23
1101 Thermodynamic Data and E-pH Diagrams The tables and graphics in this appendix describe the thermodynam- ic behavior of the following metals when exposed to pure water at 25 and 60°C: Chromium 1,2 Copper 3,4 Iron 5–8 Manganese 9,10 Nickel 11–13 Zinc 9,14 Tables F.1 to F.6 contain the basic thermodynamic values for each species, solid or ionic, considered for the construction of the E-pH dia- grams. The graphics were obtained with a publicly available software system that has been used throughout the book to calculate different equilibrium systems. 15 The basic calculations were detailed in Sec. D.2, Chemical Thermodynamics. The relations between the free energy of the species considered and the associated equations are evaluated with the data presented in Tables F.1 to F.6 and the following equations. The free energy (G 0 ) of a substance for which heat capacity data are avail- able can be calculated as a function of temperature using Eq. (F.1). G (T 2 ) 0 G (T 1 ) 0 S (T 1 ) 0 (T 2 T 1 ) T 2 T2 T1 dT T2 T1 C 0 p dT (F.1) C 0 p T APPENDIX F T 1 T 2 T 1 T 2

Thermodynamic Data and E pH Diagrams

Embed Size (px)

Citation preview

Page 1: Thermodynamic Data and E pH Diagrams

1101

Thermodynamic Data and E-pH Diagrams

The tables and graphics in this appendix describe the thermodynam-ic behavior of the following metals when exposed to pure water at 25and 60°C:

■ Chromium1,2

■ Copper3,4

■ Iron5–8

■ Manganese9,10

■ Nickel11–13

■ Zinc9,14

Tables F.1 to F.6 contain the basic thermodynamic values for eachspecies, solid or ionic, considered for the construction of the E-pH dia-grams. The graphics were obtained with a publicly available softwaresystem that has been used throughout the book to calculate differentequilibrium systems.15 The basic calculations were detailed in Sec. D.2,Chemical Thermodynamics. The relations between the free energy ofthe species considered and the associated equations are evaluated withthe data presented in Tables F.1 to F.6 and the following equations. Thefree energy (G0) of a substance for which heat capacity data are avail-able can be calculated as a function of temperature using Eq. (F.1).

G(T2)0 � G(T1)

0 � S(T1)0 (T2 � T1) � T2

� T2

T1

dT � � T2

T1

C0p dT (F.1)

C0p

T

APPENDIX

F

T1

T2

T1

T2

0765162_AppF_Roberge 9/1/99 8:29 Page 1101

Page 2: Thermodynamic Data and E pH Diagrams

1102 Appendix F

TABLE F.1 Species Considered for the Cr-H2O System and TheirThermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C � 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Cr 0 23.77 17.41 15.15 1.26CrO �350,661 44.77 46.48 8.12 �3.68Cr2O3 �1,058,134 81.17 119.37 9.2 �15.65CrO2 �539,740 48.12 67.49 12.55 �12.55CrO3 �502,080 73.22 75.86 16.78 �8.37Cr(OH)3 �900,815 80.33 0 0 0CrOOH �672,955 25.1 0 0 0

S0(298 K,

J�mol�1 a b

H� 0 0 �20.9 0.065 �0.005Cr2� �176,146 �104.6 �146.44 0.13� 0.00166Cr3� �215,476 �307.52 �370.28 0.13 �0.00166Cr(OH)2� �430,950 �68.62 �110.46 0.13 �0.00166Cr(OH)2

� �632,663 �144.77 �165.69 0.13 �0.00166CrO4

2� �727,849 50.21 92.05 �0.37 0.0055HCrO4

� �764,835 184.1 205.02 �0.37 0.0055CrO2

� �535,929 96.23 117.15 �0.37 0.0055CrO3

3� �603,416 �238.49 �175.73 �0.37 0.0055

TABLE F.2 Pure Species Considered for the Cu-H2O System andTheir Thermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C� 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Cu 0 33.2 22.635 6.276 0Cu2O �147,904 92.4 62.62 0 0CuO �127,905 42.6 42.32 0 0Cu(OH)2 �358,987 87 87.91 0 0

S0(298 K),

J�mol�1 a b

H� 0 0 �20.9 0.065 �0.005Cu� 50,626 �12.6 �33.52 0.13 �0.00166Cu2� 65,689 �207.2 �249.04 0.13 �0.00166Cu(OH)� �129,704 41.89 20.97 0.13 �0.00166Cu2(OH)2

2� �280,328 �98.22 �140.06 0.13 �0.00166Cu3� 303,340 �401.8 �464.56 0.13 �0.00166HCuO2

� �258,571 96.38 117.3 �0.37 0.0055CuO2

2� �183,678 �98.22 �56.38 �0.37 0.0055CuO2

� �112,550 96.38 117.3 �0.37 0.0055

0765162_AppF_Roberge 9/1/99 8:29 Page 1102

Page 3: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1103

TABLE F.3 Pure Species Considered for the Fe-H2O System and TheirThermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C � 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Fe 0 27.1 12.72 31.71 �2.51Fe3O4 �1,020,000 146 91.55 201.67 0Fe2O3 �742,000 87.3 98.28 77.82 �14.85Fe(OH)2 �493,000 92.4 96.3 0 0Fe(OH)3 �714,000 96.1 105 0 0

S0(298 K),

J�mol�1 a b

H� 0 0 �20.9 0.065 �0.005Fe(OH)2(sln) �449,000 38 38 0.13 �0.00166Fe(OH)3(sln) �661,000 75.2 75.2 0.13 �0.00166FeOH� �274,000 �29.3 �50.2 0.13 �0.00166Fe(OH)2

