Thermochemical Fuel Reforming for Ice

Embed Size (px)

Citation preview

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    1/101

    Arnold SchwarzeneggerGovernor

    THERMOCHEMICAL FUELREFORMING FOR

    RECIPROCATING INTERNALCOMBUSTION ENGINES

    PIER

    FINALP

    ROJECTREPOR

    T

    Prepared For:

    California Energy CommissionPublic Interest Energy Research Program

    Prepared By:Gas Technology Institute

    January 2011CEC-500-2009-011

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    2/101

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    3/101

    DISCLAIMER

    This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of theEnergy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors andsubcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party representthat the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the CaliforniaEnergy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report.

    Prepared By:Gas Technology InstituteProject Manager: John PratapasDes Plaines, IL 60018Commission Contract No. 500-02-014

    Prepared For:Public Interest Energy Research (PIER) Program

    California Energy Commission

    Jennifer Allen

    Contract Manager

    Arthur Soinski, Ph.D.Program Area Lead

    Environmentally Preferred Advanced Generation

    Kenneth Koyama

    Office Manager

    Energy Generation And Research Office

    Laurie ten Hope

    Deputy Director

    ENERGY RESEARCH AND DEVELOPMENT DIVISION

    Melissa Jones

    Executive Director

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    4/101

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    5/101

    i

    Acknowledgements

    ThisreportdescribesresearchsponsoredbytheElectricPowerResearchInstitute(EPRI),

    CaliforniaEnergyCommission,UtilizationTechnologyDevelopmentNFP,andtheGas

    TechnologyInstitute.

    JohnM.Pratapas,GasTechnologyInstituteProjectManager

    PrincipalInvestigators:

    Dr.AleksandrKozlov,GasTechnologyInstitute

    MarkKhinkis,GasTechnologyInstitute

    Dr.GregoryAronchik,GasTechnologyInstitute

    Dr.DanielMather,DigitalEngines,LLC

    AntonKozlovsky,DigitalEngines,LLC

    EPRIProjectManager:

    D.Thimsen

    Pleasecitethisreportasfollows:

    Pratapas,John.2009.ThermochemicalFuelReformingForReciprocatingInternalCombustion

    Engines.CaliforniaEnergyCommission,PIEREnvironmentallyPreferredAdvanced

    Generation.CEC5002009011.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    6/101

    ii

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    7/101

    iii

    Preface

    TheCaliforniaEnergyCommissionsPublicInterestEnergyResearch(PIER)Programsupports

    publicinterestenergyresearchanddevelopmentthatwillhelpimprovethequalityoflifein

    Californiabybringingenvironmentallysafe,affordable,andreliableenergyservicesand

    productstothemarketplace.

    ThePIERProgram,conductspublicinterestresearch,development,anddemonstration(RD&D)

    projectstobenefitCalifornia.

    ThePIERProgramstrivestoconductthemostpromisingpublicinterestenergyresearchby

    partneringwithRD&Dentities,includingindividuals,businesses,utilities,andpublicor

    privateresearchinstitutions.

    PIERfundingeffortsarefocusedonthefollowingRD&Dprogramareas:

    BuildingsEndUseEnergyEfficiency

    EnergyInnovationsSmallGrants

    EnergyRelatedEnvironmentalResearch

    EnvironmentallyPreferredAdvancedGeneration

    EnergySystemsIntegration

    Industrial/Agricultural/WaterEndUseEnergyEfficiency

    RenewableEnergyTechnologies

    Transportation

    ThermochemicalFuelReformingforReciprocatingInternalCombustionEnginesisthefinalreportfor

    theThermochemicalFuelReformingforReciprocatingInternalCombustionEnginesproject

    (contractNumber50002014,workauthorizationnumber124)conductedbytheElectricPower

    ResearchInstituteandGasTechnologyInstitute.Theinformationfromthisprojectcontributes

    totheEnvironmentallyPreferredAdvancedGenerationProgram.

    FormoreinformationaboutthePIERProgram,pleasevisittheEnergyCommissionswebsiteat

    www.energy.ca.gov/researchorcontacttheEnergyCommissionat9166544878.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    8/101

    iv

    Table of Contents

    Acknowledgements.................................................................................................................................... iPrefaceiiiTableofContents...................................................................................................................................... iv1.0 IntroductionandBackground.....................................................................................................5 ivListofFigures.......................................................................................................................................... viiListofTables.............................................................................................................................................. ixAbstract...................................................................................................................................................... xiExecutiveSummary................................................................................................................................... 1Acronym.................................................................................................................................................... 71

    Definition................................................................................................................................................... 711.0 IntroductionandBackground.....................................................................................................5

    1.1. InternalCombustionEngineHeatRecoveryTechnologies................................................ 5

    1.1.1. CombinedCooling,Heating,andPower(CCHP)........................................................... 6

    1.1.2. TurboCompounding........................................................................................................... 6

    1.1.3. RankineBottomingCycles.................................................................................................. 8

    1.1.4. ThermochemicalRecuperation(TCR)................................................................................ 9

    1.2. ProjectObjectives.................................................................................................................... 111.2.1. DesignandLaboratoryEvaluationandValidationof3to5kWeResearchScale

    RecuperativeReformingReactor..................................................................................... 11

    1.2.2. ReformateFueledInternalCombustionEnginePerformance.................................... 11

    1.3. TechnicalApproach............................................................................................................... 12

    1.4. ReportOrganization............................................................................................................... 12

    2.0 SummaryofPreviousGTIThermochemicalFuelReformingInvestigations....................13

    2.1. HydrogenEnrichedFuelfromThermochemicalFuelReforming................................... 13

    2.1.1. Hydrogen(H2)EnrichedCombustion............................................................................. 132.1.2. TCFRSystemforSupplyingHydrogentoFuelBlend.................................................. 15

    2.1.3. EngineAnalysis.................................................................................................................. 16

    2.1.4. PerformanceGoals/CriteriaforDesignofTCRS........................................................... 18

    2.1.5. EngineSimulationofTCRReformedFuel..................................................................... 18

    2.1.6. BiogasandLandfillGas..................................................................................................... 23

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    9/101

    v

    2.1.7. Summaryof1kWeLaboratoryScaleTCFRTests.......................................................... 25

    2.2. TCFRRICECostEstimation.................................................................................................. 30

    2.2.1. Approach............................................................................................................................. 30

    2.2.2. KeyAssumptions............................................................................................................... 30

    2.2.3. TCRSystemCost................................................................................................................ 32

    3.0 SummaryofThermochemicalFuelReformingTechnologyandScaleUpApproach......35

    3.1. ThermochemicalFuelReformingTechnologyStatusSummary..................................... 35

    3.2. PerformanceGoals/CriteriaforDesignofTCRSystem.................................................... 39

    3.3. ConceptualDesignofRecuperativeReformer................................................................... 40

    4.0 LaboratoryScaleTestingofRecuperativeReformingforSimulatedExhaustfrom

    CumminsQSK19GNaturalGasFueledReciprocatingEngine........................................... 43

    4.1. LaboratoryStudiesofRecuperativeReformingReactor.................................................. 43

    4.2. RecuperativeReformer.......................................................................................................... 46

    4.3. TestPlan................................................................................................................................... 48

    4.4. AnalysisofExperimentalData............................................................................................. 49

    4.4.1. Catalyticreformingtestresults........................................................................................ 49

    5.0 Operationof50kWeResearchEnginewithReformedFuelfromTCRTestRig...............55

    5.1. GoalandObjectives................................................................................................................ 55

    5.2. TestPlan................................................................................................................................... 55

    5.2.1.Test

    Matrix

    ..........................................................................................................................

    57

    5.2.2. TestProcedures................................................................................................................... 58

    5.2.3. EngineDASMeasurementsandMethods...................................................................... 59

    5.2.4. DataAnalysisProcedure................................................................................................... 60

    5.2.5. QualityAssuranceProcedures......................................................................................... 60

    5.2.6. DataResults(July1718,2007andJuly29,2007)........................................................... 60

    5.3. ComputerSimulationofHCCIwithReformulatedFuel.................................................. 67

    5.4. Conclusions............................................................................................................................. 68

    6.0 ConclusionsandRecommendations........................................................................................ 696.1. CommercializationPotential................................................................................................. 69

    6.2. Recommendations.................................................................................................................. 70

    6.3. BenefitstoCalifornia.............................................................................................................. 70

    7.0 Glossary........................................................................................................................................ 71

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    10/101

    vi

    AppendixA: ConceptualDesignoftheRecuperativeReformerfortheCummins1400kW

    QSK60GEngine........................................................................................................................................ 73

    AppendixB: BillofMaterialsforTCRSRICEQSK60G.................................................................... 76

    AppendixC: PreliminaryAnalysisofTCRforLandfillGasandBiogasApplications................77

    AppendixD:PhotographsofReformedFuelDeliverySystemComponentsforHCCIResearchEngineTests............................................................................................................................................ 833

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    11/101

    vii

    List of Figures

    Figure1. Energybalanceofleanburngasengineattypicaloperatingconditions......................... 5

    Figure2. ConceptualschematicflowdiagramofaCCHPsystem.................................................... 6

    Figure3. Potentialnetturbocompressorpoweravailable.................................................................. 7

    Figure4. Typicalturbocompoundingconfiguration(indistributedgeneration

    applicationsthepowertrainisanelectricgenerator)............................................................... 8

    Figure5. Thermochemicalrecuperationsystemschematic.............................................................. 10

    Figure6. SchematicofasimplifiedTCFRsystem.............................................................................. 15

    Figure7. SchematicoftheCumminsQSK60GgasengineequippedwiththeTCRsystem........17

    Figure8. ProcessflowdiagramoftheCumminsQSK60Ggasengineequippedwiththe

    TCRsystem....................................................................................................................................... 19

    Figure9. Normalizedsystemefficiencyversusexcessairratio()fornaturalgasand

    TCRreformedfuel........................................................................................................................... 20

    Figure10a. ComparisonofnormalizedsystemefficiencyversusnormalizedNOx

    emissionsfornaturalgasandTCRreformedfuel...................................................................... 21

    Figure11. NormalizedUHCemissionsversusexcessairratio()fornaturalgasand

    TCRreformedfuel........................................................................................................................... 22

    Figure12. Turbochargerexhaustoutlettemperatureasafunctionofexcessairratio()...........22

    Figure13. Laboratorysetuplowtemperaturemethanereforming(recuperative

    reformingforreciprocatingengine)............................................................................................. 26

    Figure14. CH4conversionsversustemperatureforprereformingcatalyst.................................. 26

    Figure15. SchematicoftheGTIRRexperimentaltestunit.............................................................. 27

    Figure16. GTIlaboratoryscalerecuperativereformertestcell....................................................... 28

    Figure17. TCRSsystemassemblyandcomponentsforcostestimation........................................ 32

    Figure18. SimplifiedflowdiagramforCumminsQSK19Gleanburnenginewithout

    TCR.................................................................................................................................................... 37

    Figure19. SankeydiagramofQSK19GleanburnenginewithoutTCR......................................... 37

