47
Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Embed Size (px)

Citation preview

Page 1: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Thresholds for Ackermannian Ramsey Numbers

Authors: Menachem Kojman

Gyesik Lee

Eran Omri

Andreas Weiermann

Page 2: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Notation…

• n = {1..n}• means: for every coloring C of the edges of the complete graph Kn,

there is a complete Q monochromatic sub-graph of size k.

n – Size of complete graph over which we color edges. k – Size of homogeneous sub-graph. c – Number of colors. 2 – Size of tuples we color – pairs (edges).

k cn

Q is homogeneous for C

Example

2

Page 3: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Example…

Let us prove:• means: for every coloring C of the edges of the complete graph Kn,

there is a complete Q monochromatic sub-graph of size k.

n = 22k-1 – Size of complete graph over which we color edges. k – Size of homogeneous sub-graph. c = 2 – Number of colors.

kk

22 12

Page 4: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

• Let us, from now on, assume the vertex set of every graph we consider is some initial segment of the natural numbers.

• First step: Find a min-homogeneous complete

sub-graph of size 2k.

Proof…

Page 5: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

• Definition: A complete graph G = (E,V), with the natural ordering on V, is min-homogeneous for a coloring

if for every v in V, all edges (v,u), for u > v, are assigned one color.

Ec :

Page 6: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

x1 x2 x3 x4 x5 x6 …

Let G = (V,E) be the complete graph with V= 22k-1:

And let C be a coloring of the vertices of G with 2 colors (Red, Blue).

C(x1,x2) = red C(x2,x6) = blue

…Proof…

x22k-1…

Page 7: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Mark xi with the color C(x1, xi)

There is a monochromatic complete sub-graph of {x2,x3,…} of size 22k-2. (Say red)

x1 x2 x3 x4 x5 …x6 …

…Proof…

x22k-1…

Page 8: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Mark xi with the color C(x2, xi)

There is a monochromatic complete sub-graph of {x3,x6,…} of size 22k-3. (Say blue)

x1 x2 x3 x6 …

…Proof…

Page 9: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Now, we have a min-homogeneous sequence {xi

1, xi

2, xi

3, …, xi

2k}

Mark xiawith C(xi

a, xi

b) for all b > a.

There is a monochromatic subset of

{xi1, xi

2, xi

3, … xi

2k} of size k.

xi1

xi2

xi3

xi4

xi5

xi6

•Second (and final) step: Find a k-sized homogeneous complete sub-graph

…Proof…

xi2k

Page 10: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Ramsey Numbers.

• We Showed:

• On the other Hand: - Using the Probabilistic Method, we can show:

kkk2

22

kk

k2

222

To sum up:

R2(k) – Exponential in k

Denote Rc(k) := The minimum n to satisfy:

k cn

Page 11: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

• More importantly:

• Explanation: - For a k-sized sequence iterate step #1 (repeated division) k times (namely, divide by at most c at each iteration)

kc

kcck min,

Page 12: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Primitive Recursive Functions and Ackermann’s Function

A function that can be implemented using only for-loops is called primitive recursive.

Ackermann’s function – A simple example of a well defined total function that is computable but not primitive recursive

Page 13: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Regressive Ramsey.…• g-regressive colorings: A coloring C is g-regressive if for every (m,n) C(m,n) ≤ g(min(m,n)) = g(m)• Can we still demand homogeneity??• Not necessarily!!! ( e.g C(m,n) = Id(m) )

k gnnk min

Observe thatIs true for any g: N N which can be

established by means, similar to the regular Ramsey proof and compactness.

Page 14: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Denote Rg(k) := The minimum n to satisfy:

We have seen so far:

For a constant function, g(x) = c

Rg(k) ≤ ck Since k gck min

k gn min

The g-regressive Ramsey Number

Page 15: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

On the other hand it was known…

That for g = ID:

Rg(k) is Ackermannian in terms of k. Namely, DOMINATES every primitive

recursive function.

Page 16: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Problem

• constant g Rg(k) < gk (primitive recursive.)

• Threshold g

Rg(k) is ackermannian.• g = Id

Page 17: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Results

I will insert a drawing

x

g(x)

x1/j - AckermannianIf g(n) is ‘fast’ to go below n1/k then, Rg(k) is primitive recursiveIf g(n) ≤ n1/k then,

k gngn k min))((

Page 18: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Results

Suppose B : N N is positive, unbounded and non-decreasing.Let gB(n) = n1/B−1(n). Where B-1(n) = min{t : B(t) ≥ n}. Then,

RgB(k) is Ackermannian

iff B is Ackermannian.

Page 19: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Min-homogeneity – Lower Threshold

Suppose B : N N is positive, unbounded and non-decreasing.

Let gB(n) = n1/B−1(n). Where B-1(n) = min{t : B(t) ≥ n}. Then,

for every natural number k, it holds that Rg

B(k) ≤ B(k).

Basic Pointers:• Assume more colors.

Set c = gB(n)• Use repeated division to show

min

B(k) ≥ ck (k)gB

Page 20: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Min-homogeneity – Upper Threshold

• We show:

• To prove this, we present, given k, a bad coloring of an Akermannianly large n

an.Ackermanni is )( then,

j somefor g(x) if

g

1

kR

x j

Page 21: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Bad Coloring

µ µ+1 µ+2 …

1

2

3

i

k

(fg)3(µ)(fg)3

(2)(µ)

(fg)i(µ)

C(m,n) = <I,D>

I Largest i s.t m,n are not in same segment.

D Distance between m’s segment and n’s.

