Three-Phase PFC Rectifier

Embed Size (px)

Citation preview

  • 8/11/2019 Three-Phase PFC Rectifier

    1/5

    SYSTEMATIC

    DERIVATION

    OF

    TWO-STATE SWITCHING DC-DC

    C O N V E 3 R T E R

    STRUCTURES

    A . Pietkiewicz D . Tollik

    Instytut

    Technologii

    Elektronicznej

    Politechnika G d a u i s k a

    M i a j a k o w s k i e g o

    11/12

    80-952

    Gdatsk,

    2oland.

    Abstract: T h e new

    method

    of

    derivation

    of

    t w o - s t a t e - & c - d c

    co nv e rte r st ructu r es

    i s

    pro-

    posed.

    I n

    contrast

    t o

    t h e

    available

    techniq-

    ues

    this method

    o ri gi na te s f ro m

    t h e set of

    general

    r e q ui r em ents c o nce r ning both structu-

    r e

    a n d operation of a switching converter.

    T h es e r eq u ir e me nt s coupled

    with

    a n adopted

    definition of a

    minimal

    n u rm b e r o f

    elements,

    are

    converted into

    t h e f o r - m

    o f

    topological

    graph

    properties a n d applied i n t h e proposed

    synthesis

    procedure. A s a

    r e s u l t ,

    twelve

    ba-

    s i c two-state

    converter structures, including

    four

    n ew t op ol og ie s, are

    obtained.

    1 .

    Introduction

    I n

    recent

    years,

    owing

    t o t h e

    gr eat inte-

    rest

    i n a

    switched-mode

    p o w i e r conversion, t h e

    family

    o f

    switching

    converters

    has been con-

    siderably

    increased,

    C U K [ 1 ]

    S E P I C [ 2 ]

    ,

    UP and

    D O ' W N

    1 6 1

    and many

    o t h e r s .

    While

    t h e

    most impor-

    tant

    source

    f o r

    t h e

    new

    structures i s still

    t h e

    designer s

    i n t u i t i o n ' ,

    t h e e xt en si ve s ea r-

    ches

    for

    t h e

    s ui ta bl e s yn th es is t ec hn iq ue s

    have no t remained i ne ff ic ie nt . T he se

    m e t h o d s ,

    which are

    co m pr e hensiv el y r e viewe d i n

    [ 3 ] ,

    consist i n :

    1 /

    Application of t h e

    duality

    principle

    to

    the

    existing

    structures

    4 ]

    .

    2 / Application

    of

    t h e b il at er al i nv er si on

    transformation

    t o

    t h e e x is t in g s t ru c tu r es

    1 . 5 ]

    3 / Combination

    o f

    t h e b a s i c converters

    / b u c k o r

    b o o s t /

    with t h e d c

    transformers

    L 3 ] .

    4 /

    Combination

    of

    t h e

    basic

    converters

    / b u c k and b o o s t / , paralleling,

    cascading

    [ 3 ]

    5 / Extension of

    t h e canonical switching

    cell

    [ 6 ]

    [ 7 1 ,

    i e are

    based o n t h e

    v ar i ous t r ansf o rm a ti ons

    of

    the

    existing structures.

    I n

    contrast,

    t h e

    new m ethod

    presented

    i n

    this

    p ap er c on si st s i n generation o f

    all

    t h e

    possible

    L I ,

    C

    and

    S

    elements configurations

    s a t i s f y ing some

    d e finite t o po l og ica l

    rules

    derived from t w o

    following

    sets o f

    require-

    m t e n t s

    ensuring

    that t h e obtained structure

    i s :

    I-Two-state dc-dc

    converter,

    I I- Ba si c v er si on

    o f this converter

    i e

    built

    of a

    minimal

    number

    of elements.

    I t i s

    then assumed that

    two-state

    conver-

    ter

    i s a

    circuit

    t h a t :

    1 /

    H a s

    t h e

    general

    form

    o f

    that shown

    i n

    F i g . 1 , ie

    a

    single-input / V

    E /

    a n d

    s i n g l e - o u t p u t

    / V O /

    loaded

    b y

    t h e

    r e s i s t a n c e

    R

    i n

    p a -

    rallel

    with t h e

    smoothing capacitance

    C ,

    where b o t h terminals

    are

    connected

    i n

    t h e common

    g r o u n d

    n o d e ,

    and

    b /

    built o f t h e r ea ct an ce e le me nt s

    / L

    and C / and

    switches / S / .

    2 / Converts o n e

    d c i np ut v ol ta ge

    to ano-

    ther d c

    output v o l t a g e ,

    a/ op er ati ng

    on t h e

    principle

    of

    switching two

    topologies

    o f

    the

    reac-

    tance

    elements,

    while

    b /

    t h e conversion

    process

    i s loss l e s s

    and

    c/ t h e d c voltage

    turn-ratio V E / V O i s

    controllable

    b y

    t h e

    duty-ratio

    varia-

    t i o r n s .

