120
TI Digital Motor Control Solutions TI Digital Motor Control Solutions © Texas Instruments Incorporated 2005 No reproduction permitted without prior authorization from Texas Instruments. SPRB167A 1H2004 – Slide 1

TI Digital Motor Control Solutions - pudn.comread.pudn.com/downloads621/sourcecode/embedded... · Agenda Timeline • Motor Control Fundamentals 25 min – AC Induction and Permanent

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • TI Digital Motor Control SolutionsTI Digital Motor Control Solutions

    © Texas Instruments Incorporated 2005No reproduction permitted without prior authorization from Texas Instruments. SPRB167A

    1H2004 – Slide 1

    AdministratorHighlight

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 2

  • Three Phase Machine Fundamentals

    Conceptual Practical

    • Three phase machines have three windings, separated in phase by 120°- a third of a rotation.

    1H2004 – Slide 3

  • Three Phase Machine Fundamentals

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346ωt

    ia ib icPhase currents

    • The three phase winding produces three magnetic fields, which are spaced 120°apart physically.

    • When excited with three sine waves that are a 120° apart in phase, there are three pulsating magnetic fields.

    • The resultant of the three magnetic fields is a rotating magnetic field.

    A`

    A

    Fa

    B

    C`

    C

    B`

    ia

    Fb

    Fc

    1H2004 – Slide 4

  • A`

    A

    Fa

    B

    C`

    C

    B`

    ia

    Fb

    Fc

    Fs

    ω

    q (imaginary)

    d (real)

    $ sin( ). sin( ). sin( ).F F t e F t e F t es ai

    bo i

    co io o o= + + + +ω ω ω0 120 240120 240

    $ .F F es sj t= ω

    $F F jFs d q= +

    Three Phase Machine Fundamentals

    For instance, a 3 phase machine, with:60Hz Three Phase Supply; and 4 poles per phase will have a synchronous speed of 1800 r.p.m.

    Pf 120 r.p.m.)(in Speed =

    phaseper motor, for the poles of # P and

    frequency,supply AC f=

    =

    1H2004 – Slide 5

  • Permanent Magnet Motor Operation

    1H2004 – Slide 6

    Back EMF

    (v) t

    tStator Current

    (Is)

    • The interaction between the rotating stator flux, and the rotor flux produces a torque which will cause the motor to rotate.

    • The rotation of the rotor in this case will be at the same exactfrequency as the applied excitation to the rotor.

    A`

    B

    C`

    AB`

    C N

    S

    φF

    F

    Stator field

    Rotor field

    • This is an example of Synchronous operation.

  • Internal View: Induction Motor Rotor

    1H2004 – Slide 7

  • ACI Operation FundamentalsA`

    A

    B

    C`

    C

    B`

    ia

    Fωt

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346

    ia ib icPhase currents

    Im

    Re

    ω

    120o Ia~

    Ib~

    Ic~

    Current Phasors

    • The induction machine has a rotor that is a closed circuit – in the case of the squirrel-cage induction motor it is two rings joined by bars along the rotor axis.

    • The rotor when placed in a moving magnetic field will have induced currents, which produce an induced magnetic field.The interaction of these two magnetic fields produces the rotational torque.

    1H2004 – Slide 8

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 9

  • Scalar V/F control of 3-ph Induction Motor

    Vs(volt)

    f (Hz)fc frating

    Vrating

    0

    TORQUE

    MAXIMUMTORQUE

    NOMINALTORQUE

    SPEEDNOM SPEED

    VOLTAGE

    Vo

    LOW SPEED

    + Simple to implement: All you need is three sine waves feeding the ACI

    + No position information needed.

    – Doesn’t deliver good dynamic performance.1H2004 – Slide 10

  • Limitations of the Scalar TechniqueACCELERATION DECELERATION

    TIME

    TORQUE

    Torque oscillationgenerates uncontrolled

    current overshoot:

    High peak current:In V/f the rotor flux and current are not controlled: Current reaches values based on circuit parameters.

    Poor response time:A solution to minimize these current overshoots is to decrease the performances of the speed regulator.Slow speed regulator ⇒ poor mechanical behavior.

    1H2004 – Slide 11

  • Stationary and Rotating Reference Frames

    Two phase orthogonal reference frame

    t

    t

    α

    β

    λRπ/2

    a

    b

    λR2π/3

    2π/3

    2π/3c

    Three phase reference frame

    t

    DλR

    Q

    ωrotor

    t

    t

    IQ

    ID

    Rotating Orthogonal Reference Frame

    π/2

    1H2004 – Slide 12

  • Motor Flux Interaction

    θ

    TorqueT

    λs and λr constantTorque Τ = λs·λr sin(θ)

    DλR

    Q

    ωrotor

    λS

    θ=load angle

    1H2004 – Slide 13

  • Vector Control of 3-Ph Induction Motor

    • FOC is a control strategy for 3-ph AC motors, where torque and flux are independently controlled.

    • The approach is imitating the DC motors’ operation.

    • Direct FOC: rotor flux angle is directly computed from flux estimation or measurement.

    • Indirect FOC: rotor flux angle is indirectly computed from available speed and slip computation.

    1H2004 – Slide 14

  • Maintain the ‘load angle’at 90°

    Field Oriented Control - Vector Control

    A`

    B

    C`

    AB`

    C N

    S

    q=90°F

    F

    + No torque ripple

    + Better dynamic response

    – Need good knowledge of the rotor position

    Back EMF (v)

    Stator Current (Is)

    t = constant

    t

    t

    t

    1H2004 – Slide 15

  • C28x Controllers

    1H2004 – Slide 16

  • PMSM FOC with TMS320F2812 DSP

    PowerInverter

    Motor

    vas*

    vbs*Inv. Park

    θr

    iasibs

    vqs*

    vds*

    PI

    ids*

    iqs*wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector Gen.

    PWM+

    Driver

    Ta

    Tb

    Tc

    PWM1PWM2

    ibs ADC+

    Driver

    PWM3PWM4PWM5PWM6

    ADCIN1

    ADCIN2

    ADCIN3

    ias

    ids

    iqs

    AngleSpeed Calculator

    θr

    TMS320F2812 DSP controller

    QEP+ driver Phase

    Index

    Phase Encoder

    1H2004 – Slide 17

  • ACI FOC System with TMS320F2812 DSP

    PowerInverter

    ACI

    vas*

    vbs*

    Inv. Park

    θlr θlr

    iasibs

    vqs*

    vds*

    PI

    ids*

    iqs*wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector

    Gen.

    PWMDriver

    TaTb

    Tc

    PWM1PWM2

    Vdc

    ibsIleg2_Bus

    Driver

    PWM3PWM4PWM5PWM6

    ADCIN1

    ADCIN2

    ADCIN3

    ias

    ids

    iqs

    Phase Voltage

    Cal.TaTbTc

    vasvbs

    Flux Est.

    Speed Est.

    iasibs

    iasibs

    θlrlarlbr TMS320F2812 DSP

    controller

    1H2004 – Slide 18

  • FOC TMS320F2812 DSP + Resolver

    PowerInverter

    Motor

    vas*

    vbs*Inv. Park

    θr

    iasibs

    vqs*

    vds*

    PI

    ids*

    iqs*wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector Gen.

    PWM+

    Driver

    Ta

    Tb

    Tc

    PWM1PWM2

    ibs

    ADC+

    Driver

    PWM3PWM4PWM5PWM6

    ADCIN1

    ADCIN2

    ADCIN3

    ias

    ids

    iqs

    AngleSpeed Calculator

    θr

    TMS320F2812 DSP controller

    ResolverPosition

    DetectionCosSin Resolver

    1H2004 – Slide 19

  • Cost Effective High AccuracyPosition Measurement by Resolver

    12BitOPA4340ADS7861

    16BitOPA4350ADS8361

    1H2004 – Slide 20

  • Sensored AC Induction Motor – DTC Drive

    PowerInverter

    Motor

    Torque controller

    ωr*

    ADC

    State Selector

    TMS320F2812 DSP controller

    PWMGenSpeed Controller

    Input power stage

    Input power stage

    Flux and Torque calculator

    Communications modules

    SCI CAN

    Current and voltage vector calculator

    CA

    PTU

    RE

    In

    puts

    1H2004 – Slide 21

  • BLDC and PMSM Motor Types• Both (typically) have permanent-magnet rotor and a

    wound stator• BLDC (Brushless DC) motor is a permanent-magnet

    brushless motor with trapezoidal back EMF• PMSM (Permanent-magnet synchronous motor) is a

    permanent-magnet brushless motor with sinusoidal back EMF

    300 900 1500 2100 2700 3300 300 90060000 1200 1800 2400 3000 3600 600

    Phase A

    Phase B

    Phase C

    ia

    ib

    ic

    θe

    θe

    θe

    Ea

    Hall A

    Hall B

    Hall C

    Back EMF of BLDC Motor

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346ωt

    ea eb ec

    Back EMF of PMSM

    A`

    B

    C`

    AB`

    C N

    S

    F

    F

    1H2004 – Slide 22

  • Sliding Mode Observer

    See hidden slides (2) for equationsThe core is current observerSpeed calculator not adopted

