39
Chaire de Physique de la Matière Condensée Antoine Georges Cycle 2012-2013 ``Enseigner la recherche en train de se faire’’ THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX ENERGETIQUES

THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Chaire de Physique de la Matière Condensée

Antoine Georges Cycle 2012-2013

``Enseigner la recherche en train de se faire’’

THERMOELECTRICITE: CONCEPTS, MATERIAUX

ET ENJEUX ENERGETIQUES

Page 2: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Cours 4 – 17 avril 2013

•  Thermopower and Entropy (cont’d) •  Thermodynamics of thermoelectrics;

Efficiency (cont’d) •  Kubo formula for Onsager coefficients

Page 3: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Excerpt from abstract:

Séminaire – 17 avril 2013

Page 4: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

1. Thermopower and Entropy (continued from lecture 3)

Page 5: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

The Heikes and Shastry-Kelvin approximations to the thermoelectric power

Page 6: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Key point: why transition-metal compounds (e.g. oxides) may be good ? à Benefit from the large number of degrees of freedom

- hence large entropy - (spin, orbitals: 10-fold in a d-shell)

- These degrees of freedom ar fully quenched

in the metallic regime for T<T*

-  They get gradually unquenched at higher-T when Electrons can be considered more localized

(à Relevance of Heikes estimates in this regime)

- Frustration helps

Page 7: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Heikes, multi-orbital: Hi-T (T>U):

T<U, integer filling N

T<U, mixed valence N<n<N+1

Page 8: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …
Page 9: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

3.0 3.5 4.0 4.5 5.0 5.5 6.0

-4

-2

0

2

4

6

n

a@k BêeD

U=10J; TêJ=0.5,1,2,5

To visualize spin/orbital entropic contribution, look at filling N+1/2 in each case where the Heikes factor ln[x/(1-x)]=0

Page 10: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Semi-conducting oxides for which

Heikes analysis works

Page 11: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …
Page 12: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

A case where Heikes works qualitatively, but not

quantitatively: La/SrVO3 [d2/d1]

Page 13: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …
Page 14: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Qualitatively quite similar to Hubbard model calculations above

Page 15: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …
Page 16: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8x in La_{1-x}Sr_xVO3

-200

-100

0

100

200Se

ebec

k fro

m H

eike

sy=-86.3*ln(3*x/(2*(1-x))) (0.05-0.8,200) (T<J<CF)y=-86.3*ln((4+x)/(2-x)) (0.05-0.8,200) y=-86.3*ln((8+x)/(2-x)) (0.05-0.8,200) (J<CF<T<U)y=0 (0.05-0.8,200)y=-86.3*ln(5*x/(2*(1-x))) (0.05-0.8,200) (J<T<CF)

Page 17: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Thermopower and Entropy: Cuprates

Loram, Cooper et al.

Page 18: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …
Page 19: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Obertelli, Cooper, Tallon PRB 46 R14928 (1992)

Page 20: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Honma and Hor PRB 2008

Page 21: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

2. EFFICIENCY OF ENERGY CONVERSION

Application to thermoelectrics (continued from lecture 2…)

Page 22: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Maximum theoretical efficiency: the Carnot reversible engine

Carnot efficiency:

Since it corresponds to a reversible, quasi-static and hence infinitely slow process,

a Carnot engine delivers ZERO POWER !

Page 23: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Carnot cycle :

Page 24: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Efficiency at maximum power, according to:

Chambadal-Novikov (Curzon-Ahlborn),

Endoreversible engines, « Finite-Time Thermodynamics »

Page 25: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

TC TH

TiH TiC

QC,KC QH,KH

W

An endoreversible engine

Chambadal-Novikov Efficiency

½ of Carnot for small ΔT

Page 26: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Key coupling constant characterizing energy conversion :

Page 27: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Entropy and heat production rates

Page 28: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Entropy and heat production rates

T

Page 29: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

0 0.2 0.4 0.6 0.8 1x = Force Ratio normalized to stopping condition

0

0.2

0.4

0.6

0.8

Rel

ativ

e Ef

ficie

ncy

ZT=1 , g2=1/2 ZT=2 , g2=2/3 ZT=4 , g2= 0.8ZT=10 , g2 = 0.91ZT=100 , g2 = 0.99

Page 30: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

0 2 4 6 8 10Dimensionless Figure of Merit

0

0.2

0.4

0.6

0.8Maximum efficiencyForce ratio at max effEfficiency at max power

Page 31: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

0 0.2 0.4 0.6 0.8 1Coupling g**2

0

0.2

0.4

0.6

0.8

1 Maximum EfficiencyForce ratio at max eff.Efficiency at Max Power

Page 32: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

0 0.2 0.4 0.6 0.8 1P/Pmax

0

0.2

0.4

0.6

0.8R

elat

ive

Effic

ienc

y

Page 33: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

3. Onsager coefficients from Kubo formula

•  G.D. Mahan, Many-Particle Physics Sec. 3.8-3.9 •  R. Kubo J.Phys Soc Jpn 12, 570 (1957) •  J.M. Luttinger Phys Rev 135, A1505 (1964) •  MR Peterson and BS Shastry PRB 82, 195105 (2010) •  Detailed derivation of simplifications in DMFT: Paul and

Kotliar PRB 67, 115131 (2003)

I will skip most details, just emphasizing some key (and sometimes subtle…) points

Formal aspects only,

à several concrete applications in lectures 5-6 next week

Page 34: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

3.1 Kubo, electrical conductivity -  Linear response to a small perturbing field. -  Two strategies: -  a) Time- (and space-) dependent vector

potential to generate electric field: σ(q,ω) -  b) Gradient of scalar potential (Luttinger) à Caution: dont want to just generate a carrier-density profile which adapts to potential, want to generate current

à Branch on potential in an adiabatic, time - dependent manner

Page 35: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Result of first approach:

Conductivity is related to the retarded current-current correlation function

Page 36: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Fast limit: first take q à 0, THEN ω à 0 Spectral (Lehmann) representation:

Page 37: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Second approach, for static (ω=0) conductivity: introduce adiabatically a scalar potential

s: small; qà0 first, then sà0

Mixes real and imaginary time; extra integration

From spectral representation, one can show that this expression Is actually identical to the previous one

Page 38: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Perturbing term in Hamiltonian:

Page 39: THERMOELECTRICITE: CONCEPTS, MATERIAUX ET ENJEUX …

Currents and conjugate forces:

Linear response:

Onsager symmetry is manifest on this form