ThinBlinDe: Blind deconvolution for confocal microscopy

Embed Size (px)

Citation preview

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    1/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    ThinBlinDe: Blind deconvolution for confocalmicroscopy

    Praveen Pankajakshan,

    Laure Blanc-Fraud, Josiane Zerubia.

    Ariana joint research group,INRIA/CNRS/UNS,

    Sophia Antipolis, France.

    This research work was partially funded byP2R Franco-Israeli project and ANR DIAMOND project. Access to

    the Applied optics paper is here.

    October 2010

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 1 of 42

    http://www-sop.inria.fr/ariana/Projets/P2R/http://www-syscom.univ-mlv.fr/ANRDIAMOND/http://www.opticsinfobase.org/abstract.cfm?uri=ao-48-22-4437http://www.opticsinfobase.org/abstract.cfm?uri=ao-48-22-4437http://www-syscom.univ-mlv.fr/ANRDIAMOND/http://www-sop.inria.fr/ariana/Projets/P2R/
  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    2/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Road map of presentation

    1 IntroductionOptical sectioning fluorescence microscopyLimitations of imaging

    2

    ThinBlinDe software for deconvolutionBreaking the limit-computationallyBlind deconvolution

    3 Results

    Phantom dataMicrospheresPlant samples

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 2 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    3/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Holy grail of biological imaging

    The holy grail for most cell

    biologists

    E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution, Sc. Exp., Aug. 2006.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 3 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    4/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Holy grail of biological imaging

    The holy grail for most cell

    biologists

    dynamically image living cellsnoninvasively,

    E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution, Sc. Exp., Aug. 2006.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 3 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    5/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Holy grail of biological imaging

    The holy grail for most cell

    biologists

    dynamically image living cellsnoninvasively,

    to see at the level of anindividual protein molecule,and

    E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution, Sc. Exp., Aug. 2006.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 3 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    6/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Holy grail of biological imaging

    The holy grail for most cell

    biologists

    dynamically image living cellsnoninvasively,

    to see at the level of anindividual protein molecule,and

    to see how these molecules

    interact in a cell.

    E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution, Sc. Exp., Aug. 2006.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 3 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    7/105

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    8/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Confocal laser scanning microscope

    Figure 1: Schematic of a confocal laserscanning microscope (Minsky (1988)).

    A- Laser

    B- Beam expander

    C- Dichroic mirror

    D- ObjectiveE- In-focus plane

    F- Confocal pinhole

    G- Photomultiplier tube

    (PMT)

    Minsky (1988) Memoir on Inventing the Confocal Scanning Microscope. Scanning (10): 128138.P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 4 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    9/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    3D imaging by optical sectioning

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 5 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    10/105

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    11/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Point-spread function

    Figure 2: Experimental PSFdetermination by imaging point sources.

    Figure 3: 2D Airy disk function.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 6 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    12/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Illustration: Diffraction effect

    Figure 4: Single green fluorescence protein (GFP) if imaged using a widefieldmicroscope. (NA = 1.4, ex = 500nm)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 7 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    13/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Illustration: Effect of circular pinhole

    Airy Unit (AU); 1AU= 1.22ex/NA

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 8 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    14/105

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    15/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Illustration: Effect of circular pinhole

    1AU 3AU

    Airy Unit (AU); 1AU= 1.22ex/NA

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 8 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    16/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Illustration: Effect of circular pinhole

    1AU 3AU Fully open

    Figure 5: Effect of changing confocal pinhole size on the out-of-focus fluorescence,contrast and SNR.

    Airy Unit (AU); 1AU= 1.22ex/NA

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 8 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    17/105

    ThinBlinDe

    P. Panka-jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    "The triangle of trade-off"

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 9 of 42

    Ill S h l b

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    18/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Illustration: Spherical aberration

    Figure 6: Schematic of spherical aberration. i is the azimuthal angle in the lensimmersion medium, s is the angle in the specimen and d (NFP) is the depthunder the cover slip and into the specimen. The refractive index of the cover slip is

    assumed to be either equal to the index of the lens ni or the specimen ns.P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 10 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    19/105

    Th l i

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    20/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The eternal question

    Figure 8: How to get the best of your microscope?