    Figure20. SimplifiedflowdiagramofCumminsQSK19Gleanburnenginewith

    recuperativereformerafterturbocharger.................................................................................... 38

    Figure21. SankeydiagramforQSK19leanburnenginewithsteam/naturalgasreforming(reformerafterturbocharger)...................................................................................... 39

    Figure22. ConceptualdesignofthermochemicalrecuperationsystemforQSK19G

    engine................................................................................................................................................ 41

    Figure23. ConceptualdesignofrecuperativereformerforQSK19Gengine................................. 41

    Figure24. Schematicoflaboratorysetupfor250SCFHTCRtestrig.............................................. 44

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    12/101

    viii

    Figure25. Photographoflaboratorysetupfor250SCFHTCRtestrig........................................... 45

    Figure26. DrawingofeclipserecuperatorsinstalledonTCRtestrig............................................. 46

    Figure27. Eclipserecuperator(recuperativereformer)withcatalyticinsertsinstalled...............46

    Figure28. PhotographsofcatalyticinsertsevaluatedinTCRtestrig............................................. 47

    Figure29. Photographofanindividualnickeloxidecatalystdisc.................................................. 48

    Figure30. Equilibriumcompositionfornaturalgas/steamreforming(steam/carbon=2)............50

    Figure31.Methaneconversionratebyequilibrium.......................................................................... 51

    Figure32. Reformingprocesscompletenessvs.spacevelocity(atstandard)................................ 52

    Figure33.Measuredhydrogenvolumeconcentrationinreformedfuelcomparedto

    equilibriumpredictions.................................................................................................................. 53

    Figure34: SimplifiedFlowDiagramoftheReformedFuelDeliverySystem................................ 56

    Figure35. HCCIH2/Naturalgasenginetestbenchsetupforflowcontrolanddata

    measurement/acquisitionsystem.................................................................................................. 56

    Figure36. Enginemapoftestpointscompleted................................................................................ 67

    Figure37. SimulatedandtheexperimentalpressureforthelastrunconditionofTable

    25........................................................................................................................................................ 68

    FigureA1. Alternativereformertubedesigns................................................................................... 74

    FigureA2. Recuperativereformerfor60literengine....................................................................... 75

    FigureC1. FlowdiagramforlandfillgasleanburnQSK19engine................................................ 79

    FigureC2. SankeydiagramforlandfillgasleanburnQSK19engine............................................ 80

    FigureC3. FlowdiagramforlandfillgasleanburnQSK19enginewithTCR.............................. 81

    FigureD 1. Fuelcompressorwithfilter.............................................................................................. 83

    FigureD2.Cooler/condenser(blackverticaltube)............................................................................ 83

    FigureD3.Reformedfuelline(yellow)connectiontotheengine................................................... 84

    FigureD4. Naturalgaslinewithflowcontroller,pressuregauge,andvalves............................ 84

    FigureD5. ComparisonofflamesgeneratedbysupplementalburnerforTCRtesting

    (a)combustingofneatnaturalgasand(b)combustingreformedfuelfromTCRtestrig ...........85

    FigureD6. Absorbertube(intheforeground)forsulfurremovalfromnaturalgassuppliedtoTCRtestrig............................................................................................................................................... 85

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    13/101

    ix

    List of Tables

    Table1. AdvantagesanddisadvantagesofH2enrichednaturalgascombustion........................ 13

    Table2. ThermodynamicequilibriumcalculationforsimplifiedTCRFsystem............................ 16

    Table3. SpecificationofCumminsQSK60Gleanburngasengine................................................. 16

    Table4. USDOEARESgoals................................................................................................................ 17

    Table5. CompositionsofnaturalgasandHYSYScalculatedreformedfuel(mol%)..................19

    Table6. Reformedbiogasfuelproperties Table7. Reformedlandfillgasproperties...........23

    Table8. Engineperformanceandemissionscomparisonlandfillgas............................................ 24

    Table9. Engineperformanceandemissionscomparisonbiogas.................................................... 24

    Table10. Experimentaltestconditions................................................................................................ 29

    Table11. Experimentalreformateflow(testconditionsinTable10).............................................. 30

    Table12. TCRScostestimatesforCumminsQSK60Ggeneratorset............................................... 33Table13. Referencenaturalgascompositionforengine/reformermodeling................................ 35

    Table14. QSK19leanburnenginecharacteristicswithoutTCR(ratedspeed1800rpm)............36

    Table15. PreliminaryTestPlanMatrix................................................................................................ 49

    Table16. Hydrogencontent(%volume,drybasis)inreformedfuel............................................. 53

    Table17. OperatingconditionsforHCCItestengine........................................................................ 57

    Table18. Predictedcompositionsandreformedfuelflowratesofreformedfuelat

    differentreformertemperatures(steamtocarbon=2)................................................................ 58

    Table19. ProposedtestmatrixfortheHCCIenginewithreformedfuel....................................... 58

    Table20. Datatakenonlinenaturalgas.............................................................................................. 61

    Table21. Dataat2.0bar,2.4%hydrogen............................................................................................. 62

    Table22. Dataat2.0bar,15%hydrogen.............................................................................................. 63

    Table23. Dataat2.0bar,7.5%hydrogeninreformedfuel............................................................... 64

    Table24. Dataat2.0bar,25%hydrogeninreformedfuel................................................................ 65

    Table25. Dataat2.5bar......................................................................................................................... 66

    TableA1. Temperatureandpressuredropsforalternativecatalysts............................................ 74

    TableC1. Engineparametersfornaturalgasandlandfillgasengines.......................................... 78

    TableC2. Heatbalance(modeling)..................................................................................................... 79

    TableC3. ParametersofengineandTCR........................................................................................... 80

    TableC4. PredictedparametersofenginewithTCR....................................................................... 81

    TableC5. Predictedparametersatcharacteristicpointsinsystemflowdiagram........................ 82

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    14/101

    x

    TableC6. HeatbalanceofenginewithTCR(HYSYSmodeling).................................................... 82

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    15/101

    xi

    Abstract

    Thermochemicalrecuperationmaybeconsideredasanalternativetocombinedheatandpower

    asameasuretoincreasetheefficiencyofanengine.Exhaustheatfromaninternalcombustion

    engine,alongwithacatalyst,isusedtoreformfuelsuchasnaturalgasintoafuelstreamwitha

    significantconcentrationofhydrogenandahighercaloricvalue.Thistechniqueofrecyclingthe

    engineexhaustheatandconvertingittochemicalenergyinthefuelstreamcanreduceengine

    fueluse.Inaddition,thecombustionofhydrogenenhancedfuelallowstheenginetooperateat

    anairtofuelratiothatresultsinverylowproductionofnitrogenoxides.

    IncludedinthisreportisasummaryofpriorresearchanddevelopmentbytheGasTechnology

    Instituteonthetechnologyofthermochemicalrecuperationforreciprocatinggasenginesused

    indistributedgeneration;apreliminaryconceptualdesignofarecuperativereformerfora

    commerciallyavailable331kilowattenginegeneratingsetofferedbyCummins,Inc.; a

    descriptionoflaboratoryscaleexperiments;updatedperformancepredictions;andtheresults

    fromoperatinga50kilowattresearchengineonthermochemicallyreformedfuelversusnaturalgas.Projectresultssupportrecommendationsforthescaleup(anincreaseaccordingtoafixed

    ratio)andcontinueddevelopment,demonstration,andcommercializationofthermochemical

    fuelreformingforreciprocatinginternalcombustionengines.

    Athermochemicalfuelreformingsystemcouldreasonablyresultinfuelsavingsofabout$1.1

    millionperyearbythefifthyearofcommercialization.ThisaddressestheCaliforniaEnergy

    Commissionsgoalsofenhancingenergyefficiency,diversifyingelectricitysuppliesby

    investinginrenewableandothercleanenergytechnologies,strengtheningCaliforniasenergy

    infrastructure.

    Keywords: Thermochemicalfuelreforming,thermochemicalrecuperation,recuperative

    reformingreactor,distributedgeneration,combinedheatandpower,hydrogenenhanced

    combustion,naturalgas,biogas,reciprocatinginternalcombustionengine

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    16/101

    xii

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    17/101

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    18/101

    2

    ProjectObjectives

    Developadetailedengineeringdesignofarecuperativereformingreactortoconvert

    naturalgasandyieldhydrogeninamountscorrespondingtofuelflowandexhaust

    conditionsfora50kilowattgasengineinthelaboratory.

    Operatea50kilowattlaboratoryscaleengineonreformedfuelproducedfromathermochemicalrecuperationlaboratorytestrig.Thistestingwillconfirmsatisfactory

    operationwithingenerallyaccepteddesignparametersforreciprocatinginternal

    combustionengines,anddocumentfuelsavingsandemissions(andemission

    reductions)ofnitrogenoxides,carbonmonoxide,andvolatileorganiccompounds.

    Developthebasisforanengineeringdesigntoscaleup(increaseaccordingtoafixed

    ratio)thelaboratoryscalethermochemicalrecuperationtechnologyinsubsequent

    developmentanddemonstrationprojects.

    ProjectOutcomes

    Thisprojectresultedinscaleupofarecuperative,catalyticreformingreactorfromanaturalgasflowrateof50tomorethan250standardcubicfeetperhour.A

    commerciallyavailabletubeandshelldesignedgastogasrecuperatorwasmodified

    toincludeprovisionsforaddingthecatalystinsidethetubeswherethenaturalgasand

    steammixtureflow.HeattransferandprocessmodelsdevelopedbyGasTechnology

    Instituteprovidedpredictionsofperformanceoftherecuperativereformer.These

    predictionswereconfirmedexperimentallyonthelaboratoryunit.

    Thescaleduprecuperativereformerwasoperatedatexhaustgastemperaturesand

    conditionssimulatingtheCumminsQSK19Gleanburnengineandproducedenough

    reformedfueltooperatea50kilowattresearchengine.Engineperformanceand

    emissionsoftheengineoperatedonreformedfuelweremeasuredandcomparedtooperationoftheengineonpipelinequalitynaturalgas.

    Theresearchteampreparedapreliminaryconceptualdesignofarecuperativereformer

    fortheCumminsQSK19Gengineconfigurationevaluatedinthisproject.Thisdesign

    providesaperspectiveonitspotentialphysicalsizeandoperatingtemperaturesand

    flowratesatthecurrentstateofdevelopmentforthermochemicalfuelreforming.

    Conclusions

    Thetestingofthelaboratoryscalerecuperativereformingreactorattemperaturesthat

    simulatedexhaustfromreciprocatingengine(operatedunderleanburnconditionson

    naturalgas)suggeststhatanickelrhodiumreformingcatalystprovidedthehighestconversionofnaturalgas/steammixtureatsteamtocarbonratioof2.Theresidence

    times(timespentinsidethesystem)requiredtoachievedifferentlevelsofreforming

    (measuredbyhydrogenyield)couldbeexperimentallydeterminedforusein

    developingadesignmodelofthermochemicalrecuperation.

