd fp= esa n’kkZ;k x;k gS

;g A ij P Hkkj ogu djrk gSA v{kh; fo:i.k dh mis{kk djrs gq,

vkSj ‘kq: ls vUr rd fLFkj EI ij fopkj djrs gq, A Iokb±V dk

vuqyEc fo{ksi fuEukuqlkj fn;k tkrk gS%

(1) Plh2/2EI (2) Pl2h/3EI (3) Pl2(3h+l)/3EI (4) Pl2(2h+l)/2EI

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–3 ]

23. Permanent adjustments are carried out to:

(1) Set up the level (2) Establish a fixed relationship between its fundamental

axes (3) Focus the eye piece (4) Focus the object glass

23. LFkk;h lek;kstu fd;k tkrk gS%

(1) ysoy lsV djus ds fy,

(2) blds ewyHkwr v{kksa ds chp fuf’pr lEcU/k LFkkfir djus ds fy,

(3) us= ihl Qksdl djus ds fy,

(4) vfHkn`’; dkap Qksdl djus ds fy,

24. The method of leveling used to carry out the reconnaissance of area is:

(1) Check leveling (2) Fly leveling (3) Profile leveling (4) Simple leveling

24. {ks= dk losZ{k.k djus ds fy, ç;ksx dh tkus okyh leryu i)fr gS%

(1) tkap leryu

(2) ef{kdk leryu

(3) ik’oZd leryu

(4) ljy leryu

25. A rod is 10 m long at 10°C, when the temperature is raised to 80°C and the coefficient of linear expansion of the material is 12×10–6/°C, the expansion of the rod is given by:

(1) 0. 62 cm (2) 0. 84 cm (3) 0. 95 cm (4) 1. 10 cm

25. 10°C ij ,d NM+ 10 ehVj yEch gSA tc rkieku dks 80°C rd

mBk;k tkrk gS vkSj inkFkZ ds jSf[kd foLrkj dk xq.kkad 12×10–6/°C

gksrk gS rks NM+ dk foLrkj fdruk gksrk gS%

(1) 0.62 ls-eh- (2) 0.84 ls-eh- (3) 0.95 ls-eh- (4) 1.10 ls-eh-

26. Negative skin friction on piles is predominant in:

(1) Friction piles in sands (2) Friction piles in soft clays (3) Piles resting on hard soils (4) Friction on bearing piles

26. <sj ij _.kkRed Ropk ?k”kZ.k buesa ls fdlesa çeq[k gS%

(1) ckyw esa <sj ?k”kZ.k

(2) e`nq e`fÙkdk esa <sj ?k”kZ.k

(3) dBksj e`nk esa <sj dk jguk

(4) fc;fjax <sj ij ?k”kZ.k

27. The method of traversing in survey is:

(1) Measurement of all the angles only (2) Measurement of angles and distances (3) Measurement of all distances (4) Measurement of all bearings only

27. losZ{k.k esa pØe.k dh i)fr gS%

(1) dsoy lHkh dks.kksa dk ekiu

(2) dks.kksa vkSj nwjh dk ekiu

(3) leLr nwfj;ksa dk ekiu

(4) dsoy leLr cs;fjaxksa dk ekiu

28. The diffusion is more vigorous when the flow is:

(1) Laminar (2) Turbulent (3) Supercritical (4) Critical

28. folj.k vf/kd çcy gksrk gS tc çokg%

(1) Lrjh; gks

(2) fo{kqC/k gks

(3) vfrØkfUrd gks

(4) ØkfUrd gks

29. A dome develops along the hoops and meridians only:

(1) Bending moments (2) Direct forces (3) Shear forces (4) Twisting forces

29. ,d xqEcn dsoy pôjnkj ifê;ksa vkSj ;kE;ksÙkj o`Ùkksa ds lkFk fodflr

gksrk gS%

(1) cadu vk?kw.kZ

(2) çR;{k cy

(3) vi:i.k cy

(4) ejksM+ cy

30. If the length of the column is doubled, the conditions remaining the same, the Euler’s critical load in terms of the previous value will be:

(1) Double (2) Half (3) Four times (4) One fourth

30. ;fn fdlh dkWye dh yEckbZ nqxuh dj nh tk,] vkSj fLFkfr;k¡ leku

jgsa rks fiNys eku ds ‘kCnksa esa b;wyj dk ØkfUrd Hkkj%

(1) nqxuk gksxk

(2) vk/kk gksxk

(3) pkj xquk gksxk

(4) ,d pkSFkkbZ gksxk

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–4 ]

31. For hydrodynamically smooth boundary the friction coefficient:

(1) Is constant (2) Varies inversely with Reynolds number (3) Is a function of Reynolds number and relative roughness (4) Is dependent on relative roughness

31. æo xfrdh; fpduh ifjlhek ds fy, ?k”kZ.k xq.kkad%

(1) fLFkj gS

(2) jsuksYM dh la[;k ds lkFk foifjr esa ?kVrk c<+rk gS

(3) jsuksYM dh la[;k vkSj lkis{k :{krk dk Qyu gS

(4) lkis{k :{krk ij fuHkZj gS

32. In which of the following elements, the permissible stress in bending is maximum:

(1) Base plate (2) Pin (3) I–section (4) Angle section

32. fuEukafdr rRoksa esa ls fdlesa cadu esa vuqes; çfrcy vf/kdre gksrk

gS%

(1) csl IysV

(2) fiu

(3) vkbZ&lsD’ku

(4) dks.k lsD’ku

33. A beam of length (l+2a) has supports ‘l’aparts with an overhang ‘a’ on each side. The beam carries a concentrated load ‘W’ at each end. The shear force between the two supports is given by:

(1) Zero (2) 0. 5W (3) W (4) 2W

33. ¼I+2a ½ yEckbZ dh ,d che dks I dh liksVZ ds vfrfjä çR;sd fn’kk

esa vfryVd ^a* dh liksVZ gSA che ds çR;sd fljs ij ladsfUær Hkkj ^w* gSA nks liksVks± ds chp vi:i.k cy buesa ls fdlds }kjk n’kkZ;k

tk,xk%

(1) “kwU; (2) 0.5 W (3) W (4) 2 W

34. The slump test helps in the determination of the following quality of concrete:

(1) Strength (2) Settlement (3) Shrinkage (4) Workability

34. voikr ijh{k.k daØhV dh fuEukafdr xq.koÙkk ds fu/kkZj.k esa lgk;rk

djrk gS%

(1) lkeF;Z

(2) lsVyesUV

(3) ladqpu

(4) lqdk;Zrk

35. The theorem of three moments expresses the condition of:

(1) Equilibrium of forces (2) Slope compatibility (3) Maxwell’s reciprocal theorem (4) Castigliano’s theorems

35. rhu vk?kw.kksZ dh çes; buesa ls fdldh fLFkfr dks Li”V djrh gS%

(1) cyksa dh lkE;koLFkk

(2) <yku lqlaxrrk

(3) esDloSy dh vU;ksU; çes;

(4) dkfLVxfy;kukst çes;

36. A point load of 20 kN acting at the quarter span point of a simply supported beam produces a central deflection of 2 mm. For a central load of 40 kN, the deflection at the quarter span point will be:

(1) 4 mm (2) 8 mm (3) 2 mm (4) 1 mm

36. ,d ljy vk/kkfjr /kj.k ds pkSFkkbZ foLrkj fcUnq ij dk;Zjr 20 kN

dk fcUnq Hkkj 2 mm dk dsUæh; >qdko mRié djrk gSA 40 kN ds

dsUæh; Hkkj ds fy, pkSFkkbZ foLrkj fcUnq ij >qdko gksxk%

(1) 4 mm (2) 8 mm (3) 2 mm (4) 1 mm

37. The effect of arching in a beam is:

(1) To reduce B. M. throughout (2) To increase B. M. throughout (3) To increase shear force (4) To decrease shear force

37. fdlh /kj.k esa MkV yxkus dk çHkko gksrk gS%

(1) vk|ksikUr B.M. dks de djuk (2) vk|ksikUr B.M. dks c<+kuk (3) vi:i.k cy dks c<+kuk