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 12 of 42

    P bl t t t

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    21/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    P bl t t t

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    22/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Problem statement

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    23/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    when pinhole size is 1 airy units (AU), 30% of photonscollected are from out-of-focus sections.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Problem statement

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    24/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    when pinhole size is 1 airy units (AU), 30% of photonscollected are from out-of-focus sections.

    shot noise, occurring as detectable statistical fluctuations,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Problem statement

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    25/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    when pinhole size is 1 airy units (AU), 30% of photonscollected are from out-of-focus sections.

    shot noise, occurring as detectable statistical fluctuations, spherical aberrations due to mismatch in medium,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Problem statement

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    26/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    when pinhole size is 1 airy units (AU), 30% of photonscollected are from out-of-focus sections.

    shot noise, occurring as detectable statistical fluctuations, spherical aberrations due to mismatch in medium,

    exact point-spread function (PSF) is unknown and varieswith experiment.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Problem statement

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    27/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Problem statement

    Images from fluorescent optical sectioning microscopes (OSM)

    are affected by blurring, due to diffraction limits and aberrations,

    when pinhole size is 1 airy units (AU), 30% of photonscollected are from out-of-focus sections.

    shot noise, occurring as detectable statistical fluctuations, spherical aberrations due to mismatch in medium,

    exact point-spread function (PSF) is unknown and varieswith experiment.

    Often only a single observation of the object is given (to avoidphotobleaching) for restoration!

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 13 of 42

    Breaking the diffraction barrier

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    28/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Breaking the diffraction barrier

    Ernst Karl Abbe [1840-1905]

    S. Hell et al. (1994) Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. OL 19 (11): 780782.

    M. J. Rust et al. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy

    (STORM). NM 3 (10): 793

    796.P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 14 of 42

    Breaking the diffraction barrier

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    29/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Breaking the diffraction barrier

    Ernst Karl Abbe [1840-1905]

    Abbes diffraction limitapproximation:

    d=ex

    2nosinmax

    S. Hell et al. (1994) Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. OL 19 (11): 780782.

    M. J. Rust et al. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy

    (STORM). NM 3 (10): 793

    796.P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 14 of 42

    Breaking the diffraction barrier

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    30/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSMLimitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Breaking the diffraction barrier

    Ernst Karl Abbe [1840-1905]

    Abbes diffraction limitapproximation:

    d=ex

    2nosinmax

    Recent fluorescence lightmicroscopy techniques are aimed atsurpassing the Abbe resolutionlimit (Hell, et al.(1994), Betzig, etal. (2006), Rust, et al.(2006)).

    S. Hell et al. (1994) Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. OL 19 (11): 780782.

    M. J. Rust et al. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy

    (STORM). NM3

    (10

    ):793796

    .P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 14 of 42

    Breaking the diffraction barrier

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    31/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Breaking the diffraction barrier

    Ernst Karl Abbe [1840-1905]

    Abbes diffraction limitapproximation:

    d=ex

    2nosinmax

    Recent fluorescence lightmicroscopy techniques are aimed atsurpassing the Abbe resolutionlimit (Hell, et al.(1994), Betzig, etal. (2006), Rust, et al.(2006)).

    Resulting images are quite similarand differences in the operationaldetails can make these techniquesmore or less suitable for specific

    types of biological studies.

    S. Hell et al. (1994) Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. OL 19 (11): 780782.

    M. J. Rust et al. (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy

    (STORM). NM3

    (10

    ):793796

    .P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 14 of 42

    Imaging Model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    32/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Imaging Model

    Image formation statistics is Poissonian, and

    i(x) = P((ho+ b)(x)),x s

    where denotes 3D deconvolution,

    O(s = {o = oxyz : s N3

    R}),

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 15 of 42

    Imaging Model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    33/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    g g

    Image formation statistics is Poissonian, and

    i(x) = P((ho+ b)(x)),x s

    where denotes 3D deconvolution,

    O(s = {o = oxyz : s N3

    R}), h : s R models the PSF,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 15 of 42

    Imaging Model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    34/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    g g

    Image formation statistics is Poissonian, and

    i(x) = P((ho+ b)(x)),x s

    where denotes 3D deconvolution,

    O(s = {o = oxyz : s N3

    R}), h : s R models the PSF,

    b is the low frequency background fluorescence signal,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 15 of 42

    Imaging Model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    35/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    g g

    Image formation statistics is Poissonian, and

    i(x) = P((ho+ b)(x)),x s

    where denotes 3D deconvolution,

    O(s = {o = oxyz : s N3

    R}), h : s R models the PSF,

    b is the low frequency background fluorescence signal,

    1/ is the photon conversion factor, and i(x) is the

    observed photon at the detector.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 15 of 42

    Trends: Deconvolution and CLSM

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    36/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Jan 2004 Jun 2006 Jan 200910

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Time

    Normalizedn

    umberofsearches

    Confocal Microscopy

    Deconvolution

    Figure 9: Annual search trends forCLSM and deconvolution between2004-2009 (Source: Google).