    The50kilowattlaboratoryscaleengine(configuredforhomogeneouscharge

    compressionignition[aformofinternalcombustioninwhichwellmixedfueland

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    19/101

    3

    oxidizerarecompressedtothepointofautoignition]insteadofsparkignition[the

    initiationofthecombustionprocessoftheairfuelmixtureisignitedwithinthe

    combustionchamberbyasparkfromasparkplug]configuration)wasoperatedon

    reformedfuelproducedinthelaboratorythermochemicalrecuperatortestrigand

    providedsufficientdatatocomparekeyperformanceparametersandemissionsversus

    conventionalengineoperation(alsowithhomogeneouschargecompressionignitionandoperatedonpipelinenaturalgas).Testingsuggestedthatthethermochemical

    recuperationtestrig,ascurrentlyoperated,wouldnotproducesufficientreformedfuel

    toenableoperationofthetestengineinasparkignitionconfiguration.Itwasnotwithin

    thescopeofthetasktooptimizetheenginesoperationonreformedfuel.Nevertheless,

    thedataobtainedfromtestingsupportsthetechnicalfeasibilitythatthermochemical

    recuperationonareciprocatingenginecouldbeusedtoincreaseoverallsystem

    efficiency.Thelimitedtestingsuggestedthatforthehomogeneouschargecompression

    ignitionconfiguration,theengineefficiency(brakethermal)onreformedfuelwas

    comparabletothealreadyhighbaselineefficiencyonnaturalgas.Engineoperationwith

    homogeneouschargecompressionignitiononreformedfuelresultedinlowerhydrocarbonemissionscomparedtotheemissionsforthesameengineoperatedwith

    unreformednaturalgas.Becauseoftheextremelyleancombustionassociatedwith

    homogeneouschargecompressionignition,thebaselinenitrogenoxidesemissionson

    naturalgaswerealreadyverylow.Insomecasesthereformedfuelresultedinslightly

    highernitrogenoxides.Furtheroptimizationbetweennitrogenoxidesandcarbon

    monoxidetradeoffiswarranted.

    Theresearchteamdevelopedaconceptualdesignofatubularrecuperativereformerfor

    theCumminsQSK19Greciprocatinginternalcombustionengine.Thisdesignprovides

    anindicationoftheoveralldimensionsoftherecuperativereformerforthe331kilowatt

    engine.

    Recommendations

    Basedupontheresultsoftheworkreportedinthisproject,theresearchteam

    recommendsdevelopmentofathermochemicalrecuperationsystemforreciprocating

    internalcombustionenginesbecontinued.

    Becauseoftheextensiveamountofthermochemicalrecuperationprocessmodeling

    performedtodatethatisbasedupontheCumminsQSK19engineconfigurations(thatis

    leanburnandstoichiometric,naturalgasandbiogas),theresearchteamrecommends

    continuingthermochemicalrecuperationdevelopmentanddemonstrationwith

    Cummins.

    BenefitstoCalifornia

    ThisprojectaddressesthePublicInterestEnergyResearchProgramsgoalsofenhancing

    energyefficiency,diversifyingelectricitysuppliesbyinvestinginrenewableandother

    cleanenergytechnologies,strengtheningCaliforniasenergyinfrastructuretoprovide

    forreliability,andcontinuingCaliforniasenvironmentalstewardship.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    20/101

    4

    Athermochemicalfuelreformingsystemcouldreasonablyresultina5%reductionin

    overallsystemheatratecomparedtothecurrentlyavailableenginegeneratorset. Ata

    5%reductioninfuelpurchaseandanassumedCaliforniamarketpenetrationrateof

    about50megawattsbythefifthyearofcommercialization,theprojectedfuelsavingsare

    estimatedatabout$1.1millionperyear(atapriceof$7permillionBritishthermalunits

    fornaturalgas).

    Becausethermochemicalfuelreformingproduceshydrogenenrichedfuelthathasbeen

    documentedtoextendthelimitsofareciprocatinginternalcombustionengineto

    operateinleancombustionmode,onecouldpotentiallyusethermochemical

    recuperationforsignificantreductionofnitrogenoxideswithoutexacerbatingemissions

    ofcarbonmonoxideandunburnedhydrocarbons.

    Preliminarymodelinganalysessuggestthatthermochemicalfuelreformingcanalsobe

    appliedtoincreaseefficiencyandreduceemissionsfromenginesfueledwithbiogasor

    landfillgas.ThissupportsattainmentoftheCaliforniaEnergyCommissionPublic

    InterestEnergyResearchgoalofdiversifyingelectricitysuppliesbyinvestingin

    renewableandothercleanenergytechnology.

    TheCaliforniaAirResourcesBoard2007emissionlimitsfordistributedgeneration

    couldprecludeafuturemarketforreciprocatinginternalcombustionenginesystems

    unlesstheycandemonstratethecapabilitytocosteffectivelymeettheselimits.

    Thermochemicalfuelreformingmayprovideameansforcontinueduseofreciprocating

    internalcombustionenginesasprimemoversfordistributedgenerationinSouthern

    California.

    Increasingelectricpowergenerationefficiencyandminimizingthecostofcomplying

    withtheCaliforniaAirResourcesBoard2007emissionslimitsfordistributedgeneration

    will

    contribute

    to

    a

    more

    cost

    competitive

    California

    economy.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    21/101

    5

    1.0 Introduction and Background

    1.1. Internal Combustion Engine Heat Recovery Technologies

    Thenatural

    gas

    fired

    reciprocating

    engine

    has

    been

    the

    prime

    mover

    of

    choice

    for

    the

    majority

    ofrecentdistributedgeneration(DG)installationsinthe1,000kilowattelectric(kWe)to10,000

    kWeoutputrange.Reciprocatingenginesalsodriveasignificantshareoftheexistingcapacity

    ofcompressorsfornaturalgastransmission.

    Regulatorscontinuetoreducetheallowableemissionofoxidesofnitrogen(NOx)fromgas

    engines.InCalifornia,Texas,NewJersey,andinotherserioustosevereozonenonattainment

    areas,singledigitpartspermillionNOxlimitsareleadingtoincreasedinstallationsofselective

    catalyticreduction(SCR)atsignificantcost.Thisishavingasubstantialimpactontheoperating

    economicsofDG.Whilecombinedheatandpower(CHP)canincreasefuelutilization

    efficienciestoaround80%,notallapplicationsfordistributedenergycantakeadvantageof

    CHP.Therefore,aneedexiststoincreasetheefficiency,whilealsoloweringtheemissionsofnaturalgasreciprocatingenginesusedinDGandpipelinetransmissionsystems.

    Figure1showsatypicalenergybalanceofthemodernnaturalgasreciprocatingengine. About

    32%oftheenergyinput(higherheatingvalue)isavailableintheexhaustgasesfromtheengine.

    Thetemperatureofthisexhaustcanbegreaterthan500C.Recoveringandutilizingthisenergy

    wouldimproveefficiencyandreduceemissionsperunitoutput.Adescriptionofseveral

    strategiesforutilizingthisexhaustheatisdescribedbelow.

    Other7%

    Exhaust Heat Losses32%

    Aftercooler7%

    In-Cylinder Heat Losses19%

    Net Power35%

    Figure 1. Energy balance of lean-burn gas engine at typical operating conditions

    Source: Gas Technology Institute

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    22/101

    6

    1.1.1. Combined Cooling, Heating, and Power (CCHP)1

    CCHPisanintegratedsystemlocatedatornearabuildingorfacilitywheretheheatco

    producedbytheelectric(orshaft)powergenerationequipmentprovidesheating,cooling,

    and/ordehumidificationtoabuildingand/orindustrialprocesses.Aconceptualdiagramof

    CCHPisshowninFigure2.ThemajorCHPcomponentsareprimemovertechnologies,heat

    recoverytechnologies,andthermallyactivatedtechnologies.

    Figure 2. Conceptual schematic flow diagram of a CCHP system

    Source: Gas Technology Institute

    Key factors for CCHP financial attractiveness:

    Coincidenceofelectricloadsandthermalloadsthemoreafacilityneedselectricityand

    atthesametimeitneedsthermalenergy(heating,cooling,ordehumidification),the

    greaterthedutycycleoftheCCHPinstallationandthemoreattractivethesavingsany

    paybackassociatedwithCCHP.

    SparkSpreadthe higherthedifferentialbetweenthecostofbuyingelectricpower

    fromthegridandthecostofnaturalgas,themoreattractivethesavingsandpayback

    associatedwithCCHP.

    InstalledCostDifferentialthelowerthedifferentialbetweentheinstalledcostsofthe

    CCHPsystemandthatofaconventionalheating/coolingsystem,themoreattractivethe

    savingsandpaybackassociatedwithCCHP.

    1.1.2. Turbo-Compounding

    Turbocompoundingusesgasturbinetechnologytoconvertthermalenergytomechanical

    powerwhichinturndrivesanelectricalgeneratortoproduceelectricalpower.Turbogenerator

    technologyisusedtoextractpowerfromtheexhaustofareciprocatinginternalcombustionengine.Theexhaustexitstheenginecylindersathightemperatureandpressureandcarriesas

    muchas3035%oftheenergyinthefuelouttoatmosphere.Theturbogeneratoractsasa

    bottomingcycle fortheengineinafashionsimilartothatofasteamgeneratoronacombined

    cyclegasturbineplant.

    1.CombinedHeatandPowerResourceGuide,September2003,USDOE

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    23/101

    7

    Turbocompressorscommonlyusedtoincreasespecificpoweroutputofaninternalcombustion

    engineemployturbineswithoutputmatchedtothecompressorpowerrequiredtoachievethe

    desiredincreaseinmassofair/fuelenteringthecylinder.Figure3showsanexampleofthe

    powerthatmightbegeneratedbyanoptimizedexhaustturbinecomparedwiththecompressor

    load2.Turbocompoundingtakesadvantageofthispowersurplus.Figure4providesa

    conceptualdepictionofthecompleteelectricalturbocompoundingsystem.

    BowmanPowerGroup(BPG)3hasidentifiedthreecoretechnologiesnecessarytosupportthe

    useofturbogenerators:

    Compact,simple,lowcostturbomachinery.

    Highspeedelectricalgeneratorswhichareextremelyefficient(98%)andsmallenough

    tocoupledirectlytotheshaftofturbomachinery.

    Softwarecontrolledpowerelectronicstomanageelectricalpowerquality(power

    conditioners).

    Figure 3. Potential net turbocompressor poweravailable

    Source: Caterpillar

    2.DieselEngineWasteHeatRecoveryUtilizingElectricTurboCompoundTechnology,Ulrich

    HopmannCaterpillarInc.,2002DieselEngineEmissionReductionConference.August2529,2002,San

    Diego,California.

    3.http://www.bowmanpower.co.uk/Turbocompounding.html11/21/08

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    24/101

    8

    Figure 4. Typical turbo-compounding configuration(in distributed generation applications the powertrain is anelectric generator)

    Source: Caterpillar

    Initsimplementationofthesetechnologies,BPGclaimsthatpowerisboostedbyupto30%

    andfueleconomyimprovedby10to15%.Theelectricalpowergeneratedcanbeusedto

    powerelectricalloadsortodirectlydrivetheenginecrankshaft.BPGhasdevelopedsystemsto

    covertherange25kWto165kW,withsystemsupto2,000kWeplannedforfuture

    development.

