Timber Design Using Eurocode

Embed Size (px)

Citation preview

  • 7/25/2019 Timber Design Using Eurocode

    1/119

    Seminar on

    Sustainable Future through

    Timber Design

    UITM, Dec. 16.12.2014

    Simon Aicher

    Design Timber Structures

    usingEurocode 5

    Page 1 of 119

  • 7/25/2019 Timber Design Using Eurocode

    2/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

    Contents of lecture

    2

    Basics of permissible stress and

    semi-probabilistic partial factor concept

    Interrelationship of

    - Eurocodes,

    - harmonized (timber) product standards,

    - classification standards, calculation standards and

    - test test standards

    Basics of Eurocode 5 structure and contents

    Design example: straight glulam beam (EC 5 vs. permissible concept)

    Design example: curved glulam beam (EC 5 vs. permissible concept)

    Page 2 of 119

  • 7/25/2019 Timber Design Using Eurocode

    3/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 3

    Page 3 of 119

  • 7/25/2019 Timber Design Using Eurocode

    4/119

    100 years old

    glulam beams,

    train repair hall,

    Bellinzona, ItalyPage 4 of 119

  • 7/25/2019 Timber Design Using Eurocode

    5/119

    Olympic Ice rink

    Hammar, Norway,

    1994

    glulam truss beams,

    span:97m

    Page 5 of 119

  • 7/25/2019 Timber Design Using Eurocode

    6/119

    Manufacture of timber parasols for Expo 2000, Hannover

    Page 6 of 119

  • 7/25/2019 Timber Design Using Eurocode

    7/119

    Page 7 of 119

  • 7/25/2019 Timber Design Using Eurocode

    8/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 8

    HESS Limitless Verbindung (22)

    Page 8 of 119

  • 7/25/2019 Timber Design Using Eurocode

    9/119

  • 7/25/2019 Timber Design Using Eurocode

    10/119

    7-storey timber

    building, Berlin, 2011Page 10 of 119

  • 7/25/2019 Timber Design Using Eurocode

    11/119

    10-storey timber

    building, Melbourne,

    Australia 2013Page 11 of 119

  • 7/25/2019 Timber Design Using Eurocode

    12/119

    Eurocodes and supporting product and test standards

    Eurocodes regulate design of timber, steel, concrete structures

    in conjunction with national application documents but give

    no provisions on material properties

    Harmonized product standards regulate material properties of

    harmonized building products (e.g. not adhesives) such as

    EN 14080 glulam

    EN 14081-1 solid timber in conjunction with national grading rules

    and classification standard EN 1912 and strength class standardEN 338

    EN 15497 finger jointed lumber

    EN 16351 cross laminated timber

    EN 14374 LVL

    EN 13986 panel products in conjunction with product / production standards, e.g.

    EN 300 for OSB

    Test standards, e.g. EN 408, EN 789,..

    Calculation standards, e.g. EN 14358 on characteristic values

    Page 12 of 119

  • 7/25/2019 Timber Design Using Eurocode

    13/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

    Permissible stress concept

    13

    act = 95acting loads, hence resulting section forces E and stresses

    represent in general 95% quantiles of the distributions

    Design verification

    act

    permissible

    where in case of structural timber (roughly)

    permissible = f50/3

    f50 mean value of strength

    Page 13 of 119

  • 7/25/2019 Timber Design Using Eurocode

    14/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

    Semiprobabilistic design concept with partial factors

    14

    act = 95as in permissible stress concept the loads / section forces/ stress

    distributions represent 95% quantiles of the distributions

    Design verificationd fd

    d design stress fd design strength

    d = act L

    L partial factor for load (1,5 for live load; 1,35 for perm. load)

    fd = fk kmod/ M

    fk characteristic strength property (5% quantile)

    kmod modification factor (time, climate)