    0 20 40 60 80 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Relative number of searches for "confocal microscopy"

    Relativenumberofse

    archesfor"deconvolution"

    Figure 10: Scatter plot between thekeyword hits deconvolution andconfocal microscopy (Source:Google). Dotted line is the line of leastsquare (LS) fit.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 16 of 42

    Trends: scientific interest

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    37/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    1970 1975 1980 1985 1990 1995 2000 20050

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    Year

    NormalizedReferenceVolume

    Deconvolution

    Blind Deconvolution

    Figure 11: Recent scientific trends on deconvolution and blind deconvolution (Datasource: ISI web of knowledge).

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 17 of 42

    Breaking the limitations-ThinBlinDe software

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    38/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 12: Observed volume section of a convallaria and restoration using the

    ThinBlinDe software. cINRA and Ariana-INRIA/CNRS/UNSP. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 18 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    39/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    40/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    41/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    42/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i) = log(Pr(o|i))

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    43/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i) = log(Pr(o|i)) = Jobs(i|o) +Jreg(o)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    44/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i) = log(Pr(o|i)) = Jobs(i|o) +Jreg(o)

    Maximum a posteriori (MAP) estimate is obtained by

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    45/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i) = log(Pr(o|i)) = Jobs(i|o) +Jreg(o)

    Maximum a posteriori (MAP) estimate is obtained by

    o(x) = arg maxo(x)0

    Pr(o|i)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    Deconvolution as Bayesian inference

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    46/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    MicrospheresPlant samples

    From the Bayes theorem, the posterior probability is

    Pr(o|i) Pr(i|o)Pr(o)

    Pr(i|o) is the likelihood, Pr(o) is the belief of the object.

    The equivalent energy function is

    J(o|i) = log(Pr(o|i)) = Jobs(i|o) +Jreg(o)

    Maximum a posteriori (MAP) estimate is obtained by

    o(x) = arg maxo(x)0

    Pr(o|i) = arg mino(x)0

    ( log(Pr(o|i)))

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 19 of 42

    State of the art: deconvolution

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    47/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Assumption Method References

    No Noise Nearest neighbors [Agard 84],Inverse filter [Erhardt et al. 85]

    Additive Gaussian Reg. lin. least square [Preza et al. 92],white noise Wiener filter [Tommasi et al. 93],

    JVC [Agard 84,

    Carrington et al. 90],APEX [Carasso 99],

    MAP estimate [Levin et al. 09]Poisson noise ML estimate [Holmes 88],

    MAP estimate [Verveer et al. 99,

    Dey et al. 06,Pankajakshan et al. 08]

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 20 of 42

    Maximum likelihood object estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    48/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Likelihood of the observation, i(x), knowing the specimen

    o(x) is given as

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 21 of 42

    Maximum likelihood object estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    49/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Likelihood of the observation, i(x), knowing the specimen

    o(x) is given as

    Pr(i|o) (ho+ b)(x)i(x) exp((ho+ b)(x))

    i(x)!

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 21 of 42

    Maximum likelihood object estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    50/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Likelihood of the observation, i(x), knowing the specimen

    o(x

    ) is given as

    Pr(i|o) (ho+ b)(x)i(x) exp((ho+ b)(x))

    i(x)!

    Find o(x) such that

    o(x) = arg maxo(x)0

    Pr(i|o)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 21 of 42

    Maximum likelihood object estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    51/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Likelihood of the observation, i(x), knowing the specimen

    o(x

    ) is given as

    Pr(i|o) (ho+ b)(x)i(x) exp((ho+ b)(x))

    i(x)!

    Find o(x) such that

    o(x) = arg maxo(x)0

    Pr(i|o)

    Approach: Maximum likelihood expectation maximization(MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77,Celeux 85].