    1.1.3. Rankine Bottoming Cycles

    SteamRankineBottomingCyclesoperatebestatrelativelyhighworkingtemperaturesand

    pressures.Exhaustgastemperaturesfromreciprocatingenginesaregenerallynotsufficiently

    highforeconomicalsteambasedbottomingcycles.However,byusingcertainorganicfluids,

    typicallyrefrigerants,powercanbeeconomicallygeneratedusinglowerworkingpressuresand

    temperatures.BottomingsystemsthatusethesefluidsarecommonlyreferredtoasOrganic

    RankineCycles(ORC).Heatfromtheengineexhaustisusedtoraisethetemperatureofand

    boilthepressurizedworkingfluidinanevaporator.Theresultingvaporflowsthrougha

    turbinetoproduceworkbeforeitiscondensedatlowpressureinthecondenserandthen

    repressurizedandrecycled.

    SystemeconomicsofORCswillbeinfluencedbytheworkingtemperaturesandpressures,cost

    ofthefluid,heatexchangerdesign,andrequirementsforintegratingthesystematthe

    application.UTCPowerismarketingapackagedORCbrandedPureCyclesuitableforuse

    withreciprocatinginternalcombustionengines4

    .ThePureCyclesystememploysofftheshelfrefrigerationsystemcomponentsandusesarefrigerantastheworkingfluid.Thisbottoming

    cyclecanincreasetheelectricaloutputofa3,000kWegasfiredICEgeneratorbyapproximately

    200kW.ThereareseveralothervendorsofORCsystemsandfurtherdevelopmentsare

    underway.

    4.http://www.utcfuelcells.com/fs/com/bin/fs_com_Page/0,11491,0167,00.html9/26/08

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    25/101

    9

    1.1.4. Thermochemical Recuperation5(TCR)

    TCRsystems(employingengineexhaustgasrecuperation)offeraninnovativemeansforboth

    increasingefficiencywhileloweringemissionsofreciprocatinginternalcombustionengines

    (RICE)usedforpowergenerationandpipelinetransmission.TCRsystemsforreciprocating

    enginescouldconceivablyincluderecoveryofwasteheatenergyfromtheenginecooling,

    lubricating,andexhaustsystems.Availablewasteheatisthermochemicallyrecuperatedaschemicalenergyinthefuelstream.

    AsimplifieddepictionofaTCRsystememployingsteammethanereformingisprovidedin

    Figure5.Themajorequipmentitemsincludeheatexchangers,arecuperativereformingreactor,

    andaheatrecoverysteamgenerator.Becauseoftherelativelylowtemperatureofenginewaste

    heat,acatalyticreformingreactorisusedtoachievetargetconversions.Thesteamorproducts

    ofcombustionprovideoxidantrequiredtosupportthereformingreactions.

    ThemainreactionschemesoftheTCRreformingareasfollows:

    ( )0HH2mnnCOOHHC 29822mn >

    +++

    o

    (1)

    ( )kJ/kmol206.2HH3COOHCH 298224 >++ o (2)

    )kJ/kmol41.2-HHCOOHCO 298222 >++ o (3)

    ( ) 2mn HsCHC2

    mn +

    (4)

    Reaction(1)isahighlyendothermicirreversiblereaction,whichincreasesthetotalfuel

    gasvolume. Allhigherhydrocarbons(n>1)areconvertedtoC1components.

    Reaction(2)isanendothermicinversemethanationreaction,whichisanequilibrium

    reactionthatdeterminesthefinalcompositionofthereformedfuel.

    Reaction(3)isanexothermicwatergasshift(WGS)reaction,whichisalsoan

    equilibriumreactionthatdeterminesthefinalcompositionofthereformedfuel.

    Reaction(4)isanirreversiblereactionthatoccursintheabsenceofsufficientsteamor

    CO2toprovidesufficientlocaloxygentoconvertthecarbontoCO.

    5.ThermochemicalRecuperationSystems(TCRS)forIncreasedEfficiencyandReducedEmissionsfrom

    StationaryReciprocatingICEngines.NaturalGasTechnologiesIIIConferenceProceedings.GTIT05153.

    Orlando,FL. February2005.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    26/101

    10

    ExhaustGas

    ExhaustGas

    ExhaustGas

    Steam/Water

    Water

    NaturalGas

    Steam/Natural Gas

    Reformed Fuel

    ReciprocatingInternal Combustion

    Engine (RICE)

    PumpFeed Water

    ThermochemicalRecuperative

    Reformer

    HeatRecovery

    SteamGenerator

    Engine CoolingHeat Recovery

    Cooler/Heater Steam

    Oxidant

    Figure 5. Thermochemical recuperation system schematicSource: Gas Technology Institute

    Overall,thereformingreactionsareendothermic.InaTCRsystem,theheattodrivethe

    reactionsisprovidedbyheattransferfromthehotengineexhaust.Powercycleefficiency

    increasesbytheamountofexhaustheatthatcanbesuccessfullyincorporatedinthe

    endothermicreactions.

    ThethreemajorcontrolparametersfortheTCRreformingreactionsaresteam/carbonratio

    (S/CR),reformertemperature,andreformerpressure. TheS/CRcontrolsH2yield;thus,thereis

    aneedtofindanoptimumS/CRforreciprocatinginternalcombustionengineapplications.The

    reformertemperaturecontrolsthereformingrateandfinalcomposition;thus,italsocontrolstheH2yield.Thereformerpressurealsocontrolsthereformingrateandcomposition;andthe

    reformingrateisalmostproportionaltothepartialpressureofCH4(i.e.reformerpressure).The

    reformertemperatureandpressurearecriticalparametersinsizingareformerasisthetypeof

    catalyst.IntypicalICenginesystems,thetemperatureavailableforthereformerisrelatively

    lowcomparedtoindustrialapplicationsandcaremustbetakentomaximizetheuseofthe

    rejectedthermalenergyandtominimizethereformersizewhileachievingmaximumattainable

    H2yield.

    ResearchhasshownthatH2enhancedcombustioncansignificantlyreduceNOxemissionsfrom

    sparkignitedenginesbyextendingtheleanlimit.6Mostofthepriorartforinsitu

    hydrogenproductionforreciprocatingenginesinvolvesmixingsomefractionoftheexhaustgaseswithfueltosupportautothermalreformingreactions.Excessoxygenintheexhaustgases

    ofleanburnenginesresultsinexothermicoxidationoffuelthusincreasingfuelconsumption.

    6.Heywood,J.B.,Ivanic,Z., et.al.,EffectsofHydrogenEnhancementonEfficiencyandEmissionsof

    LeanandEGRdilutedMixturesinaSparkIgnitedEngineSAEPaper2005010253,April2005.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    27/101

    11

    Thisfuelconsumptionpenaltyaffectsthepotentialoverallsystemefficiencyandeconomics.

    TCRusesonlyexhaustheatrecuperationtosupporttheendothermicreformingreactions,

    therebyofferingdirectimprovementinoverallsystemefficiencyplushydrogenenrichedfuel

    forcombustion.Acriticalfactorforcommercialsuccessistheintegrationofthisrecuperation

    andenergyconversionprocessinacosteffectiveandreliablepackagewiththeengine

    generatorset.

    1.2. Project Objectives

    Theprojectobjectiveswereto:

    Developadetailedengineeringdesignofarecuperativereformingreactorforlaboratory

    validationofnaturalgasconversionandhydrogenyieldscorrespondingtofuelflow

    andexhaustconditionsfora50kWegasengine.

    Operatea50kWelaboratoryscaleengineonreformedfuelproducedfroma

    thermochemicalrecuperationlaboratorytestrigtoconfirmsatisfactoryoperationwithin

    generallyaccepteddesignparametersforreciprocatinginternalcombustionengines.ThistestingwilldocumentfuelsavingsandNOx,CO,andVOCemissionsandemission

    reduction.

    DeveloptheengineeringdesignbasistoscaleupTCRtechnologyinasubsequent

    developmentanddemonstrationproject.

    1.2.1. Design and Laboratory Evaluation and Validation of 3 to 5 kWe ResearchScale Recuperative Reforming Reactor

    Apreliminarythermochemicalfuelreformer(TCFR)systemanalysisatanominal331kWe

    naturalgasfueled,sparkignitedinternalcombustionenginewasprepared.Byextrapolating

    theresultsfornaturalgas,ananalysisofthepotentialbenefitsofusingTCFRforagenericbiogasfuelcomposedof50%methaneand50%carbondioxidewasalsobecompleted.Usinga

    conceptualfullscaledesignofarecuperativereformerforthestudyengine,specificationswere

    preparedforfabricatingarecuperativereformingreactorscaledandsizedforgasflows

    equivalenttoa3to5kWeengine.ThisisthereactorthatwastestedintheGTIlaboratory.

    Adetailedengineeringdesignofarecuperativereformingreactorcorrespondingtofuelflow

    andexhaustconditionsfora3to5kWegasenginewasprepared.Thisreactorwasusedfor

    laboratoryvalidationofnaturalgasconversionandhydrogenyields.Testingwasconductedto

    evaluatetheperformanceoftherecuperativereformingreactoraskeyengineandprocess

    parametersarevaried.Forexample,itwasimportanttomeasuretheeffectofchangesin

    exhaustgastemperaturesasafunctionofengineloads.Thetestingalsoincludedvariationofprocessvariablessuchasthesteamtomethaneratioforreforming.

    1.2.2. Reformate-Fueled Internal Combustion Engine Performance

    Afuelblendthatsimulatesthecompositionofproductsfromtherecuperativereformerwas

    usedtofuela50kWeresearchengine.Hydrogenwassuppliedfrombottlesandasteam

    generatorwasusedtomatchthewatercontentinthecooledreformedfuelfromtheTCFR

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    28/101

    12

    process.Themaximumtemperatureofsimulatedreformedfuelneededtosatisfythe

    specificationsfortheengine.Testingwasconductedtomeasuretheeffectoftheblendedfuel

    compositiononengineperformanceandemissions.

    1.3. Technical Approach

    TheresearchinthisprojectisbuildinguponpriorlaboratoryscaleR&DperformedbyGTIandsupportedbytheUtilizationTechnologyDevelopment(UTD)andtheGasResearchInstitute.

    ResultsofthisworkaresummarizedinElectricPowerResearchInstituteinterimreport1012774

    ThermochemicalFuelReformerDevelopmentProjectHigherEfficiencyandLowerEmissions

    forReciprocatingEnginesUsedinDistributedGenerationApplications.

    CumminsandUTDprovidedmatchfundingfortheprojectreviewedinthisreport.Cummins

    wasparticularlyinterestedinasystemanalysisofTCRfortheirQSK19engineandpreparation

    ofaconceptualdesignofarecuperativereformerforthatengine.

    Thesequenceofactivitiestomeetobjectivenumberoneabove(developdetailedengineering

    designofrecuperativereformer),canreasonablybesummarizedasfollows:

    1. DesignandfabricatelaboratoryscaleexperimentaltestrigforTCRtests.

    2. Developtestplan,conducttesting,andanalyzedata.

    3. Usedataobtainedtodeveloporvalidateanalyticaltoolsforsystemanalysisand

    designofrecuperativereformers.