    Sliding ModeCurrent

    ObserverSlidingControl

    Low-passFilter

    PhaseCalculate

    PhaseComp

    euθ~ eθ~se~si~si*

    svz

    SpeedCalculate

    Sin/CosCalculator

    eθ~ ω~

    Based on well established robust control technique: Non-linear Sliding Mode Control Bang-bang control type -> “High Gain”A priori feel of bounds of uncertainties and disturbances -> To tune sliding control gainDifferent techniques can be adopted to remove ripple effect

    1H2004 – Slide 23

  • Sliding Mode Observer

    • Based on well established robust control technique: Non-linear Sliding Mode Control

    • Bang-bang control type -> “High Gain”– Tolerate parameter variations– Reject disturbances– Converges quickly, no numerical divergence

    • A priori feel of bounds of uncertainties and disturbances -> To tune sliding control gain

    • Different techniques can be adopted to remove ripple effect

    1H2004 – Slide 24

  • SMO Equations

    m

    s

    ssss

    LL

    LBI

    LRA

    zevBiAidtd

    23

    1

    )~(~~

    =

    =−=

    +−+=

    Current observer

    )~( ss iiksignz −= Sliding control

    zeedtd

    ss 00~~ ωω +−= Low-pass filter

    1H2004 – Slide 25

  • SMO Equations (continued)

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −=

    −=

    θθ

    ω

    θ βα

    cossin

    23

    )~,~arctan(~

    es

    ss

    ke

    eeFrom estimated back EMF to rotor angle

    Torque equation:• Correct measurement of current• Correct estimation of rotor angle

    qE iK2/3=τ

    1H2004 – Slide 26

  • Experimental Result

    1H2004 – Slide 27

  • Limitations of Sensorless Control / SMO

    • Back EMF at low speeds is small, so the operation at low speeds is less than satisfactory. Also the algorithm becomes more sensitive to noise effects.

    • At startup the back EMF is non-existent, and the startup must be achieved by other means:

    – Ramp up of frequency – Reverse rotation may occur, in some cases this can be an issue.

    – Detection of rotor position by signal injection

    – Hall effect sensors

    1H2004 – Slide 28

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 29

  • Motor Control System Components From TI

    Bridge Rectifier

    Power converter Motor Load

    AC Input

    MOSFET driver

    Current sense

    Power supply

    LDOPFCSVSPWM

    Simult. Sampling

    ADCs

    and interface

    Resolver

    Optical encoder

    Hall effect

    Network interface

    4-20mA interface Data line

    ADC interface

    DAC interface

    DSP Controller

    Current and voltage sense

    DC link

    CANRS232RS485 +/- 10V +/- 10VEthernet 4-20mA

    loop

    1H2004 – Slide 30

  • C28xController

    Trapezoidalor

    sinusoidal commutation

    PFC SwitchCircuit

    PFC SwitchCircuit

    HallSensor

    Interface(CAPTURE)

    Startup algorithm

    Discrete PFC

    controller

    Software PFC

    controllerPWMGen

    PWMGen

    Servo Block Diagram

    Dithering

    Motion command

    queue

    Command interpreter

    Motion profile generator

    SCI protocol

    stack

    CAN protocol

    stack

    Machine resonance control(notch filter, input shaping . . .)

    Speed & position

    controller

    Speed & position feedback

    EncoderInterface

    (QEP)

    CAN PHYRS-232/485

    CANSCI

    Discrete PFC controller eliminated

    Replaced trapezoidal or sine commutation with FOC: Enhanced performance

    Machine resonance control: Performance enhancement. (e.g., Cost saving on damper)

    Moved motion profile processing into same processor: Eliminates second microprocessor

    Added Spread spectrum PWM Generation: Reduces size of EMI filter

    Pow

    er In

    vert

    erPo

    wer

    Inve

    rter

    ADC

    vas

    *

    vbs

    *

    Inv. Parkqlr

    qlr

    ia

    sib

    s

    vqs*

    vds*

    PI

    ids

    *

    iqs*

    wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector

    Gen.

    Ta

    Tb

    Tc

    Vd

    c

    ib

    s

    ia

    s

    id

    s

    iq

    s

    Phase

    VoltageCal.

    TaTbTc

    va

    s

    vb

    s

    Flux

    Est.

    Speed

    Est.

    ia

    s

    ib

    s

    ia

    s

    ib

    sqlr

    lar

    lbr

    FOC Core

    1H2004 – Slide 31

  • C28xController

    Industrial: AC Induction Motor Drive

    Constant V/Hz drive

    Speed controller

    ωr*

    Pow

    er In

    vert

    er

    Input power stage

    Input power stage

    Flux and speed estimators

    ADC

    PWMGen

    CAN PHYRS-232/485

    Speed profile generator

    Safe operating area manager

    TCP/IP protocol

    MAC/PHY Hardware

    SCI CAN

    Command interpreter

    Command queue

    SCI protocol

    stack

    CAN protocol

    stack

    vas

    *

    vbs

    *

    Inv. Parkqlr

    qlr

    ia

    sib

    s

    vqs*

    vds*

    PI

    ids

    *

    iqs*

    wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector Gen.

    Ta

    Tb

    Tc

    Vd

    c

    ib

    s

    ia

    s

    id

    s

    iq

    s

    Phase

    VoltageCal.

    TaTbTc

    va

    s

    vb

    s

    Flux

    Est.

    Speed

    Est.

    ia

    s

    ib

    s

    ia

    s

    ib

    sqlr

    lar

    lbr

    FOC Core

    MIPS enable high performance

    + FOC gives full torque from zero to full speed

    + Enables four quadrant operation

    Software integrates a variety of “auxiliary”functions

    Flexible software enables one controller for many drives.

    Software filtering

    1H2004 – Slide 32

  • LC2402AController

    PowerInverter

    PFC Switching

    Circuit

    PFC Switching

    Circuit

    User interfacemanag-ement

    Software PFC

    controller

    Appliance: Refrigeration Compressor Control

    vas

    *

    vbs

    *

    Inv. Parkqlr

    qlr

    ia

    sib

    s

    vqs*

    vds*

    PI

    ids

    *

    iqs*

    wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector

    Gen.

    Ta

    Tb

    Tc

    Vd

    c

    ib

    s

    ia

    s

    id

    s

    iq

    s

    Phase

    VoltageCal.

    TaTbTc

    va

    s

    vb

    s

    Flux

    Est.

    Speed

    Est.

    ia

    s

    ib

    s

    ia

    s

    ib

    sqlr

    lar

    lbr

    FOC Core

    Parasiliti F., Petrella R., Tursini M.: "Rotor speed and position detection for PM synchronous motors based on sliding mode observer and Kalman filter", Proc. of the European Conference on Power Electronics and Applications (EPE), Lausanne, 1999.

    Speed controller

    ωr*

    Sliding mode

    observer

    PWMGen

    Rotor Position and Speed Calculator

    ADC

    Kalman filter

    (or other filter)

    Pow

    erTe

    mp

    Sens

    or

    Temperature controller

    RS-

    232

    SCI

    Discrete PFC controller eliminated

    Higher efficiency driven by sensorless FOC + possible use of PMSM motor.

    Eliminated separate (electronic/electromechanical) thermostat

    Added Spread spectrum PWM Generation: Reduced size of EMI filtering

    1H2004 – Slide 33

  • Trapezoidal BLDC Motor

    Application: Refrigeration Compressor Control

    CommutationSequencer

    30 Degree Delay

    Zero Crossing Detector

    PhaseVoltage

    Meas

    CurrentRegulator

    (PID)

    Back EMF

    Calculator

    PWMGeneration

    K

    +

    DC

    B

    us

    dc_shunt

    I*

    Speed Calculator

    ωsp*mω

    ωe+

    +

    See TI Application reports (SPRA498 and BPRA072) for more details

    PWMGen

    PFC switch and

    DC Bus front end

    Software PFC

    controller

    Trapezoidal sensorless control for constant speed applications enables low cost implementations.

