1
RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com A holis/c descrip/on of auditory processing abili/es in university athletes, a popula/on that is par/cularly suscep/ble to head injury, is crucial to developing a sensi/ve test baLery to detect poten/al auditory processing deficits. The development of a test baLery necessitates a within subject comparison of a variety of behavioral and electrophysiological tests to evaluate paLerns of dysfunc/on in this group. The aim of the present study is to inves/gate the effects of concussion on temporal processing, dicho/c listening, binaural processing and neural synchrony u/lizing clinical tests. FiReen athletes with heterogeneous sports histories of concussion and normal peripheral hearing were administered a behavioral test baLery, which consisted of dicho/c rhyme (DR), masking level difference (MLD) and Gaps in Noise (GIN) test, as well as a electrophysiological test baLery, which consisted of auditory brainstem response (ABR, cABR) and auditory late response (ALR). Preliminary analyses reveal abnormal ABR classifica/ons and a significantly larger right ear advantage on DR in the high severity concussion group rela/ve to the low severity group. Further sta/s/cal analysis and examina/on of the data will aim to incorporate electrophysiological results and determine poten/al risk factors for auditory processing deficits associated with head injury in athle/cs. Abstract The aim of the study is to inves/gate the effects of sportrelated concussion (SRC) on auditory processing and auditory pathway physiology in university athletes using behavioral and electrophysiologic tests. We hypothesize that there will be differences in the performance of individuals with a more severe history of SRC, as compared to those with a less severe history of SRC, on the behavioral and electrophysiological tests of central auditory func/on, even aRer acute concussive symptoms have subsided (Theriault et al., 2009; Beaumont et al., 2007; Gosselin et al., 2006). Research has demonstrated a high incidence of auditory processing deficits in individuals with moderate or severe head injury, with one study repor/ng auditory processing deficits in 58% of par/cipants with moderatesevere head injury even aRer recovery from other symptoms (Bergemalm & Lyxell, 2005). However, literature on the effects of sportrelated concussion (the mildest form of head injury) on auditory processing deficits has been primarily focused on electrophysiological measures, most commonly auditory late poten/als (P300). One of the goals of this study is to evaluate the u/lity of different clinical tes/ng procedures, which have been used in more severe types of head injury, in the SRC popula/on. Individuals in the athle/c popula/on have a significantly higher incidence of concussion than nonathletes, and therefore may be considered an atrisk popula/on for auditory processing deficits. Learning in the classroom, regardless of age, is heavily dependent on auditory input and confounded by poor listening condi/ons, such as noise and reverbera/on, which are more detrimental to individuals with auditory processing deficits (Weihing & Musiek, 2012). Therefore, it is important to assess the auditory processing of individuals in this popula/on so that appropriate recommenda/ons can be made to bolster academic success. Purpose & IntroducAon Preliminary ANOVA analyses reveal no sta/s/cally significant results, though a larger right ear advantage (REA) on DR in the high severity versus the low severity concussion group was observed (ANOVA, p=0.13). All par/cipants in the high severity group also demonstrated grossly abnormal clickevoked ABR waveforms based on poor morphology and/or replicability, while those in the low severity group exhibited grossly normal click evoked ABR waveforms. Results Par/cipants consisted of sixteen university athletes with heterogeneous sports and concussion histories. Candidacy was confirmed through: selfreported sport, medical, and head injury history encompassing the athlete’s en/re athle/c career the Wechsler Test of Adult Reading (WTAR) to screen for low premorbid intellectual/cogni/ve func/oning a normal comprehensive