� �459,000 �29.3 �50.2 0.13 �0.00166Fe2� �92,200 �107 �149 0.13 �0.00166FeOH2� �242,000 �105 �147 0.13 �0.00166Fe3� �17,800 �279 �342 0.13 �0.00166Fe(OH)3

� �621,000 41.8 62.7 �0.37 0.0055Fe(OH)4

� �843,000 25.1 46 �0.37 0.0055FeO4

2� �467,000 37.6 79.5 �0.37 0.0055

TABLE F.4 Pure Species Considered for the Mn-H2O System and TheirThermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C � 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Mn 0 32.0076 23.8488 14.14192 �1.54808MnO �362,920 59.70568 46.48424 8.11696 �3.68192Mn3O4 �1,283,233 155.6448 144.9338 45.27088 �9.2048Mn2O3 �881,150 110.4576 103.4703 35.06192 �13.5143MnO2 �465,177 53.05312 69.4544 10.20896 �16.2339

S0(298 K),

J�mol�1 a b

H� 0 0 �20.9 0.065 �0.005Mn2� �228,028 �115.478 �157.34 0.13 �0.00166Mn(OH)� �405,011 �37.656 �58.576 0.13 �0.00166Mn3� �82,006.4 �378.652 �441.41 0.13 �0.00166HMnO2

� �507,101 62.76 83.68 �0.37 0.0055MnO4

� �447,270 212.1288 233.05 �0.37 0.0055MnO4

2� �500,825 100.416 142.256 �0.37 0.0055

0765162_AppF_Roberge 9/1/99 8:29 Page 1103

Page 4: Thermodynamic Data and E pH Diagrams

1104 Appendix F

TABLE F.5 Pure Species Considered for the Ni-H2O System and TheirThermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C � 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Ni 0 30.12 16.99 294.55 0Ni(OH)2 �453,130 79.5 0 0 0NiO �215,940 38.58 �20.88 157.23 16.28Ni3O4 �711,910 146.44 129.03 71.46 �23.93Ni2O3 �469,740 94.14 98.28 77.82 �14.85NiO2 �215,140 52.3 69.45 10.21 �16.23

S0(298 K),

J�mol�1 a b

H� 0 0 �20.9 0.07 �0.01Ni2� �46,442 �201.3 �243.14 0.13 0HNiO2

� �349,218 62.76 41.84 �0.37 0.01

TABLE F.6 Pure Species Considered for the Ni-H2O System and TheirThermodynamic Data

G0(298 K), S0

(298 K), Species J�mol�1 J�mol�1 A B � 103 C � 10�5

O2 0 205 29.96 4.184 �1.674H2 0 131 27.28 3.263 0.502H2O �237,000 69.9 75.27 0 0Zn 0 41.63 25.4 0 0Zn(OH)2 �559,358 81.6 72.4 0 0

S0(298 K),

J�mol�1 a b

H� 0 0 �20.9 0.065 �0.005Zn2� �147,280 �207.2 �249.04 0.13 �0.00166Zn(OH)� �329,438 41.89 20.97 0.13 �0.00166HZnO2

� �464,227 96.38 117.3 �0.37 0.0055ZnO2

2� �389,424 �98.22 �56.38 �0.37 0.0055

0765162_AppF_Roberge 9/1/99 8:29 Page 1104

Page 5: Thermodynamic Data and E pH Diagrams

For pure substances, i.e., solids, liquids, and gases, the heat capacityCp

0 is expressed as an empirical function of the absolute temperature[Eq. (F.2)].

Cp0 � A � BT � CT�2 (F.2)

For ionic substances, one has to use another method, such as that proposed by Criss and Cobble in 1964,16 to obtain the heat capacity, pro-vided that the temperature does not rise above 200°C. The expression ofthe ionic capacity [Eq. (F.3)] makes use of absolute entropy values andthe parameters a and b contained in Tables F.1 to F.6.

Cp0 � (4.186a � bS0

(298 K)) (T2 � 298.16) / ln � � (F.3)

By combining Eq. (F.2) or (F.3) with Eq. (F.1), one can obtain the freeenergy [Eq. (F.4)] at a given temperature by using the fundamentaldata contained in Tables F.1 to F.6.

Gt0 � G0

(298 K) � (Cp0 � S0

(298 K)) (T2 � 298.16)

� T2 ln � � Cp0 (F.4)

Table F.7 provides an index for the thermodynamic data of the speciesconsidered, the equations possible, and associated E-pH diagrams attwo temperatures, 25 and 60°C.

References

1. Silverman, D.C., Absence of Cr(IV) in the EMF-PH Diagram for Chromium,Corrosion, 39:488–491 (1983).

2. Lee, J. B., Elevated Temperature Potential-pH Diagrams for the Cr-H2O, Mo-H2O,and Pt-H2O Systems, Corrosion, 37:467 (1981).

3. Bianchi, G., and Longhi, P., Copper in Sea-Water, Potential-pH Diagrams, CorrosionScience, 13:853–864 (1973).

4. Duby, P., The Thermodynamic Properties of Aqueous Inorganic Copper Systems,INCRA Monograph IV, New York, The International Copper Research Association,1977.

5. Le, H. H., and Ghali, E., Interpretation des diagrammes E-pH du système Fe-H2Oen relation avec la fragilisation caustique des aciers, Journal of AppliedElectrochemistry, 23:72–77 (1993).