{(fg)i})()( kgf

Page 22: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Bad Coloring

µ µ+1 µ+2 …

1

2

3

i

k

m = µ+8

n = µ+29

C(m,n) = <I,D> = <2,1>

I Largest i s.t m,n are not in same segment.

D Distance between m’s segment and n’s.

Page 23: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Coloring – Formal Definition Given a monotonically increasing function 4g2 and

a natural number k >2 with

we define a coloringThat is:1. 4g2-regressive on the interval2. Has no min-homogeneous set of size k+1

within that interval.

)})(:min({ tgkt

2][:c

))()(,{ kgf

Page 24: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Definitions…

)()(: ),()( )( nifmlnmid lgg

0),()(:max),( nmdinmI igg

),()(),( ),( nmdnmD nmIgg g

Page 25: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Coloring…

)),(),,(pr(),( nmInmDnmC ggg

So, why is it:

4g2-regressive?

Avoiding a min-homogeneous set?

2)),(max(42

1),pr( bab

baba

Page 26: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

I will insert a drawing

x

g(x)

x1/j - Ackermannian

The Results - Surfing the waves

Page 27: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Besides The Asymptotic bounds,We can also establish:

)2()82(2742

53ARId

Page 29: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

In 1985 Kanamori & McAloon

eventually DOMINATES every primitive recursive function.

kID

nnk2min

Had used means of Model Theory to show that the bound of :

In 1991 Prömel, Thumser & Voigt and independently in 1999 Kojman & Shelah have presented two simple combinatorial proofs to this fact.

Page 30: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Input: Tuples of natural numbers

Output: A natural number

Basic primitive recursive functions:

• The constant function 0

• The successor function S

• The projection functions Pin(x1, x2,…, xn) = xi

Primitive Recursive Functions

Page 31: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

More complex primitive recursive functions are obtained by :

• Composition: h(x0,...,xl-1) = f(g0(x0,...,xl-1),...,gk-1(x0,...,xl-1))

• Primitive recursion: h(0,x0,...,xk-1) = f(x0,...,xk-1) h(S(n),x0,...,xk-1) = g(h(n,x0,...,xk-

1),n,x0,...,xk-1)

Primitive Recursive Functions

Page 32: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Given a function g : N N, denote

)()()()(

1)()())((

1

1

ni

fnif

nnfng

gg

g

Where f0(n) = n and fj+1(n) = f(fj(n))

General Definition – (fg) Hierarchy

Page 33: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Let g = Id. Now

)()()()( )(

11n

iAnifniA n

g

Denote: Ack(n) = An(n)

Ackermann’s Function

1)()()( 11 nnfnA g

Page 34: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Examples:

Ackermann’s Function

1)(1 nnA

nnAnA n 2)()( )(2 1

nn nAnA 2)()( )(

3 2

2222..2

2)(4

n

nA

Page 35: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

3. Infinite Canonical Ramsey theorem (Erdös & Rado – 1950)Definition…

ee canonical

Examples…4. Finite Canonical Ramsey theorem (Erdös & Rado – 1950)

k ennek canonical,

Page 36: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

ItIstfsfeHts

eI

eXfXH

||)()( ][,

thatso if

][:for canonical is

Page 37: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

) (mod...),...,( 13221 xxxxxxxf ee

exxxf e ),...,( 21

exxx ... Assume 21

Page 38: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

1. clearly: )(),( mgknmI g

2. On the other hand there exist t,l such that:)()()()()()( 1

)1(1

)(1 tffnmft ig

lig

lig

2))((4)),(),,(pr( mgnmDnmI gg And thus:

Now, since )()()()( ))((

1 tftf tgigig

),())()(,()()( 1 nmDtftdtg gigig We have

Page 39: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The Bad Coloring

µ µ+1 µ+2 …

1

2

3

i

k

Page 40: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

0),()( with ... 010 igi xxi

dxxx

There exists no:

Which is min-homogeneous for Cg... But, for every (m,n) in the interval,

0),()( nmk

dg

Page 41: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Homogeneity – Lower Bound

• We show:

• To prove that we used:

k ccck 2

2)( then,

)( lglg

lgg(x) if

)(lim s.t : somefor n

gknnk

xfx

x

nff

Page 42: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Homogeneity – Upper Bound

• We showed:

To do that we used a general, well known, coloring

method…

2)( then,

somefor lg

g(x) if

gknnk

ss

x

Page 43: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

The s-basis coloring

Page 44: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Example…

Imagine yourself in a billiard hall…

A tournament is being organized…

The rules:

1. Any two players may choose to play Pool or Snooker. (Coloring pairs with two colors)

2. A tournament can take place either in Snooker or in Pool. All the couples must choose the same. (Homogeneous set)

3. Three players minimum. (Size of subset)

Page 45: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Pool =

Snooker =

How many players will ensure a Tournament?? 6Ramsey Number for 3 is 6.

Page 46: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Given a function g : N N, denote

)()()()(

1)()())((

1

1

ni

fnif

nnfng

gg

g

Where f0(n) = n and fj+1(n) = f(fj(n))

General Definition – (fg) Hierarchy

Page 47: Thresholds for Ackermannian Ramsey Numbers Authors: Menachem Kojman Gyesik Lee Eran Omri Andreas Weiermann

Suppose g : N N is nondecreasing and unbounded. Then,

Rg(k) is bounded by some primitive recursive function in k

iff for every t > 0 there is some M(t) s.t for all n

≥ M(t) it holds that g(n) < n1/t and M(t) is primitive recursive in t.