    M

    partial factor for strength (material dependant; 1,1 to 1,3)Page 14 of 119

  • 7/25/2019 Timber Design Using Eurocode

    15/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

    Semiprobabilistic vs. permissible stress design concept

    15

    act

    d = act L= act 1,5 fd=

    L = 1,5 partial factor for loadf05= f50(1 - 1,64 COV)

    assuming COV = 0,12

    f05= f50(1 0,2) = f50 / 1,25

    f05 kmod f50 kmod

    M

    1,25 M

    with M = 1,3 and kmod= 0,8

    f05 kmod f50 0,8

    M 1,25 1,3

    =

    = f50

    2f05 kmod f50

    M=

    f50

    2 1,5

    =f50

    3= permissible

    2

    Page 15 of 119

  • 7/25/2019 Timber Design Using Eurocode

    16/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 16

    Graphical illustration of semiprobabilistic design concept

    Probability

    densityms

    fs

    ms 95

    ms 95 s kmod mR 05 / R

    kmod mR 05

    kmod mR

    fR

    R, s

    =

    z = mz= kmod mR - ms

    fz

    pf = 10-6

    Page 16 of 119

  • 7/25/2019 Timber Design Using Eurocode

    17/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 17

    Eurocode 5: Design of Timber Structures Part 1-1

    Page 17 of 119

  • 7/25/2019 Timber Design Using Eurocode

    18/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 18

    Structural Eurocode Program comprises

    Page 18 of 119

    S f

  • 7/25/2019 Timber Design Using Eurocode

    19/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 19

    Scope of EN 1995

    Page 19 of 119

    St t f E d 5 ( EN 1995)

  • 7/25/2019 Timber Design Using Eurocode

    20/119Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 20

    Structure of Eurocode 5 ( = EN 1995)

    Page 20 of 119

    S bj t / T i f EN 1995 1 1

  • 7/25/2019 Timber Design Using Eurocode

    21/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 21

    Subjects / Topics of EN 1995-1-1

    Page 21 of 119

    N ti R f

  • 7/25/2019 Timber Design Using Eurocode

    22/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 22

    Normative References

    Page 22 of 119

    N ti R f ( ti d)

  • 7/25/2019 Timber Design Using Eurocode

    23/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 23

    Normative References (continued)

    Page 23 of 119

    N ti R f ( ti d)

  • 7/25/2019 Timber Design Using Eurocode

    24/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 24

    Normative References (continued)