    V E I

    F i g .

    1 .

    Assumed

    general

    structure

    ing d c-d c co nv er ter .

    v o

    o f a switch-

    The

    second

    set

    of

    requirements,

    that

    i s

    equally important here,

    eliminates

    fro m

    the

    synthesis p ro ce du re m an y

    extended

    versions

    of the b a si c s tr u ct ur e s.

    These requirements

    are

    derived fro m

    the

    adopted

    definition

    of

    minimal

    num ber of

    L C elements.

    M o r e o v e r ,

    sin-

    c e

    the

    num ber of

    switch

    elements

    i s

    assumed

    t o b e

    minimal,

    t o o ,

    t h e

    structures

    containing

    two

    a l te rna ti ve l y o p era te d

    switches are con-

    sidered.

    The two

    above sets

    o f requirements are

    jointly

    transformed

    into t h e

    topological

    graph properties

    i n

    Section

    2 .

    O n that base

    the

    practical

    rules

    determining

    the

    admissib-

    l e

    arrangements

    of

    L , C

    and

    S elements

    are

    fo rmu l ated

    i n

    Section

    3 .

    F i n a l l y ,

    these

    rules

    are

    directly

    applied

    i n

    t h e

    synthesis proce-

    dure

    generating

    th e

    complete

    class

    of the

    b as ic t wo -s ta te

    dc-dc

    converters,

    i n

    Section

    4 . The

    o bt ai ne d r es ul ts

    are briefly

    s u n m . a r i -

    z e d

    i n

    Section

    5 .

    2 .

    T o p o l o g i c a l

    graph p r o p e r t i - e s

    The

    structure

    of

    any

    s w r i t c h i n g

    dc-dc con-

    verter

    i n e a c h

    interval

    o f

    a switching period

    can

    b e

    represented

    in

    th e

    form

    of a

    topologi-

    cal

    graph

    where

    th e

    vertices

    correspond

    t o

    the

    nodes

    and

    t h e

    edges

    correspond t o

    the

    branches

    of t h e

    initial structure,

    a s exem-

    plified

    i n

    F i g . 2 b .

    Clearly, t h e edges o f a

    graph

    c a n

    b e

    d iv id ed into

    five groups,

    so

    that

    th e

    E , C ,

    C R , L I ,

    S

    and

    S

    - t y p e e d g e s

    on

    S o f f - t p

    de

    correspond t o

    t h e

    e l e r r e n t s

    of i de al v ol ta ge

    sources, c a p a c i t o r s , c a p a c i t o rs

    i n

    p a r a l l e l

    with

    resistances i n d u c t o r s ,

    closed

    and

    open

    s w i t c h e s ,

    respechively.

    CH2073

    -

    5 / 8 4 / 0 0 0 0

    -

    0 4 7 3

    $ 0 1 . 0 0

    C c

    1 9 8 4

    I E E E

    73

  • 8/11/2019 Three-Phase PFC Rectifier

    2/5

    2 ~ ~ ~ ~ ~ ~ ~ ~

    2

    2

    1

    1 }

    V E

    I i f

    0 2

    V

    edges / C o n d i t i o n

    2 /

    does

    not vio l ate

    the

    h i g h

    i m p e d a n c e

    p a t h s

    i n

    t h e

    respective

    c i r c u i t s ,

    for

    example

    consider

    t h e

    cutset

    I f - L f 2

    i n

    F i g . 3 .

    f f

    2

    L l

    3

    C i

    4

    2

    5

    2 )

    S j

    -

    o f f

    S 2

    -

    on

    2

    3

    C 1

    4

    5

    E

    V

    c R

    c

    2

    3 C 1 4

    5

    1

    F i g .

    2 .

    Basic

    CUK

    converter

    / a /

    represented

    b y

    topological

    grapb

    / b /

    r e d u c e d ,

    i n

    e a c h

    i n t e r v a l ,

    t o

    ECC

    S trees

    / c /

    t h a t

    fall

    i d e n t i c a l l y

    ?Bto

    two ECCR

    pieces

    / d / .

    2 . 1 .

    Definition

    of th e

    basic

    converters

    Then,

    using

    the

    topological

    graph

    descri-

    p t i o n ,

    t h e

    definition

    of basic

    structures,ie

    built

    o f minimal

    number

    o f

    L C

    e l e m e n t s ,

    c a n

    b e

    i n t r o d u c e d .

    Definition

    1 .