(4) vi:i.k cy dks de djuk

38. If the support of a three hinged arch yield horizontally by a small amount the horizontal support reaction:

(1) Decreases (2) Increases (3) Remains the same (4) None is true

38. ;fn fdlh y?kq ek=k }kjk rhu dCtksa okyh MkV ds vk/kkj dk {kSfrt

:i ls ijkHko gksrk gS rks {kSfrt vk/kkj çfrfØ;k%

(1) ?kVsxh

(2) c<+sxh

(3) ogh jgsxh

(4) dksbZ Hkh lp ugha gS

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–5 ]

39. The slope deflection method of structural analysis is a:

(1) Displacement method (2) Force method (3) Hybrid method (4) None of these

39. lajpukRed fo’ys”k.k dh <yku fo{ksi i)fr gS%

(1) foLFkkiu i)fr

(2) cy i)fr

(3) ladj i)fr

(4) mi;qZä esa ls dksbZ ugha

40. A point load of 50 kN acting centrally on a simply supported beam produces the same maximum deflection in the beam as caused by a u. d. l. of 20 kN/m over the whole span. The span of the beam is:

(1) 10 m (2) 8 m (3) 6 m (4) 4 m

40. 50 kN dk fcUnq Hkkj] tks ,d ljy vk/kkfjr /kju ij dsUæh; :i

ls dk;Z dj jgk gS] /kju esa mruk gh vf/kdre fo{ksi mRié djrk gS

ftruk leLr foLr`fr ds Åij 20 kN/m ds u.d.l. ds dkj.k gksrk gSA /kj.k dh foLr`fr gS%

(1) 10 m (2) 8 m (3) 6 m (4) 4 m

41. In a suspended cable:

(1) The tension is constant throughout (2) The B. M. is zero everywhere (3) The B. M. can be reduced by increasing the pull (4) None is true

41. ,d fuyfEcr dscy esa%

(1) ‘kq: ls vUr rd ruko fLFkj jgrk gS

(2) B.M. gj txg ‘kwU; gksrk gS (3) d”kZ.k dks c<+kdj B.M. dks de fd;k tk ldrk gS (4) dksbZ lp ugha gS

42. The slenderness ratio of a long column is given by:

(1) The length divided by radius of the cross section (2) Length divided by radius of gyration of the section (3) Effective length divided by the minimum radius of

gyration of the section (4) None of these

42. yEcs dkWye dk ruqrk vuqikr buesa ls fdlds }kjk n’kkZ;k tkrk gS%

(1) vuqçLFk dkV dh f=T;k }kjk yEckbZ dk foHkktu fd;k tkrk gS

(2) vuqçLFk dh ifjHkze.k f=T;k dks yEckbZ ls foHkkftr fd;k tkrk

gS

(3) vuqçLFk dh U;wure ifjHkze.k f=T;k }kjk çHkkoh yEckbZ dk

foHkktu fd;k tkrk gS

(4) mi;qZä esa ls dksbZ ugha

43. In a fillet weld, the failure is due to:

(1) Axial tension (2) Axial compression (3) Bearing action (4) Shear

43. fQysV osYM esa vlQyrk buesa ls fdl dkj.k ls gksrh gS%

(1) v{kh; ruko

(2) v{kh; lEihMu

(3) cs;fjax ,D’ku

(4) vi:i.k

44. In a plate girder design, the rivets connecting the flange angles and the flange plates have to be designed for:

(1) Bending stress (2) Single shear (3) Double shear (4) Bending and shear

44. ,d IysV xMZj vfHkdYi esa ¶ysUt dks.kksa vkSj ¶ysUt IysVksa dks tksM+us

okyh fjosVksa dks vfHkdfYir djuk iM+rk gS%

(1) cadu çfrcy ds fy,

(2) ,dy vi:i.k ds fy,

(3) nksgjs vi:i.k ds fy,

(4) cadu vkSj vi:i.k ds fy,

45. The effective length of members in compression in a plane truss is:

(1) Actual length (2) 0. 70 × actual length (3) 0. 80 × actual length (4) 0. 85 × actual length

45. ,d lknh dSaph esa lEihMu esa vaxks dh çHkkoh yEckbZ gksrh gS%

(1) okLrfod yEckbZ

(2) 0.70 × okLrfod yEckbZ (3) 0.80 × okLrfod yEckbZ (4) 0.85 × okLrfod yEckbZ

46. In the staging of columns for water tank, the column with least compressive force occurs:

(1) In the windward column (2) In the central column (3) In the leeward column (4) In any position

46. ikuh dh Vadh ds fy, dkWyeksa dh LVsftax esa U;wure lEihMu cy ds

lkFk dkWye gksrk gS%

(1) foaMokMZ dkWye esa

(2) dsUæh; dkWye esa

(3) yhokMZ dkWye esa

(4) fdlh Hkh fLFkfr esa

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–6 ]

47. In a continuous beam of more than 3 equal spans, the maximum negative moment in the beam occurs at:

(1) End support (2) The penultimate support (3) Middle support (4) Center of end span

47. rhu ls vf/kd foLr`fr;ksa okyh ,d lrr /kju esa vf/kdre _.kkRed

?kw.kZu gksrk gS%

(1) vUr vk/kkj ij

(2) mifUre vk/kkj ij

(3) e/; vk/kkj ij

(4) vUr foLr`fr ds dsUæ ij

48. With the increase in water cement ratio, the strength of concrete:

(1) Decreases (2) Increases (3) Remains same (4) None of these is true

48. ty&lhesUV dk vuqikr c<+us ds lkFk daØhV dh lkeF;Z%

(1) ?kVrh gS

(2) c<+rh gS

(3) igys tSlh gh jgrh gS

(4) mi;qZä esa ls dksbZ dFku lgh ugha

49. Places having the same latitude:

(1) Lie on the parallel of latitude (2) Are equidistant from both the poles (3) Are equidistant from the equator (4) All of these

49. ,d gh v{kka’k ij iM+us okys LFkku%

(1) v{kka’k ds lekukUrj esa iM+rs gSa

(2) nksuksa /kzqoksa ls leku nwjh ij gksrs gSa

(3) Hkwe/; js[kk ls leku nwjh ij gksrs gSa

(4) mi;qZä lHkh

50. If the settlement of a single pile in sand is denoted by S and that of a group of N identical piles (each pile carrying the same load) by Sg, then the ratio Sg/S will:

(1) Be equal to 1 irrespective of width of the group (2) Be equal to N irrespective of width of the group (3) Decrease as the width of the group increases (4) Increase as the width of the group increases

50. ;fn ckyw esa ,dy <sj dh O;oLFkk S }kjk vkSj N le:i <sjksa ds

xzqi dh O;oLFkk ¼çR;sd <sj dk Hkkj cjkcj gS½ Sg }kjk fufnZ”V dh

tkrh gS rks vuqikr Sg/S% (1) xzqi dh pkSM+kbZ dk /;ku fd, fcuk 1 ds cjkcj gksxk (2) xzqi dh pkSM+kbZ dk /;ku fd, fcuk N ds cjkcj gksxk

(3) xzqi dh pkSM+kbZ c<+us ds lkFk ?kVsxk

(4) xzqi dh pkSM+kbZ c<+us ds lkFk c<+sxk

51. Consider the following statements regarding the tensile test diagrams for carbon steels with varying carbon contents. As the carbon content increases the: 1. Ultimate strength of steel decreases 2. Elongation before fracture increases 3. Ductility of metal decreases 4. Ultimate strength increases Of these statements

(1) 3 and 4 are correct (2) 1 and 3 are correct (3) 1, 2, and 3 are correct (4) 1 and 2 are correct