    Page 24 of 119

  • 7/25/2019 Timber Design Using Eurocode

    25/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 25Page 25 of 119

    S ti 2 f EC 5 B i f d i

  • 7/25/2019 Timber Design Using Eurocode

    26/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 26

    Section 2 of EC 5: Basis of design

    Page 26 of 119

    Section 2 2 of EC 5: Principles of limit state design

  • 7/25/2019 Timber Design Using Eurocode

    27/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 27

    Section 2.2 of EC 5: Principles of limit state design

    Page 27 of 119

    2 2 2 Ultimate limit states

  • 7/25/2019 Timber Design Using Eurocode

    28/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 28

    2.2.2 Ultimate limit states

    Page 28 of 119

    2 2 3 Serviceability limit states

  • 7/25/2019 Timber Design Using Eurocode

    29/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 29

    2.2.3 Serviceability limit states

    Page 29 of 119

    2 2 3 Serviceability limit states

  • 7/25/2019 Timber Design Using Eurocode

    30/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 30

    2.2.3 Serviceability limit states

    Page 30 of 119

    2 3 Basic variables

  • 7/25/2019 Timber Design Using Eurocode

    31/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 31

    2.3 Basic variables

    Page 31 of 119

    2 3 1 2 Load duration classes

  • 7/25/2019 Timber Design Using Eurocode

    32/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 32

    2.3.1.2 Load-duration classes

    Page 32 of 119

    2 3 1 2 Load duration classes

  • 7/25/2019 Timber Design Using Eurocode

    33/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 33

    2.3.1.2 Load-duration classes

    Page 33 of 119

    2 3 1 3 Service classes

  • 7/25/2019 Timber Design Using Eurocode

    34/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 34

    2.3.1.3 Service classes

    Page 34 of 119

    2 3 2 Materials and product properties

  • 7/25/2019 Timber Design Using Eurocode

    35/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 35

    2.3.2 Materials and product properties

    Page 35 of 119

    2 3 2 Materials and product properties

  • 7/25/2019 Timber Design Using Eurocode

    36/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 36

    2.3.2 Materials and product properties

    Page 36 of 119

    2 4 Verification by the partial factor method

  • 7/25/2019 Timber Design Using Eurocode

    37/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 37

    2.4 Verification by the partial factor method

    5%- quantile value (lognormal dist.)

    Page 37 of 119

    Recommended partial factors M for material properties

  • 7/25/2019 Timber Design Using Eurocode

    38/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 38

    Recommended partial factors Mfor material properties

    EC 5 Table 2.3

    Page 38 of 119

    2 4 2 Design values of geometrical data

  • 7/25/2019 Timber Design Using Eurocode

    39/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 39

    2.4.2 Design values of geometrical data

    Page 39 of 119

    2 4 2 Design value of a resistance

  • 7/25/2019 Timber Design Using Eurocode

    40/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 40

    2.4.2 Design value of a resistance

    Example: Rk= Xk relevant cross-sectional quantity

    Page 40 of 119

    EC 5 Section 3 Materials properties

  • 7/25/2019 Timber Design Using Eurocode

    41/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 41

    EC 5 Section 3 Materials properties

    Page 41 of 119

    3.1.3/4 Strength and deformation modification factors

  • 7/25/2019 Timber Design Using Eurocode

    42/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 42

    3.1.3/4 Strength and deformation modification factors

    Page 42 of 119

    EC 5 Table 3.1 Strength modification values kmod

  • 7/25/2019 Timber Design Using Eurocode

    43/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 43

    C 5 ab e 3 S e g od ca o a ues mod

    Page 43 of 119

    EC 5 Table 3.1 Strength modification values kmod

  • 7/25/2019 Timber Design Using Eurocode

    44/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 44

    g mod

    (continued)

    Page 44 of 119

    Strength modification values kmod = f( time; moisture)

  • 7/25/2019 Timber Design Using Eurocode

    45/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 45

    Accumulated duration of load [hours]

    St

    rengthmodif

    icationfactor

    kmod

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    .001

    0.01 0.

    1 1 10 100

    1000

    1000

    0

    1000

    00

    1000

    000

    1 min 1 Woche 6 Monate 10 Jahre 50 Jahre

    sehr kurz kurz mittel lang stndig

    Nutzungsklasse 1/2

    Nutzungsklasse 3

    Madison-Kurve

    g mod ( ; )

    Service class 1 and2

    Service class 3

    shortvery

    shortmedium long permanent

    short 1 week 6 months 10 years 10

    years

    Page 45 of 119

    EC 5 Table 3.2 Deformation modification values kdef

  • 7/25/2019 Timber Design Using Eurocode

    46/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 46

    def

    Page 46 of 119

    EC 5 Table 3.2 Deformation modification values kdef

  • 7/25/2019 Timber Design Using Eurocode

    47/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 47

    def

    (continued)

    Page 47 of 119

    EC 5 3.2: Solid timber

  • 7/25/2019 Timber Design Using Eurocode

    48/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 48

    EN 15497Page 48 of 119

    EC 5 3.3: Glued laminated timber

  • 7/25/2019 Timber Design Using Eurocode

    49/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 49

    Page 49 of 119

    EC 5 3.3: Glued laminated timber

  • 7/25/2019 Timber Design Using Eurocode

    50/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 50

    EN 14080Now large finger joints are directly regulated in the

    harmonized product standard for glulam,

    Page 50 of 119

    Example of large finger joint (single joint line)

  • 7/25/2019 Timber Design Using Eurocode

    51/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 51

    p g g j ( g j )