6. Silverman, D. C., Presence of Solid Fe(OH)2 in EMF-pH Diagram for Iron,Corrosion, 38:453–455 (1982).

7. Townsend, H. E., Potential-pH Diagrams at Elevated Temperature for the SystemFe-H2O, Corrosion Science, 10:343–358 (1970).

8. Biernat, R. J., and Robins, R. G., High-Temperature Potential/pH Diagrams for theIron-Water and Iron-Water-Sulphur Systems, Electrochimica Acta, 17:1261–1283(1972).

9. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, Houston,Tex., NACE International, 1974.

T2�298.16

T2�298.16

Thermodynamic Data and E-pH Diagrams 1105

0765162_AppF_Roberge 9/1/99 8:29 Page 1105

Page 6: Thermodynamic Data and E pH Diagrams

10. Macdonald, D. D., The Thermodynamics and Theoretical Corrosion Behavior ofManganese in Aqueous Systems at Elevated Temperatures, Corrosion Science,16:482 (1976).

11. Macdonald, D. D., The Thermodynamics of Metal-Water Systems at ElevatedTemperatures, Part 4, The Nickel-Water System, AECL-4139, Pinawa, Canada,Whiteshell Nuclear Research Establishment, 1972.

12. Chen, C. M., and Theus, G. J., Chemistry of Corrosion-Producing Salts in LightWater Reactors, NP-2298, Palo Alto, Calif., Electric Power Research Institute, 1982.

13. Cowan, R. L., and Staehle, R. W., The Thermodynamics and Electrode KineticBehavior of Nickel in Acid Solution in the Temperature Range 25° to 300°C, Journalof the Electrochemical Society, 118:557–568 (1971).

14. Pan, P., and Tremaine, P. R., Thermodynamics of Aqueous Zinc: Standard PartialMolar Heat Capacities and Volumes of Zn2� (aq) from 10 to 55°C, Geochimica etCosmochimica Acta, 58:4867–4874 (1994).

15. Roberge, P. R., KTS-Thermo (2.01), Kingston, Canada, Kingston Technical Software,1998.

16. Criss, C. M., and Cobble, J. W., The Thermodynamic Properties of HighTemperature Aqueous Solutions, Journal of the American Chemical Society,86:5385–5393 (1964).

1106 Appendix F

TABLE F.7 Index to Thermodynamic Data, Equilibrium, andAssociated E-pH Diagrams for Important Engineering Metals

Element Equations Temperature, °C Figure

Chromium (Data Table F.1)Hydrated state Table F.8 25 F.1

60 F.2Dry state Table F.9 25 F.3

60 F.4Copper (Data Table F.2)

Hydrated state Table F.10 25 F.560 F.6

Dry state Table F.11 25 F.760 F.8

Iron (Data Table F.3)Hydrated state Table F.12 25 F.9

60 F.10Dry state Table F.13 25 F.11

60 F.12Manganese (Data Table F.4)

Table F.14 25 F.1360 F.14

Nickel (Data Table F.5)Hydrated state Table F.15 25 F.15

60 F.16Dry state Table F.16 25 F.17

60 F.18Zinc (Data Table F.6)

Table F.17 25 F.1960 F.20

0765162_AppF_Roberge 9/1/99 8:29 Page 1106

Page 7: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1107

TABLE F.8 Possible Reaction in the Cr-H2O Systembetween the Species Most Stable in Wet Conditions

Equilibria

1. 2 e� � 1CrO � 2H� � 1Cr � 1H2O2. 1 e� � 1Cr(OH)3 � 1H� � 1CrO � 2H2O3. 3 e� � 1Cr(OH)3 � 3H� � 1Cr � 3H2O4. 1 e� � 1CrO2 � 1H2O � 1H� � 1Cr(OH)35. 1 e� � 1CrO2 � 1H� � 1Cr(OH)36. 3 e� � 1CrO3 � 3H� � 1CrO2 � 1H2O7. 2 e� � 1Cr2� � 1Cr8. 3 e� � 1CrO2