    Keep compatibility with existing trapezoidal motors

    1H2004 – Slide 34

  • Sensored Trapezoidal BLDC Motor Control300 900 1500 2100 2700 3300 300 900

    60000 1200 1800 2400 3000 3600 600

    Phase A

    Phase B

    Phase C

    ia

    ib

    ic

    θe

    θe

    θe

    Ea

    AB1

    AC2

    BC3

    BA4

    CA5

    CB6

    AB1

    PIDController

    CommutationPWM Control

    3-PhaseInverter

    PI Controller

    Speed setpoint

    +

    -

    -+

    SpeedComputation

    PositionSensor

    Speedfeedback

    Iref

    Idc_shuntThree-phase BLDC

    motor

    • Phase current must be turned on and off in order and at the right time in order to follow back EMF – commutation

    • Capture interrupts can be used to trigger commutation when Hall sensors are used

    • Capture function can also be used to help calculate motor speed

    1H2004 – Slide 35

  • Sensorless Stepper Motor Control

    IB

    BLDC

    PWM1/IOPA0

    Hbridge

    HBridge

    Phas

    e A

    Phase B

    IA

    sens

    edr

    ive

    drive sense

    VSENSEB

    VSENSEA

    TMS320LF2401

    40Mhz PWM2

    PWM3PWM4

    ADCIN2

    ADCIN3

    ADCIN0

    ADCIN1

    HBridge

    PWMA

    DIRA

    PWMB

    DIRBSCITXDSCIRXD

    IOPB1

    PWM1

    ADCIN4

    CPU DRIVER

    T2PWM

    RS232

    DIN

    AIN

    AOUT

    CLK XINT2

    D3 Engineering (Rochester, NY)

    1H2004 – Slide 36

  • LC2401AController

    PowerInverterPower

    Inverter

    Appliance: Power Tool Control

    vas

    *

    vbs

    *

    Inv. Parkqlr

    qlr

    ia

    sib

    s

    vqs*

    vds*

    PI

    ids

    *

    iqs*

    wr*

    wr

    Park

    PI

    PI

    Clarke

    SpaceVector

    Gen.

    Ta

    Tb

    Tc

    Vd

    c

    ib

    s

    ia

    s

    id

    s

    iq

    s

    Phase

    VoltageCal.

    TaTbTc

    va

    s

    vb

    s

    Flux

    Est.

    Speed

    Est.

    ia

    s

    ib

    s

    ia

    s

    ib

    sqlr

    lar

    lbr

    FOC Core PWM

    Speed and Position Estimator

    ADC

    BatteryManager

    Speed controller

    Dithering

    TriggerControl

    Tem

    p Se

    nsor

    Charging monitor

    Overload trip

    Field oriented control enables smooth torque control.

    Sensorless control drives low cost control

    High quality MIPS make it possible to add features without adding cost – such as electronic torque control

    1H2004 – Slide 37

  • Servo Drive / Servo Amplifier Hardware Partitioning

    Power conditioning

    and EMI Filtering

    Power conditioning

    and EMI Filtering

    PFC ControllerPFC Controller

    Power SupplyPower Supply

    Inverter IGBTs

    Inverter IGBTs

    HV Drivers

    Isolation

    HV Drivers

    Isolation

    PFC Magnetics and

    switch

    PFC Magnetics and

    switch

    MCU(Motion profiles

    & host communication)

    MCU(Motion profiles

    & host communication)

    Current sensingCurrent sensing

    Ant

    i alia

    sing

    Ant

    i alia

    sing

    FilteringFiltering MCU(Commutation)

    MCU(Commutation)

    MCU(Commutation)

    MCU(Commutation)

    1H2004 – Slide 38

  • Servo Drive / Servo Amplifier Hardware Partitioning

    Power conditioning

    and EMI Filtering

    Power conditioning

    and EMI Filtering

    Power SupplyPower Supply

    Inverter IGBTs

    Inverter IGBTs

    HV Drivers

    Isolation

    HV Drivers

    Isolation

    PFC Magnetics and

    switch

    PFC Magnetics and

    switch

    Current sensingCurrent sensing

    Ant

    i alia

    sing

    Ant

    i alia

    sing

    Benefits from TI C2000™ Digital Signal Controller

    Improved system performance

    Less torque rippleHigher control bandwidthLower EMI profile

    Lower system costLower component countSmaller system sizeImproved system reliabilityEasier to manufacture

    1H2004 – Slide 39

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 40

  • Selecting a ControllerA controller to be used for motor control must provide:

    Ease of use: Tools and Collateral

    Performance: Computational ability100+ sustained MMACS @ 32 bits

    Peripheral Integration: Flash, ADC, PWM, Sensor interfacing, communications all on one chip

    Third party development support

    Price: Broad range from sub $2.00 -$15.00

    $2

    $5

    $10

    $15

    LC2401LF2401F2801LF240xA

    F2806/08C/R281x

    F281x

    40-150MIPS and $2-$15

    1H2004 – Slide 41

  • Con

    trol

    Per

    form

    ance

    F2810150 MHzF2810

    150 MHz

    F2811150 MHzF2811

    150 MHz

    C24xxTM14 Devices

    40 MHz – 16 bit

    C24xxTM14 Devices

    40 MHz – 16 bit

    First Generation ControllerLow cost motor control for appliances and other consumer applications

    F2801100 MHzF2801

    100 MHz

    F2806100 MHzF2806

    100 MHz

    C28xTM Second Generation ControllerSuperior 32-bit performance and integration for demanding control applications

    Price

    C2810150MHzC2810

    150MHz

    C/R2811150 MHzC/R2811150 MHz

    On-Chip Flash ROM / RAM only

    NEW!

    F2812150 MHzF2812

    150 MHz

    C2000 Product Portfolio

    Software Compatible

    F2808100 MHzF2808

    100 MHz

    C/R2812150 MHzC/R2812150 MHz

    Low CostApplication

    Specific

    Low CostApplication

    Specific

    HighPerformance

    HighPerformance

    In Development

    1H2004 – Slide 42

  • Internal Busing determines quality of MIPS

    Data Address Bus (32)

    Data Data Bus (32)

    Program Data Bus (32)

    Program Address Bus (22)

    Execution

    R-M-WAtomic

    ALU

    Real-TimeEmulation

    &Test

    Engine

    JTAG

    XAR0to

    XAR7

    SPARAU MPY32x32

    XTP

    ACC

    ALU

    Registers Debug

    Data Write Bus (32)

    Program Write Bus (32)

    Memory

    Data (4 G * 16)

    Program(4 M* 16)

    StandardPeripherals

    ExternalInterfaces

    Register Bus

    DP @X

    Multibus architecture makes better use of the processor cycles: Instruction, fetch, decode and execute can happen on the same clock cycle with multiple buses

    1H2004 – Slide 43

  • SMART peripheralsOn chip peripherals drive integration

    TMS320LF240x

    Encoder and timer capture interfaces PWM GenerationSynch/Async serial portsWatchdog timerOn-chip ADCs with dual sample and holds

    TMS320F281x

    PWM Generator (16 ch)

    12-Bit, 16 ch ADC

    Watchdog

    GPIO (56)

    McBSP

    CAN 2.0B

    SCI/UART-A

    SCI/UART-B

    SPI

    Perip

    hera

    l Bus

    Encoderand capture

    interface

    PWM Generator (16 ch)

    10-Bit, 16 ch ADC

    Watchdog

    GPIO

    CAN 2.0B

    SCI/UART-A

    SPI

    Perip

    hera

    l Bus

    Encoderand capture

    interface

    TMS320F280x

    Independent ePWM (16 ch)

    12-Bit, 16 ch ADC

    Watchdog

    GPIO (32)

    I2C

    2 * CAN 2.0B

    Up to 4 UART

    Up to 4 SPIPe

    riphe

    ral B

    us

    Enhanced encoder and

    capture

    1H2004 – Slide 44

  • Memory

    1H2004 – Slide 45

    TMS320LF240xA TMS320F28xx

    Flash from 16 KB – 256 KB ROM from 12 KB – 256 KB RAM from 1 KB – 40 KB

    Memory Bus

    256 KB Sectored Flash

    + 2 KB OTP8 KB Boot ROM

    36 KB RAM

    5 KB RAM

    BootROM

    8K Sectored

    Flash

    64 KB Sectored

    Flash

    Program / Data / I/O Buses (16-bit)

    128-bit user defined password is stored in Flash128-bits = 2128 = 3.4 x 1038 possible passwordsTo try 1 password every 2 cycles at 150MHz, it would take at least 1.4 x 1023 years to try all possible combinations!

    128-BitSecurity

    64-BitSecurity

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 46

  • Modular Software Development for Control Systems

    All Modules Available in C/C++ Environment

    C24xTM

    RealTime +DSP/BIOS™

    QEPPosition

    drvPWMdrv

    SerialEEPROM

    drvADC04

    drv

    CAPSpeed

    drv

    PWMDACdrv

    Modular Libraries (DMC, FFT, Math, Filters…etc)

    Application Specific Systems (ACI, BLDC, PID cntl…)

    Gets you there.

    Quickly.C28xTM

    Real-Time Monitor

    Reduces time to market

    Provides reuseablesoftware

    S/W

    Tes

    t Ben

    ches

    (STB

    )

    Cod

    e C

    ompo

    ser S

    tudi

    o™

    Har

    dwar

    e To

    ols

    Third

    Par

    ties

    1H2004 – Slide 47

  • Code Composer Studio Components: Fully Integrated, Easy to Use Development Tools

    Memory Window

    StatusWindow

    WatchWindow

    Productive Editor:Structure expansion Graph

    Window

    Project ManagerSource & object filesFile dependenciesCompiler, assembler & linker build options

    Menus or Icons

    Help CPUWindow

    1H2004 – Slide 48

  • 1H2004 – Slide 49

    Code Composer Studio Components: Fully Integrated, Easy to Use Development Tools

    Full C/C++ & Assembly Debugging

    C & ASM sourceMixed modeDisassembly (patch)Set break pointsSet probe points

    Data Converter Plug-InPoint & Click GenerationAuto Create APIs for

    InitializationPower DownRead/Write

    Initialize device andperipheral117 devices on5 DSP platformswww.ti.com/sc/dcplug-in

    Free Motor Control Library has pre-set workspaces

    Flash Memory Plug-InEasy Set-Up and Programming

    WorkspacesFree Motor Control Library has pre-set workspaces

    IntegratedCSM

    Support

    FrequencyConfig.