51. ifjorÊ dkcZu ek=k lfgr dkcZu LVhy ds fy, ruu ijh{k.k vkjs[kksa

ds lEcU/k esa fuEukafdr dFkuksa ij fopkj djsaA

tSls&tSls dkcZu dh ek=k c<+rh gS%

1. bLikr dk peZ cy ?kVrk gS

2. foHkax o`f) ls iwoZ nh?kÊdj.k

3. /kkrq dh rU;rk ?kVrh gS

4. pje cy c<+rk gS

mi;qZä dFkuksa esa ls

(1) 3 vkSj 4 lgh gSa (2) 1 vkSj 3 lgh gSa (3) 1, 2 vkSj 3 lgh gSa (4) 1 vkSj 2 lgh gSa

52. The setting of Portland cement may be defined as:

(1) Setting of heat of hydration in cement paste (2) Change of cement paste from fluid to hardened state (3) Gain of strength of cement paste (4) None of these

52. iksVZysUM lhesUV dk n`<+hdj.k buesa ls fdl :i esa ifjHkkf’kr fd;k

tkrk gS%

(1) lhesUV ysih esa ty;kstu Å’ek dk n`<+hdj.k

(2) rjy ls dBksj voLFkk esa lhesUV ysih dks cnyuk

(3) lhesUV ysih dh lkeF;Z c<+kuk

(4) buesa ls dksbZ ugha

53. De-chlorination of water is achieved by adding:

(1) Sodium thiosulphate (2) Sodium sulphate (3) Sodium haxametaphosphate (4) Sodium bisulphate

53. ty fo&Dyksfjuhdj.k fuEu tksM+dj fd;k tkrk gS%

(1) lksfM;e Fkk;kslYQsV

(2) lksfM;e lYQsV

(3) lksfM;e gSDlkesVkQkLQsV

(4) lksfM;e ckblYQsV

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–7 ]

54. IS:1498 – 1978 relates to:

(1) Soil classification (2) Building measurement (3) Concrete (4) Cement

54. IS:1498 – 1978 fuEu ls lacaf/kr gS% (1) e`nk oxhZdj.k

(2) Hkou ekiu

(3) daØhV

(4) lhesaV

55. Eutrophication of water bodies is caused by the:

(1) Discharge of toxic substances (2) Excessive discharge of nutrients (3) Excessive discharge of suspended solids (4) Excessive discharge of chlorides

55. ty fiaMks ds lqiks"k.k dk dkj.k buesa ls D;k gS\

(1) fo"kkä rRoksa dk fuLlj.k

(2) iks"kdksa dk vR;f/kd fuLlj.k

(3) fuyfEcr Bkslksa dk vR;f/kd fuLlj.k

(4) DyksjkbMks dk vR;f/kd fuLlj.k

56. A reinforced concrete beam is designed for limit state of collapse in flexure and shear. Which of the following limit states of serviceability has/have to be checked?

1. Deflection 2. Cracking 3. Durability Select the correct answer using the codes given below. (1) 1 alone (2) 1 and 2 (3) 2 and 3 (4) 1,2 and 3

56. ,d çcfyr daØhV /kju dks vkueu vkSj vi:i.k esa fuikr dh

lhfer voLFkk ds fy, vfHkdfYir fd;k x;k gSA mi;qärkvksa dh

fuEukafdr lhfer voLFkkvksa esa ls fdldh@fdudh tk¡p djuh gksxh%

1. fo{ksi

2. rjsM+u

3. fVdkÅiu

uhps fn, x, dksMks dk mi;ksx djrs gq, lgh mÙkj pqfu,A

(1) dsoy 1 (2) 1 vkSj 2 (3) 2 vkSj 3 (4) 1, 2 vkSj 3

57. When the strain in material increases with time under sustained constant stress, the phenomenon is known as:

(1) Strain hardening (2) Hysteresis (3) Creep (4) Visco-elasticity

57. vfojr fLFkj çfrcy ds vUrxZr le; ds lkFk tc inkFkZ esa foÑfr

c<+rh gS rks bl lao`fr dks buesa ls fdl :i esa tkuk tkrk gS%

(1) foÑfr dBksju

(2) fgLVsfjfll

(3) foliZ.k

(4) foLdks bykfLVflVh

58. The loss of prestress due to shrinkage of concrete is the product of:

(1) Modular ratio and percentage of steel (2) Modulus of elasticity of concrete and shrinkage of

concrete (3) Modulus of elasticity of steel and shrinkage of

concrete (4) Modular ratio and modulus of elasticity of steel

58. daØhV ds ladqpu ds dkj.k iwoZçfrcy dh {kfr buesa ls fdldk mRikn

gS%

(1) ekM~;wyh vuqikr vkSj bLikr dk çfr'kr

(2) daØhV dh çR;kLFkrk dk ekikad vkSj ØadhV dk ladqpu

(3) LVhy dh çR;kLFkrk dk ekikad vkSj ØadhV dk ladqpu

(4) ekM~;wyh vuqikr vkSj LVhy dh çR;kLFkrk dk ekikad

59. The head loss in a pipe of diameter d, carrying oil at a flow rate of Q over a distance l is h. The pipe is replaced with another with half the diameter, all other things remaining the same. The head loss in this case will be:

(1) 0.5 h (2) 2.0 h (3) 8.0 h (4) 32.0 h

59. L nwjh ds Åij Q dh çokg nj ij rsy ys tk jgs fdlh d O;kl ds ikbi esa 'kh"kZ {kfr h gSA ;fn ikbi dks mlls vk/ks O;kl okys fdlh

vU; ikbi ls cnyk tkrk gS tcfd vU; lHkh phtsa oSlh gh jgrh gSa

rks bl ekeys esa 'kh"kZ {kfr gksxh%

(1) 0.5 h (2) 2.0 h (3) 8.0 h (4) 32.0 h

60. Phytometer method is generally used for the measurement of:

(1) Interception (2) Evaporation (3) Transpiration (4) None of these

60. buesa ls fdls ekius ds fy, çdk'kekih; ¼QkbZVksehVj½ fof/k dk ç;ksx

fd;k tkrk gS%

(1) vUrjks/ku

(2) ok"ihdj.k

(3) ok"iksRltZu

(4) buesa ls dksbZ ugha

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–8 ]

61. The sewer, which transports the sewage to the point of treatment is called:

(1) House (2) Out fall sewer (3) Branch (4) Internal

61. ey ty dks mipkj fcUnq rd ys tkus okys lhoj dks dgrs gSa%

(1) gkml

(2) vkmV Qky lhoj

(3) 'kk[kk

(4) vkUrfjd

62. The lowest outlet sluice in a dam is provided:

(1) Below the dead storage (2) On the top level of dead storage (3) On the top level of the useful storage (4) At the center of the dam

62. fdlh cka/k esa fuEure fuxZe Lywbl miyC/k djk;k tkrk gS%

(1) fufӯ; lap;u ds uhps

(2) fuf”Ø; lap;u dh ‘kh”kZ Lrj ij

(3) ykHknk;d lap;u dh ‘kh”kZ Lrj ij

(4) cka/k ds dsUæ esa

63. A water channel supported above the ground over trestles, is generally called:

(1) Flume (2) Canal (3) Aqueduct (4) Tunnel

63. Hkwfe ds Åij eafpdk ij vk/kkfjr ikuh dh ukyh dks lkekU;r% dgrs

gSa%

(1) voukfydk

(2) ugj

(3) tylsrq

(4) lqjax

64. If in a given soil, mass void ratio is 0.67, water content is 0.188 and specific gravity is 2.68, the degree of saturation of the soils is:

(1) 25 % (2) 40 % (3) 60 % (4) 75 %

64. fdlh nh xbZ e`nk esa] æO;eku fjfä vuqikr gS 0.67] ty dh ek=k gS 0.188] rFkk fof’k”V xq:Ro gS 2.68 rks e`nk dh lr`fIr dh fMxzh gksxh%

(1) 25 % (2) 40 % (3) 60 % (4) 75 %

65. Pick up the clay group which does not swell when wet:

(1) Kaolinite group (2) Illite group (3) Vermiculite group (4) Montmorillonite group

65. e`fÙkdk ds ml oxZ dks pqfu, tks Hkhxus ij Qwyrh ugha gS%

(1) dkvksfyukbV oxZ

(2) fyVs oxZ

(3) ofeZdqykbV oxZ

(4) ekWUVekWfjyksukbV oxZ

66. A simply supported beam of span ‘L’ carries a concentrated load ‘W’ at mid-span. If the width ‘b’ of the beam is constant and its depth is varying through out the span, then what would be its mid-span depth when design stress is ‘f’?

