28
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Lance C. Hibbeler 1 Thermomechanical Behavior of the Solidifying Shell and Ideal Taper in a Funnel Mold CCC Annual Meeting 12 June 2007 Lance C. Hibbeler (MSME Candidate) University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Lance C. Hibbeler 2 Acknowledgements Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Algoma, Corus, Labein, Mittal Riverdale, Baosteel, Steel Dynamics) Begoña Santillana, Arnoud Kamperman, and Arie Hamoen (Corus RD&T, Corus Strip Products) Dr. Seid Koric National Science Foundation DMI 05-28668 National Center for Supercomputing Applications (NCSA) at UIUC Dassault Simulia, Inc. (ABAQUS parent company)

Thermomechanical Behavior of the Solidifying Shell and ...ccc.illinois.edu/s/2007_Presentations/13__HIBBELER_Lance... · Thermomechanical Behavior of the Solidifying Shell and Ideal

Embed Size (px)

Citation preview

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 1

Thermomechanical Behavior of the Solidifying Shell and Ideal Taper in a

Funnel Mold

CCC Annual Meeting

12 June 2007

Lance C. Hibbeler (MSME Candidate)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 2

Acknowledgements

• Continuous Casting Consortium Members (Nucor, Postech, LWB Refractories, Algoma, Corus, Labein, Mittal Riverdale, Baosteel, Steel Dynamics)

• Begoña Santillana, Arnoud Kamperman, and ArieHamoen (Corus RD&T, Corus Strip Products)

• Dr. Seid Koric• National Science Foundation

– DMI 05-28668

• National Center for Supercomputing Applications (NCSA) at UIUC

• Dassault Simulia, Inc. (ABAQUS parent company)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 3

Outline

• Problem identification

• Simulation overview

• Model parameters

• Analysis procedures

• Model validation

• Discussion of results

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 4

Problem Identification

• Approximately 60% of breakouts on the Corus thin slab caster (IJmuiden, The Netherlands) over the past two years have been due to longitudinal face cracks – Mostly occurring in the transition region of the

funnel mold

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 5

Longitudinal Face Crack

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 6

Breakout from LFC

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 7

LFC Mechanisms

• The main mechanism of longitudinal face cracks is non-uniform heat transfer, caused by level fluctuations and/or by several mold phenomena

Shell buckling (excessive taper)

Necking (shell sliding, sticking)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 8

Funnel Mold Terminology

Inner Flat

Inner Curve

Outer Curve

Outer Flat

IF

IC

OC

OF

Top View

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 9

Mold Funnel Shapes

0

50

100

0 50 100 150 200 250 300 350 400 450 500

A-Configuration Mold

0

50

100

0 50 100 150 200 250 300 350 400 450 500

B-Configuration Mold

Axes show distance from cold face and distance from centerline in mm.

Thick line is top edge, thin line is bottom edge

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 10

LFC Locations

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700

Distance from Center (mm)

Fre

qu

en

cy

(--

)

Inner Flat Inner Curve Outer Curve Outer Flat

January 2005 - January 2007

A-Configuration Molds

Data provided by A. Kamperman of Corus

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 11

Project Overview

• The purpose of this work is to use a numerical model to gain insight into the thermomechanical behavior of the solidifying steel shell in a thin-slab funnel mold

• One-way coupled thermomechanical model– Solve heat transfer problem

– Import results, then solve stress problem

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 12

Method of Analysis

• Finite element simulation with ABAQUS 6.6– Specializes in nonlinear problems

– Jobs easily scalable with multiple processors

– Robust contact algorithms

– Functionality extended through user subroutines

– Built-in pre-processing capabilities

– Customizable post-processing (with Python)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 13

Thermal Analysis

• Uses isotropic, temperature- and phase-dependent thermal properties– Thermal conductivity

– Specific heat capacity

• Constant density

• Analysis includes rate-of-change effects of temperature-dependent properties

22 2

2 2

T T k T T k Tk k k

x x x x x x T x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠( )p

Tc k T

tρ ∂ = ∇⋅ ⋅∇

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 14

Thermal Analysis

• Using simple heat flux profile– Numerical stability

• Fixed mesh of standard four-node heat transfer elements– Currently ~14k elements and ~15k nodes

• Implemented via default ABAQUS heat transfer routines

• Requires ~5 hours (2 CPUs)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 15

Mechanical Analysis

• Uses isotropic, temperature- and phase-dependent mechanical properties– Coefficient of thermal expansion