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 21 of 42

    Maximum likelihood object estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    52/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-

    Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Likelihood of the observation, i(x), knowing the specimen

    o(x

    ) is given as

    Pr(i|o) (ho+ b)(x)i(x) exp((ho+ b)(x))

    i(x)!

    Find o(x) such that

    o(x) = arg maxo(x)0

    Pr(i|o)

    Approach: Maximum likelihood expectation maximization(MLEM) algorithm [Richardson 72, Lucy 74, Dempster 77,Celeux 85].

    Assumption: h(x) is available!

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 21 of 42

    Prior as statistical information

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    53/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Gibbsian distribution with total variation (TV) function is used

    as prior on the object [Demoment 1989]

    Figure 13: Markov random fieldover a six member neighborhood

    x

    for a voxel sitex

    s.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 22 of 42

    Prior as statistical information

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    54/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Gibbsian distribution with total variation (TV) function is used

    as prior on the object [Demoment 1989]

    Figure 13: Markov random fieldover a six member neighborhood

    x

    for a voxel sitex

    s.

    Pr(o) = Z1o exp(ox

    s

    |o(x)|),

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 22 of 42

    Prior as statistical information

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    55/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Gibbsian distribution with total variation (TV) function is used

    as prior on the object [Demoment 1989]

    Figure 13: Markov random fieldover a six member neighborhoodx

    for a voxel sitex

    s.

    Pr(o) = Z1o exp(ox

    s

    |o(x)|),

    Zo =oO(s)

    exp(oxs

    |o(x)|) is

    the partition function,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 22 of 42

    Prior as statistical information

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    56/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Gibbsian distribution with total variation (TV) function is used

    as prior on the object [Demoment 1989]

    Figure 13: Markov random fieldover a six member neighborhoodx

    for a voxel sitex

    s.

    Pr(o) = Z1o exp(ox

    s

    |o(x)|),

    Zo =oO(s)

    exp(oxs

    |o(x)|) is

    the partition function, with o 0.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 22 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    57/105

    Maximum a posteriori object estimate

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    58/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Combining the likelihood and the prior terms

    Pr(o,h|i) Pr(i|o,h)Pr(o)

    this posterior probability can be written as

    Pr(o,h|i) xs

    ((ho+ b)(x))i(x) exp((ho)(x))

    i(x)!

    exp(oxs

    |o(x)|)

    o

    exp(oxs

    |o(x)|)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 23 of 42

    Gradient vector field

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    59/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples X

    Y

    50

    100

    150

    200

    250

    Lateral direction

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 24 of 42

    Gradient vector field

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    60/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples X

    Y

    50

    100

    150

    200

    250

    X

    Z

    50

    100

    150

    200

    250

    Lateral direction Axial direction

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 24 of 42

    Gradient vector field

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    61/105

    ThinBlinDe

    P. Panka-

    jakshan, L.Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples X

    Y

    50

    100

    150

    200

    250

    X

    Z

    50

    100

    150

    200

    250

    Lateral direction Axial direction

    Figure 14: The gradient vector field is overlapped over a synthetic object. Thefield flow is more prominent along the borders and less along the homogeneousinteriors. The effect of the noise is negligible. cAriana-INRIA/CNRS/UNS.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 24 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    62/105

    Incoherent scalar PSF model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    63/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 26 of 42

    Incoherent scalar PSF model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    64/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    For the case when the acquisition parameters of the

    experiments are exactly known, deconvolution can beachieved by using theoretically calculated PSFs.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 26 of 42

    Incoherent scalar PSF model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    65/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    For the case when the acquisition parameters of the

    experiments are exactly known, deconvolution can beachieved by using theoretically calculated PSFs.

    Computation of the incoherent PSF can be reduced to 2Nz2D Fourier transform of the pupil function

    hTh(x;ex,em) = C|hA(x;ex)| |AR(x,y)hA(x,y,z;em)|

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 26 of 42

    Incoherent scalar PSF model

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    66/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    For the case when the acquisition parameters of the

    experiments are exactly known, deconvolution can beachieved by using theoretically calculated PSFs.