(1) bfWL6

(2) bfWL6

(3) bf2WL3

(4) bf2WL3

66. L foLr`fr dh ,d ljy vk/kkfjr /kju e/;foLr`fr ij ^W* ladsfUær

Hkkj ogu djrh gSA ;fn /kju dh ^b* pkSM+kbZ vpj gks vkSj ‘kq: ls

vUr rd foLr`fr dh xgjkbZ ifjorÊ gks rks bldh e/; foLr`fr xgjkbZ

D;k gksxh tc vfHkdYi çfrcy gS ^f*\

(1) bfWL6

(2) bfWL6

(3) bf2WL3

(4) bf2WL3

67. The horizontal angle between true meridian and magnetic meridian, is known as:

(1) Bearing (2) Magnetic declination (3) Dip (4) Convergence

67. okLrfod ;kE;ksRrj vkSj pqacdh; ;kE;ksRrj ds chp dk {kSfrt dks.k

dgykrk gS%

(1) cs;fjax

(2) pqacdh; fnDikr

(3) fMi

(4) vfHklj.k

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–9 ]

68. Consider the following statements:

1. The fixed end moment at the fixed end of a propped cantilever of length 6m loaded with a uniformly distributed load of 20kN/m (throughout the length of the beam), is 120kNm

2. The fixed end moment at the fixed end of a fixed ended beam of length 6m loaded with a uniformly distributed load of 20kN/m (throughout the length of the beam), is 60kNm

Of these statements: (1) Both 1 & 2 are false (2) 1 is correct but 2 is false (3) Both 1 & 2 are correct (4) 1 is false but 2 is correct

68. fuEu dFkuksa ij fopkj djsa%

1. leku :i ls forfjr 20kN/m ¼che dh iwjh yackbZ rd½ Hkkj okys 6m yacs ,d Vsdnkj dSaVhfyoj ds fLFkj Nksj esa fLFkj Nksj vk?kw.kZ 120kN/m gS

2. leku :i ls forfjr 20kN/m ¼che dh iwjh yackbZ rd½ Hkkj lfgr 6 ehVj yackbZ ds fLFkj Nksj okys che ds fLFkj Nksj ij fLFkj Nksj vk?kw.kZ 60kN/m gSA

bu dFkuksa esa ls

(1) 1 vkSj 2 & nksuksa xyr gS (2) 1 lgh gS fdarq 2 xyr gS (3) 1 rFkk 2 & nksuksa lgh gSa (4) 1 xyr gS fdarq 2 lgh gS

69. Consider the following statements: If two planes at right angles carry only shear stresses of magnitude ‘k’, then the 1. Diameter of Mohr’s circle would equal 2k 2. Centre of Mohr’s circle would lie at the origin 3. Principal stresses are unlike and have magnitude ‘k’ 4. Angle between the principal plane and the plane of

maximum shear would be equal to 45° Of these statements

(1) Only 1 & 2 are correct (2) Only 2 & 4 are correct (3) Only 1 & 3 are correct (4) 1,2,3 & 4 are correct

69. fuEu dFkuksa ij fopkj dhft,%

;fn ledks.kksa ij nks lery dsoy ‘k’ ek=k ds vi:i.k izfrcy ogu

djrs gSa rks

1. eksgj o`Rr dk O;kl 2k ds cjkcj gksxk 2. eksgj o`Rr dk dsUnz mn~xe ij gksxk

3. eq[; izfrcyksa dh laHkkouk ugha gksxh vkSj mudh ek=k ‘k’ gksxh 4. eq[; lery vkSj vf/kdre vi:i.k ds lery ds chp dk

dks.k 45° ds cjkcj gksxk

bu dFkuksa esa ls

(1) dsoy 1 vkSj 2 lgh gaS (2) dsoy 2 vkSj 4 lgh gaS (3) dsoy 1 vkSj 3 lgh gaS (4) 1] 2] 3 vkSj 4 lgh gSa

70. Consider the following statements regarding the Swedish circle method of analyzing stability of slopes:

1. It is general method of analyzing stability of slopes 2. It satisfies only the overall moment equation of

equilibrium 3. It considers the forces acting on the sides of the

individual slices 4. It gives factor of safety which are on the safe side Of these statements (1) 1, 2 and 3 are correct (2) 1, 2 and 4 are correct (3) 2, 3 and 4 are correct (4) 1, 3 and 4 are correct

70. <kyksa dh fLFkjrk dk fo”ys’k.k djus ds fy, LohfM”k o`Rr fof/k ds

laca/k esa fuEu dFkuksa ij fopkj djsa%

1. ;g <kyksa ds LFkkbZRo dk fo”ys’k.k djus dh lkekU; fof/k gS

2. ;g dsoy larqyu ds lexz vk?kw.kZ lehdj.k dh larqf’V djrh gS

3. ;g vyx&vyx Lykblksa ds ik”oksZa ij dke dj jgs cyksa ij

fopkj djrh gS

4. ;g lqj{kk dk rRo nsrh gS tksfd blds i{k esa gS

(1) 1] 2 rFkk 3 lgh gS (2) 1] 2 rFkk 4 lgh gS (3) 2] 3 rFkk 4 lgh gS (4) 1] 3 vkSj 4 lgh gS

71. A and B are two traverse stations free from local attraction errors. If the true bearing of line AB is 89°, and the magnetic declination at point A is 1° west, then the magnetic bearing of the line BA would be:

(1) 88° (2) 90°(3) 268° (4) 270°

71. A rFkk B nks paØe pkank ¼VªSolZ LVs”ku½ gSa tksfd LFkkuh; vkd’kZ.k

=qfV;ksa ls eqDr gSA ;fn js[kk AB dh okLrfod cs;fjax 89° gS vkSj

fcanq A ij pqacdh; fnDikr 1° if”pe gS rks js[kk BA dh pqacdh; cs;fjax gksxh%

(1) 88° (2) 90°(3) 268° (4) 270°

72. Westergaard’s analysis for stress distribution beneath loaded area is applicable to:

(1) Sandy soils (2) Clayey soils (3) Stratified soils (4) Silty soils

72. Hkkfjr {ks= ds uhps izfrcy forj.k ds fy, osLVjxkMZ fo”ys’k.k fuEu

ij ykxw gksrk gS%

(1) cywbZ e`nk

(2) Hk`fRrdke; e`nk

(3) Lrfjr e`nk

(4) lkne; e`nk

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–10 ]

73. While designing the super-elevation of a highway, its maximum value is fixed considering the need to:

(1) Avoid toppling of slow moving vehicles in mixed traffic flow

(2) Avoid traverse skidding (3) Provide drainage (4) Counteract centrifugal force due to 75% of design speed

73. jktekxZ dk lqij&,syhos”ku rS;kj djrs le; bldk vf/kdre eku

fuEu dh vko”;drk ij fopkj djrs gq, fu/kkZfjr fd;k tkrk gS%

(1) fefJr ;krk;kr izokg esa /kheh xfr ls pyus okys okguksa ds iyV

tkus ls cpuk

(2) okilh fLdfMax ls cpuk

(3) ty fudklh miyC/k djkuk

(4) fMtkbu xfr ds 75% ds dkj.k vidsUnzh cy dk izfrdkj djuk

74. Contour interval on a map sheet denotes: (1) Vertical distance of the contour lines above the datum

plane (2) Vertical distance between two successive contour lines (3) Slope distance between two successive contour lines (4) Horizontal distance between two successive contour

lines

74. ekufp= “khV ij leksPp js[kkarjky n”kkZrk gS%

(1) vk/kkj ry ds Åij leksPp js[kkvksa dh Å/okZ/kj nwjh

(2) nks Øfed leksPp js[kkvksa ds chp Å/okZ/kj nwjh

(3) nks Øfed leksPp js[kkvksa ds chp <ky nwjh

(4) nks Øfed leksPp js[kkvksa ds chp {kSfrt nwjh

75. The deflection at the free end of a cantilever of rectangular cross-section due to certain loading is 0.8cm. If the depth of the section is doubled keeping the width same, then the deflection at the free end of the beam due to the same loading will be:

(1) 0.1 cm (2) 0.4 cm (3) 0.8 cm (4) 1.6 cm

75. vk;rkdkj Økl&lsD”ku ds dSaVhyhoj ds eqDr Nksj ij fdafpr Hkkj.k

ds dkj.k 0-8cm fo{ksi.k gSA ;fn lsD”ku dh pkSM+kbZ ogh j[krs gq,

mldh xgjkbZ nqxquh dj nh tkrh gS rks mlh rjg ds Hkkj.k ds dkj.k

che ds eqDr Nksj ij fo{ksi.k gksxk%

(1) 0.1 cm (2) 0.4 cm (3) 0.8 cm (4) 1.6 cm

76. The aggregates containing moisture in pores and having its surface dry, are known as:

(1) Moist aggregates (2) Dry aggregates (3) Surface dry aggregates (4) Saturated surface dry aggregates

76. ,slk feykok ftlds jU/kzksa esa ueh gks vkSj ftldh lrg “kq’d gks]

dgykrk gS%

(1) vknzZ feykok

(2) “kq’d feykok

(3) “kq’d lrg okyk feykok

(4) lar`Ir “kq’d lrg okyk feykok

77. In the moment area method, the difference in slopes between any two sections of a loaded flexural member is equal to:

(1) Moment of the M/EI diagram between the two sections (2) 1/2 × moment of the M/EI diagram between the two

sections (3) Area of the M/EI diagram between the two sections (4) 1/2 × area of the M/EI diagram between the two sections

77. vk?kw.kZ {ks= fof/k esa fdlh Hkkfjr vkuE;rk lnL; ds fdUgha nks [kaMksa

ds chp <kyksa esa varj fuEu ds cjkcj gS%

(1) nks [kaMksa ds chp M/EI vkjs[k dk vk?kw.kZ

(2) 1/2 × nks [kaMksa ds chp M/EI vkjs[k dk vk?kw.kZ

(3) nks [kaMksa ds chp M/EI vkjs[k dk {ks=Qy

(4) 1/2 × nks [kaMksa ds chp M/EI vkjs[k dk {ks=Qy

78. Blue baby disease may be caused in infants due to drinking water contaminated with high concentration of:

(1) Nitrate (2) Arsenic (3) Phosphate (4) Carbonate

78. f”k”kqvksa esa uhy f”k”kq jksx fuEu ds vR;f/kd ladsUnz.k ls ;qDr ty

lsou ls mRiUu gks ldrk gS%

(1) ukbVªsV

(2) laf[k;k

(3) QkLQsV

(4) dkcksZusV

79. If the head over a triangular notch is doubled, discharge Q will increase to:

(1) 2Q (2) 2. 828Q (3) 5. 657Q (4) 4Q

79. ;fn ,d f=dks.kh; [kkaps ds Åij ds f'k[kj dks nqxuk fd;k tkrk gS

rks fMLpktZ Q c<+sxk%

(1) 2Q rd

(2) 2. 828Q rd

(3) 5. 657Q rd

(4) 4Q rd

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–11 ]

80. A wastewater sample has 5.77 mg/L BOD5 with oxygen consumption rate equal to 0.23units/day. What is the ultimate BOD of this sample?

(1) 0.844 mg/L (2) 7.440 mg/L (3) 8.010 mg/L (4) 8.440 mg/L

80. vif”k’V ty ds ,d uewus esa 0-23 ;wfuV@izfrfnu ds vkDlhtu

miHkksx nj lfgr 5-77 mg/L BOD5 gSA bl uewus dk vafre

BOD D;k gS% (1) 0.844 mg/L (2) 7.440 mg/L (3) 8.010 mg/L (4) 8.440 mg/L

81. In a Lacey regime channel, the discharge is 100 cum/s and the longitudinal slope is0.0002. The silt factor of this channel is about:

(1) 0.71 (2) 1.24 (3) 1.63 (4) 1.76

81. yslh fjthe pSuy esa fu%Llzo.k 100 cum/s gS rFkk vuqnS/;Z <ky 0-0002 gSA bl pSuy dk lkn xq.kkad yxHkx gS% (1) 0.71 (2) 1.24 (3) 1.63 (4) 1.76

82. If wind forces on a building are to be taken into account, an increase in the working stresses for the material is allowed by:

(1) 10% (2) 15% (3) 23. 34% (4) 33. 34%

82. ;fn fdlh Hkou ij iou cyksa dks fy;k tk, rks inkFkZ ds fy,

dk;Z'khy çfrcyksa esa o`f) dh fdrus çfr'kr vuqefr gS%

(1) 10% (2) 15% (3) 23. 34% (4) 33. 34%

83. In a plate girder design, the rivets connecting the flange angles and the flange plates have to be designed for:

(1) Bending stress (2) Single shear (3) Double shear (4) Bending and shear

83. ,d IysV xMZj vfHkdYi esa ¶ysUt dks.kksa vkSj ¶ysUt IysVksa dks tksM+us

okyh fjosVksa dks vfHkdfYir djuk iM+rk gS%

(1) cadu çfrcy ds fy,

(2) ,dy vi:i.k ds fy,

(3) nksgjs vi:i.k ds fy,

(4) cadu vkSj vi:i.k ds fy,

84. The balance reinforcement percentage (1) in the limit state design and the balanced percentage (2) in the working stress design can be compared as below:

(1) A is higher than B (2) A is less than B (3) A and B are equal (4) A is twice that of B

84. lhfer voLFkk vfHkdYi esa lUrqfyr çcyu çfr'krrk ¼A½ rFkk

dk;Z'khy çfrcy vfHkdYi esa lUrqfyr çfr'krrk ¼B½ dh rqyuk

fuEukafdr esa ls fdlls dh tk ldrh gS%

(1) ¼A½] ¼B½ ls mPprj gS (2) ¼A½] ¼B½ ls fuEurj gS (3) ¼A½ vkSj ¼B½ cjkcj gSa (4) ¼A½] ¼B½ ls nqxuk gS

85. The sedimentation method generally used in the field of soil mechanics is:

(1) Successive sedimentation (2) Observation of the amount of sediment per unit

volume at a given point (3) Observation of total sediment soil (4) Observation of the total amount of soil in suspension

above a given elevation.

85. e`nk ;kaf=dh ds {ks= esa vkerkSj ij iz;qDr volkn fof/k gS%

(1) mRrjksRrj volkn

(2) ,d gfjr fcanq ij izfr ;wfuV vk;ru ij volkn dh ek=k dk

izs{k.k

(3) dqy volkn e`nk dk izs{k.k

(4) ,d gfjr mUu;u ij fuyafcr e`nk esa e`nk dh dqy ek=k dk

izs{k.k

86. A unit volume of a mass of saturated soil is subjected to horizontal seepage. The saturated unit weight is 22kN/m3 and the hydraulic gradient is 0.3. The resultant body force on the soil mass is:

(1) 1.98 kN (2) 6.6 kN (3) 11.49 kN (4) 22.19 kN

86. lar`Ir e`nk ds nzO;eku dk ,d ;wfuV vk;ru] vuqizLFk fjlko ds

v/khu j[kk tkrk gSA lar`Ir ;wfuV dk Hkkj 22kN/m3 vkSj tyh;

izo.krk 0.3 gSA e`nk nzO;eku ij ifj.kkeh fiaM cy gS% (1) 1.98 kN (2) 6.6 kN (3) 11.49 kN (4) 22.19 kN

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–12 ]

87. The portal bracing in a trussed bridge is used to:

(1) Stiffen the structure laterally (2) Keep the rectangular shape of bridge cross-section (3) Transfer load from top of end posts to bearings (4) Prevent the sides-way buckling of top chord