    Plug-inConfig.

    EraseSectorControl

    File to ProgramDefaults to

    Project Loaded In CCS

    OperationControl For More InfoOn-line Help

  • DSP/BIOS provides CLK manager to simplify implementation of periodic tasks

    DSP/BIOS makes it easier

    DSP/BIOS™: Handling Multiple Event Sources

    Interrupt Driven Events: DSP/BIOS provides HWI and SWI management to simplify interrupts and multitasking

    1H2004 – Slide 50

  • Real-time DebugControl systems must be debugged while running!

    Allows you to halt in non-critical code for debug while time-critical interrupts continue to be serviced Access memory and registers without stopping the processorImplemented in silicon, not by a debug monitor: Easy to use, no application resources required!R

    eal-t

    ime

    Deb

    ug

    Interrupt void ISR_1(){

    ………}

    Main(){……

    }

    function(){

    ……}

    Halt and single step non-time critical code Time-critical interrupts are still serviced.

    1H2004 – Slide 51

  • 1H2004 – Slide 52

    C28x C/C++ Header Files & Peripheral Examples

    Bit-fields simplify peripheral programming C/C++:

    CCS Auto-complete speeds programming

    Compiler optimizations speed target code

    Examples/Documentation accelerate deployment

    http://www.ti.comKeywords: SPRC097, SPRC191

    http://www.ti.com/

  • On-Chip Analysis Features Enables Flexible Debugging

    Halt on a specified instruction in Flash2 Hardware Breakpoints

    Two hardware analysis units can be configured to provide any one of the following advanced debug features:

    Analysis Configuration Debug Activity

    A memory location is getting corrupted. Halt the processor when any value is written to this location

    2 Address Watchpoints

    Halt program execution after a specific value is written to a variable 1 Address Watchpoint with Data

    Halt on a specified instruction only after a specific interrupt service routine has executed

    1 Pair Chained Breakpoints

    1H2004 – Slide 53

  • Hardware Development Tools

    C24x™ or C28x™Development board

    C-Compiler/Asm/Lnk

    Full Version Code Composer Studio IDE

    Emulator (XDS510PP+ or USB)

    Power Supply

    Price: $1,995-2,295

    LF2407, LF2401, F2812, F2808 evaluation board

    Compiler/Assem/Linker

    Code Composer Studio (tied to board)

    Power Supply

    Price: $345 - $595

    Power ModulesEvaluation Modules DSP Starter KitsDMC550 or DMC1500 from Spectrum Digital Interfaces to EVM, DSK or standalone operation

    Protection features provide convenient s/w development platform

    DMC1500: 350V 7.5 Amp (Supports 3ph and 1ph; BLDC, ACI, SR)Price $1749DMC500: 24V 2.5 Amp (Supports Brushless DC) Price $499

    http://www.ti.com/c2000hwtools

    1H2004 – Slide 54

    http://www.ti.com/c2000hwtools

  • Flash Programming Hardware

    Softbaugh• Uses SCI bootloader• 10 pin header• USB to host• 2KW/sec program• 20 sec max erase • Single Unit Programmer

    – $199• 8 Site Gang Programmer

    – $899

    www.softbaugh.com

    1H2004 – Slide 55

  • CAN 2.0BPORT GmbH [Germany] has developed an extensive

    CANopen protocol stack for the 240xA and 28x devices. Port closely works with Vector Informatik.

    The contact for Port is :PORT GmbHHeinz-Jürgen Oertelphone +49 345 77755-0Halle/Saale – [email protected] : http://www.port.de

    Ethernet

    Windmill Innovations in Holland has developed an extensive TCP-IP protocol stack for the 28x devices. The contact for Windmill is :

    Windmill InnovationsRutger van Dalenphone +31 33 2465314Nijkerk – Holland

    1H2004 – Slide 56

    [email protected] : http://www.windmill-innovations.com

    mailto:[email protected]://www.port.de/mailto:[email protected]://www.windmill-innovations.com/

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 57

  • The Foundation: Software Libraries

    Motor Control Specific SW Modules

    Peripheral & Communication Drivers

    Trigonometric and Log Routines

    Signal Processing Functions

    Signal Generator Functions

    Power Conversion Related Functions

    http://www.ti.com/c2000appsw

    1H2004 – Slide 58

  • The Foundation: Software LibrariesMotor Control Specific SW Modules

    Forward and Inverse Clarke/Park Transforms, BLDC Specific PWM Drivers, Leg Current Measurement Drivers, BLDC Commutation triggers, ACI Speed and Rotor Position Estimators, PID Controllers, Extended Precision PID Controllers.

    Peripheral & Communication Drivers

    SCI (UART) Packet Driver, Virtual SPI Drivers, Virtual I2C Drivers, Serial EEPROM Drivers, GPIO Driver.

    Fixed Point Trigonometric and Log Routines

    Fixed Point Sine, Cosine, Tangent routines, Square Root, Logarithm Functions. Reciprocal calculation.

    IQ Math 32-Bit Virtual Floating Point Library

    Multiply, Divide, Multiply with Rounding, Multiply with Rounding and Saturation, Square Root, Sine and Cosine, routines.

    Signal Processing Functions

    FIR (Generic order), FIR (10th order), FIR(20th order), FIR using circular buffers. 128, 256, and 512 point complex and real FFTs.

    Signal Generator FunctionsSinewave generators, Ramp Generators, Trapezoidal Profile generators

    Power Conversion Related FunctionsRMS computation, real power and apparent power computation, THD computation, PFC controllers.

    1H2004 – Slide 59

  • Application Frameworks: Application Frameworks: StarterwareStarterwaremore coming soonmore coming soon

    1H2004 – Slide 60

  • 1H2004 – Slide 61

    Modular Block oriented libraryBlocks make systems easy to represent and understand

    Simplify debug

    Enable incremental deployment

  • 1H2004 – Slide 62

    Modular S/W Implementation of Sensored FOC for PMSM

    3-Phase

    Inverter

    Encoder

    PMSM

    Motor

    I_PARK

    Q15 / Q15

    ipark_Q

    ipark_D

    theta_ip

    ipark_q

    ipark_d

    CLARKE

    Q15 / Q15

    clark_a

    clark_b

    clark_c

    clark_d

    clark_q

    PARK

    Q15 / Q15

    park_d

    park_q

    theta_p

    park_D

    park_Q

    pid_reg_iq

    Q15 / Q15

    i_ref_q

    i_fdb_du_out_q

    pid_reg_id

    Q15 / Q15

    i_ref_d

    i_fdb_d

    u_out_d

    pid_reg_spd

    Q15 / Q15

    spd_ref

    spd_fdb

    spd_out

    Constant 0

    QEP_THETA_DRV

    HW / Q15

    QEP_Atheta_elec

    theta_mech

    dir_QEP

    index_sync_flg

    QEP_B

    QEP_index

    SPEED_FRQ

    Q15 / Q15

    shaft_angle

    direction

    speed_frq

    speed_rpm

    FC_PWM_DRV

    Q0 / HW

    Mfunc_c1

    PWM1

    PWM2

    PWM3

    PWM4

    PWM5

    PWM6

    Mfunc_c2

    Mfunc_c3

    Mfunc_p

    ILEG2DRV

    Q15 / HW

    Ia_out

    Ib_out

    ADCINx

    ADCINy

    Ia_gain

    Ib_gain

    Ia_offset

    Ib_offset

    Q0Q15Q15

    Q13Q13

    I_ch_sel

    SVGEN_DQ

    Q15 / Q15

    Ubeta

    Ualfa

    Ta

    Tb

    Tc

    speed_ref_

    EV

    HW

    ADC

    HW

    QEPI/F

    HW

  • Software Test Bench: STB

    SVGENDQ

    Q15 / Q15

    Vq

    Vd

    Ta

    Tb

    Tc

    SGEN_2

    freq

    gain

    out_1offset

    x2x2

    out_2

    PWM_DAC_iptr0 PWMDAC

    VIEWQ15 / HW

    PWM7

    PWM8

    PWM9

    EV

    HW

    PWM_DAC_iptr1PWM_DAC_iptr2

    phase

    step_max

    1.8K

    Set by watchwindow

    100n

    1H2004 – Slide 63

    Ease of use: All modules offered as an STB packaged as a CCS project

    Examples• Sinegen• ADC driver• Capture driver• QEP driver

    Examples•PWMDAC driver (ezDSP)•DAC driver (EVM)•Data logger (Sim)•Emulated “Plant” (Sim)