� � 4H� � 1Cr � 2H2O9. 6 e� � 1HCrO4

� � 7H� � 1Cr � 4H2O10. 6 e� � 1CrO4

2� � 8H� � 1Cr � 4H2O11. 1 e� � 1CrO2

� � 2H� � 1CrO�1H2O12. 1CrO2

� � 1H2O�1H� � 1Cr(OH)313. 1CrO3 � 1H2O � 1CrO4

2� � 2H�

14. 1CrO3 � 1H2O � 1HCrO4� � 1H�

15. 1CrO�2H� � 1Cr2� � 1H2O16. 3 e� � 1Cr3� � 1Cr17. 3 e� � 1CrO3

3� � 6H� � 1Cr � 3H2O18. 1 e� � 1CrO3

3� � 4H� � 1CrO�2H2O19. 1 e� � 1CrO2 � 4H� � 1Cr3� � 2H2O20. 2 e� � 1HCrO4

� � 3H� � 1CrO2 � 2H2O21. 2 e� � 1CrO4

2� � 4H� � 1CrO2 � 2H2O22. 1Cr(OH)3 � 3H� � 1Cr3� � 3H2O23. 1Cr(OH)3 � 1CrO3

3� � 3H�

24. 1 e� � 1Cr(OH)3 � 3H� � 1Cr2� � 3H2O25. 3 e� � 1HCrO4

� � 4H� � 1Cr(OH)3 � 1H2O26. 3 e� � 1CrO4

2� � 5H� � 1Cr(OH)3 � 1H2O27. 3 e� � 1CrO4

2� � 4H� � 1CrO2� � 2H2O

28. 3 e� � 1CrO42� � 2H� � 1CrO3

3� � 1H2O29. 1CrO2

� � 4H� � 1Cr3� � 2H2O30. 1CrO3

3� � 2H� � 1CrO2� � 1H2O

31. 1CrO42� � 1H� � 1HCrO4

32. 1 e� � 1Cr3� � 1Cr2�

33. 1 e� � 1CrO2� � 4H� � 1Cr2� � 2H2O

34. 3 e� � 1HCrO4� � 7H� � 1Cr3� � 4H2O

35. 3 e� � 1CrO42� � 8H� � 1Cr3� � 4H2O

36. 3 e� � 1HCrO4� � 3H� � 1CrO2

� � 2H2O37. 1Cr(OH)3 � 2H� � 1Cr(OH)2� � 2H2O38. 1Cr(OH)3 � 1H� � 1Cr(OH)2

� � 1H2O39. 1 e� � 1CrO2 � 3H� � 1Cr(OH)2� � 1H2O40. 1Cr(OH)2� � 1H� � 1Cr3� � 1H2O41. 1Cr(OH)2

� � 1H� � 1Cr(OH)2� � 1H2O42. 1CrO2

� � 2H� � 1Cr(OH)2�

43. 1 e� � 1Cr(OH)2� � 1H� � 1Cr2� � 1H2O44. 1 e� � 1Cr(OH)2

� � 2H� � 1Cr2� � 2H2O45. 3 e� � 1CrO4

2� � 7H� � 1Cr(OH)2� � 3H2O46. 3 e� � 1CrO4

2� � 7H� � 1Cr(OH)2� � 3H2O47. 3 e� � 1HCrO4

� � 5H� � 1Cr(OH)2� � 2H2O

48. 3 e� � 1CrO42� � 6H� � 1Cr(OH)2

� � 2H2O49. 1CrO2

� � 3H� � 1Cr(OH)2� � 1H2O

0765162_AppF_Roberge 9/1/99 8:29 Page 1107

Page 8: Thermodynamic Data and E pH Diagrams

1108 Appendix F

TABLE F.9 Possible Reactions in the Cr-H2O Systembetween the Species Most Stable in Dry Conditions

Equilibria

1. 2 e� � 1CrO�2H� � 1Cr � 1H2O2. 2 e� � 1Cr2O3 � 2H� � 2CrO�1H2O3. 6 e� � 1Cr2O3 � 6H� � 2Cr � 3H2O4. 2 e� � 2CrO2 � 2H� � 1Cr2O3 � 1H2O5. 6 e� � 2CrO3 � 6H� � 1Cr2O3 � 3H2O6. 2 e� � 1CrO3 � 2H� � 1CrO2 � 1H2O7. 2 e� � 1Cr2� � 1Cr8. 3 e� � 1CrO2

� � 4H� � 1Cr � 2H2O9. 6 e� � 1HCrO4

� � 7H� � 1Cr � 4H2O10. 6 e� � 1CrO4

2� � 8H� � 1Cr � 4H2O11. 1 e� � 1CrO2

� � 2H� � 1CrO�1H2O12. 2CrO2

� � 2H� � 1Cr2O3 � 1H2O13. 1CrO3 � 1H2O � 1CrO4

2� � 2H�

14. 1CrO3 � 1H2O � 1HCrO4� � 1H�

15. 1CrO�2H� � 1Cr2� � 1H2O16. 3 e� � 1Cr3� � 1Cr17. 3 e� � 1CrO3

3� �r � 3H2O18. 1 e� � 1CrO3

3� � 4H� � 1CrO�2H2O19. 1 e� � 1CrO2 � 4H� � 1Cr3� � 2H2O20. 2 e� � 1HCrO4

� � 3H� � 1CrO2 � 2H2O21. 2 e� � 1CrO4

2� � 4H� � 1CrO2 � 2H2O22. 1Cr2O3 � 6H� � 2Cr3� � 3H2O23. 1Cr2O3 � 3H2O � 2CrO3

3� � 6H�

24. 2 e� � 1Cr2O3 � 6H� � 2Cr2� � 3H2O25. 6 e� � 2HCrO4

� � 8H� � 1Cr2O3 � 5H2O26. 6 e� � 2CrO4

2� � 10H� � 1Cr2O3 � 5H2O27. 3 e� � 1CrO4

2� � 4H� � 1CrO2� � 2H2O

28. 3 e� � 1CrO42� � 2H� � 1CrO3

3� � 1H2O29. 1CrO2

� � 4H� � 1Cr3� � 2H2O30. 1CrO3

3� � 2H� � 1CrO2� � 1H2O

31. 1CrO42� � 1H� � 1HCrO4

32. 1 e� � 1Cr3� � 1Cr2�

33. 1 e� � 1CrO2� � 4H� � 1Cr2� � 2H2O

34. 3 e� � 1HCrO4� � 7H� � 1Cr3� � 4H2O

35. 3 e� � 1CrO42� � 8H� � 1Cr3� � 4H2O

36. 3 e� � 1HCrO4� � 3H� � 1CrO2

� � 2H2O37. 1Cr2O3 � 4H� � 2Cr(OH)2� � 1H2O38. 1Cr2O3 � 1H2O�2H� � 2Cr(OH)2

39. 1 e� � 1CrO2 � 3H� � 1Cr(OH)2� � 1H2O40. 1Cr(OH)2� � 1H� � 1Cr3� � 1H2O41. 1Cr(OH)2