87. VªLM fczt esa iksVZy csflax ç;qä fd;k tkrk gS%

(1) lajpuk dks ikf”Zod :i ls pheM+ djus ds fy;s

(2) fczt ØkWl&lsD”ku ds vkdkj dks vk;rkdkj j[kus ds fy;s

(3) Nksj iksLV ds “kh’kZ ls fc;fjax esa Hkkjr LFkkukUrj.k djus ds fy;s

(4) “kh’kZ Nksj ds cadfyax ds lkbZM&ost dks jksdus ds fy;s

88. A coarse aggregate contains particles of about:

(1) 10% passing through 4.75 mm IS sieve (2) 20% passing through 10 mm IS sieve (3) 10% passing through 10 mm IS sieve (4) 10% passing through 2.36 mm IS sieve

88. eksVs feykos esa d.k gksrs gSa yxHkx%

(1) 4.75 mm IS Néh ds ek/;e ls 10% fudyuk

(2) 10 mm IS Néh ds ek/;e ls 20% fudyuk

(3) 10 mm IS Néh ds ek/;e ls 10% fudyuk

(4) 2.36 mm IS Néh ds ek/;e ls 10% fudyuk

89. Mohr’s circle for a direct shear test could be drawn:

(1) At the beginning of the test (2) At the intermediate state of test (3) At the failure state of test (4) At no stage of test

89. izR;{k vi:i.k ijh{k.k ds fy, eksj o`Rr [khapk tk ldrk gS%

(1) ijh{k.k ds “kq: esa

(2) ijh{k.k ds e/; esa

(3) ijh{k.k dh foHkatu voLFkk esa

(4) ijh{k.k dh fdlh Hkh voLFkk esa ugha

90. A triaxial shear test is preferred to direct shear test, because:

(1) It can be performed under all three drainage conditions with complete control

(2) Precise measurement of the pre pressure and change in volume during test, is not possible

(3) Stress distribution on the failure plane is non-uniform (4) None of these

90. izR;{k vi:i.k ijh{k.k dh rqyuk esa ,d f=v{kh; vi:i.k ijh{k.k

dks ojh;rk nh tkrh gS D;ksafd%

(1) bls iw.kZ fu;a=.k ds lkFk lHkh rhu viokg fLFkfr;ksa esa fu’ikfnr

fd;k tk ldrk gS

(2) iwoZ&nkc vkSj ijh{k.k ds nkSjku vk;ru esa cnyko dk ekiu

laHko ugha gS

(3) foHkatu lery ij izfrcy forj.k vleku gksrk gS

(4) buesa ls dksbZ ugha

91. There is a free over fall at the end of a long open channel. For a given flow rate, the critical depth is less than the normal depth. What gradually varied flow profile will occur in the channel of this flow rate?

(1) M1 (2) M2(3) M3 (4) S1

91. ,d nh?kZ [kqyh pSuy ds var esa ,d eqDr fo{kqC/k ty gSA fdlh ,d

izokg nj ds fy, ØkfUrd xgjkbZ lkekU; xgjkbZ dh rqyuk esa de gSA

pSuy esa bl izokg nj dk /khjs&/khjs ifjofrZr izokg izksQkby D;k

gksxk\

(1) M1 (2) M2(3) M3 (4) S1

92. The type of surveying in which the curvature of the earth is taken into account is called:

(1) Geodetic surveying (2) Plane surveying (3) Preliminary surveying (4) Topographical surveying

92. losZ{k.k dh dksfV ftlesa i`Foh dh oØrk dks /;ku esa j[kk tkrk gS

dgykrh gS%

(1) Hkwxf.krh; losZ{k.k

(2) lery losZ{k.k

(3) izkjafHkd losZ{k.k

(4) LFkykd`frd losZ{k.k

93. Most of the turbidity meters work on the scattering Principle. The turbidity value so obtained is expressed in:

(1) CFU (2) FTU (3) JTU (4) NTU

93. vf/kdka”k vkfoyrk ehVj izdh.kZu fl)kar ij dke djrs gSaA bl izdkj

izkIr vkfoyrk eku fuEu esa O;Dr fd;k tkrk gS%

(1) CFU (2) FTU (3) JTU (4) NTU

94. 1 TCU is equivalent to the colour produced by:

(1) 1 mg/L of chloroplatinate ion (2) 1 mg/L platinum ion (3) 1 mg/L Platinum in form of chloroplatinate ion (4) 1 mg/L of organo-chloroplatinate ion

94. 1 TCU fuEu }kjk mRiUu jax ds lerqY; gS% (1) DyksjksIySVhusV vk;u dk 1 mg/L (2) 1 mg/L IySVhue vk;u

(3) DyksjksIySVhusV vk;u ds :i esa 1 mg/L IySVhue (4) vkxsZuks&DyksjksIySVhusV vk;u dk 1 mg/L

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–13 ]

95. If levelling staff is held inclined at a staff station, the reduced level calculated from observation would be:

(1) True R.L. (2) More than true R. L. (3) Less than true R. L. (4) Equal to R. L. of Bench mark

95. ;fn ysofyax LVkQ dks fdlh LVkQ LVs”ku ij vkur j[kk tkrk gS rks

izs{k.k ls ifjdfyr lekuhr Lrj gksxk%

(1) “kq) RL (2) “kq) RL ls vf/kd

(3) “kq) RL ls de (4) csapekdZ ds RL ds cjkcj

96. Parallax bar is used to measure:

(1) Parallax (2) Parallax difference (3) Difference in elevation (4) Reduced level of a point

96. iSjsySDl NM+ dk iz;ksx fuEu ekius ds fy, fd;k tkrk gS%

(1) iSjsysDl

(2) iSjsysDl varj

(3) mUu;u esa varj

(4) fdlh fcanq dk ?kVk gqvk Lrj

97. The soil most susceptible to liquefaction are:

(1) Saturated dense soil (2) Saturated fine and medium sands of Uniform particle

size (3) Saturated clay of Uniform size (4) Saturated gravels and cobbles

97. ,slh e`nk ftlesa nzo.k dh lokZf/kd izo`fRr gS] gS%

(1) lar`Ir la?kfur e`nk

(2) ,d lEeku d.k okys lar`Ir ifjLÑr ,oa e/;e jsr

(3) ,d leku vkdkj okys lar`Ir e`nk

(4) lar`Ir xzsoy ,oa dkcYl

98. Apart from inertia force, which of the following force is most important in motion of submarines under water?

(1) Viscous force (2) Gravity force (3) Compressive force (4) Surface tension force

98. ty ds uhps iuMqCch ds lapyu ds fy, tM+Ro cy ds vykok fuEu

esa ls dkSu&lk cy lokZf/kd egRoiw.kZ gS\

(1) “;kurk cy

(2) xq#rk cy

(3) laihMu cy

(4) lrgh ruko cy

99. Torsion resisting capacity of a given RC section:

(1) Decreases with decrease in stirrup spacing (2) Decreases with increase in longitudinal bars (3) Is not a function of the flexural steel percentage (4) Increases with decrease in stirrup spacing

99. ,d fn, x, vkj-lh- lsD'kudh ejksM+ çfrjks/kd {kerk%

(1) jdkc Lisflax esa deh ds lkFk ?kVrh gSA

(2) vuqnS?;Z NM+ksa esa o`f) ds lkFk ?kVrh gSA

(3) vkueu bLikr çfr'kr dk Qyu ugha gSA

(4) jdkc Lisflax esa deh ds lkFk c<+rh gSA

100. If turbidity removal is the only objective of a water treatment plant, it should have following units in sequence:

(1) Aeration, coagulation, flocculation and chlorination (2) Rapid sand filter and chlorination (3) Zeolite treatment and chlorination (4) Rapid mixing, flocculator, settling tank and filter

100. ;fn xanykiu gVkuk gh ty mipkj la;a= dk ,d ek= mís'; gS rks bls fuEukafdr bdkb;ksa dks buesa ls fdl Øe esa j[kuk pkfg,%