audiologic examina/on consis/ng of otoscopy, tympanometry, distor/on product otoacous/c emissions (DPOAEs), and puretone and speech audiometry bilaterally. The Amsterdam Auditory Disability Inventory was administered to quan/fy auditory disability Central auditory processing was assessed: the dicho/c rhyme (DR) gapsinnoise (GIN) masking level difference (MLD) auditory brainstem response (ABR, cABR) auditory late response (ALR) the Digit Span Test (forward and backward digits) the DelisKaplan Execu/ve Func/on System (DKEFS) Trail Making Test Methods Discussion & Conclusions Findings of a larger REA in a closed head injury popula/on are consistent with those of Benavidez et al. (1999) secondary to shearing of corpus callosum fibers and demyelina/on. Poor morphology of EP waveforms is also consistent with the pathophysiology of concussion, primarily affec/ng axonal fiber tract physiology (i.e. ascending auditory pathway, corpus callosum), which is not evident on tradi/onal structural imaging studies. Acknowledgements & References Thank you to the Royal Arch Research Assistance (RARA) Grant for funding our Lab, and this project in par/cular, which allowed us to provide compensa/on to the par/cipants of this study. Please use this QR Code to download a list of references and suggested readings. Julianne Ceru/, B.A. 1 , Stephanie Waryasz, B.S. 1 , Frank Musiek, Ph.D. 2 , Pradeep Ramanathan, Ph.D. 1 1 University of Connec/cut, Department of Speech, Language and Hearing Sciences 2 University of Arizona, Department of Speech, Language and Hearing Sciences Effects of SportsRelated Concussion on Auditory Processing in University Athletes Fig 1: EP Results from Par/cipant with More Severe History of Concussion Subject Age Sex PTAR (O) PTAL (X) Severity WTAR DS Forward DS Back DKEFS VS DKEFS NS DKEFS LS DKEFS NLS DKEFS M DRT R DRT L DRT Diff GIN R GIN L GIN Diff MLD 16 19 F 6.7 8.3 High 37 6 5 13 10 14 5 10 46.7 43.3 3.3 6 5 1 13 17 19 F 3.3 5.0 High 42 6 4 13 13 13 13 12 50.0 40.0 10.0 5 8 3 19 19 M 8.3 5.0 High 40 5 4 14 13 9 9 12 56.7 33.3 23.4 6 6 0 10 4 20 M 6.7 6.7 High 42 6 5 10 12 11 9 12 60.0 40.0 20.0 12 8 4 8 19 M 11.7 11.7 High 37 8 5 13 13 13 6 8 36.7 43.3 6.7 4 5 1 7 7 18 F 5.0 5.0 High 41 7 6 11 9 14 7 13 36.7 53.3 16.7 5 5 0 12 20 M 6.7 6.7 High 42 7 7 12 11 11 10 12 57.0 33.0 24.0 8 10 2 15 21 F 6.7 5.0 High 35 6 7 12 13 13 13 13 30.0 50.0 20.0 4 5 1 9 20 22 M 3.3 6.7 Low 42 6 4 50.0 33.3 16.7 5 5 0 13 11 20 M 13.3 11.7 Low 40 6 3 13 13 12 6 13 36.7 40.0 3.3 5 5 0 9 20 M 6.7 6.7 Low 46 8 6 13 14 13 13 13 36.7 53.3 16.7 5 8 3 10 19 M 11.7 5.0 Low 42 6 6 13 12 12 6 12 43.0 50.0 7.0 6 10 4 21 21 M 10.0 5.0 Low 39 7 4 36.7 60.0 23.3 8 5 3 1 21 F 3.3 6.7 Low 44 9 8 10 12 13 14 12 43.0 40.0 3.0 5 5 0 5 5 21 F 1.7 1.7 Low 38 8 8 11 14 14 12 12 36.7 53.3 16.7 5 4 1 6 22 F 13.3 11.7 Low 48 5 5 12 12 12 13 12 40.0 56.7 16.7 5 5 0 15 pvalue 0.01 0.59 0.89 0.09 0.40 0.87 0.72 0.17 0.60 0.37 0.27 0.16 0.16 0.13 0.47 0.54 0.91 0.69 The table to the leR (Table 1) describes the par/cipants who were classified as “more severe” and the table above (Table 2) describes the par/cipants who were classified as “less severe”. Par/cipants were divided into high severity and low severity groups based on concussion history, which included number of head hits, severity of head hits and symptoms as well as extent and dura/on of academic and athle/c reprieve aRer each incident. Table 3 summarizes the behavioral tes/ng data obtained for each par/cipant. Table 1: Summary of Concussion History in More Severe Concussion Group Table 2: Summary of Concussion History in Less Severe Concussion Group Table 3: Summary of Behavioral Results for each Par/cipant .5 uV 1 uV 1 uV N1: 78 ms | 4.51 uV P2: 124 ms | 4.85 uV N1: 83 ms|2.94 uV P2: 114 ms|1.94 uV N1: 90 ms | 5.12uV P2: 155 ms | 5.5 uV N1: 94 ms|1.62 uV P2: 124 ms|2.81 uV .5 uV Fig 2: EP Results from Par/cipant with Less Severe History of Concussion N1: 75 ms | 4.01 uV P2: 145 ms | 6.51 uV IIII: 1.9 ms IIIV: 1.65 ms V: 5.35 ms | .72 uV IIII: 2.08 ms IIIV: 1.6 ms V: 5.3 ms | .5 uV IIII: 2.13 ms IIIV: 2.13 ms V: 5.90 ms | .21 uV IIII: 2.33 ms IIIV: 2.07 ms V: 5.93 ms | .52 uV N1: 80 ms | 4.46 uV P2: 139 ms | 5.18 uV