    AfterassemblingaworkingTCRtestrig,theprojectteamconfirmedwhetheritwouldbe

    possibletosupplysufficientreformedfueltotheGTIsinglecylinderengine(configuredatthe

    timeforHomogenousChargeCompressionIgnitioncombustion)toenablecomparisons

    betweenoperationandperformanceonnaturalgasversusreformedfuel.Therewasnot

    sufficientbudgetavailabletoreconfiguretheenginetooperatewithsparkignition.

    ThefinaltaskwastouseresultsandexperienceobtainedforsystemanalysisofTCRand

    prepareaconceptualdesignofrecuperativereformerfortheQSK19Gengine.

    1.4. Report Organization

    Followingthisintroduction,Section3summarizespreviousR&DworkatGTIwithTCRfor

    reciprocatinginternalcombustionengines. Section4isasummaryofTCFRtechnology

    developmentandscaleupapproach. Section5reviewsthelaboratoryscalesetupand

    experimentsrunontheTCRtestrigoperatedtosimulateexhaustgasconditionsfora

    reciprocatingenginefueledwithnaturalgas.Section6reportsontheexperimentalsetupand

    resultsfromoperatinganominal50kWeresearchengineonreformedfuelproducedintheTCR

    testrig.Thelastsectionofthereportincludesconclusions,recommendationsandprojected

    benefitsfromcontinueddevelopment,demonstrationandcommercializationofTCRforthe

    QSK19GenginefordistributedgenerationapplicationsinCalifornia. AppendixAincludesthe

    conceptualdesignforaTCFRsizedtothe1,400kWegenset.AppendixBincludesaBillof

    MaterialsandcostestimatesfortheTCFRsizedtothe1,400kWegenset. AppendixCisthe

    preliminaryanalysisofTCRforlandfillgasandbiogasapplications. AppendixDincludes

    photographsofthereformedfuelconditioninganddeliverysystemforthe50kWeenginetests.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    29/101

    13

    2.0 Summary of Previous GTI Thermochemical FuelReforming Investigations

    ThecurrentprojectisacontinuationofpreviousworkundertakenatGTIandreported

    elsewhere.Thepreviousworkconsistedofthermochemicalfuelreformerprocessdesign,a

    preliminarydesignofacompletesystemfora1,400kWenginegenerator,preliminaryperformanceandcostestimatesforacompletesystem,andlabscaleinvestigationsofcatalyst

    performanceinthisapplication.WorkbyothersandthepreviousGTIworkisabstractedbelow.

    2.1. Hydrogen-Enriched Fuel from Thermochemical Fuel Reforming

    2.1.1. Hydrogen (H2) Enriched Combustion

    H2enrichedcombustionisaprovenwaytoextendtheleanlimitofnaturalgasengines.H2

    offersmanyadvantagesasaprimaryfuelorinfuelgasmixture.Table1listsadvantagesand

    disadvantagesofusingH2enrichednaturalgas.Higherpeakflametemperaturescanbe

    mitigatedusingleanercombustionand/orexhaustgasrecovery.H2enrichedfuelcanbereadily

    usedinsparkignitionengineswithsomemodificationsinthesystemssuchasfuelhandlingandairhandlingsystems.

    Table 1. Advantages and disadvantages of H2-enriched natural gas combustion

    Advantages Disadvantages

    Increases flame speed Increases peak flame temperature

    Improves combustion quality Increases fuel system cost

    Increases engine performance

    Reduces unburned hydrocarbon emissions

    Increases methane number (MN)Widens flammability limits

    Lowers minimum ignition energy

    Improves EGR tolerance

    Shortens quenching distance

    Source: Gas Technology Insitute

    Tunestal7,etal.usedasinglecylinder1.6liternaturalgasenginetoextendtheleanburnlimit

    ofanaturalgasenginebyadditionofH2totheprimaryfuel.H2concentrationsusedinthe

    studywere0,5,10,and15%byvolume.Theyoperatedtheengineatthreeoperatingpoints:

    idle,partload(5barindicatedmeaneffectivepressure),andsimulatedturbocharging(13bar

    indicatedmean

    effective

    pressure).

    The

    air

    fuel

    ratio

    (A/F)

    was

    varied

    between

    stoichiometric

    andtheleanlimit.TheresultsshowedthatH2enrichedcombustionincreasedtheburnrateand

    extendedtheleanlimit.H2additionloweredHCemissionsandincreasedNOxemissionsfor

    7.TunestlP.,ChristensenM.,EinewallP.,AndersonT.,andJohanssonB.,HydrogenAdditionfor

    ImprovedLeanBurnCapabilityofSlowandFastBurningNaturalGasCombustionChambers,SAE

    2002012686,2002.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    30/101

    14

    constantairexcessratio()andignitiontiming.Increasedburnrateallowedretardedignition

    timing,whichresultedinlowerheatlossesandhigherefficiency.Retardedignitiontimingalso

    ledtolowermaximumtemperatureandthuslowerNOxemissions.TheeffectofH2additionat

    wideopenthrottlewasmostprominentclosetotheleanlimit.

    Jensen8etal.

    investigated

    the

    effect

    ofadditional

    producer

    gas

    on

    the

    combustion

    process

    and

    theengineoutemissionsbyfuelinganaturallyaspiratedfourcylindergasenginewithnatural

    gasandmixturesofnaturalgasandH2containingproducergas.Theproducergaswasa

    syntheticgas(orsyngas)withthesamecompositionasafuelproducedbythermalgasification

    ofbiomassinatwostagegasifier.Theproducergasconsistedof33.9%H2,19.1%CO,1.3%CH4,

    14.9%CO2,and30.8%N2 involume.Themixtureswere75%naturalgasand25%producergas

    (byvolume),and50%naturalgasand50%producergas(byvolume),respectively.Theresults

    showedthattheNOxemissionswerenotaffectedbyadditionofproducergas.Thismightbe

    dueto45.7%byvolumeofinertgasesintheproducergas.Unburnedhydrocarbons(UHC)

    emissionsdecreasedupto50%onlyatexcessairratioabove=1.4.COemissionsdecreasedand

    formaldehyde(CH2O)emissionwasdecreasedsignificantlywiththeadditionofproducergas.

    AlthoughH2hasmanyadvantagesininternalcombustionengines,thesourceofH2hastobe

    considered.SupplyingpureH2fromprocessplantstoengineinstallationshasassociated

    transportation,storage,anddeliverysystemcosts.Extendedresearchanddevelopmenthas

    beenconductedtoevaluatethemeansforonboardfuelreformingsystemsformobilefuel

    cellapplications.Thesefuelreformingtechnologiesincludeautothermalreforming,partial

    oxidationreforming,steamreforming,andexhaustgasrecoveryreformingbypartiallyorfully

    reformingaprimaryfuel,usuallynaturalgas.

    AndreattaandDibbleuseda1986Pontiacfourcylinderinlineturbochargedengine.Thiswas

    convertedfromagasolinetoagaseousfuelenginetoinvestigatetheeffectofairreformed(or

    autothermalreformed)fuelonsparkignitionengines.Theyusedcylinderbottlegasestoformulatethecompositionofairreformedfuel.TheH2inthereformedfuelallowedtheengine

    torunleanerascomparedtonaturalgas,particularlyathigherfractionsofreformedfuel.With

    fullyreformedfuel,theenginecouldrunatequivalenceratioof0.25(=4).Leanercombustion

    reducedNOxemissionssignificantly.COandHCemissionswerenotsignificantlyaffectedby

    thereformedfuelovertheequivalenceratiosstudied.However,therewasanexceptionnearthe

    leanlimit,wherethepresenceofH2stabilizedcombustionandreducedCOandHCemissions

    foragivenequivalenceratio.Enginepeakoutputandthermalefficiencywasdependenton

    equivalenceratio,notthereformedfuelconcentration,exceptneartheleanlimit.

    Sgaard9etal.usedasmallscaleadiabaticcatalyticreactorasasteamreformertoproduce

    reformednaturalgas.Inthisapplication,therequiredthermalenergywasprovidedfrom

    8.JensenT.K.,SchrammJ.,NarusawaK.,andHoriS.,HydrocarbonEmissionfromCombustionof

    MixturesofNaturalGasandHydrogenContainingProducerGasinaSIEngine,SAE2001013532,

    2001.

    9.SgaardC.,SchrammJ.,andJensenT.K.,ReductionofUHCemissionsfromNaturalGasFiredSI

    engineProductionandApplicationofSteamReformedNaturalGas,SAE2000012823,2000.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    31/101

    15

    externalsources.Theirmaingoalwastoreduceunburnedhydrocarbonemissionsandincrease

    engineefficiencyusingreformednaturalgasinastationaryinternalcombustionengine.They

    alsoperformedtheoreticalstudies,whichshowedapotentialforvaryingtheH2content

    between8and30vol%.Thestudiesalsoshowedconsiderableincreaseinmethanenumberby

    reformingnaturalgas.Ahighermethanenumberwillallowtheuseofhighercompressionratio

    engines,whichwillleadtohigherengineBrakeMeanEffectivePressure(BMEP)andthermalefficiency.Thereformednaturalgascompositionwasalmostinsensitivetothenaturalgas

    composition,i.e.thecontentofhigherhydrocarbons.Theuseofreformednaturalgasreduced

    unburnedhydrocarbonsandCOemissionsandincreasedenginepowerandthermalefficiency.

    However,NOemissionwasincreasedduetoimprovedcombustionquality(thus,higher

    cylindertemperature).Theflamedevelopmentduration(startofignitionto10%fuelburn)and

    rapidburnduration(10~90%fuelburn)weresignificantlyshortenedwiththeuseofthe

    reformednaturalgasfuel.

    2.1.2. TCFR System for Supplying Hydrogen to Fuel Blend10

    QuantitativeevaluationsofthepotentialbenefitsofusingaTCFRsystemforsupplying

    hydrogenforimprovingtheperformanceandreducingtheemissionsofreciprocatingengine

    applicationsbeganwithasimpleenginecycleanalysis.Thethermodynamicequilibrium

    analysisusedtheLagrangeUndeterminedMultiplierMethodforthesimplifiedpreliminary

    designshowninFigure6.Preliminaryresultsindicatedthat,underidealizedconditions,overall

    efficiency(netengineminuscombustionandexhaustlosses)ispredictedtoincreaseby

    approximately18%19%.Thisiswhentheengineoperateswiththereformedfuelatthe

    stoichiometricoperatingconditionsforthecasesconsideredinTable2.