    Computation of the incoherent PSF can be reduced to 2Nz2D Fourier transform of the pupil function

    hTh(x;ex,em) = C|hA(x;ex)| |AR(x,y)hA(x,y,z;em)|

    IfP(kx,ky,z) is the 2D complex pupil function and is thewavelength, the amplitude PSF is

    hA(x,y,z;) =

    kx

    ky

    P(kx,ky,z)exp(j(kxx+ kyy))dkydkx

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 26 of 42

    Numerically computed PSF

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    67/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 16: Numerically calculated PSF for a C-Apochromat water immersionobjective. NA 1.2, 63 magnification. cAriana-INRIA/CNRS/UNS.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 27 of 42

    State of the art: Blind deconvolution

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    68/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Method References

    A priori PSF [Boutet de Monvel 2001],identification

    Marginalization [Jalobeanu 2007,

    Levin et al. 2009],Joint maximum likelihood [Holmes 1992,

    Michailovich & Adam 2007],

    Parametric blind deconvolution [Markham& Conchello 1999].

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 28 of 42

    Thi Bli D

    Blind deconvolution by alternate minimization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    69/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    When the imaging parameters are not known, it isnecessary to estimate o(x) and h(x) from i(x)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 29 of 42

    Thi Bli D

    Blind deconvolution by alternate minimization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    70/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    When the imaging parameters are not known, it isnecessary to estimate o(x) and h(x) from i(x)

    Minimizing the cost function w.r.t o(x)

    o(x) = arg mino(x)0

    J(o(x)|o,h(x))

    = arg mino(x)0Jobs(i(x

    )|o(x

    ),h(x

    )) +Jreg(o(x

    )|o)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 29 of 42

    ThinBlinDe

    Blind deconvolution by alternate minimization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    71/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    When the imaging parameters are not known, it isnecessary to estimate o(x) and h(x) from i(x)

    Minimizing the cost function w.r.t o(x)

    o(x) = arg mino(x)0

    J(o(x)|o,h(x))

    = arg mino(x)0Jobs(i(x

    )|o(x

    ),h(x

    )) +Jreg(o(x

    )|o)

    Minimizing the cost function w.r.t h(x)

    h(x) = arg minh(x)0

    J(h(x)|o,o)

    = arg minh(x)0

    Jobs(i(x)|o,h(x)) +Jreg(h(x))

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 29 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    72/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    73/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The estimation of the complete PSF from the observationis a difficult problem as the number of unknowns are large.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    74/105

    ThinBlinDe

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The estimation of the complete PSF from the observationis a difficult problem as the number of unknowns are large.

    Since the CLSM PSF is theoretically the Bessel functionraised to the fourth power, an approximation in the spatialdomain is a 3D Gaussian approximation,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    Th f h l PSF f h b

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    75/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The estimation of the complete PSF from the observationis a difficult problem as the number of unknowns are large.

    Since the CLSM PSF is theoretically the Bessel functionraised to the fourth power, an approximation in the spatialdomain is a 3D Gaussian approximation,

    Diffraction-limited PSF in the LS sense (up to 3AU pinhole

    diameter)

    h(x;h) = (2) 3

    2 ||1

    2 exp(1

    2(x)T1(x))

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    Th i i f h l PSF f h b i

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    76/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The estimation of the complete PSF from the observationis a difficult problem as the number of unknowns are large.

    Since the CLSM PSF is theoretically the Bessel functionraised to the fourth power, an approximation in the spatialdomain is a 3D Gaussian approximation,

    Diffraction-limited PSF in the LS sense (up to 3AU pinhole

    diameter)

    h(x;h) = (2) 3

    2 ||1

    2 exp(1

    2(x)T1(x))

    BD is reduced to estimation of spatial parameters,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    Th ti ti f th l t PSF f th b ti

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    77/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    The estimation of the complete PSF from the observationis a difficult problem as the number of unknowns are large.

    Since the CLSM PSF is theoretically the Bessel functionraised to the fourth power, an approximation in the spatialdomain is a 3D Gaussian approximation,

    Diffraction-limited PSF in the LS sense (up to 3AU pinhole

    diameter)

    h(x;h) = (2) 3

    2 ||1

    2 exp(1

    2(x)T1(x))

    BD is reduced to estimation of spatial parameters,

    advantages: few parameters and no DFT necessary.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 30 of 42

    ThinBlinDe

    Why 3D Gaussian?

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    78/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Properties of the PSF

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 31 of 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    79/105

    ThinBlinDe

    Why 3D Gaussian?