THIS SIDEBAR DOES NOT PRINT—) …hearinghealthmatters.org/journalresearchposters/files/2015/05/SRC... · also delete them from the Slide Master. Discussion&Conclusions(Save your

Embed Size (px)

Citation preview

RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

(—THIS SIDEBAR DOES NOT PRINT—)

D E S I G N G U I D E

This PowerPoint 2007 template produces a 48”x72” presentation poster. You can use it to create your research poster and save valuable time placing titles, subtitles, text, and graphics.

We provide a series of online answer your poster production questions. To view our template tutorials, go online to PosterPresentations.com and click on HELP DESK.

When you are ready to print your poster, go online to PosterPresentations.com

Need assistance? Call us at 1.510.649.3001

Q U I C K S TA R T

Zoom in and out As you work on your poster zoom in and out to the level that is more comfortable to you. Go to VIEW > ZOOM.

Title, Authors, and Affiliations

Start designing your poster by adding the title, the names of the authors, and the affiliated institutions. You can type or paste text into the provided boxes. The template will automatically adjust the size of your text to fit the title box. You can manually override this feature and change the size of your text.

T I P : The font size of your title should be bigger than your name(s) and institution name(s).

Adding Logos / Seals Most often, logos are added on each side of the title. You can insert a logo by dragging and dropping it from your desktop, copy and paste or by going to INSERT > PICTURES. Logos taken from web sites are likely to be low quality when printed. Zoom it at 100% to see what the logo will look like on the final poster and make any necessary adjustments.

T I P : See if your company’s logo is available on our free poster templates page.

Photographs / Graphics You can add images by dragging and dropping from your desktop, copy and paste, or by going to INSERT > PICTURES. Resize images proportionally by holding down the SHIFT key and dragging one of the corner handles. For a professional-looking poster, do not distort your images by enlarging them disproportionally.

Image Quality Check Zoom in and look at your images at 100% magnification. If they look good they will print well.

ORIGINAL   DISTORTED  

Corner  handles  

Good

 prin

/ng  qu

ality

 

Bad  prin/n

g  qu

ality

 

Q U I C K S TA RT ( c o n t . )

How to change the template color theme You can easily change the color theme of your poster by going to the DESIGN menu, click on COLORS, and choose the color theme of your choice. You can also create your own color theme. You can also manually change the color of your background by going to VIEW > SLIDE MASTER. After you finish working on the master be sure to go to VIEW > NORMAL to continue working on your poster.

How to add Text The template comes with a number of pre-formatted placeholders for headers and text blocks. You can add more blocks by copying and pasting the existing ones or by adding a text box from the HOME menu.

Text size

Adjust the size of your text based on how much content you have to present. The default template text offers a good starting point. Follow the conference requirements.

How to add Tables

To add a table from scratch go to the INSERT menu and click on TABLE. A drop-down box will help you select rows and columns.

You can also copy and a paste a table from Word or another PowerPoint document. A pasted table may need to be re-formatted by RIGHT-CLICK > FORMAT SHAPE, TEXT BOX, Margins.

Graphs / Charts You can simply copy and paste charts and graphs from Excel or Word. Some reformatting may be required depending on how the original document has been created.

How to change the column configuration RIGHT-CLICK on the poster background and select LAYOUT to see the column options available for this template. The poster columns can also be customized on the Master. VIEW > MASTER.

How to remove the info bars

If you are working in PowerPoint for Windows and have finished your poster, save as PDF and the bars will not be included. You can also delete them by going to VIEW > MASTER. On the Mac adjust the Page-Setup to match the Page-Setup in PowerPoint before you create a PDF. You can also delete them from the Slide Master.