� � 1H� � 1Cr(OH)2� � 1H2O42. 1CrO2

� � 2H� � 1Cr(OH)2�

43. 1 e� � 1Cr(OH)2� � 1H� � 1Cr2� � 1H2O44. 1 e� � 1Cr(OH)2

� � 2H� � 1Cr2� � 2H2O45. 3 e� � 1CrO4

2� � 7H� � 1Cr(OH)2� � 3H2O46. 3 e� � 1CrO4

2� � 7H� � 1Cr(OH)2� � 3H2O47. 3 e� � 1HCrO4

� � 5H� � 1Cr(OH)2� � 2H2O

48. 3 e� � 1CrO42� � 6H� � 1Cr(OH)2

� � 2H2O49. 1CrO2

� � 3H� � 1Cr(OH)2� � 1H2O

0765162_AppF_Roberge 9/1/99 8:29 Page 1108

Page 9: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1109

TABLE F.10 Possible Reactions in the Cu-H2OSystem between the Species Most Stable in WetConditions

Equilibria

1. 3H� � 1HCuO2� � 2H2O�1Cu2�

2. 4H� � 1CuO22� � 2H2O�1Cu2�

3. 1H� � 1CuO22� � 1HCuO2

4. 1 e� � 1Cu2� � 1Cu�

5. 1 e� � 3H� � 1HCuO2� � 1Cu� � 2H2O

6. 1 e� � 4H� � 1CuO22� � 2H2O�1Cu�

7. 2 e� � 2H� � 1Cu2O � 1H2O�2Cu8. 2 e� � 2H� � 1Cu(OH)2 � 2H2O�1Cu9. 2 e� � 2H� � 2Cu(OH)2 � 3H2O�1Cu2O

10. 2H� � 1Cu2O � 1H2O�2Cu�

11. 2H� � 1Cu(OH)2 � 2H2O�1Cu2�

12. 2H� � 1CuO22� � 1Cu(OH)2

13. 1 e� � 1Cu� � 1Cu14. 2 e� � 1Cu2� � 1Cu15. 2 e� � 3H� � 1HCuO2

� � 2H2O�1Cu16. 2 e� � 4H� � 1CuO2

2� � 2H2O�1Cu17. 2 e� � 1H2O � 2Cu2� � 2H� � 1Cu2O18. 2 e� � 4H� � 2HCuO2

� � 3H2O�1Cu2O19. 2 e� � 6H� � 2CuO2

2� � 3H2O�1Cu2O20. 1 e� � 2H� � 1Cu(OH)2 � 2H2O�1Cu�

TABLE F.11 Possible Reactions in the Cu-H2O Systembetween the Species Most Stable in Dry conditions

Equilibria

1. 3H� � 1HCuO2� � 2H2O�1Cu2�

2. 4H� � 1CuO22� � 2H2O�1Cu2�

3. 1H� � 1CuO22� � 1HCuO2

4. 1 e� � 1Cu2� � 1Cu�

5. 1 e� � 3H� � 1HCuO2� � 1Cu� � 2H2O

6. 1 e� � 4H� � 1CuO22� � 2H2O�1Cu�

7. 2 e� � 2H� � 1Cu2O � 1H2O�2Cu8. 2 e� � 2H� � 1CuO � 1H2O�1Cu9. 2 e� � 2H� � 2CuO � 1H2O�1Cu2O

10. 2H� � 1Cu2O � 1H2O�2Cu�

11. 2H� � 1CuO � 1H2O�1Cu2�

12. 1H� � 1HCuO2� � 1H2O�1CuO

13. 1 e� � 1Cu� � 1Cu14. 2 e� � 1Cu2� � 1Cu15. 2 e� � 3H� � 1HCuO2

� � 2H2O�1Cu16. 2 e� � 4H� � 1CuO2

2� � 2H2O�1Cu17. 2 e� � 1H2O�2Cu2� � 2H� � 1Cu2O18. 2 e� � 4H� � 2HCuO2

� � 3H2O�1Cu2O19. 2 e� � 6H� � 2CuO2

2� � 3H2O�1Cu2O20. 1 e� � 2H� � 1CuO � 1H2O�1Cu�

0765162_AppF_Roberge 9/1/99 8:29 Page 1109

Page 10: Thermodynamic Data and E pH Diagrams

TABLE F.12 Possible Reactions in the Fe-H2O Systembetween the Species Most Stable in Wet Conditions

Equilibria

1. 2 e� � 2H� � 1H22. 4 e� � 1O2 � 4H� � 2H2O3. 2 e� � 1Fe(OH)2 � 2H� � 1Fe�2H2O4. 2 e� � 1Fe2� � 1Fe5. 2 e� � 1Fe(OH)3

� � 3H� � 1Fe�3H2O6. 1 e� � 1Fe(OH)3 � 1H� � 1Fe(OH)2 � 1H2O7. 1 e� � 1Fe(OH)3 � 3H� � 1Fe2� � 3H2O8. 1Fe(OH)3