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    80/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Properties of the PSF positivity:

    h(x) 0, x s

    circular symmetry:

    h(x,y,z) = h(x,y,z)

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 31 of 42

    ThinBlinDe

    Why 3D Gaussian?

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    81/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Properties of the PSF

    positivity:

    h(x) 0, x s

    circular symmetry:

    h(x,y,z) = h(x,y,z)

    normalization:

    xs

    h(x) = 1

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 31 of 42

    ThinBlinDe

    Why 3D Gaussian?

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    82/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Properties of the PSF

    positivity:

    h(x) 0, x s

    circular symmetry:

    h(x,y,z) = h(x,y,z)

    normalization:

    xs

    h(x) = 1

    CLSM PSF is theoretically the Besselfunction raised to the fourth power.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 31 of 42

    ThinBlinDe

    Why 3D Gaussian?

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    83/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Properties of the PSF

    positivity:

    h(x) 0, x s

    circular symmetry:

    h(x,y,z) = h(x,y,z)

    normalization:

    xs

    h(x) = 1

    CLSM PSF is theoretically the Besselfunction raised to the fourth power.

    Figure 17: The Besselfunction raised to the fourthpower loses its side lobes.

    cAriana-INRIA/CNRS/UNS.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 31 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    84/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 32 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    In the presence of aberrations, spatial approximation leads

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    85/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    In the presence of aberrations, spatial approximation leadsto a large number of parameters,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 32 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    In the presence of aberrations, spatial approximation leads

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    86/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    t e p ese ce o abe at o s, spat a app o at o eadsto a large number of parameters,

    a way of handling it is estimating the parameters of thepupil function h = d,ni,ns

    Pa(;x) = Pd(;x)exp(j(d,ni,ns))

    P Pankajakshan L Blanc-Fraud J Zerubia November 5 2010 page 32 of 42

    ThinBlinDe

    Blind deconvolution by PSF parametrization

    In the presence of aberrations, spatial approximation leads

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    87/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    p , p ppto a large number of parameters,

    a way of handling it is estimating the parameters of thepupil function h = d,ni,ns

    Pa(;x) = Pd(;x)exp(j(d,ni,ns))

    regularization of the PSF is achieved by using a functionalform of phase from geometrical optics

    (d,ni,ns) = d(nicosins coss) dns secs

    P Pankajakshan L Blanc-Fraud J Zerubia November 5 2010 page 32 of 42

    ThinBlinDe

    PSF estimation

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    88/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    P Pankajakshan L Blanc-Fraud J Zerubia November 5 2010 page 33 of 42

    ThinBlinDe

    PSF estimation

    Deconvolution requires the PSF h(x) or h(x, h)

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    89/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    ( ) ( )

    h,MAP = argmaxh>0

    Pr(i(x)|o(x),h)Pr(h)

    P Pankajakshan L Blanc-Fraud J Zerubia November 5 2010 page 33 of 42

    ThinBlinDe

    PSF estimation

    Deconvolution requires the PSF h(x) or h(x, h)

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    90/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    h,MAP = argmaxh>0

    Pr(i(x)|o(x),h)Pr(h)

    Pr(h) is the parameter prior. We assume the parametersto be uniformly distributed in a set: [h,LB,h,UB],

    P Pankajakshan L Blanc-Fraud J Zerubia November 5 2010 page 33 of 42

    ThinBlinDe

    P P k

    PSF estimation

    Deconvolution requires the PSF h(x) or h(x, h)

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    91/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    h,MAP = argmaxh>0

    Pr(i(x)|o(x),h)Pr(h)

    Pr(h) is the parameter prior. We assume the parametersto be uniformly distributed in a set: [h,LB,h,UB],

    and the cost function is

    J(o,h(h)) =x

    i(x)log((h(h)o+ b)(x))

    x

    (h(h)o+ b)(x)

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 33 of 42

    ThinBlinDe

    P P k

    PSF estimation

    Deconvolution requires the PSF h(x) or h(x, h)

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    92/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    h,MAP = argmaxh>0

    Pr(i(x)|o(x),h)Pr(h)

    Pr(h) is the parameter prior. We assume the parametersto be uniformly distributed in a set: [h,LB,h,UB],

    and the cost function is

    J(o,h(h)) =x

    i(x)log((h(h)o+ b)(x))

    x

    (h(h)o+ b)(x)

    The cost function, J(o,h(h)), could be minimized byusing a gradient-descent type algorithm.