    TCRAir

    Reformed Fuel

    Gas Fuel

    CoolingWater

    Hot Water/Steam

    W

    ColdExhaust

    ReformedFuel/Air

    Steam

    RICE

    HotExhaust

    Heat Exchanger

    Gas Fuel/Steam

    Generator

    EGR

    Heat Exchanger

    Figure 6. Schematic of a simplified TCFR

    system

    10.TechnicalandEconomicFeasibilityofThermochemicallyRecuperatedReciprocatingInternalCombustion

    Engine.FinalReport.GTIProject20013.NYSERDAReport7885.August2006.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    32/101

    16

    Source: Gas Technology Institute

    Thissimplified,idealizedmodelcouldnotresolvepredictionsofemissionsfromtheengine.In

    ordertodeveloprealisticestimatesfortechnicalandeconomicfeasibilityemployingaTCFR

    systemforefficiencygainandemissionsbenefits,acombinationofcommercialcodesforengine

    andprocessmodelingwasemployed.RicardosWAVEv5.2wasusedtomodelthenaturalgas

    engine,andtheHyprotechsHYSYS

    modelwasusedfortheTCRreformerandtheheatrecoverysteamgeneratorsystem.ProjectparticipantCumminsrecommendeditsQSK60G

    engineforthemodelingandprovidedthenecessaryinformationtoconstructaWAVEmodel.

    Cumminsalsoprovidedactualtestdatasothemodelcouldbecalibrated.

    Table 2. Thermodynamic equilibrium calculation for simplified TCRF system

    Steam

    /Carbon Ratio

    Peak

    Cylinder

    Pressure

    [atmospheric]

    Adiabatic Flame

    Temperature

    [C]

    Efficiency

    Net

    Engine(%)

    Loss in

    Combustion(%)

    Loss in

    Exhaust(%)

    0 158.5 2877.4 ~ 53.15 ~ 16.93 ~ 29.93

    1.68 116.8 2972.6 ~ 62.92 ~ 12.20 ~ 24.882.0 114.5 2925.6 ~ 63.21 ~ 12.04 ~ 24.75

    Source: Gas Technology Institute

    2.1.3. Engine Analysis

    KeyspecificationsoftheQSK60GenginearelistedinTable3below.Thematchinggeneration

    setmodel1400GQKAhasanelectricalratingof1,400kWeat60Hz(1800rpm).Theengineis

    watercooled,turbochargedwithanaftercooler.TheQSK60Gisleanburn,designedforspark

    ignitednaturalgascombustion.TheQSKGseriesengineisalsotheCumminsplatformfortheir

    AdvancedReciprocatingEngineSystem(ARES)collaborationwiththeU.S.Departmentof

    Energy(DOE).TheARESprogramgoalsaresummarizedinTable4.

    AschematicoftheCumminsQSK60GengineequippedwiththeTCRreformerisshownin

    Figure7.ThisengineisnotacommercialversionofQSK60Gengines.Itwasbuiltandtestedby

    CumminsforR&Dpurposes.

    Table 3. Specification of Cummins QSK60G lean-burn gas engine

    No. of Cylinders 16

    Strokes per Cycle 4

    Engine Type Spark Ignition, Lean Burn

    No. of Intake Valves per Cylinder 2

    No. of Exhaust Valves per Cylinder 2

    Compression Ratio 11.4:1Displacement 60 liters

    Bore/Stroke 158.75 mm/190 mm

    Connecting Rod Length 320.96 mm

    Piston Pin Offset None

    TDC Combustion Chamber Volume 0.0003616 m3

    Clearance Height 0.9 mm

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    33/101

    17

    Spark Timing 18~20 bTDC

    Turbocharger

    No. of Turbocharger

    Waste gate

    Holset

    2

    None

    Source: Gas Technology Institute

    Table 4. US DOE ARES goals

    A Commercial Engine by 2010 with:

    High Efficiency Fuel-to-electricity conversion efficiency of at least 50%

    Environmental Superiority NOx < 0.1 g/hp-hr (natural gas)

    Reduced Cost of Power Energy costs, including O&M, at least 10% less than

    current state-of-the-art engines

    Fuel Flexibility Adaptable to future firing with dual fuel capabilities, include further

    adaptation to hydrogen

    Reliability and Maintainability Equivalent to current state-of-the-art engines

    Source: U.S. Department of Energy

    AF

    C1 AC

    QSK60G GAS ENGINE

    T1

    AB

    CV

    AF EST

    TP

    NG

    ES

    MW

    TCR R

    HX 1

    Steam

    CD

    CRF

    HW/SWW

    FWRW

    WTS

    ControlValve

    CC

    LTHT

    WR

    C2

    CI

    CO

    HX 2

    1

    23 4 5 7

    6

    8

    13

    14

    1516

    9

    19

    10 11

    12

    17

    18AB - AIR BOXAC - AFTERCOOLERAF - AIR FILTERCC - CONDENSATES C OLLECTORCD - CONDENSATESCI - COOLANT INC1 - COMPRESSOR 1CO - COOLANT OUTCRF - COOLED REFORMED FUELC2 - COMPRESSOR 2CV - CONTROL VALVEES - EXCESS STEAMEST - EXHAUST STACKFW - FEED WATERHRSG - HEAT RECOVERY STEAM GENERATORHRF - HOT REFORMED FUELHT - HIGH TEMPERATUREHX1 - HEAT EXCHANGER 1HX2 - HEAT EXCHANGER 2HW - HOT WATERLT - LOW TEMPERATURE

    MW - MAKEUP WATERNG - NATURAL GAS

    P - PUMPRW - RECYCLED WATERS - STEAMTCR R - TCR REFORMERT1 - TURBINE 1T2 - TURBINE 2TP - THROTTLE PLATEWR - WATER RESERVEWTS - WATER TREATMENT SYSTEMWW - WARM WATER

    T2

    HRSG

    HRF

    LEGEND

    P

    P

    P

    Figure 7. Schematic of the Cummins QSK60G gas engine equipped with the TCRsystem

    Source: Gas Technology Institute

    Theenginesystemhastwobanks,theleftbank(LB)andrightbank(RB),andhasa

    turbochargerinstalledineachbank.Intheanalyses,theTCRreformerislocatedjust

    downstreamoftheturbochargers.Theseturbochargershavenowastegate.Aheatrecovery

    steamgeneratorislocateddownstreamoftheTCRreformer.Thereformedfuelishotandhasa

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    34/101

    18

    largequantityofwatervapor.Twoheatexchangersinseriesareusedtoreducethereformed

    fueltemperature;watervaporiscondensedasthereformedfueliscooled.Thereformedfuel

    temperatureiscontrolledtomaintainthemaximumenginemanifoldtemperaturebelow55C.

    Justenoughsteamisgeneratedtosupplythereformer.

    2.1.4. Performance Goals/Criteria for Design of TCRS Targetheatratereduction(fromthermochemicalreformersystem)of>10%.

    Assumestartupon100%naturalgasandtransitiontoreformedfuel.

    Intakemanifoldtemperaturenottoexceed55C.

    ZerosupplementalfuelconsumedtosupportTCRreformingreactions.

    Hydrogencontentofreformednaturalgasmixturedeliveredaheadofaircompressors

    between2030%byvolume.

    TCRtobeinstalleddownstreamofturbochargertoavoidpotentialneedtoredesign

    turbochargers.

    SteamtocarbonratioofRecuperativeReformernottoexceed2to1.

    Exhaustgastemperaturedownstreamofturbochargersapproximately553Catfullload

    Designfor8000hoursperyearcapacityfactor.

    Theengineshallbecapableofachievingratedpoweratthefollowingconditions:

    o Ambienttemperature:upto32C

    o Altitude:upto1000meters

    o Fuel:Pipelinequalitynaturalgas

    o FuelminimumMN:75

    o Inletrestriction:upto50mbar

    o Exhaustrestriction:upto100mbar

    o Relativehumidity:upto100%

    o Jacketwaterinlettemperature:95C

    Naturalgassupplysystempressurerangebetween0.25to3.9bar(g).

    2.1.5. Engine Simulation of TCR Reformed Fuel

    AsimplifiedprocessflowdiagramoftheTCRSanalyzedwiththeHYSYSmodelisprovidedin

    Figure8.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    35/101

    19

    Air

    Engine Exhaust

    Natural Gas

    Reformed Fuel

    WaterSupply

    ENGINECatalyst

    PreHeat

    Cool Exhaust

    E-4

    SteamP-18

    Reformer Out

    E-5

    Reformer Feed

    Condenser

    CondensatePump

    P-25

    Hot Water

    Exhaust

    CoolingWater

    Reformer Out C

    Figure 8. Process flow diagram of the Cummins QSK60G gas engineequipped with the TCR system

    Source: Gas Technology Institute

    Fortheconditionsreportedabove,theHYSYSmodelpredictedareformedfuelcomposition

    fromtheTCFRreactorasreportedinTable5.Thiscompositionwasusedinthecalibrated

    WAVEmodeltopredicttheCumminsQSK60Gengineperformanceandemissions.TheWAVE

    modelwasadjustedtoaccountfortheshortenedcombustiondurationwiththeuseoftheH2

    enrichedfuel.

    Table 5. Compositions of natural gas and HYSYS-calculated reformed fuel (mol%)

    Component Natural Gas Reformed Fuel

    Methane 94.37 59.01

    Ethane 2.82 0

    Propane 0.42 0

    i-Butane 0.05 0

    n-Butane 0.06 0

    i-Pentane 0.02 0

    n-Pentane 0.02 0

    n-Hexane 0.03 0Hydrogen 0 28.11

    Water Vapor 0 3.67

    Carbon Monoxide 0 0.13

    Carbon Dioxide 0.94 8.25

    Nitrogen 1.27 0.83

    Total 100 100

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    36/101

    20

    Source: Gas Technology InstituteAsimulationwasperformedat50%loadinordertopermitevaluationofabroadrangeofthe

    excessairratio.Operationonnaturalgaswascomparedtoreformedfuelonlyatoneoperating

    point,i.e.,anexperimentalpointavailablefromactualtestsbyCumminsonnaturalgas.For

    thissimulation,theengineBMEPwasmaintainedat8.07barforbothnaturalgasandreformed

    fuel,whichisthesameastheexperimentalBMEPatthisload.

    ThevolumetriccalorificheatingvalueoftheTCRreformedfuelisapproximately22%lessthan

    thatofthenaturalgas.Thisis,however,morethancompensatedforbytheincreasedvolume

    producedbythereformingreactionssothatcalorificvalueenteringtheenginepermoleof

    naturalgasconsumedactuallyincreases.Therefore,inadditiontoBrakeThermalEfficiency,

    whichistheefficiencybasedonthefuelconsumedbytheengine,theconceptofsystemthermal

    efficiencyneedstobeintroduced.Thesystemefficiencyisbasedonthefuelfedintothe

    engine/TCRsystem(i.e.naturalgas).

    AsshowninFigure9,thesystemefficiencyoftheengine/TCRsystemwasincreasedbyabout

    8.5%relativetothenaturalgasengineat50%load.ThisefficiencyincreaseisdirectlyattributabletothereductionofthenaturalgasfuelconsumptionusingtheTCRreformer.

    Naturalgasfuelconsumptionoftheengine/TCRsystemwasreducedbyabout8.5%relativeto

    thenaturalgasenginewithouttheTCRsystem.Themaximumengineefficiencywasobserved

    atexcessairratio=1.8.Aswasincreasedfurther,thesystemefficiencystartedtodecrease.