� � 1H� � 1Fe(OH)2 � 1H2O9. 1 e� � 1Fe(OH)3 � 1Fe(OH)3

10. 1Fe3� � 3H2O � 1Fe(OH)3 � 3H�

11. 1Fe2� � 2H2O � 1Fe(OH)2 � 2H�

12. 1 e� � 1Fe3� � 1Fe2�

13. 1Fe2� � 1H2O � 1FeOH� � 1H�

14. 1FeOH� � 1H2O � 1Fe(OH)2(sln) � 1H�

15. 1Fe(OH)2(sln) � 1H2O � 1Fe(OH)3� � 1H�

16. 1Fe3� � 1H2O � 1FeOH2� � 1H�

17. 1FeOH2� � 1H2O � 1Fe(OH)2� � 1H�

18. 1Fe(OH)2� � 1H2O � 1Fe(OH)3(sln) � 1H�

19. 1 e� � 1FeOH2� � 1H� � 1Fe2� � 1H2O20. 1 e� � 1Fe(OH)2

� � 2H� � 1Fe2� � 2H2O21. 1 e� � 1Fe(OH)3(sln) � 1H� � 1Fe(OH)2(sln) � 1H2O22. 1 e� � 1Fe(OH)3(sln) � 2H� � 1FeOH� � 2H2O23. 1 e� � 1Fe(OH)3(sln) � 3H� � 1Fe2� � 3H2O

TABLE F.13 Possible Reactions in the Fe-H2O Systembetween the Species Most Stable in Dry Conditions

Equilibria

1. 2 e� � 2H� � 1H22. 4 e� � 1O2 � 4H� � 2H2O3. 8 e� � 1Fe3O4 � 8H� � 3Fe�4H2O4. 2 e� � 1Fe2� � 1Fe5. 2 e� � 1Fe(OH)3

� � 3H� � 1Fe�3H2O6. 2 e� � 3Fe2O3 � 2H� � 2Fe3O4 � 1H2O7. 2 e� � 1Fe3O4 � 8H� � 3Fe2� � 4H2O8. 2 e� � 1Fe2O3 � 6H� � 2Fe2� � 3H2O9. 2 e� � 1Fe3O4 � 5H2O � 3Fe(OH)3

� � 1H�

10. 2Fe3� � 3H2O � 1Fe2O3 � 6H�

11. 1 e� � 1Fe3� � 1Fe2�

12. 1Fe2� � 1H2O � 1FeOH� � 1H�

13. 1FeOH� � 1H2O � 1Fe(OH)2(sln) � 1H�

14. 1Fe(OH)2(sln) � 1H2O � 1Fe(OH)3� � 1H�

15. 1Fe3� � 1H2O � 1FeOH2� � 1H�

16. 1FeOH2� � 1H2O � 1Fe(OH)2� � 1H�

17. 1Fe(OH)2� � 1H2O � 1Fe(OH)3(sln) � 1H�

18. 1FeOH2� � 1H� � 1Fe2� � 1H2O19. 1 e� � 1Fe(OH)2

� � 2H� � 1Fe2� � 2H2O20. 1 e� � 1Fe(OH)3(sln) � 1H� � 1Fe(OH)2(sln) � 1H2O21. 1 e� � 1Fe(OH)3(sln) � 2H� � 1FeOH� � 2H2O22. 1 e� � 1Fe(OH)3(sln) � 3H� � 1Fe2� � 3H2O

0765162_AppF_Roberge 9/1/99 8:29 Page 1110

Page 11: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1111

TABLE F.14 Possible Reactions in the Mn-H2O System

Equilibria

1. 2 e� � 2H� � 1H22. 4 e� � 1O2 � 4H� � 2H2O3. 1Mn(OH)� � 1H� � 1Mn2� � 1H2O4. 1HMnO2

� � 3H� � 1Mn2� � 2H2O5. 1HMnO2

� � 2H� � 1Mn(OH)� � 1H2O6. 1MnO�2H� � 1Mn2� � 1H2O7. 1MnO�1H� � 1Mn(OH)�

8. 1HMnO2� � 1H� � 1MnO�1H2O

9. 2 e� � 1Mn3O4 � 8H� � 3Mn2� � 4H2O10. 2 e� � 1Mn3O4 � 5H� � 3Mn(OH)� � 1H2O11. 2 e� � 1Mn3O4 � 2H2O � 3HMnO2

� � 1H�

12. 2 e� � 1Mn2O3 � 6H� � 2Mn2� � 3H2O13. 2 e� � 1MN2O3 � 4H� � 2Mn(OH)� � 1H2O14. 2 e� � 1Mn2O3 � 1H2O � 2HMnO2

15. 2 e� � 1MnO2 � 4H� � 1Mn2� � 2H2O16. 2 e� � 1MnO2 � 3H� � 1Mn(OH)� � 1H2O17. 2 e� � 1MnO2 � 1H� � 1HMnO2

18. 1 e� � 1MnO2 � 4H� � 1Mn3� � 2H2O19. 3 e� � 1MnO4

� � 4H� � 1MnO2 � 2H2O20. 2 e� � 1MnO4

2� � 4H� � 1MnO2 � 2H2O21. 2 e� � 1MnO�2H� � 1Mn�1H2O22. 2 e� � 1Mn3O4 � 2H� � 3MnO�1H2O23. 2 e� � 3Mn2O3 � 2H� � 2Mn3O4 � 1H2O24. 2 e� � 2MnO2 � 2H� � 1Mn2O3 � 1H2O25. 2 e� � 1Mn2� � 1Mn26. 2 e� � 1Mn(OH)� � 1H� � 1Mn�1H2O27. 2 e� � 1HMnO2