    I t

    i s assumed

    that

    t h e

    basic

    converter

    structures

    are

    represented

    b y t h e

    graphs

    that

    contain

    n o :

    1 /

    Circuits

    composed

    o n l y

    o f t h e

    C a n d / o r

    E

    a n d / o r

    C R - t y p e

    edges,

    2 /

    C ut se ts c om po se d

    o n l y

    of

    t h e L-type

    edges,

    3 /

    Circuits

    composed

    o n l y

    o f t h e L - t y p e

    edges,

    4 / Cutsets

    composed

    o n l y

    o f t h e C - t y p e

    e d g e s ,

    5 /

    C u t s e t s

    composed

    o n l y

    o f t h e

    C-type

    edges

    and

    o n e L-type

    e d g e ,

    6 /

    P a t h s

    composed

    only

    of t h e

    L-type

    ed-

    ges and

    joining

    t w o

    vertices

    o f

    t h e

    same

    piece

    o f t h e

    E C C R - s u b g r a p h .

    To

    justify

    t h e

    s u c c e s s i v e

    conditions

    o f

    t h e

    above

    definition

    i t

    should

    b e realized

    t h a t

    t h e role

    o f C and L

    elements

    can

    b e vie-

    wed

    a s t h e

    effective

    s h o r t c i r c u i t

    o r opencir-

    c u i t ,

    respectively,

    for

    t h e

    a c

    currents

    o f

    a

    s w i t c h i n g

    frequency,

    and

    therefore

    their

    physical

    values

    should

    b e adequately

    l a r g e .

    H e n c e ,

    a

    removal

    of

    any C-type

    edge

    from

    t h e

    circuit composed

    only

    of t h e

    C

    and/or E

    a n d /

    o r

    C R - t y p e

    edges

    / C o n d i t i o n

    1 /

    does

    no t vio-

    l a t e

    t h e

    l o w impedance

    path

    seen

    from

    t h e ver-

    tices o f

    t h e

    removed C-type

    e d g e .

    Consequent-

    l y ,

    such

    a n edge

    can

    b e

    eliminated

    a s illus-

    trated

    b y

    example

    o f

    t h e

    circuit

    C

    3 - C 4 - C 5

    i n

    F i g . 3 .

    Similarly,

    a

    removal

    of

    a n y

    l - t y p e

    e d g e

    from

    t h j e cutset

    composed

    only

    o f the

    L - t y p e

    F i g .

    3 .

    E x t e n d e d

    vers ion

    o f

    C U K

    con verter

    / a /

    an d i t s

    topological

    g r a p h

    / b /

    illust-

    rating

    definition

    o f

    basic converter.

    The

    C o n d i t i o n s

    3

    and

    4

    are

    q u i t e

    obvious

    a s t h e y eliminate

    eccessive

    elements

    o f

    t h e

    same type

    c o n n e c t e d ,

    for

    example,

    i n

    serious

    / C /

    o r

    i n

    parallel

    / L / .

    The

    Condition 5

    results

    from

    t h e observa-

    tion

    that t h e presence

    o f

    such a cutsets

    would i n v o l v e

    zero

    d c current

    i n t h e L - t y p e

    e d g e ,

    t h a t

    c o u l d

    be

    c o n s e q u e n t l y

    o m i t t e d ,

    as

    for example

    i n t h e cutset

    C 1

    -C2-L3

    i n

    F i g - 3 .

    The

    Condition

    6 can

    b e

    j u s t i f i e d

    b y

    n o t i n g

    that

    s u c h

    a

    p a t h

    would

    involve

    ze r o d c

    volta-

    g e

    difference between

    b o t h

    i t s

    terminal

    ver -

    tices.

    Since

    both

    vertices

    a re embraced

    i n

    t h e

    same

    piece

    of

    t h e

    E C C R - s u b g r a p h ,

    t h e y

    can

    b e

    simply

    contracted

    and

    t h e

    eccessive L - t y p e

    e d g e

    e l i m i n a t e d , s e e

    p a t h

    L f 3

    i n

    F i g . 3

    for

    e x a m p l e .

    2 , 2 A

    T o y o l o g j c a l

    c o n - s e q u e n c e s

    o f t h e

    defini-

    tion

    of

    a two-state

    dc-dc converter

    The

    relevant

    definition

    consists

    of

    two

    sets

    o f

    requirements

    concerning

    b o t h : 1 / ge-

    neral

    structure

    and

    2 /

    operation

    of

    a conver-

    t e r .

    The first

    s e t

    i s

    directly a p p l i c a b l e

    t o

    formulate

    some

    useful

    rules

    influencing

    a

    to-

    pology

    of

    t h e

    s y n t h e t i z e d

    structures.

    H o w e v e r ,

    t h e

    second

    set

    r e q u i r e s

    an

    intermediate

    trans-

    formation

    into

    t h e

    form

    o f

    t o p o l o g i c a l g r a p h

    properties.