    Any module

    in Library

    Module under eval

  • Interconnecting Modules

    CLARKIQ15 / Q15

    Iclark_a

    Iclark_b

    Iclark_c

    Iclark_d

    Iclark_q

    RAND GENQ15 / Q15

    rnd_gain

    rnd_offsetrandom

    FC_PWMDRV

    Q0 / HW

    mfunc_c1PWM1

    PWM2

    PWM3

    PWM4

    PWM5

    PWM6

    mfunc_c2

    mfunc_c3

    mfunc_p

    At the “C” level:clarkInv(&dqBuffer, &fcPwm.InputBuffer)fcPwmInputBuffer.ditherIn = randomGen1.calc(&randomGen1)fcPwm.calc(&fcPwm);

    At the “GDE” level: Just “join the blocks”

    1H2004 – Slide 64

  • Embedded Target Integrates Simulink® and MATLAB® with eXpressDSPTM Tools and C2000TM Controllers

    • Design and Simulation• Automatic code generation

    – Embedded Target for C2000– Documentation, re-usable C code– Support for on-chip peripherals

    Key Features• Verification of embedded implementation

    – MATLAB Link for Code Composer Studio

    – Auto debug, testbench– Real-time visualization

    http://www.ti.com/c2000embeddedtarget

    1H2004 – Slide 65

    http://www.ti.com/c2000embeddedtarget

  • Embedded Target Integrates Simulink® and MATLAB® with eXpressDSPTM Tools and C2000TM Controllers

    http://www.ti.com/c2000embeddedtarget

    1H2004 – Slide 66

    http://www.ti.com/c2000embeddedtarget

  • Example of GDE Motor Control

    http://www.vissim.com/

    1H2004 – Slide 67

    http://www.vissim.com/

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 68

  • Incremental System BuildIncremental system development/debug is built in

    Incremental system development/debug relies on modular software blocks

    Incremental system development/debug is flexible/systematic

    Incremental system development/debug applies to multiple processors, drives and motors

    1H2004 – Slide 69

  • ACI Sensorless Field Oriented Controlwr* vas*

    vbs*

    Inv. Park

    SpaceVector

    Gen.

    PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_Bus

    Driver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarke

    ias

    Phase Voltage

    Cal.TaTbTc

    vasvbs

    Flux Est.

    iasibs

    qlrlarlbr

    vqs*

    vds*

    PI

    ids*

    iqs*

    PI

    PIids

    iqs

    qlr

    vds*ids*PI

    ids

    iqs

    qlr

    ids*

    wr

    ids

    iqs

    Speed Est.

    iasibs

    TMS320F28x controller

    1H2004 – Slide 70

  • SVGEN/PWMTestsBuild Level 1

    TMS320F28x controller

    vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    vqs*

    vds*

    θeRampGen.

    RampControl

    fe

    1H2004 – Slide 71

  • Measure-mentTestsBuild Level 2

    TMS320F28x controller

    vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_BusDriver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarkeias

    Phase VoltageCal.

    TaTbTc

    vasvbs

    vqs*

    vds*

    θe

    CAP

    ids

    iqs

    RampGen.

    RampControl

    fe

    CaptureDriver

    SpeedCal.

    wrtimestamp

    1H2004 – Slide 72

  • PI RegulatorTests

    Incremental Builds Header File

    /*------------------------------------------------------------------------------Following is the list of the Build Level choices.------------------------------------------------------------------------------*/#define LEVEL1 1 /* SVGEN_DQ and FC_PWM_DRV tests */#define LEVEL2 2 /* Currents/DC-bus voltage/speed measurement tests */#define LEVEL3 3 /* Two current PI regulator tests */#define LEVEL4 4 /* Flux and speed estimator tests */#define LEVEL5 5 /* Speed PI regulator test (Sensored closed-loop DFOC system) */#define LEVEL6 6 /* Sensorless closed-loop DFOC system */#define ALWAYS_RUN/*------------------------------------------------------------------------------This line sets the BUILDLEVEL to one of the available choices.------------------------------------------------------------------------------*/#define BUILDLEVEL LEVEL3

    build.h

    1H2004 – Slide 73

  • PI RegulatorTestsBuild Level 3

    TMS320F28x controller

    vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_BusDriver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarkeias

    Phase VoltageCal.

    TaTbTc

    vasvbs

    vqs*

    vds*PI

    PIPI

    θe

    CAP

    ids*

    iqs*

    ids

    iqs

    ids

    iqs

    RampGen.

    RampControl

    fe

    CaptureDriver

    SpeedCal.

    wrtimestamp

    1H2004 – Slide 74

  • FluxSpeedEstimatorsBuild Level 4

    TMS320F28x controller

    vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_BusDriver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarkeias

    Phase VoltageCal.

    TaTbTc

    vasvbs

    Flux Est.

    iasibs

    θlrlarlbr

    vqs*

    vds*PI

    PIPI

    θe

    CaptureDriver

    CAPwr Speed

    Calc

    ids*

    iqs*

    ids

    iqs

    ids

    iqs

    RampGen.

    RampControl

    fe

    wr Speed Est.

    ibs

    ias

    1H2004 – Slide 75

  • SpeedRegulatorTestsBuild Level 5

    TMS320F28x controller

    wr* vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_BusDriver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarkeias

    Phase VoltageCal.

    TaTbTc

    vasvbs

    Flux Est.

    iasibs

    θlrlarlbr

    vqs*

    vds*

    PI

    ids*

    iqs*

    PI

    PIids

    iqs

    θlr

    ids*PI

    idsθlr

    ids*

    ids

    wr

    CaptureDriver

    CAPwr Speed

    Calc

    1H2004 – Slide 76

  • SensorlessFOC SystemBuild Level 6

    TMS320F28x controller

    wr* vas*

    vbs*Inv. Park

    SpaceVector

    Gen.PWMDriver

    TaTb

    Tc

    PWM1PWM2PWM3PWM4PWM5PWM6

    VSI

    ACI

    ias

    Vdc

    ibsIleg2_BusDriver

    ADCIN1

    ADCIN2

    ADCIN3

    wr

    ibsPark Clarkeias

    Phase VoltageCal.

    TaTbTc

    vasvbs

    Flux Est.

    iasibs

    θlrlarlbr

    vqs*

    vds*

    PI

    ids*

    iqs*

    PI

    PIids

    iqs

    θlr

    ids*PI

    idsθlr

    ids*

    wr

    ids

    Speed Est.

    iasibs

    1H2004 – Slide 77

  • Agenda Timeline• Motor Control Fundamentals 25 min

    – AC Induction and Permanent Magnet Motors

    – Scalar and Vector Control

    • Applications: Smarter controllers, high performance, lower cost 15 min

    • Controller Selection 10 min

    • Motor Control Collateral Overview 25 min

    – Development Tools Overview: Faster HW+SW Development

    – Modular Software Libraries: Development Accelerators

    – Incremental Build Technology: Easy Deployment

    • Completing the signal chain: TI Analog and Communications 25 min

    • Get Started Today with TI! 5 min

    • Question and Answers 10 min

    1H2004 – Slide 78

  • Motor Control System Components From TI

    1H2004 – Slide 79

    Bridge Rectifier

    Power converter Motor Load

    AC Input

    MOSFET driver

    Current sense

    Power supply

    LDOPFCSVSPWM

    Simult. Sampling

    ADCs

    Resolver

    Optical encoder

    Hall effect

    Network interface

    4-20mA interface Data line

    ADC interface

    DAC interface

    DC link

    DSP Controller

    Current and voltage sense

    Ethernet 4-20mAloop

    +/- 10V +/- 10VCANRS232RS485

  • Texas Instruments

    High Performance AnalogHigh Performance AnalogForFor

    Industrial Motor ControlIndustrial Motor Control

    1H2004 – Slide 80

  • TI Power: “Easy to Choose, Easy to Use”

    • Complete power management module and IC solutions: “From input to output”

    • Industry recognized applications and systems expertise

    • www.ti.com/dsppower for Power Supply Reference Designs

    • Full-Service Support• Reference Designs• Evaluation Modules• Application Notes• Design Tools & Software• Annual Power Supply Design Seminars• Online sample and EVM ordering• power.ti.com

    1H2004 – Slide 81

    http://www.ti.com/dsppower

  • AC/DC

    Isolated Module

    HOT SWAP

    PWM+

    MOSFETDriver

    SVS

    ControllerUCC3895PFCUCC3851xUCC38050UCC3817/18

    PWM ControllersUCC35705/6UCC35701/2UCC38C40 seriesMOSFET DriversTPS28XXUCC3732xUCC3722x

    Isolated Modules5 to 100 watts availablePT4210 (5W) PT4480 (100W)

    Non-Isolated Modules1A to 60 Amp availablePT6440 (1V to 3.3V, 6A)PT6940 (Dual output, 6A)PT6520 (1.5V to 3.3V, 8A)

    DC/DC ConvertersTPS549xx (0.9 to 2.5V, 9A)TPS546xx (0.9 to 3.3V, 6A)TPS543xx (0.9 to 3.3V, 3A)TPS6205x (2.7 to 10V, 0.8A)

    LDOsTPS768xx (1A)TPS778xx (750mA) TPS776xx (500mA)TPS701xx (250/125mA, dual)

    SupervisorsTPS380X-XX

    DC/DC ControllersTPS40000 (Sync. buck)TPS40050 (8 to 40V buck)TPS40060 (10 to 55V buck)TPS5120 (Sync. buck, dual)

    PowerDist

    LDOs

    DC/DC Converters

    DC/DC Controllers

    Non-isolated Modules

    Load-share ControllerUC39002

    +/-voltages 0.7 voltsand up

    Complete System Power Solutions

    TPS20xxTPS22xxTPS23xx

    UCC39xxUC39xxTPS23xx

    1H2004 – Slide 82

  • Ready to Use Power Supply Solutions

    Complete, Tested Power Supply Designs

    – Schematics– BOM– Implementation Notes

    Visit www.ti.com/dsppower

    1H2004 – Slide 83

  • For Easily Customized Power Designs:SWIFT/TPS40k/TPS60k Design Tools

    Visit power.ti.com to Download Power Design Software1H2004 – Slide 84

  • TI Interface Products for MC System

    MAX3221

    3.3 - 5-V

    MAX3223

    MAX3232

    MAX3238

    MAX3243

    MAX207

    NEW !