– Elastic modulus

• Constant density

• Uses Kozlowski III and modified power law constitutive models

• Liquid and mushy zone treated as very low elastic modulus, perfectly plastic solid

• Implemented via Koric’s UMAT subroutine

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 16

• Kozlowski III model for austenite [Kozlowski, 1991]

• Modified power law for delta-ferrite [Parkman, 2000]

Constitutive Equations

( ) ( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )

( )( ) ( )( )( ) ( )( )( ) ( )

( )

32 1 4

1

31

32

33

24 4 5

1/ sec. % exp 4.465 10

130.5 5.128 10

0.6289 1.114 10

8.132 1.54 10

(% ) 4.655 10 7.14 10 % 1.2 10 %

oo

f T Kf T Ko o o

o o

o o

o o

f C MPa f T K K T K

f T K T K

f T K T K

f T K T K

f C C C

ε σ ε ε −

⎡ ⎤= − − ×⎢ ⎥⎣ ⎦

= − ×

= − + ×

= − ×

= × + × + ×

( ) ( ) ( )( )( ) ( )

( )( )

2

5.52

5.56 104

5

4

1/ sec. 0.1 (% ) 300 (1 1000 )

% 1.3678 10 %

9.4156 10 0.3495

1 1.617 10 0.06166

no m

o

o

MPa f C T K

f C C

m T K

n T K

ε σ ε−

− ×

= +

= ×

= − × +

= × −

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 17

Mechanical Contact

• Uses the ABAQUS surface-to-surface contact algorithm with a “softened” exponentialpressure-overclosure relationship– Mold is the master surface

– Steel shell is the slave surface (softer)

• Tangential friction factor* of µfrict = 0.16

• Uses a vector-based algorithm, so the curved surface of the funnel is easy to handle

* [Meng, Thomas, et. al., CMQ 45-1 p 79-94]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 18

Mechanical Analysis

• Uses the exact same mesh as the thermal analysis, using the hybrid formulation (more stable in the liquid region) of four-node generalized plane strain elements

• Requires ~35 hours (2 CPUs)

• Working to optimize UMAT subroutine, though it is already many times faster than using the ABAQUS-native creep algorithm

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 19

Finite-Element Mesh

CornerNear inside

of funnel

Domain discretization error ~0.05%

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 20

Dimensionality

• Full three-dimensional simulation is a very large and complicated task

• Domain can be two-dimensionalized by relating time to depth (x-y-z to x-y-t):

( )shell men cz t z v t= + ⋅

( ) ( )sin2osc

mold men c oscS

z t z v t tω= + ⋅ + ⋅

• Commonly called “traveling slice analysis”

• Simulated mold includes oscillation effects:2osc oscfω π= ⋅ ⋅

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 21

Traveling Slice – Half Speed

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 22

Dimensionality

• Some losses in simplifying from 3-D to 2-D– Out-of-plane bending

– Not a problem – investigating longitudinal cracks

What actual steel wants to do What the simulated steel does

[Koric, 2006]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 23

Process Parameters

• Casting speed 5.5 m/min• Pour temperature 1545.0 ºC• Oscillation stroke 7.2 mm• Oscillation frequency 331 cycles/min• Strand width 1200 mm• Narrow face taper 1.0 %/m• Meniscus depth 104.2 mm• Time in mold 10.86 s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 24

Meniscus Depth

0

20

40

60

80

100

120

140

3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75

Casting Speed (m/min)

Dis

tan

ce

Be

low

Mo

ld T

op

(m

m)

Minimum = 90 mmMaximum = 125 mmAverage = 104.2 mmStd. Dev = 7.79 mm

Measurements from molds with 0-5 mm of wear

Data provided by A. Kamperman of Corus

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 25

Steel Properties

• Properties for Corus grade F12L from CON1D/CON2D models– Carbon content 0.045 %wt

– Solidus temperature 1507.51 ºC

– Liquidus temperature 1530.45 ºC

– Solidus/liquidus based on modified Clyne-Kurzsimple segregation model [Won and Thomas, 2001]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 26

Steel Properties

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Percent Weight Carbon

Tem

per

atu

re (

ºC)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Temperature (ºC)

Ph

ase

Fra

ctio

n (

--)

fa fd

fg fl

[Won and Thomas, MTB, 2001]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 27

Steel Properties

0

200

400

600

800

1000

1200

1400

1600

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Temperature (ºC)

Sp

ecif

ic H

eat

(J/k

g·K

)

28

30

32

34

36

38

40

42

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Temperature (ºC)