    Figure 9. Normalized system efficiency versus excess air ratio

    ( ) for natural gas and TCR reformed fuel

    Source: Gas Technology Institute

    Figure10ashowsthenormalizedsystemefficiencyversusthenormalizedNOxemissions.NOx

    emissionslinearlydecreasedasthesystemefficiencyincreaseduptocertain(i.e.1.8inthis

    1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.30.900

    0.925

    0.950

    0.975

    1.000

    1.025

    1.050

    1.075

    1.100

    1.125

    1.150

    NormalizedSystemE

    fficiency

    Excess Air Ratio,

    50% load @1800 rpmReformed FuelNatural Gas

    Excess Air Ratio,

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    37/101

    21

    case).Whenwasabove1.8,thesystemefficiencyincreasedrapidlyastheNOxemissions

    increased.Thisfigureshowsthattheengine/TCRsystemcansimultaneouslyachievesignificant

    improvementsinbothefficiencyandNOxemissionsbyoperatingtheengineinleaner

    combustion.

    Figure

    10bshows

    normalized

    NOx

    emissions

    with

    respect

    to

    .NOx

    emissions

    exponentially

    decreasedaswasincreasedfrom1.4to2.2.Atthesame,thereformedfuelshowedhigher

    NOxemissionsthanthenaturalgas.ThisisbecausetheH2enrichedcombustionincreased

    cylindertemperaturecomparedtonaturalgas.However,theH2inthereformedfuelallowsthe

    extensionoftheleanlimittoabove=2.Thisresultsinmorethan62%reductioninpredicted

    NOxemissions.Asmentionedearlier,thereareotherstrategiestofurtherreduceNOx

    emissionsthathavenotbeenexaminedyetinthisstudy.

    Figure11showsnormalizedUHCemissionsforthetwodifferentfuelsasafunctionofexcess

    airratio.BecausetheWAVEoverpredictedUHCemissionsat50%load,theexperimentdata

    wasalsoincludedforcomparisoninthefigure.Predictedunburnedhydrocarbonemissionsincreasedabout41%.

    Figure 10a. Comparison of normalizedsystem efficiency versus normalized NOxemissions for natural gas and TCRreformed fuel

    Source: Gas Technology Institute

    Figure 10b. Normalized NOxemissions versus excess air

    ratio ( ) for natural gas andTCR reformed fuel

    Source: Gas Technology Institute

    1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.30

    1

    2

    3

    4

    5

    6

    7

    NormalizedNOxEmissions

    Excess Air Ratio,

    50% load @1800 rpmReformed FuelNatural Gas

    0 1 2 3 4 5 6 70.98

    1.00

    1.02

    1.04

    1.06

    1.08

    1.10

    1.12

    NormalizedSystemE

    fficiency

    Normalized NOx Emissions

    50% Load @ 1800 rpmReformed FuelNatural Gas

    Leaner Combustion

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    38/101

    22

    Figure 11. Normalized UHC emissions versus excess air ratio

    ( ) for natural gas and TCR reformed fuel

    Source: Gas Technology Institute

    Figure 12. Turbocharger exhaust outlet temperature as a

    function of excess air ratio ()

    Source: Gas Technology Institute

    Turbochargerturbineouttemperature(i.e.theTCRreformerinlettemperature)isshownwith

    respecttotheexcessairratio()inFigure12.Thepredictedturbineouttemperatureofthe

    naturalgaswasslightlylowerthanthatofthepredictedreformedfuel.Thereformedfuel

    maintaineda489C(912F)turbineouttemperatureevenat=2.2.Thishightemperaturegives

    1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.30.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    2.002.25

    2.50

    2.75

    3.00

    NormalizedUHC

    Emission

    s

    Excess Air Ratio,

    50% load @1800 rpmReformed FuelNatural Gas (WAVE)Natural Gas (Experiment)

    1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3450

    475

    500

    525

    550

    575

    600

    625

    650

    675

    700

    725

    750

    TurbineOutTemperature

    [degreeC]

    Excess Air Ratio,

    50% load @1800 rpmReformed FuelNatural Gas (WAVE)

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    39/101

    23

    positiveresultstotheTCRreformer,whosereformingrateisalmostproportionaltoreformer

    inlettemperature,atleastinthetemperaturerangesofinternalcombustionengines.

    2.1.6. Biogas and Landfill Gas

    Sincefuelreformingincreasesthemethanenumber(MN)ofafuel,itisbelievedthatthe

    applicationofTCFRtoenginesusinglandfillgasorbiogascouldprovidecombustionandperformanceimprovements.ToquantifythesebenefitsfortheQSK60Gengine,calibrated

    WAVEandHYSYSsimulationswereruntocalculatechangesinsystemefficiencyandengine

    powerwithandwithoutthermochemicalrecuperationsystems.

    Thesecomparisonsbeganbydefiningrepresentativecompositionsandheatingvaluesfor

    landfillgasandbiogas.TheWAVEmodelwasrunfortheQSK60Gengine(calibratedfor

    naturalgas)witheachofthesealternativefuelstocalculatebaselineestimatesofengine

    efficiencyandperformance,aswellasengineexhaustcharacteristics.Theengineexhaustresults

    wereusedintheHYSYSmodeltopredicttheproductgasesfromtherecuperativereformer.

    TheWAVEmodelwasrunwiththehydrogenenrichednaturalgastopredictTCFRefficiency

    andemissions.

    ThereformedfuelpropertiesforbiogasandlandfillgaspredictedbyHYSYSmodelingare

    listedinTables6and7,respectively.Inbothcases,thereformedfuelfromTCRScontained

    about18%hydrogenbyvolume.

    SomekeyfindingsfromtheWAVEmodelinganalysisforlandfillgaswithandwithoutTCRS

    aresummarizedinTable8.ThebiogasandlandfillgasTCFRwasmodeledat50%loadwhile

    holdingtorqueandexcessairratioconstantforreformedandunreformedcases.At50%load

    andconstantexcessairratioof1.59,abouta0.77%decreaseinsystemheatratewaspredicted.

    Undersimilarconditionsadecreaseinsystemheatrateofabout8.5%wascalculatedfornatural

    gasfueling.However,theWAVEmodelingpredictedthattheNOxemissionsfuelingwithreformedlandfillgaswouldbeabout40%lowerthanfuelingwithrawlandfillgas.

    Table 6. Reformed biogas fuel properties Table 7. Reformedlandfill gas properties

    Source: Gas Technology Institute Source: Gas Technology Institute

    Mole Fraction Type Value

    Mole Fraction (CO) 0.0026

    Mole Fraction (CO2) 0.3000

    Mole Fraction (H2O) 0.0416

    Mole Fraction (Hydrogen) 0.1865

    Mole Fraction (Methane) 0.4632Mole Fraction (Nitrogen) 0.0046

    Mole Fraction (Oxygen) 0.0015

    Lower Calorific Value (kcal/kgmole) 99,800

    Mole Fraction Type Value

    Mole Fraction (CO) 0.0011

    Mole Fraction (CO2) 0.0818

    Mole Fraction (H2O) 0.0416

    Mole Fraction (Hydrogen) 0.1786

    Mole Fraction (Methane) 0.4326Mole Fraction (Nitrogen) 0.2402

    Mole Fraction (Oxygen) 0.0241

    Lower Calorific Value (kcal/kgmole) 93,400

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    40/101

    24

    ComparableWAVEmodelingresultsforreformedbiogasaresummarizedinTable9.Inthis

    case,useofTCFRresultsinabouta1.33%reductioninheatrateat50%loadandconstantexcess

    airratio().ThemodeldoesnotpredictmuchchangeintheNOxemissionsatconstantexcess

    airratio().

    Table 8. Engine performance and emissions comparison-landfill gas

    Parameter Units LandfillGas

    Reformedlandfill Gas

    Remark

    1.59 1.59 ConstantBrake Thermal Efficiency % 32.9 32.8System Thermal Efficiency % 32.9 33.2 0.77%Brake Torque N-m 3862 3862 ConstantBrake Power kW 728 728Brake Specific FuelConsumption

    kg/kWh 0.4618 0.5318

    System Specific FuelConsumption

    kg/kWh 0.4618 0.4582

    Brake NOx g/kWh 3.077 1.944Exhaust NOx ppmv 311 189Exhaust CO ppmv 233 152Brake Specific UHC g/kWh 9.0 11.9Exhaust UHC ppmv 1290 1429

    Source: Gas Technology Institute

    Table 9. Engine performance and emissions comparison-biogas

    Parameter Units Biogas ReformedBiogas

    Remark

    1.59 1.59 Constant

    Brake Thermal Efficiency % 32.7 32.5System Thermal Efficiency % 32.7 33.2 0.77%Brake Torque N-m 3865 3862 ConstantBrake Power kW 729 728Brake Specific FuelConsumption

    kg/kWh 0.4618 0.5830

    System Specific FuelConsumption

    kg/kWh 0.5223 0.5142

    Brake NOx g/kWh 1.370 1.357Exhaust NOx ppmv 131 129Exhaust CO ppmv 144 142Brake Specific UHC g/kWh 9.7 11.8

    Exhaust UHC ppmv 1672 1792Source: Gas Technology Institute

    LaboratoryStudiesofRecuperativeReformingReactors11

    11.RecuperativeReformerforHighEfficiencyandUltraLowEmissionsDGwithReciprocatingEngines,Final

    Report:August2004March2006.April2006.GTIProject20094

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    41/101

    25

    2.1.7. Summary of 1kWe Laboratory-Scale TCFR Tests

    Concurrentwiththeperformancemodelingdescribedabove,laboratoryinvestigationswere

    beguntosupportthedesignoftherecuperativereformingreactor.Theobjectivewastodesign,

    build,andtestalabscalethermochemicalrecuperativereformer(RR)forreciprocatinggas

    engines.Therecuperativereformerwastestedonabenchundersimulatedgasengineoperating

    conditionstomeasureandcompareheattransferandreformingefficienciesrelativetopredictedvalues.Targetswerederivedfromresultsofthetechnicalandeconomicfeasibility

    studyofTCRforthe1,400kWereciprocatingengine.

    ThepreliminaryconceptualRRdesignwasbasedonatubeandshellgeometryratherthan

    plateandframe.Twoconceptualdesignsforrecuperativereformersforreciprocatingenginesin

    the1,000kWeto1,500kWesizerangewereprepared.

    Abenchscalerecuperativereformingreactor,scaledtoequivalentgasflowsfroma1kWe

    engine,wasdesigned,fabricated,andtested.Usingsimulatedengineexhaustconditionsthat

    werescaledfromthefullscalemodelingstudiesfortheCumminsQSK60Gengine,the

    preliminarytestsconfirmedthetechnicalviabilityoftheRRconcept.Specifically,thetestingconfirmsthepotentialtoachieveatargethydrogenyieldofabout25%byvolumefroma

    recuperativereformerrecoveringwasteheatfromengineexhaustandusingsteammethane

    reformingatasteamtocarbonratioof2:1.