    Page 51 of 119

    Example of large finger joint (two joint lines)

  • 7/25/2019 Timber Design Using Eurocode

    52/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 52

    p g g j ( j )

    Page 52 of 119

    Example of large finger joint (two joint lines)

  • 7/25/2019 Timber Design Using Eurocode

    53/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 53

    p g g j ( j )

    Page 53 of 119

    EC 5 3.3: Glued laminated timber

  • 7/25/2019 Timber Design Using Eurocode

    54/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 54Page 54 of 119

    EC 5 3.4: Laminated veneer lumber (LVL)

  • 7/25/2019 Timber Design Using Eurocode

    55/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 55Page 55 of 119

    EC 5 3.4: Laminated veneer lumber (LVL)

  • 7/25/2019 Timber Design Using Eurocode

    56/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 56Page 56 of 119

    EC 5 3.5: Wood-based panels

  • 7/25/2019 Timber Design Using Eurocode

    57/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 57Page 57 of 119

    EC 5 3.6: Adhesives

  • 7/25/2019 Timber Design Using Eurocode

    58/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 58

    Note: As permissible structural adhesive families and respective classifications have

    been profoundly changed in conjunction with introduction of one-component

    Polyurethane (1K-PU) and polymer isocyanate (EPI) adhesives according to EN 15425

    and EN 16351 principle P (2) is no more throughout valid because of EPI definitions.

    Page 58 of 119

    EC 5 3.7: Metal fasteners

  • 7/25/2019 Timber Design Using Eurocode

    59/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 59Page 59 of 119

    EC 5 Section 4: Durability

  • 7/25/2019 Timber Design Using Eurocode

    60/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 60Page 60 of 119

    EC 5 Section 4: Durability

  • 7/25/2019 Timber Design Using Eurocode

    61/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 61Page 61 of 119

    EC 5 Section 4: Durability

  • 7/25/2019 Timber Design Using Eurocode

    62/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 62Page 62 of 119

    EC 5 Table 4.1 Corrosion protection of fasteners

  • 7/25/2019 Timber Design Using Eurocode

    63/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 63Page 63 of 119

    EC 5 - Section 5: Basis of structural analysis

  • 7/25/2019 Timber Design Using Eurocode

    64/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 64Page 64 of 119

    5.2 Members

  • 7/25/2019 Timber Design Using Eurocode

    65/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 65Page 65 of 119

    5.4 Assemblies

  • 7/25/2019 Timber Design Using Eurocode

    66/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 66Page 66 of 119

    5.4 Assemblies

  • 7/25/2019 Timber Design Using Eurocode

    67/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 67Page 67 of 119

    5.4.2 Frame structures

  • 7/25/2019 Timber Design Using Eurocode

    68/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 68Page 68 of 119

    5.4.4 Plane frames and arches

  • 7/25/2019 Timber Design Using Eurocode

    69/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 69Page 69 of 119

    Examples of assumed initial geometry deviations

  • 7/25/2019 Timber Design Using Eurocode

    70/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 70

    geometry of

    frames

    initial geometry

    deviation corresponding

    to symmetrical load

    initial geometry

    deviation correspondingto non-symmetrical load

    Page 70 of 119

    EC 5 - Section 6: Ultimate limit states

  • 7/25/2019 Timber Design Using Eurocode

    71/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 71Page 71 of 119

    Tension

  • 7/25/2019 Timber Design Using Eurocode

    72/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 72

    6.1.2 Tension parallel to the grain

    6.1.2 Tension perpendicular to the grain

    Page 72 of 119

    Compression

  • 7/25/2019 Timber Design Using Eurocode

    73/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 73

    6.1.4 Compression parallel to the grain

    Page 73 of 119

    Compression 6.1.4 Compression perpendicular to the grain

  • 7/25/2019 Timber Design Using Eurocode

    74/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 74

    c,90,d is the design compressive stress in the effective contact areaperpendicular to the grain;