Th

erm

al C

on

du

ctiv

ity

(W/m

·K)

in liquid259.35

Lf = 247 kJ/kg

[Harste, 1989] [Harste, 1989]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 28

Steel Properties

0

4

8

12

16

20

24

28

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Temperature (ºC)

Co

effi

cien

t o

f T

her

mal

Exp

ansi

on

(10

-6/º

C)

Tref = 20 ºC

0

25

50

75

100

125

150

600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Temperature (ºC)

Ela

stic

Mo

du

lus

(GP

a)

[Harste, 1989], [Harste and Jablonka, 1988], [Jimbo and Cramb, 1993]

[Mizukami, 1977]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 29

Boundary Conditions

• Two-fold symmetry• Heat flux imposed on the shell surface

• Ferrostatic pressure applied on the shell surface, pulling the shell towards the mold

• Mold hot face converted to a time-dependent displacement function imposed on the two-dimensional domain

• All other faces stress free and/or insulated

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 30

Two-Fold Symmetry

x-symmetry plane y-symmetry plane

x

y

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 31

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900 1000

Distance Below Meniscus (mm)

He

at

Flu

x (

MW

/m2 )

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

Time in Simulation (s)

Q = 6.5*(t(s)+1.0)-0.5

Qavg = 2.72 MW/m2

Heat Flux Profile

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 32

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

Distance Below Meniscus (mm)

He

at

Flu

x (

MW

/m2 )

New Plates Old Plates

CON1D New Plates CON1D Old Plates

Log. (New Plates) Log. (Old Plates)

Heat Flux Measurements

Simple Profile

2.72 MW/m2

[Santillana, et. al., AISTech 2007]

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 33

Corner Treatment

• Uniform heat flux around the shell– Cools off corners excessively

• Solution: linearly decrease heat flux to 50% of nominal value at the corner over 20 mm on both faces

100%

100% 50%

20 mm

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 34

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

Distance Below Meniscus (mm)

Pre

ss

ure

(k

Pa

)

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

Time in Simulation (s)

Ferrostatic Pressure

Delayed ~1s to allow outermost row of elements to solidify

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 35

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

Distance Below Meniscus (mm)

Dis

pla

ce

me

nt

(mm

)

0.0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11.0

Time in Simulation (s)

Wide Face

Narrow Face

A-Configuration Molds

Mold Hot Face Displacement

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 36

Model Validation

• Compare numerical model to known analytical solution to verify process– Elastoplastic stress model [Boley and Weiner, 1963]

• One-dimensional domain, not including a mold, constrained against bending

• Pure material poured with no superheat into an isothermal mold– Yield stress linearly decreases with temperature

to zero at melting point

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 37

One-Dimensional Domain

Prescribed heat flux Three sides insulated

Zero perpendicular displacement

Stress-free edge

Nodes constrained to equal displacement

Domain

Molten steelMold wall

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 38

1D Test Case Properties

MPa20.0Yield stress at mold temperature

ºC1495.0Initial temperature

ºC1000.0Mold temperature

GPa40.0Elastic modulus at mold temperature

UnitsValueProperty/Condition

kg/m37500.0Density

--0.3Poisson’s ratio

m/(m·ºC)20.0E-6Coefficient of thermal expansion

W/(m·K)33.0Thermal conductivity

kJ/kg272.0Latent heat

J/(kg·K)661.0Specific heat

Tsol = 1494.38 ºC

Tliq= 1494.48 ºC

h = 220 kW/(m2·K)

T∞= 1000.0 ºC

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 39

1D Test Case Properties

0

10

20

30

40

50

1000 1100 1200 1300 1400 1500

Temperature (ºC)

Ela

sti

c M

od

ulu

s (

GP

a)

14 GPa above 1494.38 ºC

40 GPa below 1494.38 ºC

0

5

10

15

20

25

1000 1100 1200 1300 1400 1500

Temperature (ºC)

Yie

ld S

tre

ss

(M

Pa

)

20 MPa at 1000 ºC

35 kPa at 1494.38 ºC

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 40

FEA vs. Analytical 1D Results

1000

1100

1200

1300

1400

1500

0 5 10 15 20 25 30Distance Below Shell Surface (mm)

Te

mp

era

ture

(ºC

)

ABAQUS 5s ABAQUS 10s ABAQUS 15s ABAQUS 20s ABAQUS 25s ABAQUS 30s

Analytical 5s Analytical 10s Analytical 15s Analytical 20s Analytical 25s Analytical 30s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 41