� � 3H� � 1Mn�2H2O28. 3 e� � 1Mn3� � 1Mn29. 7 e� � 1MnO4

� � 8H� � 1Mn�4H2O30. 6 e� � 1MnO4

2� � 8H� � 1Mn�4H2O31. 1 e� � 1Mn3� � 1Mn2�

32. 4 e� � 1MnO42� � 8H� � 1Mn2� � 4H2O

33. 4 e� � 1MnO42� � 7H� � 1Mn(OH)� � 3H2O

34. 4 e� � 1MnO42� � 5H� � 1HMnO2

� � 2H2O35. 5 e� � 1MnO4

� � 8H� � 1Mn2� � 4H2O36. 5 e� � 1MnO4

� � 7H� � 1Mn(OH)� � 3H2O37. 4 e� � 1MnO4

� � 8H� � 1Mn3� � 4H2O38. 1 e� � 1MnO4

� � 1MnO42�

0765162_AppF_Roberge 9/1/99 8:29 Page 1111

Page 12: Thermodynamic Data and E pH Diagrams

1112 Appendix F

TABLE F.15 Possible Reactions in the Ni-H2OSystem between the Species Most Stable in WetConditions

Equilibria

1. 1Ni(OH)2 � 2H� � 1Ni2� � 2H2O2. 2 e� � 8H� � 1Ni3O4 � 3Ni2� � 4H2O3. 2 e� � 6H� � 1Ni2O3 � 3H2O�2Ni2�

4. 2 e� � 4H� � 1NiO2 � 2H2O�1Ni2�

5. 2 e� � 1Ni2� � 1Ni6. 2 e� � 3H� � 1HNiO2

� � 2H2O�1Ni7. 2 e� � 2H� � 1Ni(OH)2 � 2H2O�1Ni8. 2 e� � 2H� � 2H2O�1Ni3O4 � 3Ni(OH)29. 1H� � 1HNiO2

� � 1Ni(OH)210. 2 e� � 1Ni3O4 � 2H2O � 1H� � 3HNiO2

11. 2 e� � 2H� � 3Ni2O3 � 1H2O�2Ni3O412. 2 e� � 2H� � 2NiO2 � 1H2O�1Ni2O313. 3H� � 1HNiO2

� � 2H2O�1Ni2�

14. 2 e� � 1H2O�1Ni2O3 � 2HNiO2�

15. 2 e� � 1H� � 1NiO2 � 1HNiO2�

TABLE F.16 Possible Reactions in the Ni-H2O Systembetween the Species Most Stable in Dry Conditions

Equilibria

1. 2 e� � 8H� � 1Ni3O4 � 3Ni2� � 4H2O2. 2 e� � 6H� � 1Ni2O3 � 3H2O�2Ni2�

3. 2 e� � 4H� � 1NiO2 � 2H2O�1Ni2�

4. 2 e� � 1Ni2� � 1Ni5. 2 e� � 2H� � 1NiO � 1Ni�1H2O6. 2 e� � 3H� � 1HNiO2

� � 2H2O�1Ni7. 2 e� � 2H� � 1Ni3O4 � 1H2O�3NiO8. 2H� � 1NiO � 1H2O�1Ni2�

9. 1H� � 1HNiO2� � 1H2O�1NiO

10. 2 e� � 1Ni3O4 � 2H2O � 1H� � 3HNiO2�

11. 2 e� � 2H� � 3Ni2O3 � 1H2O�2Ni3O412. 2 e� � 2H� � 2NiO2 � 1H2O�1Ni2O313. 3H� � 1HNiO2

� � 2H2O�1Ni2�

14. 2 e� � 1H2O�1Ni2O3 � 2HNiO2�

15. 2 e� � 1H� � 1NiO2 � 1HNiO2�

0765162_AppF_Roberge 9/1/99 8:29 Page 1112

Page 13: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1113

TABLE F.17 Possible Reactions in the Zn-H2O System

Equilibria

1. 2 e� � 2H� � 1H22. 4 e� � 1O2 � 4H� � 2H2O3. 3H� � 1HZnO2

� � 2H2O�1Zn2�

4. 1H� � 1Zn(OH)� � 1H2O�1Zn2�

5. 2H� � 1HZnO2� � 2H2O�1Zn(OH)�

6. 4H� � 1ZnO22� � 2H2O�1Zn2�

7. 1H� � 1ZnO22� � 1HZnO2

8. 2 e� � 2H� � 1Zn(OH)2 � 2H2O�1Zn9. 2H� � 1Zn(OH)2 � 2H2O�1Zn2�

10. 1H� � 1HZnO2� � 1Zn(OH)2

11. 2H�1ZnO22� � 1Zn(OH)2

12. 2 e� � 1Zn2� � 1Zn13. 2 e� � 3H� � 1HZnO2

� � 2H2O�1Zn14. 2 e� � 4H� � 1ZnO2

2� � 2H2O�1Zn

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

a

Cr(OH)3

Cr

HCrO4-

Cr2O72-

H2CrO4

Cr3+

Cr2+

CrO42-

CrO33-

100

10-2

10-4

10-6

Figure F.1 Potential-pH equilibrium diagram for the chromium-water sys-tem at 25°C considering the hydrated oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1113

Page 14: Thermodynamic Data and E pH Diagrams

1114 Appendix F

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tia

l (V

vs

. S

HE

)

pH

b

a

Cr(OH)3

HCrO4-

Cr2O72-

H2CrO4

Cr3+

Cr2+

CrO42-

CrO33-

100

10-2

10-4

10-6

Cr

Figure F.2 Potential-pH equilibrium diagram for the chromium-watersystem at 60°C considering the hydrated oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

a

Cr2O3

HCrO4-

Cr2O72-

H2CrO4

Cr3+

Cr2+

CrO42-

CrO33-

100

10-2

10-4

10-6

Cr

Figure F.3 Potential-pH equilibrium diagram for the chromium-water sys-tem at 25°C considering the dry oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1114