    Fc,90,d is the design compressive load perpendicular to the grain;

    Aef is the effective contact area in compression perpendicular to

    the grain;

    Fc,90,d is the design compressive strength perpendicular to thegrain;

    kc,90 is a factor taking into account the load configuration, the

    possibility of splitting and the degree of compressive

    deformation.

    where

    Page 74 of 119

    Compression 6.1.4 Compression perpendicular to the grain

  • 7/25/2019 Timber Design Using Eurocode

    75/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 75

    The effective contact area perpendicular to the grain, Aef, should be determined taking into

    account an effective contact length parallel to the grain, where the actual contact length, , ateach side is increased by 30 mm, but not more than a, or 1/2, see Figure 6.2.

    2. The value of kc,90 should be taken as 1,0 unless the conditions in the following paragraphs

    apply. In these cases the higher value of kc,90specified may be taken, with a limiting value

    of kc,90= 1,75.

    3. For members on continuous supports, provided that 1 2h, see Figure 6.2a, the value

    of kc,90 should be taken as:

    kc,90= 1,25 for solid softwood timber

    kc,90

    = 1,5 for glued laminated softwood timber

    where h is the depth of the member and is the contact length.

    Page 75 of 119

    Compression 6.1.4 Compression perpendicular to the grain

  • 7/25/2019 Timber Design Using Eurocode

    76/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 76

    4. For members on discrete supports, provided that 1 2h, see Figure 6.2b, the value of kc,90

    should be taken as:

    kc,90= 1,5 for solid softwood timber

    kc,90= 1,75 for glued laminated softwood timber provided that I 400 mm

    where h is the depth of the member and is the contact length.

    Page 76 of 119

    6.1.6 Bending

  • 7/25/2019 Timber Design Using Eurocode

    77/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 77Page 77 of 119

    6.1.6 Bending

  • 7/25/2019 Timber Design Using Eurocode

    78/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 78Page 78 of 119

    6.1.7 Shear

  • 7/25/2019 Timber Design Using Eurocode

    79/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 79Page 79 of 119

    6.1.7 Shear (crack factor issue)

  • 7/25/2019 Timber Design Using Eurocode

    80/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 80

    kcr= 0,67 for solid timber

    kcr= 0,67 for glued laminated timber

    kcr= 1,0 for other wood-based products in

    accordance with EN 13986 and EN

    14374.

    2. For the verification of shear resistance of members in bending, the influence

    of cracks should be taken into account using an effective width of the member

    given as:

    bef= kcrb

    where b is the width of the relevant section of the member.

    NOTE: The recommended value for kcris given as

    Page 80 of 119

    6.1.7 Shear

  • 7/25/2019 Timber Design Using Eurocode

    81/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 81Page 81 of 119

    6.1.8 Torsion

  • 7/25/2019 Timber Design Using Eurocode

    82/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 82Page 82 of 119

    6.2.2 Compression stresses at an angle to grain

  • 7/25/2019 Timber Design Using Eurocode

    83/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 83Page 83 of 119

    6.2.3 Combined bending and axial tension

  • 7/25/2019 Timber Design Using Eurocode

    84/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 84Page 84 of 119

    6.2.3 Combined bending and axial compression

  • 7/25/2019 Timber Design Using Eurocode

    85/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 85Page 85 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    86/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 86Page 86 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    87/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 87

    Figure 6.8 Single tapered beam

    Page 87 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    88/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 88Page 88 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    89/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 89Page 89 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    90/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 90Page 90 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    91/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 91

    (a)

    Figure 6.9 Double tapered (a) and curved (b) beams with the fibre direction parallel

    to the lower edge of the beam

    Note: In curved beams

    the apex zone extends

    over the curved partsof the beam

    Page 91 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    92/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 92