Save your work Save your template as a PowerPoint document. For printing, save as PowerPoint of “Print-quality” PDF.

Student discounts are available on our Facebook page. Go to PosterPresentations.com and click on the FB icon.

©  2013  PosterPresenta/ons.com  

         2117  Fourth  Street  ,  Unit  C                  

         Berkeley  CA  94710  

       [email protected]  

A  holis/c  descrip/on  of  auditory  processing  abili/es  in  university  athletes,  a  popula/on   that   is   par/cularly   suscep/ble   to   head   injury,   is   crucial   to  developing   a   sensi/ve   test   baLery   to   detect   poten/al   auditory   processing  deficits.   The   development   of   a   test   baLery   necessitates   a   within   subject  comparison   of   a   variety   of   behavioral   and   electrophysiological   tests   to  evaluate  paLerns  of  dysfunc/on  in  this  group.    The  aim  of  the  present  study  is   to   inves/gate  the  effects  of  concussion  on  temporal  processing,  dicho/c  listening,   binaural   processing   and   neural   synchrony   u/lizing   clinical   tests.  FiReen   athletes   with   heterogeneous   sports   histories   of   concussion   and  normal   peripheral   hearing   were   administered   a   behavioral   test   baLery,  which  consisted  of  dicho/c  rhyme  (DR),  masking  level  difference  (MLD)  and  Gaps  in  Noise  (GIN)  test,  as  well  as  a  electrophysiological  test  baLery,  which  consisted   of   auditory   brainstem   response   (ABR,   cABR)   and   auditory   late  response   (ALR).   Preliminary   analyses   reveal   abnormal   ABR   classifica/ons  and   a   significantly   larger   right   ear   advantage   on   DR   in   the   high   severity  concussion   group   rela/ve   to   the   low   severity   group.   Further   sta/s/cal  analysis   and   examina/on   of   the   data   will   aim   to   incorporate  electrophysiological  results  and  determine  poten/al  risk  factors  for  auditory  processing  deficits  associated  with  head  injury  in  athle/cs.    

Abstract  

The  aim  of  the  study  is  to  inves/gate  the  effects  of  sport-­‐related  concussion  (SRC)  on  auditory   processing   and   auditory   pathway   physiology   in   university   athletes   using  behavioral   and   electrophysiologic   tests.   We   hypothesize   that   there   will   be  differences   in  the  performance  of   individuals  with  a  more  severe  history  of  SRC,  as  compared   to   those   with   a   less   severe   history   of   SRC,   on   the   behavioral   and  electrophysiological   tests   of   central   auditory   func/on,   even   aRer   acute   concussive  symptoms  have  subsided  (Theriault  et  al.,  2009;  Beaumont  et  al.,  2007;  Gosselin  et  al.,  2006).    Research   has   demonstrated   a   high   incidence   of   auditory   processing   deficits   in  individuals  with  moderate  or  severe  head  injury,  with  one  study  repor/ng  auditory  processing   deficits   in   58%   of   par/cipants   with   moderate-­‐severe   head   injury   even  aRer   recovery   from   other   symptoms   (Bergemalm   &   Lyxell,   2005).   However,  literature  on  the  effects  of  sport-­‐related  concussion  (the  mildest  form  of  head  injury)  on   auditory   processing   deficits   has   been   primarily   focused   on   electrophysiological  measures,  most  commonly  auditory   late  poten/als   (P300).  One  of  the  goals  of  this  study   is   to   evaluate   the   u/lity   of   different   clinical   tes/ng   procedures,   which   have  been  used  in  more  severe  types  of  head  injury,  in  the  SRC  popula/on.  Individuals   in   the   athle/c   popula/on   have   a   significantly   higher   incidence   of  concussion   than   non-­‐athletes,   and   therefore   may   be   considered   an   at-­‐risk  popula/on  for  auditory  processing  deficits.  Learning  in  the  classroom,  regardless  of  age,   is   heavily   dependent   on   auditory   input   and   confounded   by   poor   listening  condi/ons,   such   as   noise   and   reverbera/on,   which   are   more   detrimental   to  individuals  with  auditory  processing  deficits  (Weihing  &  Musiek,  2012).  Therefore,  it  is   important   to   assess   the   auditory   processing   of   individuals   in   this   popula/on   so  that  appropriate  recommenda/ons  can  be  made  to  bolster  academic  success.    