    MAX208

    MAX222

    RS-232

    SN65HVD05/06/07

    3.3-V

    SN65HVD11

    5-V

    SN65HVD3082E

    RS-485

    SN65HVD20/21/22

    SN65HVD23/24

    SN65HVD3085/88E

    SN65HVD12

    SN65HVD10

    SN65HVD08

    1H2004 – Slide 85

  • FET Drivers in MC System

    • Deliver 4A through Miller Plateau

    • Available in MSOP PowerPAD™

    • 20/15nS Rise/Fall Times

    • 4-15V Supply Range

    UCC27423: Dual 4A, High Speed, Inverting Low Side Driver

    UCC27424: Dual 4A, High Speed, Non-Inverting Low Side Driver

    UCC27425: Dual 4A, High Speed, Low Side Driver with one Inverting and one Non-Inverting Output

    1H2004 – Slide 86

  • Intelligent Drivers in MC System

    Low cost stand alone controllers for low power applications

    1H2004 – Slide 87

  • Motor Controllers

    BLM Controllers: UC2625, UC3625, UCC2626, UCC3636Stepper Controllers: UC3717, UC3770

    DC Motor Controllers: UC2638, UC3637, UC3638

    1H2004 – Slide 88

  • Amplifiers in MC System

    • Difference Amplifiers– INA168, Automotive Current

    Shunt• CMOS Amplifiers

    – Rail to Rail (5-100mV)• Isolation Amplifiers

    – To 3500VRMS• Instrumentation Amplifiers• Difference Amplifiers • High Speed Amplifiers• 4-20mA Transmitters• Voltage References• Temperature Sensors

    – I2C, 12bit Resolution

    1H2004 – Slide 89

  • Amplifiers: Design Utilities

    1H2004 – Slide 90

  • FilterPro Design Tool

    1H2004 – Slide 91

  • ADCs• Single Channel• Multi Channel• ±10V Input

    Serial Interface2x2 Channel ADS7861 – 500KSPS2x2 Channel ADS8361 – 500KSPS

    ADC and DAC in MC SystemGeneral purpose Analog-to-Digital and Digital-to-Analog Converters

    DACs• Single Channel• Multi Channel• ±10V Output

    For general monitor/control functions

    Simultaneous Sampling Analog-to-Digital Converters

    Parallel Interface2x2 Channel ADS7862 – 500KSPS 6 Channel ADS7864 – 500KSPS6 Channel ADS8364 – 250KSPS

    ADS7869: 12-Channel Analog Motor Control Front End with Three 1MSPS, 12-Bit ADCsN

    EW!

    1H2004 – Slide 92

  • DC-Link Voltage and Phase Currents Measurement for Servo Application

    | DC Link |

    Shunt R:ADS1202ADS1203

    Hall Effect:ADS1204ADS1205

    ADS1206 – 1MHzADS1207 – 4MHz

    4kHz Current Loop 16-bit Accuracy

    | Motor Current |

    BufferedAnalog Input

    BufferedDigital Output

    1H2004 – Slide 93

  • ADS1206 & ADS12071MHz & 4MHz Voltage-to-Frequency Converter

    1H2004 – Slide 94

    ReferenceVoltage

    2.5V

    DIV 2

    Only ADS1207

    x1 Modulator

    CLKINCLKOUTBUF

    FOUT

    REFIN/OUT

    1kΩ

    BuffVIN

    Features:Synchronous OperationFrequency Set By External ClockMaximum Input Frequency:

    - 1MHz for ADS1206- 4MHz for ADS1207

    Selectable High Impedance Input2% Internal, 2.5 V Reference VoltageHigh Current Output DriverAlternate Source For AD77408-lead VSSOP Package

    Applications:• Galvanic Isolation Measurements• High Voltage Measurements• Low Cost A-to-D Conversion • Motor Control• Industrial Process Control

    Applications:• Galvanic Isolation Measurements• High Voltage Measurements• Low Cost A-to-D Conversion • Motor Control• Industrial Process Control

    Key Differentiators:• Higher performances than AD7740 • Input frequency 4MHz• Output buffer• Low price - ASD1206 1Ku $0.98

    - ASD1207 1Ku $0.98

    Key Differentiators:• Higher performances than AD7740 • Input frequency 4MHz• Output buffer• Low price - ASD1206 1Ku $0.98

    - ASD1207 1Ku $0.98

  • ADS12031-bit 10MSPS, 2nd Order ∆Σ Modulator

    1H2004 – Slide 95

    VIN+VIN-

    AGND

    AVDD

    MDATMCLK

    Second-Order∆Σ-Modulator

    M0M1

    InterfaceCircuit

    ReferenceVoltage

    2.5V

    RC Oscillator20MHzBuff

    BGND

    BVDD

    CLKOUT

    REFIO

    Features:16-Bit Resolution±250mV Input Range 3LSB INL Max 1% Internal Voltage Reference83dB SNR Min-95dB THD TypFlexible Serial Interface8-lead TSSOP PackageQFN 3x3 – Coming Soon

    (Pins Highlighted in RED are Available Only in QFN Package)

    Applications:• Current Measurement• Motor Control• Closed-Loop Servo Control• Power Converters• 3-Phase Power Monitor

    Applications:• Current Measurement• Motor Control• Closed-Loop Servo Control• Power Converters• 3-Phase Power Monitor

    Key Differentiators:• Higher performances than AD7400 • Implemented Manchester Coding• On Board Oscillator• Output buffer• Low price 1Ku $2.70

    Key Differentiators:• Higher performances than AD7400 • Implemented Manchester Coding• On Board Oscillator• Output buffer• Low price 1Ku $2.70

  • ADS12041-bit 10MSPS, 2nd Order ∆Σ Modulator

    Features:16-Bit AccuracyInput Range ±2.5V @ 2.5V Gain Error: 0.5%Dynamic Range 100dB86dB SNR MinFour Independent ModulatorsFour Input Reference BuffersOn Board 20MHz OscillatorQFN-32 (5x5) Package

    Key Differentiators:• First in Industry• Low price 1Ku $6.75

    Key Differentiators:• First in Industry• Low price 1Ku $6.75

    Applications:• Current Measurement• Motor Control• Power Converters

    Applications:• Current Measurement• Motor Control• Power Converters

    CH A+

    BGND

    AVDD

    OUT A

    CLKOUT

    2nd-Order∆Σ Modulator OutputInterface

    Circuit

    ReferenceVoltage

    2.5V

    Oscillator20MHz

    CH A-+-

    CH B+ 2nd-Order∆Σ ModulatorCH B-

    +-

    CH C+ 2nd-Order∆Σ ModulatorCH C-

    +-

    CH D+ 2nd-Order∆Σ ModulatorCH D-

    +-

    Divider

    AGND

    BVDD

    OUT BOUT COUT D

    REFOUT

    REFIN D

    CLKSEL

    REFIN A

    REFIN B

    REFIN C

    ClockSelect

    CLKIN

    Out EN

    1H2004 – Slide 96

  • ADS1202 Design ResourcesADS1202 Data Sheet:

    http://www-s.ti.com/sc/ds/ads1202.pdfApplication Notes:

    – Choosing an Optocoupler for the ADS1202 Operating in Mode 1http://www-s.ti.com/sc/psheets/sbaa088/sbaa088.pdf

    – Combining ADS1202 with FPGA Digital Filter for Current Measurementin Motor Control Application http://www-s.ti.com/sc/psheets/sbaa094/sbaa094.pdf

    – Interfacing the ADS1202 Modulator With a Pulse Transformer in Galvanically Isolated Applicationshttp://www-s.ti.com/sc/psheets/sbaa096/sbaa096.pdf

    – Clock Divider Circuit for the ADS1202 in Mode 3 Operation http://www-s.ti.com/sc/psheets/sbaa105/sbaa105.pdf

    ADS1202 Reference Design Users Guidehttp://www-s.ti.com/sc/psheets/slaa186/slaa186.pdf

    ADS1202 Evaluation board:http://focus.ti.com/docs/prod/folders/print/ads1202.html#developmenttools– Evaluation board users guide

    http://www-s.ti.com/sc/psheets/slau111/slau111.pdf– Evaluation board interface for C5000 and C6000 DSP

    http://focus.ti.com/docs/toolsw/folders/print/5-6kinterface.htmlRelated parts, ADS1204:

    http://www-s.ti.com/sc/ds/ads1204.pdf

    1H2004 – Slide 97

  • Texas Instruments

    Why Simultaneous Sampling?