    F i r s t ,

    t h e

    n e c e s s a r y

    c o n d i t i o n s

    e l i m i n a -

    t i n g

    p o s s i b l e

    power

    lossess

    i n

    t h e

    s w i t c h i n g

    converters

    composed

    o f

    lossless

    L C

    e l e m e n t s

    are examined.

    Assuming

    t h a t :

    1 /

    P ow er l oss es s

    can

    arise

    o n l y

    i n

    t h e

    s w i t c h

    elements

    during

    switching

    a c t -

    i o n s ,

    2 /

    Switch

    resistances

    i n t h e

    on-state

    Rson

    0

    and

    i n

    t h e off-state

    RsofT,

    it i s e v i d e n t

    that

    t h e abo ve

    hssumptions

    e x -

    4 7 4

    b )

    1 )

    S i

    -on

    S 2 - o f f

    2

    3

    C 1 4

    5

    E

    S i

    R

    2

    3

    C 1

    4

    E~~~

    I

    w

  • 8/11/2019 Three-Phase PFC Rectifier

    3/5

    c l u d e

    both

    t h e infinite

    current

    pulses i n

    the

    closed

    switches

    and

    the

    infinite

    voltage

    pul-

    s e s i n

    t h e

    o p e n

    switches.

    T h u s ,

    i t can be

    con-

    cluded

    that a

    topological

    graph

    representing

    a n y converter

    structure

    i n

    each interval

    of a

    switching period

    m ay

    contain

    n o :

    / i / Circuits

    composed

    o n l y

    o f t h e

    S o n - t y -

    p e e d g e s

    together

    with

    E

    and/or

    C

    a n d / o r

    C R - t y p e e d g e s

    / o t h e r w i s e

    infi-

    nite current

    pulses

    would

    occur during

    closing

    a

    s w i t c h b

    /ii/

    Cuteets composed

    only

    o f t h e

    S o f f - t y -

    p e a n d

    L-type

    edges

    /otherwise

    infi-

    nite

    voltage

    pulses

    would occur

    during

    opening

    a switch.

    Furthermore,

    assuming

    t h a t Conditions

    1

    a n d

    2

    o f

    Definition 1

    are satisfied

    i t

    can b e

    stated

    also t h a t

    t h e s e

    topological

    grapbs

    con-

    tain n o :

    / i i / Circuits

    composed

    only

    o f t h e

    C

    and/

    o r

    E and/or CR-type

    edges,

    /iiii/

    C u t e e t s

    composed

    o n l y o f

    t h e L - t y - p e

    e d g e s .

    Removing

    all

    t h e

    L and

    S o f f - t y p e

    edges

    from t h e

    graph

    representing

    t h e

    converter

    structure

    i n

    each

    interval

    of

    a

    switching

    p er-

    iod and

    satisfying

    conditions

    / i / - / i i i / ,

    the

    subgraphs

    containing

    only t h e E ,

    C ,

    C R

    and

    s -type

    edges

    are obtained

    / Fi g

    2 b / . These

    s R i g r a p h s

    i n virtue

    o f /i/

    and /iii/

    d o

    not

    contain any

    circuits

    and i n

    virtue

    of

    / i i /

    and / i i i i /

    are

    connected

    / o n e

    piece

    g r a p h s / .

    Thus,

    Property

    1 .

    The

    E C C B

    Sn-

    subgraphs

    o f a given

    conver-

    t e r , for

    all the intervals

    of

    a

    s w i

    tching

    p e r i o d ,

    constitute

    the

    trees of

    the

    initial

    g 8 r a p h s

    whereas

    t h e

    remaining

    L

    and S

    - f f

    type

    edges

    are

    t h e chords

    of

    these trees.

    I n

    order

    to proceed

    with t h e formulation

    of another essential

    graph

    property

    that

    re-

    sults

    from

    t h e

    requirement

    of t h e

    output vol-

    tage

    controllability,

    i t i s

    advisable

    t o

    note

    some

    inter esting c o nse quence

    of Property

    1 .

    Namely,

    i t ca n

    b e seen

    that

    t h e r em ova l

    o f

    t h e

    S o n - t y p e

    edges from

    the

    E C C B R S o n - s u b g r a p h s

    causes

    these

    subgraphs

    to

    fall

    into two ECCR

    pieces

    / F i g . 2 c / .

    I n

    t h e

    initial graphs

    both

    pieces

    are

    connected

    b y

    S o n So ff

    and

    L-type

    edges,

    where

    the averaged

    over t h e

    whole p er-

    iod va lue of

    all

    the

    L-type e d g e

    voltages

    a re

    zero.