Purpose  &  IntroducAon  

Preliminary  ANOVA  analyses  reveal  no  sta/s/cally  significant  results,  though  a  larger  right  ear  advantage  (REA)  on   DR   in   the   high   severity   versus   the   low   severity   concussion   group   was   observed   (ANOVA,   p=0.13).   All  par/cipants  in  the  high  severity  group  also  demonstrated  grossly  abnormal  click-­‐evoked  ABR  waveforms  based  on  poor  morphology  and/or  replicability,  while  those   in  the   low  severity  group  exhibited  grossly  normal  click-­‐evoked  ABR  waveforms.  

Results  •  Par/cipants   consisted   of   sixteen   university   athletes   with   heterogeneous  

sports  and  concussion  histories.    •  Candidacy  was  confirmed  through:    

•  self-­‐reported  sport,  medical,  and  head  injury  history  encompassing  the  athlete’s  en/re  athle/c  career  

•  the   Wechsler   Test   of   Adult   Reading   (WTAR)   to   screen   for   low  premorbid  intellectual/cogni/ve  func/oning  

•    a   normal   comprehensive   audiologic   examina/on   consis/ng   of  otoscopy,  tympanometry,  distor/on  product  otoacous/c  emissions  (DPOAEs),  and  pure-­‐tone  and  speech  audiometry  bilaterally.    

•  The  Amsterdam  Auditory  Disability   Inventory  was  administered  to  quan/fy  auditory  disability  

•  Central  auditory  processing  was  assessed:  •  the  dicho/c  rhyme  (DR)  •  gaps-­‐in-­‐noise  (GIN)  •  masking  level  difference  (MLD)  •  auditory  brainstem  response  (ABR,  cABR)    •  auditory  late  response  (ALR)    

•  the  Digit  Span  Test  (forward  and  backward  digits)    •  the  Delis-­‐Kaplan  Execu/ve  Func/on  System  (D-­‐KEFS)  Trail  Making  Test  

Methods  

Discussion  &  Conclusions  Findings   of   a   larger   REA   in   a   closed   head   injury   popula/on   are   consistent   with   those   of  Benavidez   et   al.   (1999)   secondary   to   shearing   of   corpus   callosum   fibers   and   demyelina/on.  Poor  morphology  of  EP  waveforms  is  also  consistent  with  the  pathophysiology  of  concussion,  primarily   affec/ng   axonal   fiber   tract   physiology   (i.e.   ascending   auditory   pathway,   corpus  callosum),  which  is  not  evident  on  tradi/onal  structural  imaging  studies.  

Acknowledgements  &  References  Thank  you  to  the  Royal  Arch  Research  Assistance  (RARA)  Grant  for  funding  our   Lab,   and   this   project   in   par/cular,   which   allowed   us   to   provide  compensa/on  to  the  par/cipants  of  this  study.      Please  use   this  QR  Code   to  download  a   list  of   references  and   suggested  readings.  

Julianne  Ceru/,  B.A.1,  Stephanie  Waryasz,  B.S.1,  Frank  Musiek,  Ph.D.2,  Pradeep  Ramanathan,  Ph.D.1  1University  of  Connec/cut,  Department  of  Speech,  Language  and  Hearing  Sciences    

2University  of  Arizona,  Department  of  Speech,  Language  and  Hearing  Sciences  

Effects  of  Sports-­‐Related  Concussion  on  Auditory  Processing  in  University  Athletes  

Fig  1:  EP  Results  from  Par/cipant  with  More  Severe  History  of  Concussion  

Subject   Age   Sex   PTA-­‐R  (O)  

PTA-­‐L  (X)   Severity   WTAR   DS  

Forward  DS  Back  

DKEFS  VS  

DKEFS  NS  

DKEFS  LS  

DKEFS  NLS  

DKEFS  M  

DRT  R  

DRT  L  

DRT  Diff  

GIN  R  

GIN  L  

GIN  Diff   MLD  

16   19   F   6.7   8.3   High   37   6   5   13   10   14   5   10   46.7   43.3   3.3   6   5   1   13  

17   19   F   3.3   5.0   High   42   6   4   13   13   13   13   12   50.0   40.0   10.0   5   8   -­‐3  