    Figure 6.9 Pitched cambered beam (c) beam with the fibre direction parallel

    to the lower edge of the beam

    Note: In pitched cambered

    beams the apex zone

    extends over the curvedparts of the beam

    Page 92 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    93/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 93Page 93 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    94/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 94Page 94 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    95/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 95Page 95 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    96/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 96Page 96 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    97/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 97

    or

    Page 97 of 119

    6.4 Members with varying cross-section or curved shape

  • 7/25/2019 Timber Design Using Eurocode

    98/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 98Page 98 of 119

    Design examples

  • 7/25/2019 Timber Design Using Eurocode

    99/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 99

    Design of straight glulam member

    - comparison of

    Eurocode 5 vs. DIN 1052

    Page 99 of 119

    Straight beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    100/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 100

    GL 24 / BS 11

    q = 9 kN/m, g = 6 kN/m

    10 m

    16x80cm

    Geometry:

    l = 10 m

    b = 160 mm

    h = 800 mm

    S = b h/6 = 17 10-6mm

    I = b h/12 = 6.8 10-9mm4

    Page 100 of 119

    Design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    101/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 101

    Property permissible concept semi-probabilistic concept

    Bending strength m,perm= 11 N/mm fm,k= 24 N/mm

    Shear strength v,perm= 1.2 N/mm fv,k= 3.5 N/mm

    MOE Em= 11000 N/mm Em,mean= 11000 N/mm

    crack factor - kcr= 0.67

    modification factor for duration

    of load and moisture content

    kmod= 0.6 (Service Class I/II,

    medium-term)Partial factor for material

    properties

    M= 1.25

    (glulam, EC 5)

    Deformation factor kdef= 0.8 (Service Class I)

    Partial factor for permanent

    actions

    G= 1.35

    Partial factor for variable

    actions

    G= 1.5

    Factor for quasi-permanent

    value of a variable action

    2,1= 0.3

    Page 101 of 119

    Design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    102/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 102

    Result permissible concept semi-probabilistic concept

    distributed load F= g+ q = 15 kN/m Fd = Gg+ Qq = 21.6 kN/m

    bending moment M M= F l / 8 = 188 kNm Md= Fdl / 8 = 270 kNm

    bending stress m= M/S= 11 N/mm m= Md/S= 15.8 N/mm

    utilization (bending) 11 / 11 = 1.00

    fm,d=fm,k kmod/M= 15.4 N/mm

    15.8 /fm,d = 1.03shear force V V= F l/2 = 75 kN Vd= Fdl/2 = 108 kN

    shear stress v 1.5 V/ (b h) = 0.88 N/mm 1.5 Vd/ (b h) = 1.89 N/mm

    utilization (shear) 1.2 / 0.88 = 0.73

    fv,d=fv,k kmod/M= 2.24 N/mm1.89 /fv,d = 0.84

    Page 102 of 119

    Design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    103/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 103

    deflection = 5

    384=26

    =, +,=

    5

    384+

    5

    384= 10.4 + 15.6

    =26

    =,(1 +) +

    ,(1 +2,1)=

    16.7 + 18.4 = 35.1mm

    utilitization (deflection)

    /300= 0.78

    /300= 0.78

    /150= 0.53

    Page 103 of 119

    Design examples

  • 7/25/2019 Timber Design Using Eurocode

    104/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 104

    Design of curved glulam beam

    - comparison of

    Eurocode 5 vs. DIN 1052

    Page 104 of 119

  • 7/25/2019 Timber Design Using Eurocode

    105/119

    Page 105 of 119

    HESS Limitless Verbindung (7)

  • 7/25/2019 Timber Design Using Eurocode

    106/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 106Page 106 of 119

    Stress distributions in curved beams with const. moment

  • 7/25/2019 Timber Design Using Eurocode

    107/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 107

    W

    M

    R

    H,

    max,250=

    R H

    R2 / H = 11

    R1 / H = 2,5

    R H

    H/R2= 0,09

    H/R1= 0,4

    W

    M

    R

    H,

    R

    H,

    II

    ++=

    2

    603501

    +

    -

    H/R2= 0,09

    H/R1= 0,4

    tension stressesperpendicular to grain

    bending stressesparallel to grain

    R1< R2

    R1< R2

    Page 107 of 119

    Stress t,90of curved and tapered beams with line loads

  • 7/25/2019 Timber Design Using Eurocode

    108/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 108

    h

    stress perp.