    S o ,

    if

    any

    L-type

    e d g e voltage

    in

    either

    interval

    were forced

    to

    zero,

    i t

    would

    remain

    zero also

    i n another

    interval.

    Moreover,

    ta-

    king into

    account

    t h e

    f a c t

    t h a t

    t h e p o t e n t i a l s

    corresponding

    t o

    t h e

    vertices

    o f

    both

    E C C B

    p i e c e s

    are

    k e p t

    approximately

    c o n s t a n t ,

    i t

    can b e concluded

    that

    t h e

    voltages

    of

    all

    t h e

    remaining

    1 - t y p e

    edges

    i n b o t h

    intervals

    would

    b e z e r o ,

    t o o .

    A s a

    result

    t w o

    ECC

    pieces

    would b e

    permanently

    connected

    mating

    t h e

    controllof

    t h e

    tree-edges

    voltages

    b y

    duty-

    ratio variations

    i m p o s s i b l e .

    Similarly,

    i t

    c a n

    b e

    s h o w n

    t h a t

    i f

    a n y

    C-type

    e d g e

    current

    i n

    either

    interval

    were

    forced to

    z e r o ,

    i t would

    remain

    zero also

    i n

    another

    interval.

    H e n c e ,

    the

    averaged

    current

    o f

    all

    t h e

    L-type

    e d g e s

    would

    b e

    zero,

    causing

    the tree-edge

    voltages

    be

    i n d e p e n d e n t

    on

    the

    duty-ratio

    v a r i a t i o n s .

    S u m m a r i z i n g ,

    t h e

    a b o v e

    d i s s c u s s i o n

    proves

    t h a t :

    Property

    2 .

    T h e

    topological

    g r a p h s

    of

    a

    two-state

    switching

    converter

    contain

    n o :

    / 1 /

    circuits

    c o m p o s e d

    o n l y

    o f L a n d

    S o n -

    t y p e

    e d g e s

    and

    / 2 /

    c u t s e t s

    c o m p o s e d

    o n l y

    o f C a n d

    S o f f -

    t y p e

    e d g e s .

    3 .

    The

    rules

    o f

    admissible

    LCS

    c o n f i g u r a t i o n s

    The

    definition

    o f

    t h e

    basic

    converters

    and

    t h e

    p r o p e r t i e s

    derived

    from

    the

    a d o p t e d

    definition

    of

    a two-state

    s w i t c h i n g

    dc-dc

    converter

    can

    b e

    e a s i l y

    used

    to

    for mulate

    t h e

    set

    o f

    rules

    determining

    al l

    admissible

    c o n f i g u r a t i o n s

    o f

    t h e

    E ,

    C ,

    C R ,

    L ,

    S o n

    and

    S o f f - t y p e

    e d g e s .

    F r o m t h e

    definition

    o f

    a

    switching

    con-

    verter / S e c . 1 , i t e m

    l a

    a n d

    b /

    i t

    i s

    obvious

    t h a t :

    R u l e

    A .

    The g r a p h s

    of t h e

    switching

    converters

    a r e

    composed

    i n

    general

    o f

    t h e

    E , C ,

    C a ,

    L o

    S o n

    and

    S o f f - t y p e

    e d g e s

    where

    t h e

    E

    and

    C R -

    t y p e

    edges

    are

    single

    a n d connected

    i n

    the

    common

    vertex.

    F r o m

    Property

    1

    i t c a n

    b e concluded

    t h a t :

    Rule B .

    The

    E C C R - s u b g r a p h s

    a r e

    composed

    o f two

    d i s j o i n t

    p i e c e s ,

    e a c h

    o f

    them

    having t h e

    f o r r m

    o f t h e

    subtree / s i n g l e

    vertex

    i n the

    simplest

    c a s e / ,

    and

    Rule C .

    The

    S on

    -type

    edges

    occur

    only

    between

    t h e

    vertices

    embraced

    i n

    two

    different

    p i e -

    ces

    of

    th e

    E C C . - s u b g ; r a p h .

    F r o m

    Definition

    1

    / S e c . 1 , i t e m

    6 /

    i t can

    b e

    obtained

    that:

    Rule

    D .

    The L - t y p e

    edges

    occur

    o n l y

    between

    t h e

    vertices

    embraced

    i n

    tw o

    different pieces

    o f

    t h e

    E C C . - s u b g r a p h

    a n d a t

    mo s t one

    L - t y p e

    e d g e

    is

    connected

    with

    each

    vertex.

    T o

    formulate

    t h e

    remaining rules

    all

    t h e

    vertices

    of

    t h e

    E C C R - s u b g r a p h

    are

    divided

    into

    two following

    types:

    Type

    I -

    V erti ce s c on ne ct ed

    with

    t h e E-

    a n d / o r

    C R - t y p e

    edge.