Page 15: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1115

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

a

Cr2O3

HCrO4-

Cr2O72-

H2CrO4

Cr2+

CrO42-

100

10-2

10-4

10-6

Cr

CrO33-

Figure F.4 Potential-pH equilibrium diagram for the chromium-water sys-tem at 60°C considering the dry oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Cu2+

100

10-2

10-4

10-6

Cu(OH)2

CuO22-

Cu2Oa

Cu

Figure F.5 Potential-pH equilibrium diagram for the copper-water systemat 25°C considering the hydrated oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1115

Page 16: Thermodynamic Data and E pH Diagrams

1116 Appendix F

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Cu2+

Cu(OH)2

CuO22-

Cu2Oa

Cu

100

10-2

10-4

10-6

Figure F.6 Potential-pH equilibrium diagram for the copper-water systemat 60°C considering the hydrated oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Cu2+

100

10-2

10-4

10-6

CuO

Cu2Oa

Cu

CuO22-

Figure F.7 Potential-pH equilibrium diagram for the copper-water systemat 25°C considering the dry oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1116

Page 17: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1117

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Cu2+

CuO

CuO22-

Cu2Oa

Cu

100

10-2

10-4

10-6

Figure F.8 Potential-pH equilibrium diagram for the copper-water systemat 60°C considering the dry oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Fe2+

Fe3+

HFeO2-

a

100

10-2

10-4

10-6

Fe(OH)2

Fe(OH)3

HFeO2-

Fe

Figure F.9 Potential-pH equilibrium diagram for the iron-water system at25°C considering the hydrated oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1117

Page 18: Thermodynamic Data and E pH Diagrams

1118 Appendix F

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Fe2+

Fe3+

a

100

10-2

10-4

10-6

Fe(OH)2

Fe(OH)3

HFeO2-

Fe

Figure F.10 Potential-pH equilibrium diagram for the iron-water systemat 60°C considering the hydrated oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

b

Fe2+

Fe3+

a

100

10-2

10-4

10-6

Fe

HFeO2-

Fe3O4

Fe2O3

Figure F.11 Potential-pH equilibrium diagram for the iron-water system at25°C considering the dry oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1118

Page 19: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1119

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Fe2

Fe3+

a

100

10-2

10-4

10-6

Fe

HFeO2-

Fe3O4

Fe2O3

b

Figure F.12 Potential-pH equilibrium diagram for the iron-water systemat 60°C considering the dry oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Mn2+

100

10-2

10-4

10-6

MnO4-

Mn

MnO

a

HMnO2-

Mn3O4

b

MnO2

Mn2O3

Figure F.13 Potential-pH equilibrium diagram for the manganese-watersystem at 25°C.

0765162_AppF_Roberge 9/1/99 8:29 Page 1119

Page 20: Thermodynamic Data and E pH Diagrams

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Ni2+100

10-2

10-4

10-6

Ni

Ni(OH)2

a

HNiO2-

b

NiO2

Ni2O3

Ni3O4

Figure F.15 Potential-pH equilibrium diagram for the nickel-water sys-tem at 25°C considering the hydrated oxide forms.

1120 Appendix F

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Mn2+

100

10-2

10-4

10-6

MnO4-

Mn

MnO

a

HMnO2-

Mn3O4

b

MnO2

Mn2O3

Figure F.14 Potential-pH equilibrium diagram for the manganese-watersystem at 60°C.

0765162_AppF_Roberge 9/1/99 8:29 Page 1120

Page 21: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1121

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Ni2+100

10-2

10-4

10-6

Ni

Ni(OH)2a

HNiO2-

b

NiO2

Ni2O3

Ni3O4

Figure F.16 Potential-pH equilibrium diagram for the nickel-water sys-tem at 60°C considering the hydrated oxide forms.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Ni2+100

10-2

10-4

10-6

Ni

NiOa

HNiO2-

b

NiO2

Ni2O3

Ni3O4

Figure F.17 Potential-pH equilibrium diagram for the nickel-water systemat 25°C considering the dry oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1121

Page 22: Thermodynamic Data and E pH Diagrams

1122 Appendix F

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Zn2+

Zn

100

10-2

10-4

10-6a

b

Zn(OH)2

ZnO2

ZnO22-

Figure F.19 Potential-pH equilibrium diagram for the zinc-water systemat 25°C.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Ni2+100

10-2

10-4

10-6

Ni

NiOa

HNiO2-

b

NiO2

Ni2O3

Ni3O4

Figure F.18 Potential-pH equilibrium diagram for the nickel-water systemat 60°C considering the dry oxide forms.

0765162_AppF_Roberge 9/1/99 8:29 Page 1122

Page 23: Thermodynamic Data and E pH Diagrams

Thermodynamic Data and E-pH Diagrams 1123

Figure F.20 Potential-pH equilibrium diagram for the zinc-water systemat 60°C.

-2

-2 0 2 4 6 8 10 12 14 16

-1.5

-1

-0.5

0

0.5

1

1.5

2

Po

ten

tial

(V

vs.

SH

E)

pH

Zn2+

Zn

100

10-2

10-4

10-6a

b

ZnO2

ZnO22-

Zn(OH)2

0765162_AppF_Roberge 9/1/99 8:29 Page 1123