19   19   M   8.3   5.0   High   40   5   4   14   13   9   9   12   56.7   33.3   23.4   6   6   0   10  

4   20   M   6.7   6.7   High   42   6   5   10   12   11   9   12   60.0   40.0   20.0   12   8   4  

8   19   M   11.7   11.7   High   37   8   5   13   13   13   6   8   36.7   43.3   -­‐6.7   4   5   -­‐1   7  

7   18   F   5.0   5.0   High   41   7   6   11   9   14   7   13   36.7   53.3   -­‐16.7   5   5   0  

12   20   M   6.7   6.7   High   42   7   7   12   11   11   10   12   57.0   33.0   24.0   8   10   -­‐2  

15   21   F   6.7   5.0   High   35   6   7   12   13   13   13   13   30.0   50.0   -­‐20.0   4   5   -­‐1   9  

20   22   M   3.3   6.7   Low   42   6   4   50.0   33.3   16.7   5   5   0   13  

11   20   M   13.3   11.7   Low   40   6   3   13   13   12   6   13   36.7   40.0   -­‐3.3   5   5   0  

9   20   M   6.7   6.7   Low   46   8   6   13   14   13   13   13   36.7   53.3   -­‐16.7   5   8   -­‐3  

10   19   M   11.7   5.0   Low   42   6   6   13   12   12   6   12   43.0   50.0   -­‐7.0   6   10   -­‐4  

21   21   M   10.0   5.0   Low   39   7   4   36.7   60.0   -­‐23.3   8   5   3  

1   21   F   3.3   6.7   Low   44   9   8   10   12   13   14   12   43.0   40.0   3.0   5   5   0   5  

5   21   F   1.7   1.7   Low   38   8   8   11   14   14   12   12   36.7   53.3   -­‐16.7   5   4   1  

6   22   F   13.3   11.7   Low   48   5   5   12   12   12   13   12   40.0   56.7   -­‐16.7   5   5   0   15  

p-­‐value   0.01   0.59   0.89   0.09   0.40   0.87   0.72   0.17   0.60   0.37   0.27   0.16   0.16   0.13   0.47   0.54   0.91   0.69  

The  table  to  the  leR  (Table  1)  describes  the  par/cipants  who  were  classified  as  “more  severe”  and  the  table  above  (Table  2)  describes  the  par/cipants  who  were  classified  as  “less  severe”.  Par/cipants  were  divided  into  high  severity  and  low  severity  

groups  based  on  concussion  history,  which  included  number  of  head  hits,  severity  of  head  hits  and  symptoms  as  well  as  extent  

and  dura/on  of  academic  and  athle/c  reprieve  aRer  each  incident.    Table  3  summarizes  the  behavioral  tes/ng  data  

obtained  for  each  par/cipant.  

Table  1:  Summary  of  Concussion  History  in  More  Severe  Concussion  Group  

Table  2:  Summary  of  Concussion  History  in  Less  Severe  Concussion  Group  

Table  3:  Summary  of  Behavioral  Results  for  each  Par/cipant  

.5  uV  

1  uV  

1  uV  

N1:  78  ms  |  4.51  uV    P2:  124  ms  |  4.85  uV  

N1:  83  ms|2.94  uV    P2:  114  ms|1.94  uV  

N1:  90  ms  |  5.12uV    P2:  155  ms  |  5.5  uV  

N1:  94  ms|1.62  uV    P2:  124  ms|2.81  uV  

.5  uV  

Fig  2:  EP  Results  from  Par/cipant  with  Less  Severe  History  of  Concussion  

N1:  75  ms  |  4.01  uV    P2:  145  ms  |  6.51  uV  

I-­‐III:  1.9  ms  III-­‐V:  1.65  ms  V:  5.35  ms  |  .72  uV  

I-­‐III:  2.08  ms  III-­‐V:  1.6  ms  V:  5.3  ms  |  .5  uV  

I-­‐III:  2.13  ms  III-­‐V:  2.13  ms  V:  5.90  ms  |  .21  uV  

I-­‐III:  2.33  ms  III-­‐V:  2.07  ms  V:  5.93  ms  |  .52  uV  

N1:  80  ms  |  4.46  uV  P2:  139  ms  |  5.18  uV