    Laboratorytestresultswerethenusedtovalidateanengineeringdesigntoolforfuturescaleup

    andlaboratorytestingofanimprovedRRforanaturalgasengines.Theimprovementswill

    largelybedirectedtowardreducinglossesandimprovingheatrecovery.Thisistoleadtomore

    efficientandcosteffectivedesignoftherecuperativereformer.

    TheexperimentaldesigndepictedinFigure13wasusedtoconfirmthefundamentalfeasibility

    oftherecuperativereformersubsystem.ThepreviousHYSYSprocesssimulationsofTCRappliedtotheCumminsQSK60Genginewerebasedonthewasteheatfromanengineexhaust,

    downstreamoftheturbocharger.Thisresultsinalowtemperaturewastestream,around

    550C.

    Proofofreformingtestswerecompletedutilizingacommercialprereformingcatalyst.As

    showninFigure14,theofftheshelfprereformingcatalystdataverifiesthatconversions

    consistentwiththeprocesssimulationswereobtainableacrossawiderangeofspacevelocities.

    Testresultsconfirmthatexhaustgasheatcanbeusedfromanengine,downstreamofa

    turbocharger,atabout520C.Thewasteheatcanbeusedtoprereformnaturalgasandproduce

    arawreformatewith10to15%H2.Whenthewateriscondensedoutat30C,afuelinputtothe

    internalcombustionengineofabout25%H2results.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    42/101

    26

    Figure 13. Laboratory set-up low temperature methane reforming(recuperative reforming for reciprocating engine)

    Source: Gas Technology Institute

    0

    5

    10

    15

    20

    25

    30

    35

    40

    320 340 360 380 400 420 440 460 480 500 520 540 560

    Average Bed Temperature, oC

    CH4Conversion,

    %

    Test Conditions

    Catalyst: C11-PR-3 (4.4 mm x 4.7 mm)Bed Diameter:0.93 in

    Bed Height:6 in

    Bed Volume:66.8 cm3

    S/C:2.0

    SV:4,314 hr-1

    Figure 14. CH4 conversions versus temperature for pre-reformingcatalyst

    Source: Gas Technology Institute

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    43/101

    27

    Furthertestingwasconductedusingthelaboratoryscaleunitshownbyschematicand

    photographinFigures15and16,respectively.

    Figure 15. Schematic of the GTI RR experimental test unit

    Source: Gas Technology Institute

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    44/101

    28

    Figure 16. GTI laboratory-scale recuperative reformer test cell

    Source: Gas Technology Institute

    ThetestunitrepresentstherecuperativereformerinaTCRSystem.Thetestunitshownin

    Figure15schematiccontainstwosectionsacombustionchamberandareformingreactor.The

    combustionchamberconsistsofaninsulated6inch316SStubewithinletconnectionsfor

    naturalgas,deionizedwater,primaryair,andsecondaryair.Anaturalgasburnerfiresdownintoainchdiameter316SScoiledtubeheatexchangerwherenaturalgasandwaterare

    heatedtosupplythereformerfeed.Thereformerfeedisamixtureofnaturalgasandsteam

    correspondingtoasteamtocarbon(S/C)ratioof2.Thefeedispreheatedto245Cbeforeits

    partialconversiontohydrogen,carbonmonoxide,carbondioxide,andwatervaporinthe

    catalystbed.Thehotengineexhaustat550Craisesthereformercatalystbedtemperatureto

    about380Cbyheattransfer.

    Thetestunitwassizedtosimulatetheequivalentflowofa1kWeengine.Theprocess

    conditionsareshowninTable10.TestconditionsarecomparabletothosesetintheHYSYS

    processmodelingsimulationoftheRRforaCumminsQSK60Genginesystem.Thetopand

    bottomofthereformingreactorwasfilledwithknitted316SSwiremeshtoenhancetheheatup

    ofthecatalystbedbythehotsimulatedengineexhaustgasesviaheattransfer.Thereforming

    reactorispackedwith18inchofC11PRprereformingcatalystsuppliedbySdChemie,Inc.

    Theeffectivenessofthisprereformingcatalystwasdemonstratedpreviouslyinlabscale

    reformingexperiments.Athermowellwiththreethermocoupleswasinstalledintothe

    reformingreactortomeasurethegastemperaturesjustabovetheinlet,middle,andexitofthe

    catalystbed.Inaddition,thermocoupleswerealsoinsertedtomeasuretheinletandoutlet

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    45/101

    29

    temperaturesofthereformerflueandreformergas.Pressuredifferencesandpressureswere

    alsomeasuredbypressuregauges.

    Thetestresults,includingtemperaturesandpressuresatvariouslocationsintheunitduring

    thetest,areshowninTable11.Aproductgasanalysiswascarriedoutusingagas

    chromatographto

    determine

    natural

    gas

    conversion

    in

    the

    recuperative

    reformer.

    The

    results

    in

    Table11indicatethatthenaturalgasconversionlevelof7%inthereformeriscomparableto

    thelevelpredictedbyHYSYSmodelsimulation.However,thedrypercentageofhydrogenin

    theproductsofreformingwasonly69%ofwhatwasexpectedfromtheHYSYSsimulation(18

    versus26%).Thiswasduetoalowerreformerbedtemperatureof324C(averageofthethree

    thermocouplereadingsinthecatalystbed)comparedto382Cemployedforthesimulation

    study.ThissuggestedthatfutureRRdesignconfigurationsneedtoaddresstheoptimizationof

    heattransferintheRRsystemtoattainahigheranduniformtemperaturedistributioninthe

    reformercatalystbedforhighernaturalgastohydrogenconversionlevels.Overall,thetest

    successfullydemonstratedtheviabilityoftheRRconcept.

    Table 10. Experimental test conditions

    Length 49.53 cm Na tura l Ga s to Reforme r 6.0 SLPM

    Diamete r 3.048 cm W ate r to Reforme r 9.15 g/m

    V olume 361 cm3

    Catalyst:

    Type C11-P R Na tura l Ga s to Burne r 6.0 SLPM

    S ize 4.7x4.7 mm Prima ry Air to Burner 16.9 SLPM

    W eight 287.4 g Se condary Air 137.4 SLPM

    Tota l 160.3 SLPM

    Compone nt mol%

    Me tha ne 90.7N2 4.65

    Etha ne 3.35

    CO2 0.92Propa ne 0.28

    n-Butane 0.05

    i -Butane 0.03

    n-Pe nta ne 0.02

    Tota l 100.00

    Fee d Natural Gas Comp osition

    Experimental Flue Gas Flows

    Reforme r Reactor Expe rimental Reforme r Gas Flows

    Source: Gas Technology Institute

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    46/101

    30

    Table 11. Experimental reformate flow (test conditions in Table 10)

    Source: Gas Technology Institute

    2.2. TCFR RICE Cost Estimation

    2.2.1. Approach

    ThesimulationandmodelingresultsreviewedabovewereusedtorefinetheTCFRconceptual

    designandtoprovideguidanceforapreliminaryengineeringdesignofaTCRRICEsystem.

    ThepreliminarydesignwasbasedupontheuseofaCumminsQSK60Ggasenginegenerator

    setproducing1,400kWelectricaloutput.Abillofmaterialswasgenerated.Thesimulation

    modelswereusedtodefinethekeyperformanceandsizingparametersfornewcomponentsof

    theTCFRsystem.Theseperformancespecificationswereusedtogeneratequotationsand

    engineeringestimatesforthekeycomponents.Thecostofothercomponentsandmaterialsin

    thebillofmaterialswereestimatedbaseduponcatalogpricesandengineeringestimates.An

    economiccostmodelwasdevelopedusinganExcelspreadsheet.Theeconomicmodel

    consideredfuelconsumptionsavings,TCRoperationandmaintenancecosts,TCR

    manufacturingcosts,andinstallationcosts.Themodelcalculatedapaybackperiod.The

    economicmodelwassetuptoalloweasychangesoftheinputassumptionssothatsensitivity

    analysescouldbeconducted.

    2.2.2. Key Assumptions

    TheTCFRRICEsystemequipmentlayoutthatservedasthebasisforthecostanalysisisshown

    inFigure17.ItwasassumedthattheTCFRsystemwouldbepackagedonaseparatemounting

    platformtoalloweasyinstallation(onsite)nexttotheengineandgeneratorset.Theitems

    withinthedashedlineboxoftheschematicarethosecomponentsthatmakeuptheTCFR

    system.ThedesignoftherecuperativereformingreactorisgiveninAppendixA.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    47/101

    31

    Otherkeyassumptionsarelistedbelow:

    Enginebrakeandelectricaloutput(i.e.generatorefficiency)fromCumminsbrochure

    10/02CPGQSK60G/C.

    Naturalgaslowerheatingvalue(LHV)of33.44MJ/Nm3.

    QSK60GbrakethermalefficiencyasreportedbyAxelzurLoyeinpresentationreport

    titledARESTechnologyDevelopmentforQSK60NaturalGasEnginedatedMarch15,

    2005.

    FuelcostisspotpriceattheHenryHubtakenfromNaturalGasWeeklyUpdatefor24

    March2005www.eia.doe.gov.

    Brakethermalefficiency=actualfuelconsumption(Btu/kWhr)dividedby3412

    (Btu/kWhr).

    ElectricitycostfromNewYorkStateEnergyResearchandDevelopmentAuthority2004.

    Operationandmaintenancecostincludesmaintenancereserveforoverhaul.

    Facilitiescapitalcostofmoneycalculationassumestotalgensetpurchasepricewith

    TCRis$600,000(approx.$428/kWinstalledprice).

    30Cmaximumreformategastemperaturehigherallowablereformategas

    temperaturewilllowercostofcertainTCRcomponents.

    91%availability.

  • 7/31/2019 Thermochemical Fuel Reforming for Ice

    48/101

    32

    Recuperative Reformer Heat Recovery SteamGenerator

    J/WRadiator

    Radiator

    Engine driven CACpump

    Engine Driven J/WPump

    Left Bank Compressors Right Bank Turbines

    Left Bank TurbinesRight Bank Compressors

    Fan

    Fan

    Air Filter

    Fuel/Air Mixer

    Charge Air Cooler

    Expansion tank

    Oil Cooler

    J/WExpansion Tank

    QuadTurbochargers

    Control Valve

    By-Pass Control Valve

    Gas FlowMeter

    SteamFlow Meter

    Heat Exchanger

    Gas/SteamMixer

    SteamWater Pump,Electric Motor driven

    Steamwater feedtank

    Condenser

    Make upwater

    Regulated NaturalGas Supply

    ThrottleValve

    ExhaustOutlet

    Thermal ChemicalRecuperator RICE System

    Schematic21 April 2005

    T1 T2 T3P1

    T4

    T5

    P2

    T6P3

    Control Valve

    Thermostat

    Thermostat

    Condenser Radiator

    Condenser coolingwater pump,

    electric motor driven

    Condenserexpansion tank

    Condensatereturn

    Thermostat

    Auto level controller

    TCR Assembly

    Cummins QSK60G

    Gas Flow Meter

    SulfurRemovalSystem

    Water filter

    Figure 17. TCRS system assembly and components for cost estimation

    Source: Gas Technology Insti