    Type

    I I - Vertices

    c o n n e c t e d

    only

    w i t h

    the

    C -t ype e dges

    o r ,

    in

    th e simplest

    case,

    isolated

    / n o

    E , C

    or

    C R -

    t y p e

    e d g e i n c i d e n t / .

    Then,

    t o ensure

    a power

    transfer

    i t

    i s

    required

    t h a t :

    Rule

    E .

    Eacb

    o f Type

    I

    vertex

    i s connected

    a t

    l e a s t

    w i t h

    one L

    o r

    S-type

    e d g e .

    Taking

    into

    account

    Definition

    1

    / S e c . 2 ,

    i t e m

    5 / ,

    Property

    2

    a n d

    a d d i t i o n a l l y

    I R u l e

    D

    i t

    c a n

    b e concluded

    t h a t :

    R u l e

    P .

    Each

    of T y p e

    I I

    vertex

    i s

    connected

    with

    a t

    least

    o n e S-type

    edge

    together

    with

    exac-

    tly

    o n e

    L-type

    e d g e .

    F i n a l l y , ,

    using

    Property

    2

    i t

    can

    b e

    noted

    t h a t s

    475

  • 8/11/2019 Three-Phase PFC Rectifier

    4/5

    Rule

    G .

    T h e L-type

    edges

    do

    not

    occur

    i n parallel

    with

    t h e

    S

    O-type

    edges.

    4 - . - Z n t h e s i s

    procedure

    of basic

    two-state

    converter topologies

    Basing

    o n

    the above

    rules

    o f

    admissible

    topological

    configurations

    i n

    this section

    th e

    systematic

    procedure

    o f

    derivation

    o f

    basic

    two-state

    converter

    structures

    i s developed.

    The procedure

    i s outlined

    i n the

    flow

    chart

    of Fig.4.

    Step

    1 .

    I n t h e

    first

    step minimal

    number

    o f

    switches required

    i n

    two-state

    switching

    converters

    i s determined.

    According to Sect-

    i o n 1

    two switches

    are indispensable.

    Step 2 .

    I n t h e second

    step

    number

    o f

    ECC

    -subtrees

    /pieces

    of

    ECC

    -subgraph/

    i s

    d e t i r n i n e d .

    According

    to R u l g

    B

    two

    such

    a

    subtrees

    are t o b e

    considered.

    Step

    3 . I n the third step nu mb er s

    a n d

    types

    of

    vertices i n

    each

    particular

    subtree

    are determined.

    From

    Rule

    A

    i t results

    t h a t

    all

    three

    Type

    I

    vertices

    are grouped

    i n o n e

    common

    EB C -subtree

    called

    henceforth

    t h e

    main s u b t r A e .

    Consequently,

    t h e

    second

    subtree

    called

    henceforth

    th e

    subsidiary

    subtree

    con-

    tains o n l y Type

    II

    vertices.

    Additionally,

    accounting

    for Rule

    F

    i t i s

    evident

    that

    i n

    t h e

    case o f two

    S-type

    edges t h e

    subsidiary

    subtree

    contains

    o n e

    o r

    two

    vertices.

    These

    vertices

    are

    connected

    totally with

    three

    or

    four

    L

    a n d

    S-type

    edges,

    respectively.

    This

    i n turn,

    together

    with

    R u l e F ,

    leads

    t o

    t h e

    conclusion

    that

    the main subtree

    beside

    t h e

    aforementioned

    three vertices

    o f Type

    I

    can-

    not contain any

    other

    vertices

    / t o

    generate

    one

    extra

    Type

    II

    vertex

    a t

    least

    t j i v e

    I

    and

    S-type

    edges

    are

    r e q u i r e d / .

    F i g .

    4 .

    The

    flow

    chart o f

    t h e

    thesis

    procedure.

    proposed

    syn-

    i _ i

    t y p e

    I

    v e r t e x

    I n p u t , '

    1

    a )

    n

    y

    r -

    t y p e

    I I v e r t e x

    o u t p u t

    t

    1 1

    AI\

    c

    B

    OS

    BUC K BOOST

    B U C K / B 0 0 S T

    o l

    m a i n

    A

    X

    s u b s i d i a r y

    s u b t r e e

    I

    I , 0 H s u b t r e e

    II

    UP

    C U K

    DOWN

    D L J A L - S E P I C

    NEW1

    S E P I C N E W 2

    N EW3

    NEW4

    F i g .

    5 .

    S u b s e q u e n t

    steps

    o f

    t O h e

    procedure:

    possible

    vertices

    distributions

    / & / ,

    t w o - s w i t c h

    configurations

    / b / ,

    admissible

    L S structures

    / c /

    and

    final

    two-state

    converters / d / .