    Example:

    High Performance AnalogHigh Performance AnalogForFor

    Power Distribution SystemPower Distribution System

    1H2004 – Slide 98

  • ADC application in Power Distribution System

    1H2004 – Slide 99

  • Three Phase Power Measurement

    220V50Hz

    5A50Hz

    CT

    PT

    ±10VP-P

    ±10VP-P

    220V50Hz

    5A50Hz

    CT

    PT

    ±10VP-P

    ±10VP-P

    220V50Hz

    5A50Hz

    CT

    PT

    ±10VP-P

    ±10VP-P

    IRVR

    ISVS

    ITVT220kV/110kV/10kV

    1H2004 – Slide 100

  • Three Phase Currents and Voltages

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    0 90 180 270 360

    Degrees

    Phas

    e A

    mpl

    itude

    VR(t)=VR*sin(ωt)VS(t)=VS*sin(ωt+120°)VT(t)=VT*sin(ωt-120°)IR(t)=IR*sin(ωt-φ1)IS(t)=IS*sin(ωt+120°-φ2)IT(t)=IT*sin(ωt-120°-φ3)

    SimultaneousSampling

    Simultaneous measurement of six signals needed for correct power measurement:

    PR(t)=VR(t)*IR(t)PS(t)=VS(t)*IS(t)PT(t)=VT(t)*IT(t)

    1H2004 – Slide 101

  • Internal structure of a Synchro Control transmitter

    1H2004 – Slide 102

  • Resolver (2 Phase) and Synchro (3 Phase) Connection Convention

    1H2004 – Slide 103

  • ADS836116bit 500kSPS, 4 ch. Simultaneous Sampling SAR ADCs

    S/H+

    -MUX +-

    SARADC

    Control&

    SerialInterface

    VREF2.5V

    S/H+

    -MUX

    +-

    SARADC

    A0+A0 -

    A1+A1 -

    B0+B0 -

    B1+B1 -

    REFOUT

    REFIN

    CLKCONVBUSY

    DATAandCONTROL

    AVDD DVDDFeatures:4 Fully Differential Inputs 2 Independent 16-Bit ADCs 500kSPS Sample Rate per ADC 2 Sample and HoldsInternal VREF (+2.5V)Serial Data-BusPower - 200mW max24 pin SSOP and QFN 32 (5x5)

    Key Differentiators:• 16-Bit Upgrade to the 12-Bit

    ADS7861• Pin Compatible With the ADS7861• Low price 1Ku $8.75

    Key Differentiators:• 16-Bit Upgrade to the 12-Bit

    ADS7861• Pin Compatible With the ADS7861• Low price 1Ku $8.75

    Applications:• Closed-Loop Servo Control• Machine and Motion Control • Multi-Axis Positioning• 3-Phase Power Control• Motor Control

    Applications:• Closed-Loop Servo Control• Machine and Motion Control • Multi-Axis Positioning• 3-Phase Power Control• Motor Control

    1H2004 – Slide 104

  • ADS836416-bit 250kSPS, 6 ch. Simultaneous Sampling SAR ADCs

    +-

    Control&

    ParallelInterface

    VREF2.5V

    +-

    +-

    ADC 1

    A0+A0 -

    C0+C0 -A1+A1 -

    C1+C1 -

    REFOUTREFIN

    CLKCONVBUSY

    DATAandCONTROL

    AVDD DVDD

    B0+B0 -

    B1+B1 -

    S/H

    +-

    +- 6x

    FIFO

    S/H

    S/H

    S/H

    S/H

    S/H

    +-

    ADC 2

    ADC 3

    ADC 4

    ADC 5

    ADC 6Key Features

    6 Fully Differential Inputs6 Independent 16-bit ADCs 250kSPS Sample Rate per ADC 6 Sample and Holds6 FIFO RegistersInternal VREF (+2.5V)Power - 470mW max64 pin TQFP

    Key Differentiators

    • First In Industry – 6 Channels• Low price

    - ASD8364 1Ku $17.23 • Functional Compatible 16-Bit Upgrade for ADS7864.

    • First In Industry – 6 Channels• Low price

    - ASD8364 1Ku $17.23 • Functional Compatible 16-Bit Upgrade for ADS7864.

    ApplicationsClosed-Loop Servo ControlMachine and Motion Control Multi-Axis Positioning3-Phase Power ControlMotor Control

    1H2004 – Slide 105

  • Competitive Comparison

    R1A

    R1B

    R2B R2A C2B C2A

    C1+

    - REFIN

    ADS8364

    REFOUT

    CR

    R

    C

    0.1uF

    AD7865

    +5V

    -12V

    47uF

    0.1uF+12V

    47uF

    +

    -

    AD845• Requires additional operational amplifier

    • Requires two additional analog power supplies

    • Single ended input, poor CMVR

    • Additional errors due to op amp characteristics

    • Differential input, high CMVR• Only one power supply• Optimum performances

    1H2004 – Slide 106

  • Differential Signal Measurement with ADS8364

    Tr R1A

    R1B

    R2B R2A C2B C2A

    C1

    VL230V50Hz

    +

    - REFIN

    ADS8364

    REFOUT

    CR±10VP-P

    ADS8364 Example:• Clock 3.8MHz• 38kSPS• Sampling time 21.84µs• Conversion time 4.47µs

    R1A = R1B = 4kΩR2A = R2B = 1kΩC1 = 1.8nFC2A = C2B = 0.18nF

    1H2004 – Slide 107

  • ADS8364 Example Measurement ResultsFs = 50kHz, Fin = 1.7kHz

    SNR = 86dBSINAD = 85.6dBSFDR = 100.4dBTHD = -96.2dB

    1H2004 – Slide 108

  • Measurements for Servo ApplicationAC/DC Inverter

    RST

    MotorLoad

    Motor Current Measurement(2-Phase or 3-Phase):• Motor current value for

    control algorithm• Sign of the phase current for

    “dead time” compensation• Over-Load and Over Current

    protection

    Motor Encoder or Resolver:• Rotor Speed• Rotor Position

    Load Encoder: • Load Position

    • DC-Link voltage• Temperature• Etc…

    1H2004 – Slide 109

  • ADS786912-bit 1MSPS, 12 ch. Simultaneous Sampling SAR ADCs

    Key Features12 Fully Differential Inputs3 Independent 12-bit ADCs 1MSPS sample rate per ADC 7 Sample and Holds5 Multiplexers7 Sign and 3 Win. Comparator2 Up/Down 16-Bit Counters100 pin TQFP

    Key Differentiators

    • First In Industry –Complete Motor Control Front End

    • Low price- ADS7869 1Ku $14.56

    • First In Industry –Complete Motor Control Front End

    • Low price- ADS7869 1Ku $14.56

    ApplicationsClosed-Loop Servo ControlMachine and Motion control Multi-Axis PositioningMotor Control

    1H2004 – Slide 110

  • Motor Current Measurement with ADS7869

    1H2004 – Slide 111

    -1.50

    -1.00

    -0.50

    0.00

    0.50

    1.00

    1.50

    0 90 180 270 360

    Degrees

    Phas

    e A

    mpl

    itude

    PGA ADC 12-bit 1MSPSSample

    &Hold

    MUXMUX

    PGA ADC 12-bit 1MSPSSample

    &Hold

    MUXMUX

    PGA ADC 12-bit 1MSPSSample

    &Hold

    MUXMUX

    IU

    IV

    IW

    Three: •Sample & Hold•12BIT ADC 1MSPS•PGA

    iu(t)=IU sin(ωt)iv(t)=IV sin(ωt+120°)iw(t)=IW sin(ωt-120°)

    SimultaneousSampling

  • Motor Current Measurementwith ADS7869

    3X : •Sample & Hold•12BIT ADC 1MSPS•PGA•Sign Comparators•Window Comp.