    to grain

    - +

    h

    - +

    stress perp.

    to grain

    Page 108 of 119

  • 7/25/2019 Timber Design Using Eurocode

    109/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 109Page 109 of 119

  • 7/25/2019 Timber Design Using Eurocode

    110/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 110Page 110 of 119

    Curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    111/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 111

    Geometry, dimensions and quality /strength class

    of example beam

    EN 14080 GL 28: fm,k = 28 N/mm2

    DIN 1052 BS 14: m,permissible = 14 N/mm2

    Page 111 of 119

    Curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    112/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 112

    Design for bending:

    kr= 0,96

    hap/ r = 0,118

    EC5

    F = 23,31 kN

    rin/t = 200,

    kl= 1,05

    k1= 1; k2= 0,35, k3= 0,6

    Page 112 of 119

    Curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    113/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 113

    Design for bending:

    kr= 0,96

    kl= 1,05

    EC5

    fm,d= fm,k kmod/m

    GL28:

    fm,k = 28 N/mm2

    load duration:

    medium, kmod= 0,8

    glulam: m = 1,25

    m,d= 6,85 N/mm2Map,d= f Map

    combined loading: f = 1,4

    fm,d = 17,92 N/mm2

    ratio = 0,38

    F = 23,31 kN

    Page 113 of 119

    curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    114/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 114

    Design for tension perp.:

    kdis= 1,4 kVol= (V0/V)0,2 = 0,43

    EC5

    glulam:V0= 0,01 m3 V = 0,691 m3

    kp= 0,0294

    k5= 0; k6= 0,25, k7= 0

    hap/ r = 0,118

    Page 114 of 119

  • 7/25/2019 Timber Design Using Eurocode

    115/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 115

    Example: Curved Beam with pure moment loading

    kp= 0,0294

    EC5

    ft,90,d= ft,90,k kmod/m

    glulam:

    ft,90,k = 0,5 N/mm2

    load duration:

    medium, kmod= 0,8glulam:

    m = 1,25

    t,90,d= 0,19 N/mm2Map,d= f Map

    combined loading: f = 1,4

    ft,90,d = 0,32 N/mm2

    ratio= 1,0

    F = 23,31 kN

    kdis= 1,4 , kVol= 0,43,

    1,4 x 0,43 x 0,32 = 0,19 N/mm2

    Design for tension perp.:

    Page 115 of 119

    Curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    116/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 116

    Design for bending:

    hap/ r = 0,118, kl= 1,05

    DIN

    1052

    F = 23,31 kN

    m m,permissible

    m= kl 6 Map/b h2

    m,permissible= 14 N/mm2

    m= 4,66 N/mm2

    ratio = 0,33

    Page 116 of 119

    curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    117/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 117

    Design fr tension perp.:

    DIN

    1052

    F = 23,31 kN

    t,90 t,90,permissible

    t,90= kp 6 Map/b h2

    t,90,permissible= 0,2 N/mm2

    t,90= 0,14 N/mm2

    ratio = 0,69

    hap/ r = 0,118, kp= 0,0294

    Page 117 of 119

    curved beam design comparison EC 5 vs. perm. stress concept

  • 7/25/2019 Timber Design Using Eurocode

    118/119

    Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 118

    DIN 1052

    F = 23,31 kN

    EC5

    bending tension perp.

    1,00

    0,69

    0,40

    0,33

    no pre-stress effect no size effect

    Page 118 of 119

    Now ist time to finish!

  • 7/25/2019 Timber Design Using Eurocode

    119/119

    Thank you very much for your patient listening!