    476

  • 8/11/2019 Three-Phase PFC Rectifier

    5/5

    Summarizing,

    there

    ar e

    two

    possible dis-

    tributions

    o f vertices

    i n the E C C 2 - s u b g r a p h ,

    shown

    i n

    F i g . 5 a :

    / i /

    L a i n

    subtree-three

    Type

    I

    v e r t i c e s ,

    subsidiary

    subtree-one

    Type

    I I vertex

    / i /

    M i a i n

    subtree-three

    Type

    I

    v e r t i c e s ,

    s u b s i d i a r y

    s u b t r e e - t w o

    T y p e

    I I

    ver-

    t i c e s .

    Step

    4 .

    I n

    t h e fourth

    s t e p ,

    considering

    b o t h

    intervals

    a t t h e

    s a m e

    time,

    a l l

    the

    p o -

    ssible

    configurations

    o f

    t h e

    S-type

    edges

    a r e

    g e n e r a t e d , F i g . 5 b .

    A s

    a

    r e s u l t ,

    nine

    configu-

    rations a r e

    o b t a i n e d .

    Step

    5 .

    I n t h e

    f i f t h

    s t e p ,

    f o r

    each

    o f

    t h e

    S - t y p e

    e d g e s

    configurations,

    t h e possible

    L t y p e

    e d g e s

    p o s i t i o n s

    a r e

    generated.

    This

    p r o c e s s

    a c c o u n t s

    for

    Rule

    D ,

    E ,

    F

    and

    G

    a n d

    leads

    t o twelve

    different

    L S

    structures

    a s

    shown

    i n

    F i g . 5 c .

    Step

    6 .

    I n t h e

    s i x t h

    step

    t h e

    obtained

    L S

    structures

    a r e completed

    b y

    C-type

    e d g e s

    which

    i n

    t h i s

    c a s e

    c a n occur

    only

    i n the

    sub-

    sidiary

    subtree

    o f

    nine

    structures

    o f F i g . 5 d .

    L l - 0

    VEE

    L

    2

    c

    v o

    NE W

    I

    L i

    i

    V E t

    D 0 2 v

    NEW

    4

    F O R

    NE W

    1

    AND

    4

    V Q

    -

    1 - 2 D

    V E

    1 - D

    1 1

    t

    V o

    i V o

    N E W

    2

    NE W

    3

    F O R

    1

    NEW 2 A N D 3 :

    V O

    1 - D

    V E

    1 - 2 D

    - - -

    1

    _

    I

    F i g .

    6 .

    P o u r

    new

    two-state

    dc-dc

    converters

    with

    t h e i r

    ideal

    static

    c h a r a c t e r i s t i c s .

    A s a

    r e s u l t ,

    a t

    t h e o u t p u t

    o f

    t h e

    proce-

    dure

    overall

    t w e l v e

    basic

    t w o - s t a t e

    converter

    structures

    a r e d e r i v e d ,

    w h e r e

    e i g h t

    o f

    t h e m

    a r e

    already

    k n o w n

    w h i l e

    f o u r ,

    most

    l i k e l y ,

    still

    u n k n o w n .

    These

    four n e w

    s t r u c t u r e s ,

    a s

    c a n

    b e easily

    p r o v e d ,

    have

    t h e

    static

    chara-

    c t e r i s t i c s

    V

    / V

    being

    t h e n o n - c o n s t a n t

    fun-

    ctions

    o f

    t h 8

    d g t y - r a t i o

    D .

    T h u s ,

    t h e

    rules

    f o r m u l a t e d

    i n

    Section 3 c o n s t i t u t e

    t h e

    s e t

    o f

    both

    necessary

    and

    s u f f i c i e n t conditions

    equi-

    valent

    t o

    t h e a d o p t e d

    definition

    of

    basic

    t w o - s t a t e

    c o n v e r t e r .

    I n

    F i g . 6

    four

    new

    converter structures

    with their

    static

    c h a r a c t e r i s t i c s

    ar e redrawn

    i n

    a more

    s t a n d a r d

    form.

    A s

    s e e n ,

    these c o n -

    verters

    prove

    t h e

    p o s s i b i l i t y

    of

    o b t a i n i n g

    b o t h

    i n v e r s e d

    a n d

    non-inversed

    p o l a r i t y

    o f

    t h e

    o u t p u t

    v o l t a g e .

    V i r t u a l l y ,

    i n or der

    to

    exploit

    this

    feature

    two

    ideal

    s y m m e t r i c a l

    s w i t c h e s

    would

    b e

    involved.

    H o w e v e r ,

    the

    im-

    p l e m e n t a t i o n

    o f

    u n i - d i r e c t i o n a l

    s w i t c h e s

    / t r a n s i s t o r s

    and

    d i o d e s /

    would

    r e q u i r e

    a n

    i n t e r c h a n g e

    o f

    their

    p o s i t i o n s

    a t

    D = 0 . 5 .