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 33 of 42

    ThinBlinDe

    P Panka

    Simulation results

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    93/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Phantom object Observation = 100,xy = 25nm z = 50nm

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 34 of 42

    ThinBlinDe

    P Panka

    Simulation results

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    94/105

    P. Panka-jakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Sans regularization (Naive MLEM) Proposed approach

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 35 of 42

    ThinBlinDe

    P Panka-

    Microsphere deconvolution

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    95/105

    P. Pankajakshan, L.

    Blanc-Fraud, J.

    Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 18: A 15m microsphere has a thin layer of fluorescence of thickness500700nm.

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 36 of 42

    ThinBlinDe

    P. Panka-

    Microsphere deconvolution

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    96/105

    P. Pankajakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Observed section BD restored (535.58 nm)

    Figure 19: Measured thickness of a microsphere, after using our approach, was535.58nm, and was 260nm with the naive MLEM algorithm.cAriana-INRIA/CNRS/UNS.

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 37 of 42

    ThinBlinDe

    P. Panka-

    Deconvolution on plant samples

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    97/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 20: Observed section of arabidopsis thaliana in water and observed with aLSM 510 microscope and pinhole 2AU. Lateral sampling is 285.64nm and axialsampling is 845.62nm. cINRA.

    P Pankajakshan L Blanc Fraud J Zerubia November 5 2010 page 38 of 42

    ThinBlinDe

    P. Panka-

    Deconvolution on plant samples

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    98/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 21: Restoration sans regularization (Naive MLEM).cAriana-INRIA/CNRS/UNS.

    P Pankajakshan L Blanc Fra d J Zer bia November 5 2010 page 39 of 42

    ThinBlinDe

    P. Panka-

    Deconvolution on plant samples

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    99/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 22: Restoration using the proposed approach after 10 iterations.cAriana-INRIA/CNRS/UNS.

    P P k j k h L Bl F d J Z bi N b 5 2010 40 f 42

    ThinBlinDe

    P. Panka-

    Deconvolution on plant samples

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    100/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    Figure 23: Comparison of observed and restored lateral section of convallariamajalis. Lateral sampling is 53.6nm and axial sampling is 129.4nm. The samplewas observed with a Zeiss LSM 510TMmicroscope, and 1.3NA oil immersionobjective. cINRA, Ariana-INRIA/CNRS/UNS.

    P P k j k h L Bl F d J Z bi N b 5 2010 41 f 42

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    101/105

    ThinBlinDe

    P. Panka-j k h L

    Conclusions and discussions

    Developed Bayesian framework for blind deconvolution forthin specimens

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    102/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    thin specimens,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 42 of 42

    ThinBlinDe

    P. Panka-jakshan L

    Conclusions and discussions

    Developed Bayesian framework for blind deconvolution forthin specimens

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    103/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    thin specimens,

    experiments on simulated data, microsphere images andreal data show promising results,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 42 of 42

    ThinBlinDe

    P. Panka-jakshan L

    Conclusions and discussions

    Developed Bayesian framework for blind deconvolution forthin specimens

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    104/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    thin specimens,

    experiments on simulated data, microsphere images andreal data show promising results,

    PSF model chosen initially is a 3D separable Gaussianfunction for thin specimens,

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 42 of 42

    ThinBlinDe

    P. Panka-jakshan L

    Conclusions and discussions

    Developed Bayesian framework for blind deconvolution forthin specimens,

  • 8/8/2019 ThinBlinDe: Blind deconvolution for confocal microscopy

    105/105

    jakshan, L.

    Blanc-Fraud, J.Zerubia

    Road map

    Introduction

    OSM

    Limitations

    ThinBlinDe

    Break the limit

    Blind

    deconvolution

    Results

    Phantom data

    Microspheres

    Plant samples

    thin specimens,

    experiments on simulated data, microsphere images andreal data show promising results,

    PSF model chosen initially is a 3D separable Gaussianfunction for thin specimens,

    Total variation regularization functional sometimes leads toloss in contrast in restoration but there are methods toovercome this.

    P. Pankajakshan, L. Blanc-Fraud, J. Zerubia November 5, 2010 page 42 of 42