FEA vs. Analytical 1D Results

-20

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30Distance Below Shell Surface (mm)

Str

es

s (

MP

a)

ABAQUS 5s ABAQUS 10s ABAQUS 15s ABAQUS 20s ABAQUS 25s ABAQUS 30s

Analytical 5s Analytical 10s Analytical 15s Analytical 20s Analytical 25s Analytical 30s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 42

Realistic 1D Analysis

• Allow temperature-dependent properties and time-varying boundary conditions for a more realistic simulation, using a finer mesh than what could be used practically (at this point in time) in two dimensions– 300 x 1 row of elements over 30 x 0.1 mm domain

– Typical results away from funnel features

• Very fine mesh provides the ability to determine if an effect is a numerical error

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 43

Realistic 1D Results

1000

1100

1200

1300

1400

1500

1600

0 3 6 9 12 15

Distance Below Shell Surface (mm)

Te

mp

era

ture

(ºC

)

2.5s5s7.5s10.86s

γ

δ+γ

LL+δ

δ

-12

-9

-6

-3

0

3

6

0 3 6 9 12 15

Distance Below Shell Surface (mm)S

tre

ss

(M

Pa

)

2.5s5s7.5s10.86s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 44

Realistic 1D Results

-12

-9

-6

-3

0

3

6

0 2 4 6 8 10 12 14 16 18 20 22 24

Distance Below Shell Surface (mm)

Str

es

s (

MP

a)

10.86s

LL+δγ

δ+γ

δ

So

lidu

s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 45

Temperature Results

t = 10.8s (mold exit)

A-mold

B-mold

Parallel mold

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 46

Temperature Results

t = 10.8s

(mold exit)

Solidus

9.6 mm

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 47

Temperature Results

t = 10.8s (mold exit)

A-mold

Slight two-dimensional heat transfer in funnel transition region

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 48

1000

1050

1100

1150

1200

1250

1300

0 50 100 150 200 250 300 350 400 450 500 550 600 650Distance from Center of Funnel (mm)

Te

mp

era

ture

(ºC

)

A-mold, 5s

Inner Flat Outer Curve Outer FlatInner Curve

Surface Temperature

Slight two-dimensional effects

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 49

Comparison of Temperature Variations Across Each Funnel

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 100 200 300 400 500 600 700 800 900 1000

Distance Below Meniscus (mm)

Ma

x A

bs

olu

te D

ev

iati

on

fro

m P

ara

llel

Mo

ld S

he

ll S

urf

ac

e T

em

pe

ratu

re (

ºC)

0 1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 11

Time in Mold (s)

A-mold B-mold

Wiggles are numerical effect

Effect grows with time, despite decreasing heat flux and increasing funnel radius

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 50

Funnel Stress Development

Tension

Compression

Compression

Tension

From Bending/Unbending

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 51

Funnel Shape DevelopmentFrom Change in Length

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 100 200 300 400 500 600 700 800 900 1000

Distance Below Meniscus (mm)

Str

ain

(m

m/m

)

A-Mold B-Mold

Per

cent

cha

nge

in m

old

perim

eter

in

funn

el tr

ansi

tion

regi

on

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 52

Stress Transformation

• Unless otherwise noted, stress/strain results presented on graphs are transformed to a plane tangent to the funnel surface via:

( ) ( )cos 2 sin 22 2

x y x yx xy

σ σ σ σσ θ τ θ

+ −′ = + +

σx

σy

τxy

σx’

σy’

τx’y’

x’

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 53

WF Surface Stress Profiles

6.00

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Distance from Centerline (mm)

Ta

ng

en

tia

l Str

es

s (

MP

a)

A-mold B-mold

Time = s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 54

WF Strain/Displacement

10.85

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Distance from Centerline (mm)

x-D

isp

lac

em

en

t (m

m)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Ta

ng

en

tia

l Str

ain

(m

m/m

)

A-Mold, ux B-Mold, ux

A-Mold, e B-Mold, e

Time = s

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 55

Conclusions

• Larger funnel radii provides more uniform heat transfer in the funnel region

• The present antisymmetric funnel design concentrates strains in the funnel region

• Narrow face taper is equal in importance to funnel shape

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Lance C. Hibbeler 56

Upcoming Work

• Apply a more realistic, experimentally validated heat flux profile from CON1D [Santillana, Thomas, Hamoen, Hibbeler, Kamperman, van der Knoop, AISTech 2007]

• Include the thermally distorted mold shape

• Fully coupled thermo-mechanical model

• Study of mechanical effect of oscillations