    5 .

    Conclusions

    T h e

    systematic

    method

    o f

    t o p o l o g i c a l

    syn-

    thesis

    o f

    basic

    t w o - s t a t e

    dc-dc

    converters

    allowed

    t o

    a c h i e v e

    t h e

    c o m p l e t e

    class

    of

    t h e -

    s e

    c i r c u i t s ,

    i n c l u d i n g

    four

    n e w

    structures.

    The

    derived

    structures

    a r e

    basic

    in

    that

    sense

    that

    e a c h

    element

    i s

    a b s o l u t e l y

    e s s e n t i a l

    from

    t h e

    v i e w p o i n t

    o f

    their

    static

    p r o p e r t i e s .

    S u c h

    a

    basic

    structure

    can

    b e ,

    a c c o r d i n g

    t o

    some

    o p t i o n a l

    r e q u i r e m e n t s ,

    modified

    b y

    addi-

    tion

    of

    filters

    / a t

    i n p u t

    a n d / o r

    o u t p u t / ,

    t a p p e d

    i n d u c t o r s ,

    transformers

    a n d

    p a r a l l e l

    or series

    L C

    a r r a n g e m e n t s .

    I t ca n

    b e

    p o i n t e d

    o u t

    that

    i n

    a

    number

    of

    structures

    / C U K ,

    U P ,

    D U A L - S E P I C

    a n d

    NEW

    1 / ,

    b y

    removal

    of

    t h e

    C-

    type

    edge p a r a l l e l

    to

    t h e

    l o a d

    resistance

    r i ,

    the o u t p u t

    i m p e d a n c e

    ca n

    b e

    c h a n g e d

    f r o m r

    t h e

    high

    t o

    the

    low

    l e v e l .

    6 . R e f e r e n c e s

    [ 1 ]

    S.Cuk

    and

    R - . D . S i d d l e b r o o k ,

    A

    new

    o p t i m u m

    t o p o l o g y

    s w i t c h i n g

    dc-dc

    converter ,

    i n

    1977

    IEEE

    Power

    Electronics

    S p e c i a l i s t s

    C o n f e r e n c e

    R e c o r d , p p .

    1 6 0 - 1 7 9 .

    [ 2 ]

    R . P . M g a s s e y

    and

    E . C . R y d e r ,

    H i g h

    v o l t a g e

    s i n g l e - e n d e d

    d c - d c c o n v e r t e r ,

    i n

    1 9 7 7

    IEEE

    r o w e r

    Electronics

    S p e c i a l i s t

    Conferen-

    ce R e c o r d , p p .

    1 5 6 - 1 5 9 .

    [ 3 ]

    R . S e v e r n s ,

    S w i t c h m i i o d e

    converter

    t o p o l o g i e s

    make

    them work

    for y o u t ,

    I n t e r s i l ,

    I n c . ,

    Application

    B u l l e t i n

    A 0 3 5 ,

    1 9 8 0 .

    [ 4 ]

    S . C u k ,

    General

    t o p o l o g i c a l

    p r o p e r t i e s

    o f

    switching

    s t r u c t u r e s ,

    i n

    1 9 7 9

    I E 2 r

    Power

    Electronics

    Specialist

    Conference

    R e c o r d ,

    p p .

    1 0 9 - 1 2 9 .

    [ 5 1

    G.Cardwell

    a n d W . N e e l ,

    B i l a t e ra l

    p o w e r

    c o n d i t i o n e r ,

    i n

    1 9 7 3

    I E E E

    Power

    Electro-

    nics O p e c i a l i s t

    C o n f e r e u i c e

    R e c o r d , p p .

    2 1 4 -

    2 2 1 .

    [ 6 ]

    E . E . L a n d s m a n n ,

    A

    u n i f y i n g

    d e r i v a t i o n

    of

    switching

    dc-dc

    converter

    t o p o l o g i e s ,

    i n

    1979

    I 2 2

    t v c w e r

    Electronics

    S p e c i a l i s t s

    Conference

    R 2 e c o r d ,

    p p .

    2 3 9 - 2 4 3 .

    [ 7 ]

    N . R . M . R a o ,

    Aunifying

    p r i n c i p l e

    behind

    s w i t c h i n g

    c o n v e r t e r s

    and

    s o m e

    n e w

    basic

    c o n f i g u r a t i o n s , ,

    I E E E

    Transactions

    on

    r o n -

    s u m e r E l e c t r o n i c s ,

    v o l .

    C E - 2 6 ,

    r p .

    1 4 2 - 1 4 3 ,

    F e b . 1 9 8 0 .

    477