(1) okru] Ldanu] Å.kZu vkSj Dyksjhuhdj.k

(2) Rofjr ckyw fQYVj rFkk Dyksjhuhdj.k

(3) T;ksykbV mipkj rFkk Dyksjhuhdj.k

(4) 'kh?kz feJ.k] Å.kZd vkSj Vadh o fQYVj dks lsV djuk

101. The bearing pressure distribution under a footing resting on sand will be:

(1) Uniform throughout (2) More at the edges as compared to that at the middle (3) Unpredictable (4) Less at the edges as compared to that at the middle

101. jsr ij fVdh uhao ds uhps fc;fjax nkc forj.k gksxk% (1) vk|ksikUr ,d tSlk

(2) e/; Hkkx dh rqyuk esa fdukjksa ij vf/kd

(3) dgk ugha tk ldrk

(4) e/; Hkkx dh rqyuk esa fdukjksa ij de

102. The clear dimension of a R. C. slab are 3.0m × 6. 0m. The effective depth of the slab is 120 mm. The slab is to be designed as:

(1) One way (2) Two way (3) One way continuous (4) Two way continuous

102. ,d vkj-lh- Lysc dk Li"V foLrkj 3.0m × 6.0m gSA Lysc dh

çHkkoh xgjkbZ 120 mm gSA Lysc dks buesa ls fdl :i esa

vfHkdfYir djuk gS%

(1) ,d ekxÊ

(2) nks ekxÊ

(3) lrr ,d ekxÊ

(4) lrr nks ekxÊ

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–14 ]

103. Which of the following is Froud Number:

(1) force Gravityforce Inertia (2)

force Viscousforce Inertia

(3) force Pressure

force Inertia (4) None of these

103. fuEufyf[kr esa ls dkSu&lk ,d ÝkmM ¼Froud Number½ la[;k gS%

(1) force Gravityforce Inertia (2)

force Viscousforce Inertia

(3) force Pressure

force Inertia (4) buesa ls dksbZ ugha

104. Sum of all the interior angles of a traverse with ‘n’ number of sides is:

(1) (2n – 4) right angles (2) (2n + 4) right angles (3) (4n – 2) right angles (4) (4n + 2) right angles

104. Hkqtkvksa dh ^n* la[;k lfgr ,d vuqçLFk ds vUn:uh dks.kksa dk ;ksx

gksrk gS

(1) (2n – 4) ledks.k (2) (2n + 4) ledks.k (3) (4n – 2) ledks.k (4) (4n + 2) ledks.k

105. The optimum moisture content of a soil is determined by:

(1) Standard Penetration Test (2) Standard Proctor Test (3) Triaxial Test (4) None of these

105. e`nk dh vuqdwyre vkæZrk rRo fdlds }kjk fu/kkZfjr dh tkrh gS%

(1) ekud isUVªs”ku VsLV

(2) ekud çkWDVj VsLV

(3) VªkbZ,sfDl;y VsLV

(4) buesa ls dksbZ ugha

106. Goldbeck’s expression for stress due to corner load is:

(1) Sc = 3P/h2 (2) Sc = 4P/h2

(3) Sc = 5P/h2 (4) Sc = 6P/h2

Where P = corner load assumed as a concentrated point load h = thickness of slab

106. fdukjs Hkkjksa ds dkj.k gsrq xksYMcsd vfHkO;fä gksrh gS%

(1) Sc = 3P/h2

(2) Sc = 4P/h2

(3) Sc = 5P/h2

(4) Sc = 6P/h2

tgk¡ P = fdukjs Hkkj dks ldsfUær fcUnq Hkkj ekuk tkrk gS h = LySc dh eksVkbZ

107. Web crippling generally occurs at the point where:

(1) Bending moment is maximum (2) Shear force is minimum (3) Deflection is maximum (4) Concentrated load acts

107. osc fØifyax lk/kkj.kr;k ml fcUnq ij ?kfVr gksrk gS tgk¡% (1) cadu eksesUV vf/kdre gksrk gS

(2) vi:i.k cy U;wure gksrk gS

(3) fo{ksi vf/kdre gksrk gS

(4) ldsfUær Hkkj dk;Zjr gksrk gS

108. The buckling load in a steel column is:

(1) Related to length (2) Non linear but related to slenderness ratio (3) Inversely proportional to slenderness ratio (4) Directly proportional to slenderness ratio

108. LVhy LrEHkksa esa cdfyax Hkkj gksrk gS% (1) yEckbZ ls lEcfU/kr

(2) xSj&jSf[kr ijUrq flys.Mjusl vuqikr ls lEcfU/kr

(3) flys.Mjusl vuqikr O;qRØeh; vuqikfrd

(4) flys.Mjusl vuqikr ds çR;{kr% vuqikfrd

109. In case of ductile materials “Necking” begins at:

(1) Lower yield point (2) Upper yield point (3) Elastic limit point (4) Ultimate point

109. rU; inkFkks± esa ^Necking* vkjEHk gksrk gS%

(1) fuEu ;hYM fcUnq ij

(2) mPp ;hYM fcUnq ij

(3) çR;kLFk lhek fcUnq ij

(4) pje fcUnq ij

110. Which of the columns has the maximum equivalent length?

(1) Both ends hinged (2) Both ends fixed (3) One end fixed and other end hinged (4) One end fixed and other end free

110. fuEu esa ls dkSu&lk LrEHk vf/kdre led{k yEckbZ j[krk gS%

(1) ftlds nksuksa fljs fgfUtr gksrs gSa

(2) ftlds nksuksa fljs LFkkbZ gksrs gSa

(3) ,d fljk LFkkbZ ,oa nwljk fljk fgfUtr gksrk gS

(4) ,d fljk LFkkbZ ,oa nwljk fljk eqä gksrk gS

111. If ‘L’ is the span of a T beam, its effective depth for light loads is taken as:

(1) L/5 (2) L/10 (3) L/15 (4) L/20

111. ;fn T che dk LiSe L gks rks gYds Hkkj gsrq bldh çHkkoh xgjkbZ fuEu yh tk;sxh%

(1) L/5 (2) L/10 (3) L/15 (4) L/20

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–15 ]

112. For a cantilever shown in the following figure, the maximum bending moment will be:

(1) 30 kN-m (2) 50 kN-m (3) 100 kN-m (4) 200 kN-m

112. fp= esa n”kkZ;s x, /kju gsrq vf/kdre cadu eksesUV gksxk%

(1) 30 kN-m (2) 50 kN-m (3) 100 kN-m (4) 200 kN-m

113. For a two-hinged arch, if one of the supports settles down vertically, then the horizontal thrust will:

(1) Increase (2) Decrease (3) Remains unaffected (4) Be zero

113. ,d nks fgfUtr vkdZ ds fy;s ;fn ,d liksVZ Å/okZ/kj :i ls lsVy

gks tkrh gS] rks {kSftr FkzLV gksxk%

(1) c<+sxk

(2) ?kVsxk

(3) vçokfgr jgsxk

(4) “kwU; gksxk

114. The slipping of steel bars in concrete is resisted by:

(1) Frictional resistance (2) Mechanical resistance (3) Adhesion (4) All of these

114. daØhV esa LVhy NM+ksa dh fQlyu dk fuEu }kjk çfrjks/k fd;k tkrk gS%

(1) ?k’kZ.kh; çfrjks/k (2) ;kaf=d çfrjks/k (3) laltdrk (4) mi;qZä lHkh

115. Which of the following is the basic form of a pin-jointed frame:

(1) Triangle (2) Rectangle (3) Trapezium (4) None of these

115. fiu&Tokb±UVsM Ýse dk ekSfyd Lo:i dkSu&lk gS% (1) f=Hkqt (2) vk;rh;

(3) Vªsisft+;e (4) buesa ls dksbZ ugha

116. Following are two statements:

i. “Asphalt is a byproduct of bitumen” ii. “Plywood is obtained from bamboo”