    +LIMIT

    -LIMIT

    U_ILIM

    U_COMP

    IUp-IUn

    Three simultaneous sampling inputs• No time difference error in sampling of signalsThree differential inputs• High CMRR for noisy environmentThree PGA are simultaneously scaling inputs• Same HW for different power rangeThree 12 bits 1MSPS ADCs• Low delay in control algorithmThree sign comparators• SW Lockout time compensationOne 8 bit DAC for set up of current limit• Dynamic control of motor accelerationThree programmable window comparators• Separate control of motor phases over-current

    PGA ADC 12-bit 1MSPSSample

    &Hold

    MUXMUX

    IU

    Offset

    Gain

    +

    -SIGN

    OVER-CURRENT

    LimitComp

    WindowLimit

    1H2004 – Slide 112

  • Incremental Encoder Measurement with ADS7869

    Two Synchronous inputsTwo Asynchronous inputsDifferential inputsTwo 12 bits 1MSPS ADCs20% Gain correction20% Offset correction

    Two Sign Comparators16-bit UP/DOWN CounterState MachineDigital Filter4 Registers26-bit total resolution

    PGA ADC 12-bit 1MSPS

    Sample&

    Hold

    MUX

    MUX

    SIN

    Offset

    Gain

    +

    -SIGN A

    Sample&

    Hold

    SYNC

    ASYNC

    PGA ADC 12-bit 1MSPS

    Sample&

    Hold

    MUX

    MUX

    Offset

    Gain

    +

    -

    Sample&

    Hold

    SYNC

    ASYNC

    16-bit UP/DOWNCounter

    withState Machine

    &Digital Filter

    SYNC

    ASYNC

    SIGN B

    COS

    - With -State Machine &Digital Filter ForError Detection

    & Glitch Reduction

    1H2004 – Slide 113

  • Getting Started: analog.ti.com

    Application Notes

    Product Listing

    HW & SW Tools

    1H2004 – Slide 114

  • Samples, Development Tools and more

    Related Application Notes

    Free Overnight Samples

    HW & SW Tools

    Inventory

    1H2004 – Slide 115

  • Data Converter Software Plug-In

    Data ConverterSoftware support

    embedded into

    Code Composer Studio(CCS)

    1H2004 – Slide 116

  • Software for Data Converters?• Today’s data converters need software support due to:

    – On-chip features like • Selectable input channels• On-chip filters • Integrated FIFOs• Adjustable gain

    – Complex configuration• Some parts have more than 40 registers and 640 control-bits• Coding of registers is tedious and error prone

    • Customer benefits:– Faster system time to market– Reduced development cost

    • Software support helps:– The DSP software developer:

    • No need to learn “that crazy analog part”– The analog designer:

    • No need to learn DSP programming just to test “this neat data converter”

    1H2004 – Slide 117

  • Software Support: The Converters

    • Select:– Virtually any number of data

    converters– Nearly every combination

    (limitation is the DSP) • Supports:

    – Analog to Digital converters– Digital to Analog converters– Codecs– For a complete list of supported

    devices, visit http://www.ti.com/sc/dcplug-in

    • Not hardware specific:– Can be used on the analog

    EVMs or with the customer’s own hardware, as long as there is no special hardware setup necessary (e.g. controlling a multiplexer)

    Supports 117 devices:4 devices on the C2800 DSP platform86 devices on the C5400 DSP platform26 devices on the C5500 DSP platform75 devices on the C6200/C6700 DSP platform21 devices on the C6400 DSP platform

    1H2004 – Slide 118

  • High Performance Analog for Motor Control

    Application CollateralEvaluation Boards complete with User’s Guide, Schematic, & BOM on webDevice specific application notes – linked directly from product folder!Code Composer Studio Example Projects for C2000, C5000, C6000 DSPsComplete “Signal Chain” prototyping system for C2x processors coming soon!EVMs available for purchase at www.ti-estore.com

    Related Application NotesUsing a SAR A/D Converter for Current Measurement in Motor Control Applications (sbaa081.htm)Understanding the CAN Controller on the TMS320C24x DSP Controller (spra500.htm)RS-485 for Digital Motor Control Applications (slla143.htm)Interfacing the ADS8361 to the TMS320F2812 DSP (slaa167.htm)Interfacing the ADS8364 to the TMS320F2812 DSP (slaa163.htm)

    1H2004 – Slide 119

  • Silicon: DSP offers the performance and flexibility to implement advanced motor control algorithmsSoftware: Modular software reduces time-to-marketTools: Advanced Development Tools make development easyAnalog: Offers a broad selection of signal conditioning and power management

    Systems Expertise

    Support

    Web castsWorkshopsKnowledgeBaseApplication notes

    Silicon

    PowerElectronics

    TI Power Management

    SPI

    SCI-A/B

    EV (PWM)

    ADC

    CAN

    EEProm

    EV(CAP/Q

    EP)

    CurrentVoltage

    Position/Speed

    Feedback

    PC TestEquipmentCAN

    Network

    Kalman FilterPrecision PID

    Filter Lib

    Chip SupportLib

    “IQmath”DSP/BIOS

    Field Oriented Control

    Foundation Software

    SoftwareDigital Motor ControlSoftware Library

    1H2004 – Slide 120

    Agenda TimelineThree Phase Machine FundamentalsThree Phase Machine FundamentalsThree Phase Machine FundamentalsPermanent Magnet Motor OperationInternal View: Induction Motor RotorACI Operation FundamentalsAgenda TimelineScalar V/F control of 3-ph Induction MotorLimitations of the Scalar TechniqueStationary and Rotating Reference FramesMotor Flux InteractionVector Control of 3-Ph Induction MotorField Oriented Control - Vector ControlPMSM FOC with TMS320F2812 DSPACI FOC System with TMS320F2812 DSPFOC TMS320F2812 DSP + ResolverCost Effective High AccuracyPosition Measurement by ResolverSensored AC Induction Motor – DTC DriveBLDC and PMSM Motor TypesSliding Mode ObserverSliding Mode ObserverSMO EquationsSMO Equations (continued)Experimental ResultLimitations of Sensorless Control / SMOAgenda TimelineMotor Control System Components From TIIndustrial: AC Induction Motor DriveSensored Trapezoidal BLDC Motor ControlSensorless Stepper Motor ControlServo Drive / Servo Amplifier Hardware PartitioningServo Drive / Servo Amplifier Hardware PartitioningAgenda TimelineSelecting a ControllerC2000 Product PortfolioInternal Busing determines quality of MIPSAgenda TimelineCode Composer Studio Components: Fully Integrated, Easy to Use Development ToolsCode Composer Studio Components: Fully Integrated, Easy to Use Development ToolsDSP/BIOS™: Handling Multiple Event SourcesReal-time DebugC28x C/C++ Header Files & Peripheral ExamplesOn-Chip Analysis Features Enables Flexible DebuggingHardware Development ToolsFlash Programming HardwareAgenda TimelineThe Foundation: Software LibrariesThe Foundation: Software LibrariesApplication Frameworks: Starterwaremore coming soonModular Block oriented libraryModular S/W Implementation of Sensored FOC for PMSMSoftware Test Bench: STBInterconnecting ModulesEmbedded Target Integrates Simulink® and MATLAB® with eXpressDSPTM Tools and C2000TM ControllersEmbedded Target Integrates Simulink® and MATLAB® with eXpressDSPTM Tools and C2000TM ControllersExample of GDE Motor ControlAgenda TimelineIncremental System BuildACI Sensorless Field Oriented ControlBuild Level 1Build Level 2Incremental Builds Header FileBuild Level 3Build Level 4Build Level 5Build Level 6Agenda TimelineMotor Control System Components From TITexas InstrumentsHigh Performance AnalogFor Industrial Motor ControlTI Power: “Easy to Choose, Easy to Use”Complete System Power SolutionsReady to Use Power Supply SolutionsFor Easily Customized Power Designs:SWIFT/TPS40k/TPS60k Design ToolsRS-485FET Drivers in MC SystemIntelligent Drivers in MC SystemMotor ControllersAmplifiers in MC SystemAmplifiers: Design UtilitiesFilterPro Design ToolADC and DAC in MC SystemDC-Link Voltage and Phase Currents Measurement for Servo ApplicationADS1206 & ADS12071MHz & 4MHz Voltage-to-Frequency ConverterADS12031-bit 10MSPS, 2nd Order ModulatorADS12041-bit 10MSPS, 2nd Order ModulatorADS1202 Design ResourcesTexas InstrumentsWhy Simultaneous Sampling?Example:High Performance AnalogFor Power Distribution SystemADC application in Power Distribution SystemThree Phase Power MeasurementThree Phase Currents and VoltagesInternal structure of a Synchro Control transmitterResolver (2 Phase) and Synchro (3 Phase) Connection ConventionADS836116bit 500kSPS, 4 ch. Simultaneous Sampling SAR ADCsADS836416-bit 250kSPS, 6 ch. Simultaneous Sampling SAR ADCsCompetitive ComparisonDifferential Signal Measurement with ADS8364ADS8364 Example Measurement ResultsFs = 50kHz, Fin = 1.7kHzMeasurements for Servo ApplicationADS786912-bit 1MSPS, 12 ch. Simultaneous Sampling SAR ADCsMotor Current Measurement with ADS7869Motor Current Measurementwith ADS7869Incremental Encoder Measurement with ADS7869Getting Started: analog.ti.comSamples, Development Tools and moreData Converter Software Plug-InSoftware for Data Converters?Software Support: The ConvertersHigh Performance Analog for Motor Control