(1) Statement (i) only is true (2) Statement (ii) only is true (3) Both statements are true (4) Both statements are false

116. fuEufyf[kr nks dFku gSa% i. ^,tQkYV fcVqfeu dk mi&mRikn gS*

ii. ^IykbZoqM ckal ls çkIr fd;k tkrk gS*

(1) dFku i dsoy lR; gS (2) dFku ii dsoy lR; gS (3) nksuksa dFku lR; gSa

(4) nksuksa dFku vlR; gSa

117. In a kingpost truss:

(1) Only one vertical post is provided (2) At least two vertical posts are provided (3) At least three vertical posts are provided (4) None of these

117. fdaxiksLV Vªl esa% (1) dsoy ,d Å/okZ/kj iksLV çnku fd;k tkrk gS

(2) dsoy de ls de nks Å/okZ/kj iksLV çnku fd;s tkrs gSa

(3) dsoy de ls de rhu Å/okZ/kj iksLV çnku fd;s tkrs gSa

(4) buesa ls dksbZ ugha

118. Which of the following water quality parameters is related to Silica scale:

(1) Color (2) Taste (3) Odor (4) Turbidity

118. fuEufyf[kr esa ls dkSu&lh ty xq.koÙkk çkapy flfydk Ldsy ls

lEcfU/kr gS%

(1) jax (2) Lokn (3) nqxZU/k (4) xUnykiu

119. Which of the following is not used as flow measuring device:

(1) Orifice (2) Mouthpiece (3) Weir (4) Manometer

119. fuEufyf[kr esa ls dkSu ,d çokg ekiu ;a= ugha gS% (1) vkWfjfQl (2) ekmFkihl (3) oh;j (4) eSuksehVj

120. Navier stokes equation is used in the analysis of:

(1) Viscous flow (2) Non-viscous flow (3) Turbulent flow (4) Rotational flow

120. usfo;j LVkWd lehdj.k fuEu ds fo”ys’k.k esa ç;qä gksrk gS%

(1) “;ku çokg

(2) xSj&”;ku çokg

(3) {kqCn çokg

(4) ?kw.kÊ; çokg

PAPER – II_Civil [ 9 6 3 3 2 8 ] MTFCX5 [ A–16 ]

bl iqfLrdk ij dqN Hkh fy[kus ls igys fuEufyf[kr funsZ'k /;kuiwoZd i<+sa

egRoiw.kZ%& fuEufyf[kr funsZ'k /;kuiwoZd i<+saA vius ç”uksa ds mÙkj ç”u&iqfLrdk esa u yxk,a vU;Fkk p;u çfØ;k ls vkidh ik=rk oafpr dj

nh tk;sxhA 1. viuk mÙkj fy[kuk çkjEHk djus ls igys viuh ç'u iqfLrdk dh Hkyh&Hkk¡fr tk¡p dj ysa] ns[k ysa fd blesa 120 ç'u gSaA çR;sd ç'u

iqfLrdk dh fljht fHké gksxh ¼ç”u&iqfLrdk la[;k ,oa ç”u&iqfLrdk fljht dk la;kstu½A vkidks OMR mÙkj if=dk ij lgh ç'u&iqfLrdk

fljht ,oa ç”u&iqfLrdk la[;k fy[kuk gSA iqu% ;g Hkh ij[k ysa fd blesa fçafVax laca/kh vFkok vU; fdLe dh dksbZ deh ugha gSA ;fn fdlh

çdkj dh dksbZ deh gks rks i;Zos{kd dks lwfpr djsa vkSj ç”u&iqfLrdk cnydj ,d u;h iqfLrdk ,oa ,d u;h OMR ysaA bl lanHkZ esa

fdlh Hkh çdkj dh dksbZ f'kdk;r ij ckn esa dksbZ fopkj ugha fd;k tk,xkA

egRoiw.kZ uksV% vks-,e-vkj- mÙkj if=dk vH;FkÊ ds ç”u&iqfLrdk fljht ,oa ç”u&iqfLrdk la[;k ds la;kstu ls ewY;kafdr dh tk;sxhA

vr% vkidks vks-,e-vkj- mÙkj if=dk ij lgh ç”u&iqfLrdk fljht ,oa ç”u&iqfLrdk la[;k fy[kuh pkfg,A buesa ls fdlh ,d esa Hkh

xyrh gksus ij vkidh vks-,e-vkj- mÙkj if=dk fujLr gks ldrh gSA vks-,e-vkj- mÙkj if=dk esa ç”u&iqfLrdk la[;k ,oa

ç”u&iqfLrdk fljht ugha Hkjus ij vH;FkÊ ds mÙkj if=dk dk ewY;kadu ugha fd;k tk;sxk ftldh ftEesnkjh Lor% vH;FkÊ dh gksxhA

2. ç”u i= f}Hkk’kh; ¼fgUnh ,oa vaxzsth½ esa gSA fgUnh laLdj.k esa fdlh Hkh fHkérk gksus ij ewY;kadu ds fy, vaxzsth laLdj.k dks vfUre ekuk

tk;sxkA

3. lqfuf”pr djsa fd vkids ços”k&i= ,oa vks-,e-vkj “khV dks vkids }kjk ,oa d{k fujh{kd ds }kjk gLrk{kj fd;k x;k gSA ;fn gLrk{kj

ugha fd;k@djok;k x;k gS rks ik=rk fujLr gks tk;sxhA

4. lHkh cgq&fodYi ç”uksa ds 1 vad gSaA vuqÙkfjr ç”uksa ds fy, u rks dksbZ vad fn;k tk,xk vkSj u gh dkVk tk,xkA çR;sd mÙkj ds fy,

dsoy ,d vksoy dks dkyk djsaA ;fn vki ,d ls T;knk vksoy dkyk djrs gSa ;k ,d ls T;knk vksoy ij dksbZ LVªs ekDZl feyrk gS] ,sls

vksoy ds fy, dksbZ vad ugha feysxkA

5. ;g ,d oLrqijd fdLe dh ijh{kk gS ftlesa çR;sd ç'u ds uhps Øekad (1) ls (4) rd pkj çLrkfor mÙkj fn;s gSaA vkids fopkj esa

tks Hkh mÙkj lgh@loZJs"B gS mldks vks-,e-vkj- mÙkj i= esa fn;s funsZ'k ds vuqlkj fpfUgr dhft,A vius mÙkj ç'u iqfLrdk esa u

yxk,A 6. vks-,e-vkj- mÙkj if=dk ij lHkh dk;ks± ds fy, uhys@dkys ckWy Iokb±V isu ls fy[ksaA vks-,e-vkj mÙkj if=dk ij vksoy dks iw.kZ :i

ls dsoy uhys@dkys ckWy Iokb±V isu ls HkjsaA ,d ckj fn, x, mÙkj dks cnyk ugha tk ldrkA mÙkj dh dfVax ,oa vksojjkbZfVax dh

vuqefr ugha gSA 7. dsYdqysVj] LykbM:y] eksckbZy] dsYdqysVj ?kfM+;k¡ ;k bl çdkj dh dksbZ Hkh ;qfä ,oa fdlh Hkh v/;;u@lanHkZ lkexzh vkfn dk ç;ksx

ijh{kk d{k esa oftZr gS ,oa nUMuh; vijk/k gSA 8. jQ+ dk;Z iqfLrdk esa fdlh Hkh [kkyh LFkku esa fd;k tkuk pkfg,] vks-,e-vkj- mÙkj if=dk ij dksbZ Hkh jQ+ dk;Z u djsaA fdlh vU;

dkx+t ij bls djus dh vuqefr ugha gSA 9. ijh{kk dh lekfIr ds i'pkr~ viuh mÙkj&if=dk ¼OMR½ i;Zos{kd dks lkSai nsaA vks-,e-vkj- ¼OMR½ mÙkj&if=dk dks ijh{kk d{k ls

ckgj ys tkuk oftZr gS ,slk djuk nUMuh; vijk/k gSA ijh{kkFkÊ ijh{kk ds mijkUr viuk ç”u&i= ys tk ldrk gSA